1
|
Sigal A, Neher RA, Lessells RJ. The consequences of SARS-CoV-2 within-host persistence. Nat Rev Microbiol 2025; 23:288-302. [PMID: 39587352 DOI: 10.1038/s41579-024-01125-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
SARS-CoV-2 causes an acute respiratory tract infection that resolves in most people in less than a month. Yet some people with severely weakened immune systems fail to clear the virus, leading to persistent infections with high viral titres in the respiratory tract. In a subset of cases, persistent SARS-CoV-2 replication results in an accelerated accumulation of adaptive mutations that confer escape from neutralizing antibodies and enhance cellular infection. This may lead to the evolution of extensively mutated SARS-CoV-2 variants and introduce an element of chance into the timing of variant evolution, as variant formation may depend on evolution in a single person. Whether long COVID is also caused by persistence of replicating SARS-CoV-2 is controversial. One line of evidence is detection of SARS-CoV-2 RNA and proteins in different body compartments long after SARS-CoV-2 infection has cleared from the upper respiratory tract. However, thus far, no replication competent virus has been cultured from individuals with long COVID who are immunocompetent. In this Review, we consider mechanisms of viral persistence, intra-host evolution in persistent infections, the connection of persistent infections with SARS-CoV-2 variants and the possible role of SARS-CoV-2 persistence in long COVID. Understanding persistent infections may therefore resolve much of what is still unclear in COVID-19 pathophysiology, with possible implications for other emerging viruses.
Collapse
Affiliation(s)
- Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
- Africa Health Research Institute, Durban, South Africa.
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Richard J Lessells
- KwaZulu-Natal Research Innovation & Sequencing Platform, School of Laboratory Medicine & Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
2
|
Zafilaza K, Fauchois A, Leducq V, Coppée R, Guilbaud R, Yusti AMF, Todesco E, Bridier-Nahmias A, Hingrat QL, Choquet S, Cacoub P, Amoura Z, Barrou B, Pourcher V, Spano JP, Louet M, Kramer L, Goulenok T, Salpin M, Daugas E, Dorent R, Ottaviani S, Zalcman G, Ghosn J, Charpentier C, Descamps D, Marcelin AG, Calvez V, Ferre VM, Marot S, Soulie C. SARS-CoV-2 lineage-dependent temporal phylogenetic distribution and viral load in immunocompromised and immunocompetent individuals. Virol J 2025; 22:118. [PMID: 40281619 PMCID: PMC12023422 DOI: 10.1186/s12985-025-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/19/2025] [Indexed: 04/29/2025] Open
Abstract
OBJECTIVES Mutational dynamics of SARS-CoV-2 in immunocompromised hosts, although well documented, remain a relatively unexplored mechanism. This study aims to compare the viral replication load and genetic diversity of SARS-CoV-2 in immunocompromised patients and non-immunocompromised individuals (NICs) from two major hospitals in Paris from January 2021 to May 2023. METHODS Cycle threshold (CT) values were measured by TaqPath COVID-19 RT-PCR (Thermo Fisher Scientific). The SARS-CoV-2 whole-genomes from 683 immunocompromised patients and 296 NICs was sequenced using Oxford Nanopore Technologies and used to determine lineage and mutational profile. RESULTS All immunocompromised patients, but not oncology patients, had lower SARS-CoV-2 viral loads than NICs. The genetic distribution of SARS-CoV-2 was homogeneous between immunocompromised individuals and NICs, with more mutations in immunocompromised patients (IRR = 1,013). Indeed, extensive genomic analysis revealed several mutations specifically associated with immunosuppression status, such as S: T95I, S:N764K, M:Q19E and ORF10:L37F. Conversely, the S: R346K and NSP13:T127N mutations were more common in NICs. CONCLUSION Immunocompromised patients have lower viral loads, probably due to their later diagnosis compared to NICs and oncology patients, who have better access to on-site SARS-CoV-2 testing and follow-up. In addition, mutational profiles differ between the two groups, with immunocompromised hosts accumulating more mutations compared to NICs.
Collapse
Affiliation(s)
- Karen Zafilaza
- Service de Virologie, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Paris, France.
| | - Antoine Fauchois
- Service de Virologie, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Valentin Leducq
- Service de Virologie, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Romain Coppée
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
- Laboratoire de Parasitologie-Mycologie, Université de Rouen Normandie, Rouen, 7510 ESCAPE, UR, France
| | - Romane Guilbaud
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Anna-Maria Franco Yusti
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Eve Todesco
- Service de Virologie, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Antoine Bridier-Nahmias
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Quentin Le Hingrat
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Sylvain Choquet
- Service d'Hématologie Clinique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Patrice Cacoub
- Service de Médecine Interne et Immunologie Clinique, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Zahir Amoura
- Service de Médecine Interne 2, Centre National de Référence des Histiocytoses, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Benoit Barrou
- Service d'Urologie et de Transplantation Rénale, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Valérie Pourcher
- Service de Maladies infectieuses et Tropicales, AP-HP, Hôpitaux Universitaires Pitié- Salpêtrière, Paris, France
| | - Jean-Philippe Spano
- Service d'Oncologie Médicale, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Martine Louet
- Service de Santé au Travail, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Laura Kramer
- Service de Pharmacie, AP-HP, Hôpital Bichat- Claude-Bernard, Paris, France
| | - Tiphaine Goulenok
- Service de Médecine Interne, AP-HP, Hôpital Bichat- Claude-Bernard, Paris, France
| | - Mathilde Salpin
- Service de Pneumologie, AP-HP, Hôpital Bichat- Claude-Bernard, Paris, France
| | - Eric Daugas
- Service de Néphrologie, Université Paris Cité, INSERM U1149, AP-HP, Hôpital Bichat- Claude-Bernard, Paris, France
| | - Richard Dorent
- Service de Cardiologie, AP-HP, Hôpital Bichat- Claude-Bernard, Paris, France
| | - Sébastien Ottaviani
- Service de Rhumatologie, AP-HP, Hôpital Bichat- Claude-Bernard, Paris, France
| | - Gérard Zalcman
- Service d'Oncologie Thoracique, AP-HP, Hôpital Bichat- Claude-Bernard, Paris, France
| | - Jade Ghosn
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
- Service de Maladies Infectieuses, AP-HP, Hôpital Bichat- Claude-Bernard, Paris, France
| | - Charlotte Charpentier
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Diane Descamps
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Anne-Geneviève Marcelin
- Service de Virologie, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Vincent Calvez
- Service de Virologie, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Valentine Marie Ferre
- Service de Virologie, Université Paris Cité, INSERM, UMR1137, IAME, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Stéphane Marot
- Service de Virologie, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Cathia Soulie
- Service de Virologie, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
3
|
Smith EW, Hamilton WL, Warne B, Walker ER, Jahun AS, Hosmillo M, ISARIC Consortium, Gupta RK, Goodfellow I, Gkrania-Klotsas E, Török ME, Illingworth CJR. Variable rates of SARS-CoV-2 evolution in chronic infections. PLoS Pathog 2025; 21:e1013109. [PMID: 40294077 PMCID: PMC12061394 DOI: 10.1371/journal.ppat.1013109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 05/08/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
An important feature of the evolution of the SARS-CoV-2 virus has been the emergence of highly mutated novel variants, which are characterised by the gain of multiple mutations relative to viruses circulating in the general global population. Cases of chronic viral infection have been suggested as an explanation for this phenomenon, whereby an extended period of infection, with an increased rate of evolution, creates viruses with substantial genetic novelty. However, measuring a rate of evolution during chronic infection is made more difficult by the potential existence of compartmentalisation in the viral population, whereby the viruses in a host form distinct subpopulations. We here describe and apply a novel statistical method to study within-host virus evolution, identifying the minimum number of subpopulations required to explain sequence data observed from cases of chronic infection, and inferring rates for within-host viral evolution. Across nine cases of chronic SARS-CoV-2 infection in hospitalised patients we find that non-trivial population structure is relatively common, with five cases showing evidence of more than one viral population evolving independently within the host. The detection of non-trivial population structure was more common in severely immunocompromised individuals (p = 0.04, Fisher's Exact Test). We find cases of within-host evolution proceeding significantly faster, and significantly slower, than that of the global SARS-CoV-2 population, and of cases in which viral subpopulations in the same host have statistically distinguishable rates of evolution. Non-trivial population structure was associated with high rates of within-host evolution that were systematically underestimated by a more standard inference method.
Collapse
Affiliation(s)
- Ewan W. Smith
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - William L. Hamilton
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Ben Warne
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Elena R. Walker
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
| | - Aminu S. Jahun
- Division of Virology, Department of Virology, University of Cambridge, Cambridge, United Kingdom
| | - Myra Hosmillo
- Division of Virology, Department of Virology, University of Cambridge, Cambridge, United Kingdom
| | | | - Ravindra K. Gupta
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Division of Virology, Department of Virology, University of Cambridge, Cambridge, United Kingdom
| | - Effrossyni Gkrania-Klotsas
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- MRC Epidemiology Unit, University of Cambridge, Level 3 Institute of Metabolic Science, Cambridge, United Kingdom
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - M. Estée Török
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | | |
Collapse
|
4
|
Tian J, Shang B, Zhang J, Guo Y, Li M, Hu Y, Bai D, She J, Han Y, Guo P, Huang M, Wang Y, Liu M, Zhang J, Ye B, Guo Y, Yang M, Lin Y, Zhang T, Sun X, Yuan X, Zhang D, Xu Z, Chai Y, Qi J, Liu K, Tan S, Zhao Y, Zhou J, Song R, Gao GF, Liu J. T cell immune evasion by SARS-CoV-2 JN.1 escapees targeting two cytotoxic T cell epitope hotspots. Nat Immunol 2025; 26:265-278. [PMID: 39875585 DOI: 10.1038/s41590-024-02051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/03/2024] [Indexed: 01/30/2025]
Abstract
Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.1, is unexplored. Here we demonstrate that T cell evasion exists in epitope hotspots spanning BA.2.86/JN.1 mutations. The newly emerging Q229K at this conserved nucleocapsid protein site impairs HLA-A2 epitope hotspot recognition. The association between HLA-A24 convalescents and T cell immune escape points to the spike (S) protein epitope S448-456NYNYLYRLF, with multiple mutations from Delta to JN.1, including L452Q, L452R, F456L, N450D and L452W, and N450D, L452W and L455S. A cliff drop of immune responses was observed for S448-456NYNYRYRLF (Delta/BA.5.2) and S448-456NYDYWYRSF (JN.1), but with immune preservation of S448-456NYDYWYRLF (BA.2.86). Structural analyses showed that hydrophobicity exposure determines the pronounced escape of L452R and L455S mutants, which was further confirmed by T cell receptor binding. This study highlights the characteristics and molecular mechanisms of the T cell immune escape for JN.1 and provides new insights into understanding the dominant circulation of variants, from the viewpoint of cytotoxic T cell evasion.
Collapse
Affiliation(s)
- Jinmin Tian
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bingli Shang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianing Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuechao Hu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Bai
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Junying She
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yang Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Peipei Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengkun Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Yalan Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Maoshun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
| | - Beiwei Ye
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yaxin Guo
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mengjie Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying Lin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ting Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Xin Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoju Yuan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Danni Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ziqian Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Chai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Kefang Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Shuguang Tan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yingze Zhao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jikun Zhou
- The Fifth Hospital of Shijiazhuang, Shijiazhuang, China.
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - George F Gao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China.
- The D. H. Chen School of Universal Health, Zhejiang University, Hangzhou, China.
| | - Jun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
- Research Unit of Adaptive Evolution and Control of Emerging Viruses, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Rouzine IM. Evolutionary Mechanisms of the Emergence of the Variants of Concern of SARS-CoV-2. Viruses 2025; 17:197. [PMID: 40006952 PMCID: PMC11861269 DOI: 10.3390/v17020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/21/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The evolutionary origin of the variants of concern (VOCs) of SARS-CoV-2, characterized by a large number of new substitutions and strong changes in virulence and transmission rate, is intensely debated. The leading explanation in the literature is a chronic infection in immunocompromised individuals, where the virus evolves before returning into the main population. The present article reviews less-investigated hypotheses of VOC emergence with transmission between acutely infected hosts, with a focus on the mathematical models of stochastic evolution that have proved to be useful for other viruses, such as HIV and influenza virus. The central message is that understanding the acting factors of VOC evolution requires the framework of stochastic multi-locus evolution models, and that alternative hypotheses can be effectively verified by fitting results of computer simulation to empirical data.
Collapse
Affiliation(s)
- Igor M Rouzine
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| |
Collapse
|
6
|
Olivero NB, Zappia VE, Gargantini P, Human-Gonzalez C, Raya-Plasencia L, Marquez J, Ortiz-Batsche L, Hernandez-Morfa M, Cortes PR, Ceschin D, Nuñez-Fernandez M, Perez DR, Echenique J. Genomic Evolution of the SARS-CoV-2 Omicron Variant in Córdoba, Argentina (2021-2022): Analysis of Uncommon and Prevalent Spike Mutations. Viruses 2024; 16:1877. [PMID: 39772187 PMCID: PMC11680156 DOI: 10.3390/v16121877] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
Understanding the evolutionary patterns and geographic spread of SARS-CoV-2 variants, particularly Omicron, is essential for effective public health responses. This study focused on the genomic analysis of the Omicron variant in Cordoba, Argentina from 2021 to 2022. Phylogenetic analysis revealed the dominant presence of BA.1 and BA.2 lineages, with BA.5 emerging earlier than BA.4, aligning with observations from other regions. Haplotype network analysis showed significant genetic divergence within Omicron samples, forming distinct clusters. In comparison to global datasets, we identified mutations in the Omicron genomes (A27S, Y145D, and L212I) situated within the NTD region of the Spike protein. These mutations, while not widespread globally, showed higher prevalence in our region. Of particular interest were the Y145D and L212I substitutions, previously unreported in Argentina. In silico analysis revealed that both mutations impact the binding affinity of T-cell epitopes to HLA type I and II alleles. Notably, these alleles are among the most common in the Argentinian population, with some associated with protection against and others with susceptibility to SARS-CoV-2 infection. These findings strongly suggest that these prevalent mutations likely influence the immunogenicity of the Spike protein and contribute to immune evasion mechanisms. This study provides valuable insights into the genomic dynamics of the Omicron variant in Cordoba, Argentina and highlights unique mutations with potential implications for COVID-19 vaccines.
Collapse
Affiliation(s)
- Nadia B. Olivero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Victoria E. Zappia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Pablo Gargantini
- Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba X5000HUA, Argentina; (P.G.); (J.M.)
| | - Candela Human-Gonzalez
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Luciana Raya-Plasencia
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Judith Marquez
- Clínica Universitaria Reina Fabiola, Universidad Católica de Córdoba, Córdoba X5000HUA, Argentina; (P.G.); (J.M.)
| | - Lucia Ortiz-Batsche
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens 30692, GA, USA; (L.O.-B.); (D.R.P.)
| | - Mirelys Hernandez-Morfa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Paulo R. Cortes
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Danilo Ceschin
- Instituto Universitario de Ciencias Biomedicas de Córdoba (IUCBC), Centro de Investigacion en Medicina Traslacional “Severo R. Amuchastegui” (CIMETSA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina;
| | - Mariana Nuñez-Fernandez
- Centro de Química Aplicada, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina;
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens 30692, GA, USA; (L.O.-B.); (D.R.P.)
| | - José Echenique
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba X5000HUA, Argentina; (V.E.Z.); (C.H.-G.); (L.R.-P.); (M.H.-M.); (P.R.C.)
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
7
|
Kovalchik KA, Hamelin DJ, Kubiniok P, Bourdin B, Mostefai F, Poujol R, Paré B, Simpson SM, Sidney J, Bonneil É, Courcelles M, Saini SK, Shahbazy M, Kapoor S, Rajesh V, Weitzen M, Grenier JC, Gharsallaoui B, Maréchal L, Wu Z, Savoie C, Sette A, Thibault P, Sirois I, Smith MA, Decaluwe H, Hussin JG, Lavallée-Adam M, Caron E. Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines. Nat Commun 2024; 15:10316. [PMID: 39609459 PMCID: PMC11604954 DOI: 10.1038/s41467-024-54734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm-MHCvalidator-to enhance mass spectrometry-based immunopeptidomics sensitivity. MHCvalidator identifies unique T-cell epitopes presented by the B7 supertype, including an epitope from a + 1-frameshift in a truncated Spike antigen, supported by ribosome profiling. Analysis of 100,512 COVID-19 patient proteomes shows Spike antigen truncation in 0.85% of cases, revealing frameshifted viral antigens at the population level. Our EpiTrack pipeline tracks global mutations of MHCvalidator-identified CD8 + T-cell epitopes from the BNT162b4 vaccine. While most vaccine epitopes remain globally conserved, an immunodominant A*01-associated epitope mutates in Delta and Omicron variants. This work highlights SARS-CoV-2 antigenic features and emphasizes the importance of continuous adaptation in T-cell vaccine development.
Collapse
Affiliation(s)
- Kevin A Kovalchik
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - David J Hamelin
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Benoîte Bourdin
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Fatima Mostefai
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Bastien Paré
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Shawn M Simpson
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Éric Bonneil
- Institute of Research in Immunology and Cancer, Montreal, QC, Canada
| | | | - Sunil Kumar Saini
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mohammad Shahbazy
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Saketh Kapoor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Vigneshwar Rajesh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Maya Weitzen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Bayrem Gharsallaoui
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Loïze Maréchal
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Zhaoguan Wu
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Christopher Savoie
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer, Montreal, QC, Canada
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Hélène Decaluwe
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Microbiology, Infectiology and Immunology Department, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Julie G Hussin
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.
- Mila-Quebec AI Institute, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Immuno-Oncology, Yale Center for Systems and Engineering Immunology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
Zornikova K, Dianov D, Ivanova N, Davydova V, Nenasheva T, Fefelova E, Bogolyubova A. Features of Highly Homologous T-Cell Receptor Repertoire in the Immune Response to Mutations in Immunogenic Epitopes. Int J Mol Sci 2024; 25:12591. [PMID: 39684303 DOI: 10.3390/ijms252312591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
CD8+ T-cell immunity, mediated through interactions between human leukocyte antigen (HLA) and the T-cell receptor (TCR), plays a pivotal role in conferring immune memory and protection against viral infections. The emergence of SARS-CoV-2 variants presents a significant challenge to the existing population immunity. While numerous SARS-CoV-2 mutations have been associated with immune evasion from CD8+ T cells, the molecular effects of most mutations on epitope-specific TCR recognition remain largely unexplored, particularly for epitope-specific repertoires characterized by common TCRs. In this study, we investigated an HLA-A*24-restricted NYN epitope (Spike448-456) that elicits broad and highly homologous CD8+ T cell responses in COVID-19 patients. Eleven naturally occurring mutations in the NYN epitope, all of which retained cell surface presentation by HLA, were tested against four transgenic Jurkat reporter cell lines. Our findings demonstrate that, with the exception of L452R and the combined mutation L452Q + Y453F, these mutations have minimal impact on the avidity of recognition by NYN peptide-specific TCRs. Additionally, we observed that a similar TCR responded differently to mutant epitopes and demonstrated cross-reactivity to the unrelated VYF epitope (ORF3a112-120). The results contradict the idea that immune responses with limited receptor diversity are insufficient to provide protection against emerging variants.
Collapse
Affiliation(s)
- Ksenia Zornikova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Dmitry Dianov
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Natalia Ivanova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Vassa Davydova
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | - Tatiana Nenasheva
- National Medical Research Center for Hematology, Moscow 125167, Russia
| | | | | |
Collapse
|
9
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
10
|
Oliván-Blázquez B, Bona-Otal M, Méndez-López F, Lerma-Irureta D, García-Izuel P, Ibáñez-Ruiz J, Montolío A, Ruiz-Herreros M, Godino J, Jimeno-Beltran B, Encabo-Berzosa MDM, Arenaz I, Medel-Martínez A, Casado-Vicente V, Coiras M, Tellería-Orriols C, Schoorlemmer J, Magallón-Botaya R. Characterization model of the post COVID-19 condition based on immunological, biochemical, and cytokine markers. iScience 2024; 27:110839. [PMID: 39318534 PMCID: PMC11420445 DOI: 10.1016/j.isci.2024.110839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/02/2024] [Accepted: 08/26/2024] [Indexed: 09/26/2024] Open
Abstract
Post-coronavirus disease condition (PCC) continues to affect many people globally, yet there remains a lack of diagnostic biomarkers to distinguish PCC from those recovered from acute COVID-19. This study compared biomarkers between two age- and gender-matched groups: PCC individuals and those recovered within three months of acute COVID-19 in 2020 (n = 85 each). Biomarkers were assessed 12-24 months after initial diagnosis, examining biochemical profiles, blood cell counts, coagulation status, antibody serology, lymphocyte populations, and cytokine levels. PCC individuals exhibited significant alterations in 49 of 167 markers, including K+ levels, αGAD antibodies, antithrombin III, insulin-like growth factor-binding protein 3 (IGFBP3), and interleukin-10 (IL-10). A panel of αGAD, IL-10, potassium levels, and CD16brightCD56- cell presence distinguished PCC individuals from recovered patients with >88% accuracy and <92% precision.
Collapse
Affiliation(s)
- Bárbara Oliván-Blázquez
- Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
- Aragonese Primary Care Research Group (GAIAP), Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Carlos III Health Institute, Madrid, Spain
| | | | - Fátima Méndez-López
- Aragonese Primary Care Research Group (GAIAP), Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Carlos III Health Institute, Madrid, Spain
| | - David Lerma-Irureta
- Aragonese Primary Care Research Group (GAIAP), Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Paula García-Izuel
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| | - Jesús Ibáñez-Ruiz
- Biocomputing Unit, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Alberto Montolío
- Biocomputing Unit, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - María Ruiz-Herreros
- Tarazona Primary Health Care Center, Aragonese Healthcare Service (SALUD), Zaragoza, Spain
| | - Javier Godino
- Cell Separation and Flow Cytometry Core, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Beatriz Jimeno-Beltran
- Cell Separation and Flow Cytometry Core, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | | | - Izaskun Arenaz
- Biobank of the Aragon Health System, Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
| | - Ana Medel-Martínez
- Placental Pathophysiology & Fetal Programming Research Group, Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
| | - Verónica Casado-Vicente
- Parquesol University Health Center, Castilla y León Health Service (SACYL), University Teaching Unit of Family and Community Medicine, University of Valladolid, Valladolid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Jon Schoorlemmer
- Endogenous Retroviruses (ERVs) in Development and Disease Group, Instituto Aragonés deCiencias de la Salud (IACS), Zaragoza, Spain; and ARAID Foundation, Zaragoza, Spain
| | - Rosa Magallón-Botaya
- Aragonese Primary Care Research Group (GAIAP), Institute for Health Research Aragón (IIS Aragón), Zaragoza, Spain
- Research Network on Chronicity, Primary Care and Health Promotion (RICAPPS), Carlos III Health Institute, Madrid, Spain
- Department of Medicine, Psychiatry and Dermatology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
11
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Ip JD, Chu WM, Chan WM, Chu AWH, Leung RCY, Peng Q, Tam AR, Chan BPC, Cai JP, Yuen KY, Kok KH, Shi Y, Hung IFN, To KKW. The significance of recurrent de novo amino acid substitutions that emerged during chronic SARS-CoV-2 infection: an observational study. EBioMedicine 2024; 107:105273. [PMID: 39146693 PMCID: PMC11379563 DOI: 10.1016/j.ebiom.2024.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND De novo amino acid substitutions (DNS) frequently emerge among immunocompromised patients with chronic SARS-CoV-2 infection. While previous studies have reported these DNS, their significance has not been systematically studied. METHODS We performed a review of DNS that emerged during chronic SARS-CoV-2 infection. We searched PubMed until June 2023 using the keywords "(SARS-CoV-2 or COVID-19) and (mutation or sequencing) and ((prolonged infection) or (chronic infection) or (long term))". We included patients with chronic SARS-CoV-2 infection who had SARS-CoV-2 sequencing performed for at least 3 time points over at least 60 days. We also included 4 additional SARS-CoV-2 patients with chronic infection of our hospital not reported previously. We determined recurrent DNS that has appeared in multiple patients and determined the significance of these mutations among epidemiologically-significant variants. FINDINGS A total of 34 cases were analyzed, including 30 that were published previously and 4 from our hospital. Twenty two DNS appeared in ≥3 patients, with 14 (64%) belonging to lineage-defining mutations (LDMs) of epidemiologically-significant variants and 10 (45%) emerging among chronically-infected patients before the appearance of the corresponding variant. Notably, nsp9-T35I substitution (Orf1a T4175I) emerged in all three patients with BA.2.2 infection in 2022 before the appearance of Variants of Interest that carry nsp9-T35I as LDM (EG.5 and BA.2.86/JN.1). Structural analysis suggests that nsp9-T35I substitution may affect nsp9-nsp12 interaction, which could be critical for the function of the replication and transcription complex. INTERPRETATION DNS that emerges recurrently in different chronically-infected patients may be used as a marker for potential epidemiologically-significant variants. FUNDING Theme-Based Research Scheme [T11/709/21-N] of the Research Grants Council (See acknowledgements for full list).
Collapse
Affiliation(s)
- Jonathan Daniel Ip
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wing-Ming Chu
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Wan-Mui Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Allen Wing-Ho Chu
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Rhoda Cheuk-Ying Leung
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Qi Peng
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Anthony Raymond Tam
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Brian Pui-Chun Chan
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jian-Piao Cai
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Kin-Hang Kok
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China
| | - Yi Shi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ivan Fan-Ngai Hung
- Division of Infectious Diseases, Department of Medicine, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China; Infectious Diseases Division, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kelvin Kai-Wang To
- State Key Laboratory for Emerging Infectious Diseases, Carol Yu Centre for Infection, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China; Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China; Department of Infectious Disease and Microbiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
13
|
Rasmussen TB, Qvesel AG, Pedersen AG, Olesen AS, Fonager J, Rasmussen M, Sieber RN, Stegger M, Calvo-Artavia FF, Goedknegt MJF, Thuesen ER, Lohse L, Mortensen S, Fomsgaard A, Boklund A, Bøtner A, Belsham GJ. Emergence and spread of SARS-CoV-2 variants from farmed mink to humans and back during the epidemic in Denmark, June-November 2020. PLoS Pathog 2024; 20:e1012039. [PMID: 38950065 PMCID: PMC11244769 DOI: 10.1371/journal.ppat.1012039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/12/2024] [Accepted: 06/07/2024] [Indexed: 07/03/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) not only caused the COVID-19 pandemic but also had a major impact on farmed mink production in several European countries. In Denmark, the entire population of farmed mink (over 15 million animals) was culled in late 2020. During the period of June to November 2020, mink on 290 farms (out of about 1100 in the country) were shown to be infected with SARS-CoV-2. Genome sequencing identified changes in the virus within the mink and it is estimated that about 4000 people in Denmark became infected with these mink virus variants. However, the routes of transmission of the virus to, and from, the mink have been unclear. Phylogenetic analysis revealed the generation of multiple clusters of the virus within the mink. Detailed analysis of changes in the virus during replication in mink and, in parallel, in the human population in Denmark, during the same time period, has been performed here. The majority of cases in mink involved variants with the Y453F substitution and the H69/V70 deletion within the Spike (S) protein; these changes emerged early in the outbreak. However, further introductions of the virus, by variants lacking these changes, from the human population into mink also occurred. Based on phylogenetic analysis of viral genome data, we estimate, using a conservative approach, that about 17 separate examples of mink to human transmission occurred in Denmark but up to 59 such events (90% credible interval: (39-77)) were identified using parsimony to count cross-species jumps on transmission trees inferred using Bayesian methods. Using the latter approach, 136 jumps (90% credible interval: (117-164)) from humans to mink were found, which may underlie the farm-to-farm spread. Thus, transmission of SARS-CoV-2 from humans to mink, mink to mink, from mink to humans and between humans were all observed.
Collapse
Affiliation(s)
- Thomas Bruun Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Amanda Gammelby Qvesel
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
- PandemiX Center, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Anders Gorm Pedersen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
- PandemiX Center, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Ann Sofie Olesen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Rasmussen
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | | | - Marc Stegger
- Department of Bioinformatics, Statens Serum Institut, Copenhagen, Denmark
| | | | | | - Esben Rahbek Thuesen
- Department of Health Technology, Section for Bioinformatics, Technical University of Denmark, Kgs. Lyngby, Denmark
- PandemiX Center, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Louise Lohse
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Sten Mortensen
- Danish Veterinary and Food Administration, Ministry of Environment and Food, Glostrup, Denmark
| | - Anders Fomsgaard
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Anette Boklund
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Anette Bøtner
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Graham J. Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
14
|
Zhang Y, Zhou Y, Chen J, Wu J, Wang X, Zhang Y, Wang S, Cui P, Xu Y, Li Y, Shen Z, Xu T, Zhang Q, Cai J, Zhang H, Wang P, Ai J, Jiang N, Qiu C, Zhang W. Vaccination Shapes Within-Host SARS-CoV-2 Diversity of Omicron BA.2.2 Breakthrough Infection. J Infect Dis 2024; 229:1711-1721. [PMID: 38149984 DOI: 10.1093/infdis/jiad572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Low-frequency intrahost single-nucleotide variants of SARS-CoV-2 have been recognized as predictive indicators of selection. However, the impact of vaccination on the intrahost evolution of SARS-CoV-2 remains uncertain at present. METHODS We investigated the genetic variation of SARS-CoV-2 in individuals who were unvaccinated, partially vaccinated, or fully vaccinated during Shanghai's Omicron BA.2.2 wave. We substantiated the connection between particular amino acid substitutions and immune-mediated selection through a pseudovirus neutralization assay or by cross-verification with the human leukocyte antigen-associated T-cell epitopes. RESULTS In contrast to those with immunologic naivety or partial vaccination, participants who were fully vaccinated had intrahost variant spectra characterized by reduced diversity. Nevertheless, the distribution of mutations in the fully vaccinated group was enriched in the spike protein. The distribution of intrahost single-nucleotide variants in individuals who were immunocompetent did not demonstrate notable signs of positive selection, in contrast to the observed adaptation in 2 participants who were immunocompromised who had an extended period of viral shedding. CONCLUSIONS In SARS-CoV-2 infections, vaccine-induced immunity was associated with decreased diversity of within-host variant spectra, with milder inflammatory pathophysiology. The enrichment of mutations in the spike protein gene indicates selection pressure exerted by vaccination on the evolution of SARS-CoV-2.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Zhou
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jiazhen Chen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Jing Wu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Xun Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yumeng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Shiyong Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Cui
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Yuanyuan Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yang Li
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tao Xu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Qiran Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengfei Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Jingwen Ai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Ning Jiang
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Qiu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| | - Wenhong Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Kim GJ, Elnaggar JH, Varnado M, Feehan AK, Tauzier D, Rose R, Lamers SL, Sevalia M, Nicholas N, Gravois E, Fort D, Crabtree JS, Miele L. A bioinformatic analysis of T-cell epitope diversity in SARS-CoV-2 variants: association with COVID-19 clinical severity in the United States population. Front Immunol 2024; 15:1357731. [PMID: 38784379 PMCID: PMC11112498 DOI: 10.3389/fimmu.2024.1357731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
Long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires the identification of T-cell epitopes affecting host immunogenicity. In this computational study, we explored the CD8+ epitope diversity estimated in 27 of the most common HLA-A and HLA-B alleles, representing most of the United States population. Analysis of 16 SARS-CoV-2 variants [B.1, Alpha (B.1.1.7), five Delta (AY.100, AY.25, AY.3, AY.3.1, AY.44), and nine Omicron (BA.1, BA.1.1, BA.2, BA.4, BA.5, BQ.1, BQ.1.1, XBB.1, XBB.1.5)] in analyzed MHC class I alleles revealed that SARS-CoV-2 CD8+ epitope conservation was estimated at 87.6%-96.5% in spike (S), 92.5%-99.6% in membrane (M), and 94.6%-99% in nucleocapsid (N). As the virus mutated, an increasing proportion of S epitopes experienced reduced predicted binding affinity: 70% of Omicron BQ.1-XBB.1.5 S epitopes experienced decreased predicted binding, as compared with ~3% and ~15% in the earlier strains Delta AY.100-AY.44 and Omicron BA.1-BA.5, respectively. Additionally, we identified several novel candidate HLA alleles that may be more susceptible to severe disease, notably HLA-A*32:01, HLA-A*26:01, and HLA-B*53:01, and relatively protected from disease, such as HLA-A*31:01, HLA-B*40:01, HLA-B*44:03, and HLA-B*57:01. Our findings support the hypothesis that viral genetic variation affecting CD8 T-cell epitope immunogenicity contributes to determining the clinical severity of acute COVID-19. Achieving long-term COVID-19 immunity will require an understanding of the relationship between T cells, SARS-CoV-2 variants, and host MHC class I genetics. This project is one of the first to explore the SARS-CoV-2 CD8+ epitope diversity that putatively impacts much of the United States population.
Collapse
Affiliation(s)
- Grace J. Kim
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Jacob H. Elnaggar
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- Department of Microbiology, Immunology, and Parasitology, Lousiana State University Health Sciences Center (LSUHSC), New Orleans, LA, United States
| | - Mallory Varnado
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Amy K. Feehan
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Darlene Tauzier
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rebecca Rose
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Susanna L. Lamers
- Research and Development, BioInfoExperts, LLC, Thibodaux, LA, United States
| | - Maya Sevalia
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Najah Nicholas
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Elizabeth Gravois
- Department of Pathology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Daniel Fort
- Research and Development, Oschner Medical Center, New Orleans, LA, United States
| | - Judy S. Crabtree
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
16
|
Sheetikov SA, Khmelevskaya AA, Zornikova KV, Zvyagin IV, Shomuradova AS, Serdyuk YV, Shakirova NT, Peshkova IO, Titov A, Romaniuk DS, Shagina IA, Chudakov DM, Kiryukhin DO, Shcherbakova OV, Khamaganova EG, Dzutseva V, Afanasiev A, Bogolyubova AV, Efimov GA. Clonal structure and the specificity of vaccine-induced T cell response to SARS-CoV-2 Spike protein. Front Immunol 2024; 15:1369436. [PMID: 38629062 PMCID: PMC11018901 DOI: 10.3389/fimmu.2024.1369436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Adenovirus vaccines, particularly the COVID-19 Ad5-nCoV adenovirus vaccine, have emerged as promising tools in the fight against infectious diseases. In this study, we investigated the structure of the T cell response to the Spike protein of the SARS-CoV-2 virus used in the COVID-19 Ad5-nCoV adenoviral vaccine in a phase 3 clinical trial (NCT04540419). In 69 participants, we collected peripheral blood samples at four time points after vaccination or placebo injection. Sequencing of T cell receptor repertoires from Spike-stimulated T cell cultures at day 14 from 17 vaccinated revealed a more diverse CD4+ T cell repertoire compared to CD8+. Nevertheless, CD8+ clonotypes accounted for more than half of the Spike-specific repertoire. Our longitudinal analysis showed a peak T cell response at day 14, followed by a decline until month 6. Remarkably, multiple T cell clonotypes persisted for at least 6 months after vaccination, as demonstrated by ex vivo stimulation. Examination of CDR3 regions revealed homologous sequences in both CD4+ and CD8+ clonotypes, with major CD8+ clonotypes sharing high similarity with annotated sequences specific for the NYNYLYRLF peptide, suggesting potential immunodominance. In conclusion, our study demonstrates the immunogenicity of the Ad5-nCoV adenoviral vaccine and highlights its ability to induce robust and durable T cell responses. These findings provide valuable insight into the efficacy of the vaccine against COVID-19 and provide critical information for ongoing efforts to control infectious diseases.
Collapse
Affiliation(s)
- Saveliy A. Sheetikov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra A. Khmelevskaya
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Ksenia V. Zornikova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Ivan V. Zvyagin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Alina S. Shomuradova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana V. Serdyuk
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Naina T. Shakirova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Iuliia O. Peshkova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Aleksei Titov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Dmitrii S. Romaniuk
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Irina A. Shagina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Dmitry M. Chudakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
- Genomics of Adaptive Immunity Department, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Dmitry O. Kiryukhin
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Olga V. Shcherbakova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Ekaterina G. Khamaganova
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| | - Vitalina Dzutseva
- Novosibirsk State University, Medical School, Novosibirsk, Russia
- NPO Petrovax Pharm LLC, Moscow, Russia
| | | | | | - Grigory A. Efimov
- Laboratory of Transplantation Immunology, National Medical Research Center for Hematology, Moscow, Russia
| |
Collapse
|
17
|
Manuto L, Bado M, Cola M, Vanzo E, Antonello M, Mazzotti G, Pacenti M, Cordioli G, Sasset L, Cattelan AM, Toppo S, Lavezzo E. Immune System Deficiencies Do Not Alter SARS-CoV-2 Evolutionary Rate but Favour the Emergence of Mutations by Extending Viral Persistence. Viruses 2024; 16:447. [PMID: 38543811 PMCID: PMC10974344 DOI: 10.3390/v16030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
During the COVID-19 pandemic, immunosuppressed patients showed prolonged SARS-CoV-2 infections, with several studies reporting the accumulation of mutations in the viral genome. The weakened immune system present in these individuals, along with the effect of antiviral therapies, are thought to create a favourable environment for intra-host viral evolution and have been linked to the emergence of new viral variants which strongly challenged containment measures and some therapeutic treatments. To assess whether impaired immunity could lead to the increased instability of viral genomes, longitudinal nasopharyngeal swabs were collected from eight immunocompromised patients and fourteen non-immunocompromised subjects, all undergoing SARS-CoV-2 infection. Intra-host viral evolution was compared between the two groups through deep sequencing, exploiting a probe-based enrichment method to minimise the possibility of artefactual mutations commonly generated in amplicon-based methods, which heavily rely on PCR amplification. Although, as expected, immunocompromised patients experienced significantly longer infections, the acquisition of novel intra-host viral mutations was similar between the two groups. Moreover, a thorough analysis of viral quasispecies showed that the variability of viral populations in the two groups is comparable not only at the consensus level, but also when considering low-frequency mutations. This study suggests that a compromised immune system alone does not affect SARS-CoV-2 within-host genomic variability.
Collapse
Affiliation(s)
- Laura Manuto
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Martina Bado
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Marco Cola
- Department of Medicine, DIMED, University of Padova, 35128 Padova, Italy;
| | - Elena Vanzo
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Maria Antonello
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Giorgia Mazzotti
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Monia Pacenti
- Unit of Microbiology and Virology, University Hospital of Padova, 35128 Padova, Italy;
| | - Giampaolo Cordioli
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Lolita Sasset
- Unit of Infectious Diseases, University Hospital of Padova, 35128 Padova, Italy;
| | - Anna Maria Cattelan
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
- Unit of Infectious Diseases, University Hospital of Padova, 35128 Padova, Italy;
| | - Stefano Toppo
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| | - Enrico Lavezzo
- Department of Molecular Medicine, DMM, University of Padova, 35121 Padova, Italy; (L.M.); (M.B.); (E.V.); (M.A.); (G.M.); (G.C.); (A.M.C.)
| |
Collapse
|
18
|
Marques AD, Graham-Wooten J, Fitzgerald AS, Sobel Leonard A, Cook EJ, Everett JK, Rodino KG, Moncla LH, Kelly BJ, Collman RG, Bushman FD. SARS-CoV-2 evolution during prolonged infection in immunocompromised patients. mBio 2024; 15:e0011024. [PMID: 38364100 PMCID: PMC10936176 DOI: 10.1128/mbio.00110-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/18/2024] Open
Abstract
Prolonged infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in immunocompromised patients provides an opportunity for viral evolution, potentially leading to the generation of new pathogenic variants. To investigate the pathways of viral evolution, we carried out a study on five patients experiencing prolonged SARS-CoV-2 infection (quantitative polymerase chain reaction-positive for 79-203 days) who were immunocompromised due to treatment for lymphoma or solid organ transplantation. For each timepoint analyzed, we generated at least two independent viral genome sequences to assess the heterogeneity and control for sequencing error. Four of the five patients likely had prolonged infection; the fifth apparently experienced a reinfection. The rates of accumulation of substitutions in the viral genome per day were higher in hospitalized patients with prolonged infection than those estimated for the community background. The spike coding region accumulated a significantly greater number of unique mutations than other viral coding regions, and the mutation density was higher. Two patients were treated with monoclonal antibodies (bebtelovimab and sotrovimab); by the next sampled timepoint, each virus population showed substitutions associated with monoclonal antibody resistance as the dominant forms (spike K444N and spike E340D). All patients received remdesivir, but remdesivir-resistant substitutions were not detected. These data thus help elucidate the trends of emergence, evolution, and selection of mutational variants within long-term infected immunocompromised individuals. IMPORTANCE SARS-CoV-2 is responsible for a global pandemic, driven in part by the emergence of new viral variants. Where do these new variants come from? One model is that long-term viral persistence in infected individuals allows for viral evolution in response to host pressures, resulting in viruses more likely to replicate efficiently in humans. In this study, we characterize replication in several hospitalized and long-term infected individuals, documenting efficient pathways of viral evolution.
Collapse
Affiliation(s)
- Andrew D. Marques
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jevon Graham-Wooten
- Division of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania, USA
| | | | - Ashley Sobel Leonard
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emma J. Cook
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John K. Everett
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kyle G. Rodino
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louise H. Moncla
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brendan J. Kelly
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ronald G. Collman
- Division of Pulmonary, Allergy, and Critical Care, Philadelphia, Pennsylvania, USA
| | - Frederic D. Bushman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
19
|
Wang CY, Kuo BS, Lee YH, Ho YH, Pan YH, Yang YT, Chang HC, Fu LF, Peng WJ. UB-612 pan-SARS-CoV-2 T cell immunity-promoting vaccine protects against COVID-19 moderate-severe disease. iScience 2024; 27:108887. [PMID: 38318376 PMCID: PMC10839960 DOI: 10.1016/j.isci.2024.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
UB-612 pan-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine targets the monomeric Spike S1-receptor binding domain (RBD) subunit protein along with five sequence-conserved T cell epitopes found on Spike S2 and non-Spike M and N proteins. UB-612 vaccination safely induces potent, broad, and long-lasting immunity against SARS-CoV-2. A phase-2 trial-extended observational study during the Omicron BA.2-/BA.5-dominated outbreak was conducted to investigate UB-612's protective effect against COVID-19 hospitalization and intensive care unit (ICU) admission (H-ICU). Additionally, memory viral-neutralizing titer and T cell immunity behind disease protection were explored. No cases of H-ICU were reported beyond 14 months post-second dose or beyond 10 months post-booster (third dose). The positive outcome correlates with strong cytotoxic CD8 T cell immunity, in line with the results of an ongoing phase-3 heterologous booster trial showing that UB-612 can enhance anti-BA.5 seroconversion rate and viral-neutralizing titer for mRNA, adeno-vectored, and virus-inactivated vaccine platforms. The UB-612 multitope vaccine may serve as an effective primer and booster for those at risk of SARS-CoV-2 infection.
Collapse
|
20
|
Melenotte C, Chavarot N, L'Honneur AS, Bodard S, Cheminant M, Flahault A, Nguyen Y, Burgard M, Dannaoui E, Bougnoux ME, Parize P, Rouzaud C, Scemla A, Canouï E, Lafont E, Vimpere D, Zuber J, Charlier C, Suarez F, Anglicheau D, Hermine O, Lanternier F, Mouthon L, Lortholary O. Increased Risk of Invasive Aspergillosis in Immunocompromised Patients With Persistent SARS-CoV-2 Viral Shedding >8 Weeks, Retrospective Case-control Study. Open Forum Infect Dis 2024; 11:ofae012. [PMID: 38390457 PMCID: PMC10883287 DOI: 10.1093/ofid/ofae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/07/2024] [Indexed: 02/24/2024] Open
Abstract
Background Immunocompromised patients now represent the population most at risk for severe coronavirus disease 2019. Persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral shedding was reported in these patients ranging from several weeks up to 9 months. We conducted a bicentric retrospective case-control study to identify risk and prognostic factors associated with persistent viral shedding in immunocompromised patients. Material and Methods Symptomatic immunocompromised adults with persistent SARS-CoV-2 viral shedding >8 weeks were retrospectively included between 1 March 2020 and 24 April 2022 at 2 university hospitals in Paris, France, and matched with a control group consisting of symptomatic immunocompromised patients without persistent viral shedding. Results Twenty-nine immunocompromised patients with persistent viral shedding were compared with 40 controls. In multivariate analysis, fever and lymphocytopenia (<0.5 G/L) were associated with an increased risk of persistent viral shedding (odds ratio [OR]: 3.3; 95% confidence interval [CI], 1.01-11.09) P = .048 and OR: 4.3; 95% CI, 1.2-14.7; P = .019, respectively). Unvaccinated patients had a 6-fold increased risk of persistent viral shedding (OR, 6.6; 95% CI, 1.7-25.1; P = .006). Patients with persistent viral shedding were at risk of hospitalization (OR: 4.8; 95 CI, 1.5-15.6; P = .008), invasive aspergillosis (OR: 10.17; 95 CI, 1.15-89.8; P = .037) and death (log-rank test <0.01). Conclusions Vaccine coverage was protective against SARS-CoV-2 persistent viral shedding in immunocompromised patients. This new group of immunocompromised patients with SARS-CoV-2 persistent viral shedding is at risk of developing invasive aspergillosis and death and should therefore be systematically screened for this fungal infection for as long as the viral shedding persists.
Collapse
Affiliation(s)
- Cléa Melenotte
- Department of Infectious Diseases and Tropical Medicine, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Nathalie Chavarot
- Department of Nephrology and Kidney Transplantation, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
- Paris-Cité University, Paris, France
- Department of Nephrology and Kidney Transplantation, European Hospital Georges Pompidou, Public Assistance of the Hospital of Paris, Paris, France
| | - Anne-Sophie L'Honneur
- Paris-Cité University, Paris, France
- Department of Virology, Cochin University Hospital, Public Assistance of the Hospital of Paris, Paris, France
| | - Sylvain Bodard
- Paris-Cité University, Paris, France
- Department of Imaging, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Morgane Cheminant
- Paris-Cité University, Paris, France
- Department of Hematology, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Adrien Flahault
- Department of Nephrology and Kidney Transplantation, European Hospital Georges Pompidou, Public Assistance of the Hospital of Paris, Paris, France
| | - Yann Nguyen
- Department of Internal Medicine, University Hospital Cochin, Public Assistance of the Hospital of Paris, Paris, France
| | - Marianne Burgard
- Department of Virology, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Eric Dannaoui
- Paris-Cité University, Paris, France
- Department of Mycology and Parasitology, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Marie-Elisabeth Bougnoux
- Paris-Cité University, Paris, France
- Department of Mycology and Parasitology, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Perrine Parize
- Department of Infectious Diseases and Tropical Medicine, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Claire Rouzaud
- Department of Infectious Diseases and Tropical Medicine, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Anne Scemla
- Department of Nephrology and Kidney Transplantation, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Etienne Canouï
- Mobile Team of Infectious Diseases and Tropical Medicine, Cochin University Hospital, Public Assistance of the Hospital of Paris, France
| | - Emmanuel Lafont
- Department of Internal Medicine, European Hospital Georges Pompidou, Public Assistance of the Hospital of Paris, Paris, France
| | - Damien Vimpere
- Department of Intensive Care Unit, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Julien Zuber
- Department of Nephrology and Kidney Transplantation, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
- Paris-Cité University, Paris, France
| | - Caroline Charlier
- Paris-Cité University, Paris, France
- Mobile Team of Infectious Diseases and Tropical Medicine, Cochin University Hospital, Public Assistance of the Hospital of Paris, France
| | - Felipe Suarez
- Paris-Cité University, Paris, France
- Department of Hematology, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Dany Anglicheau
- Department of Nephrology and Kidney Transplantation, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
- Paris-Cité University, Paris, France
| | - Olivier Hermine
- Paris-Cité University, Paris, France
- Department of Hematology, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
| | - Fanny Lanternier
- Department of Infectious Diseases and Tropical Medicine, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
- Paris-Cité University, Paris, France
| | - Luc Mouthon
- Paris-Cité University, Paris, France
- Department of Internal Medicine, University Hospital Cochin, Public Assistance of the Hospital of Paris, Paris, France
| | - Olivier Lortholary
- Department of Infectious Diseases and Tropical Medicine, Hospital Necker-Enfants Malades, Public Assistance of the Hospital of Paris, Paris, France
- Paris-Cité University, Paris, France
- Mycology Department, Institut Pasteur, Université Paris Cité, National Reference Center for Invasives Mycoses and Antifungals, Mycology Translational Research Group, Paris, France
| |
Collapse
|
21
|
Mizera D, Dziedzic R, Drynda A, Gradzikiewicz A, Jakieła B, Celińska-Löwenhoff M, Padjas A, Matyja-Bednarczyk A, Zaręba L, Bazan-Socha S. Cellular immune response to SARS-CoV-2 in patients with primary antibody deficiencies. Front Immunol 2023; 14:1275892. [PMID: 37901210 PMCID: PMC10602693 DOI: 10.3389/fimmu.2023.1275892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Primary antibody deficiencies (PAD) are inborn defects of the immune system that result in increased susceptibility to infections. Despite the reduced response to vaccination, PAD patients still benefit from it by reducing the risk of severe infections and complications. SARS-CoV-2 vaccines are recommended in PAD patients, but their immune effects are poorly studied. Here, we analyze virus-specific T-cell responses in PAD patients after booster vaccination against SARS-CoV-2. Patients and methods The study included 57 adult PAD patients on long-term immunoglobulin replacement therapy (IgRT) diagnosed with X-linked agammaglobulinemia (XLA; n = 4), common variable immunodeficiency (CVID; n = 33), isotype defects or IgG subclass deficiency (n = 6), and unclassified IgG deficiency (n = 14). Of those, 49 patients (86%) received vaccination against SARS-CoV-2 using mRNA vaccine (Pfizer-BioNTech). T-cell responses were assessed at a median of 21 (13 - 30) weeks after the booster dose (mainly the third dose) using commercially available interferon-gamma release assay (IGRA) with recombinant SARS-CoV-2 spike S1 protein. Results Vaccinated PAD patients showed an increased (3.8-fold, p = 0.004) release of IFN-γ upon S1 stimulation. In this group, we also documented higher serum levels of anti-SARS-CoV-2 IgG (4.1-fold, p = 0.01), although they were not associated with IGRA results. Further subgroup analysis revealed very similar IGRA responses in CVID and unclassified IgG deficiencies that were 2.4-fold increased compared to XLA and 5.4-fold increased compared to patients with isotype defects or IgG subclass deficiencies (e.g., vs. CVID: p = 0.016). As expected, CVID and XLA patients showed decreased serum titers of anti-SARS-CoV-2 antibodies compared to other studied groups (e.g., CVID vs. unclassified IgG deficiency: 4.4-fold, p = 0.006). The results did not depend directly on IgRT mode or dose, number of vaccine doses and time from the last booster dose, and clinical manifestations of PAD. Interestingly, anti-SARS-CoV-2 titers were positively correlated with serum immunoglobulin levels before IgRT (e.g., for IgA: r = 0.45, p<0.001; for IgG: r = 0.34, p = 0.009) and the percentage of peripheral blood NK cells (r = 0.48, p<0.001). Conclusions Our results documented satisfactory in vitro cellular immune response in PAD patients after booster SARS-CoV-2 vaccination. Therefore, even patients with agammaglobulinemia should benefit from vaccination due to the apparent induction of cell-mediated immunity, which, together with IgRT, grants comprehensive protection against the pathogen.
Collapse
Affiliation(s)
- Dorota Mizera
- Center for Innovative Medical Education, Jagiellonian University Medical College, Kraków, Poland
| | - Radosław Dziedzic
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland
- Students’ Scientific Group of Immune Diseases and Hypercoagulation, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Drynda
- Students’ Scientific Group of Immune Diseases and Hypercoagulation, Jagiellonian University Medical College, Kraków, Poland
| | - Ada Gradzikiewicz
- Students’ Scientific Group of Immune Diseases and Hypercoagulation, Jagiellonian University Medical College, Kraków, Poland
| | - Bogdan Jakieła
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | | | - Agnieszka Padjas
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | | | - Lech Zaręba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Rzeszów, Poland
| | - Stanisława Bazan-Socha
- Department of Internal Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
22
|
Raglow Z, Surie D, Chappell JD, Zhu Y, Martin ET, Kwon JH, Frosch AE, Mohamed A, Gilbert J, Bendall EE, Bahr A, Halasa N, Talbot HK, Grijalva CG, Baughman A, Womack KN, Johnson C, Swan SA, Koumans E, McMorrow ML, Harcourt JL, Atherton LJ, Burroughs A, Thornburg NJ, Self WH, Lauring AS. SARS-CoV-2 shedding and evolution in immunocompromised hosts during the Omicron period: a multicenter prospective analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.22.23294416. [PMID: 37662226 PMCID: PMC10473782 DOI: 10.1101/2023.08.22.23294416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Background Prolonged SARS-CoV-2 infections in immunocompromised hosts may predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection and associated intrahost viral evolution remain unclear. Methods Adults aged ≥18 years were enrolled at 5 hospitals and followed from 4/11/2022 - 2/1/2023. Eligible patients were SARS-CoV-2-positive in the previous 14 days and had a moderate or severely immunocompromising condition or treatment. Nasal specimens were tested by rRT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. Results We enrolled 150 patients with: B cell malignancy or anti-B cell therapy (n=18), solid organ or hematopoietic stem cell transplant (SOT/HSCT) (n=59), AIDS (n=5), non-B cell malignancy (n=23), and autoimmune/autoinflammatory conditions (n=45). Thirty-eight (25%) were rRT-PCR-positive and 12 (8%) were culture-positive ≥21 days after initial SARS-CoV-2 detection or illness onset. Patients with B cell dysfunction had longer duration of rRT-PCR-positivity compared to those with autoimmune/autoinflammatory conditions (aHR 0.32, 95% CI 0.15-0.64). Consensus (>50% frequency) spike mutations were identified in 5 individuals who were rRT-PCR-positive >56 days; 61% were in the receptor-binding domain (RBD). Mutations shared by multiple individuals were rare (<5%) in global circulation. Conclusions In this cohort, prolonged replication-competent Omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting >56 days accumulated spike mutations, which were distinct from those seen globally.
Collapse
Affiliation(s)
- Zoe Raglow
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Diya Surie
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emily T Martin
- School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Jennie H Kwon
- Department of Medicine, Washington University, St. Louis, Missouri
| | - Anne E Frosch
- Department of Medicine, Hennepin County Medical Center, Minneapolis, Minnesota
| | - Amira Mohamed
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Julie Gilbert
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Emily E Bendall
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Auden Bahr
- Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - H Keipp Talbot
- Departments of Medicine and Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adrienne Baughman
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kelsey N Womack
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Cassandra Johnson
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sydney A Swan
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Emilia Koumans
- Division of STD Prevention, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Meredith L McMorrow
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Jennifer L Harcourt
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Lydia J Atherton
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Ashley Burroughs
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Natalie J Thornburg
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| | - Wesley H Self
- Vanderbilt Institute for Clinical and Translational Research and Department of Emergency Medicine and, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adam S Lauring
- Departments of Internal Medicine and Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Korobova ZR, Arsentieva NA, Totolian AA. Macrophage-Derived Chemokine MDC/CCL22: An Ambiguous Finding in COVID-19. Int J Mol Sci 2023; 24:13083. [PMID: 37685890 PMCID: PMC10487728 DOI: 10.3390/ijms241713083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Macrophage-derived chemokine (MDC/CCL22) is a chemokine of the C-C subfamily. It is involved in T-cellular maturation and migration. Our previous research shows that plasma CCL22/MDC tends to show a statistically significant depletion of concentrations in acute patients and convalescents when compared to healthy donors. In the current work, we investigate existing views on MDC/CCL22 dynamics in association with various pathologies, including respiratory diseases and, specifically, COVID-19. Additionally, we present our explanations for the observed decrease in MDC/CCL22 concentrations in COVID-19. The first hypothesis we provide implies that viral products bind to MDC/CCL22 and block its activity. Another explanation for this phenomenon is based on dendritic cells population and the inhibition of their function.
Collapse
Affiliation(s)
- Zoia R. Korobova
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| | - Natalia A. Arsentieva
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| | - Areg A. Totolian
- Laboratory of Molecular Immunology, Saint Petersburg Pasteur Institute, Mira St. 14, 197101 St. Petersburg, Russia; (Z.R.K.); (N.A.A.)
- Department of Immunology, Pavlov First State Medical University of St. Petersburg, L’va Tolstogo St. 6–8, 197022 St. Petersburg, Russia
| |
Collapse
|
24
|
He J, Mei Q, Peng Y, Xie J, Li W, Ding C, Jiang C, Chen Q, Wang J, Zhang Y, Ni S, Yu J, Liu T, Yang W, Gong L, Zhang X, Yuan Y, Zhang Z, He L, He H, Sun Y, Wu J, Liu Z, Gao Y. Are the original SARS-CoV-2 novel mutants from in vitro culture able to escape the immune response? J Med Virol 2023; 95:e28931. [PMID: 37448226 DOI: 10.1002/jmv.28931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Monitoring variations in the virus genome to understand the SARS-CoV-2 evolution and spread of the virus is extremely important. Seven early SARS-CoV-2 isolates in China were cultured in vitro and were analyzed for their viral infectivity through viral growth assay, tissue culture infectious dose (TCID50 ) assay, spike protein quantification, and next generation sequencing analysis, and the resultant mutations in spike protein were used to generate the corresponding pseudoviruses for analysis of immune escape from vaccination and postinfection immunity. The results revealed that in vitro cultured SARS-CoV-2 virus had much higher mutation frequency (up to ~20 times) than that in infected patients, suggesting that SARS-CoV-2 diversify under favorable conditions. Monitoring viral mutations is not only helpful for better understanding of virus evolution and virulence change, but also the key to prevent virus transmission and disease progression. Compared with the D614G reference strain, a pseudovirus strain of SARS-CoV-2 was constructed with a high mutation rate site on the spike protein. We found some novel spike mutations during in vitro culture, such as E868Q, conferred further immune escape ability.
Collapse
Affiliation(s)
- Jun He
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Qingmin Mei
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yousong Peng
- Hunan Provincial Key Laboratory of Medical Virology, Bioinformatics Center, College of Biology, Hunan University, Changsha, China
| | - Jiajia Xie
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiwei Li
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Chengchao Ding
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Chengcheng Jiang
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingqing Chen
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Jing Wang
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuqing Zhang
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuangshuang Ni
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Junling Yu
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Beijing, China
| | - Weifei Yang
- Annoroad Gene Technology (Beijing) Co., Beijing, China
| | - Lei Gong
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Xiangyu Zhang
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuan Yuan
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Zhuhui Zhang
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Lan He
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Hongliang He
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yong Sun
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Jiabing Wu
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Zhirong Liu
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Public Health Research Institute of Anhui Province, Hefei, Anhui, China
| | - Yong Gao
- United Laboratory of The First Affiliated Hospital of USTC and Anhui Provincial Center for Disease Control and Prevention, Hefei, China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
25
|
Shariq M, Malik AA, Sheikh JA, Hasnain SE, Ehtesham NZ. Regulation of autophagy by SARS-CoV-2: The multifunctional contributions of ORF3a. J Med Virol 2023; 95:e28959. [PMID: 37485696 DOI: 10.1002/jmv.28959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/25/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-1 (SARS-CoV-2) regulates autophagic flux by blocking the fusion of autophagosomes with lysosomes, causing the accumulation of membranous vesicles for replication. Multiple SARS-CoV-2 proteins regulate autophagy with significant roles attributed to ORF3a. Mechanistically, open reading frame 3a (ORF3a) forms a complex with UV radiation resistance associated, regulating the functions of the PIK3C3-1 and PIK3C3-2 lipid kinase complexes, thereby modulating autophagosome biogenesis. ORF3a sequesters VPS39 onto the late endosome/lysosome, inhibiting assembly of the soluble NSF attachement protein REceptor (SNARE) complex and preventing autolysosome formation. ORF3a promotes the interaction between BECN1 and HMGB1, inducing the assembly of PIK3CA kinases into the ER (endoplasmic reticulum) and activating reticulophagy, proinflammatory responses, and ER stress. ORF3a recruits BORCS6 and ARL8B to lysosomes, initiating the anterograde transport of the virus to the plasma membrane. ORF3a also activates the SNARE complex (STX4-SNAP23-VAMP7), inducing fusion of lysosomes with the plasma membrane for viral egress. These mechanistic details can provide multiple targets for inhibiting SARS-CoV-2 by developing host- or host-pathogen interface-based therapeutics.
Collapse
Affiliation(s)
- Mohd Shariq
- Inflammation Biology and Cell Signalling Laboratory, ICMR-National Institute of Pathology, New Delhi, India
| | - Asrar A Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Javaid A Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
26
|
Yin Z, Chen JL, Lu Y, Wang B, Godfrey L, Mentzer AJ, Yao X, Liu G, Wellington D, Zhao Y, Wing PAC, Dejnirattisa W, Supasa P, Liu C, Hublitz P, Beveridge R, Waugh C, Clark SA, Clark K, Sopp P, Rostron T, Mongkolsapaya J, Screaton GR, Ogg G, Ewer K, Pollard AJ, Gilbert S, Knight JC, Lambe T, Smith GL, Dong T, Peng Y. Evaluation of T cell responses to naturally processed variant SARS-CoV-2 spike antigens in individuals following infection or vaccination. Cell Rep 2023; 42:112470. [PMID: 37141092 PMCID: PMC10121105 DOI: 10.1016/j.celrep.2023.112470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/20/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023] Open
Abstract
Most existing studies characterizing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell responses are peptide based. This does not allow evaluation of whether tested peptides are processed and presented canonically. In this study, we use recombinant vaccinia virus (rVACV)-mediated expression of SARS-CoV-2 spike protein and SARS-CoV-2 infection of angiotensin-converting enzyme (ACE)-2-transduced B cell lines to evaluate overall T cell responses in a small cohort of recovered COVID-19 patients and uninfected donors vaccinated with ChAdOx1 nCoV-19. We show that rVACV expression of SARS-CoV-2 antigen can be used as an alternative to SARS-CoV-2 infection to evaluate T cell responses to naturally processed spike antigens. In addition, the rVACV system can be used to evaluate the cross-reactivity of memory T cells to variants of concern (VOCs) and to identify epitope escape mutants. Finally, our data show that both natural infection and vaccination could induce multi-functional T cell responses with overall T cell responses remaining despite the identification of escape mutations.
Collapse
Affiliation(s)
- Zixi Yin
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ji-Li Chen
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Beibei Wang
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Leila Godfrey
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Xuan Yao
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Guihai Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Beijing You'an Hospital, Capital Medical University, Beijing 100069, China
| | - Dannielle Wellington
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK
| | - Yiqi Zhao
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Peter A C Wing
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Wanwisa Dejnirattisa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK; Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Piyada Supasa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ryan Beveridge
- Screening Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sally-Ann Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Timothy Rostron
- Sequencing Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Graham Ogg
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Katie Ewer
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK; National Institute for Health Research Oxford Biomedical Research Center, Oxford, UK
| | - Sarah Gilbert
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Teresa Lambe
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford OX3 7LE, UK; Pandemic Sciences Institute, University of Oxford, Oxford, UK.
| | - Geoffrey L Smith
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK.
| | - Tao Dong
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Yanchun Peng
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford OX3 7FZ, UK; MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
27
|
Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, Clark JR, Graham EL, Liotta EM, Tachas G, Penaloza-MacMaster P, Koralnik IJ. Neuro-PASC is characterized by enhanced CD4+ and diminished CD8+ T cell responses to SARS-CoV-2 Nucleocapsid protein. Front Immunol 2023; 14:1155770. [PMID: 37313412 PMCID: PMC10258318 DOI: 10.3389/fimmu.2023.1155770] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick H. Lim
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nicole M. Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey R. Clark
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edith L. Graham
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric M. Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Tachas
- Drug Discovery & Patents, Antisense Therapeutics Ltd., Melbourne, VIC, Australia
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
28
|
Shen J, Fan J, Zhao Y, Jiang D, Niu Z, Zhang Z, Cao G. Innate and adaptive immunity to SARS-CoV-2 and predisposing factors. Front Immunol 2023; 14:1159326. [PMID: 37228604 PMCID: PMC10203583 DOI: 10.3389/fimmu.2023.1159326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2), has affected all countries worldwide. Although some symptoms are relatively mild, others are still associated with severe and even fatal clinical outcomes. Innate and adaptive immunity are important for the control of SARS-CoV-2 infections, whereas a comprehensive characterization of the innate and adaptive immune response to COVID-19 is still lacking and the mechanisms underlying immune pathogenesis and host predisposing factors are still a matter of scientific debate. Here, the specific functions and kinetics of innate and adaptive immunity involved in SARS-CoV-2 recognition and resultant pathogenesis are discussed, as well as their immune memory for vaccinations, viral-mediated immune evasion, and the current and future immunotherapeutic agents. We also highlight host factors that contribute to infection, which may deepen the understanding of viral pathogenesis and help identify targeted therapies that attenuate severe disease and infection.
Collapse
Affiliation(s)
- Jiaying Shen
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junyan Fan
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Yue Zhao
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| | - Doming Jiang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zheyun Niu
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Zihan Zhang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Guangwen Cao
- Tongji University School of Medicine, Tongji University, Shanghai, China
- Department of Epidemiology, Shanghai Key Laboratory of Medical Bioprotection, Key Laboratory of Biological Defense, Ministry of Education, Second Military Medical University, Shanghai, China
| |
Collapse
|
29
|
Buckley PR, Lee CH, Antanaviciute A, Simmons A, Koohy H. A systems approach evaluating the impact of SARS-CoV-2 variant of concern mutations on CD8+ T cell responses. IMMUNOTHERAPY ADVANCES 2023; 3:ltad005. [PMID: 37082106 PMCID: PMC10112682 DOI: 10.1093/immadv/ltad005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
T cell recognition of SARS-CoV-2 antigens after vaccination and/or natural infection has played a central role in resolving SARS-CoV-2 infections and generating adaptive immune memory. However, the clinical impact of SARS-CoV-2-specific T cell responses is variable and the mechanisms underlying T cell interaction with target antigens are not fully understood. This is especially true given the virus' rapid evolution, which leads to new variants with immune escape capacity. In this study, we used the Omicron variant as a model organism and took a systems approach to evaluate the impact of mutations on CD8+ T cell immunogenicity. We computed an immunogenicity potential score for each SARS-CoV-2 peptide antigen from the ancestral strain and Omicron, capturing both antigen presentation and T cell recognition probabilities. By comparing ancestral vs. Omicron immunogenicity scores, we reveal a divergent and heterogeneous landscape of impact for CD8+ T cell recognition of mutated targets in Omicron variants. While T cell recognition of Omicron peptides is broadly preserved, we observed mutated peptides with deteriorated immunogenicity that may assist breakthrough infection in some individuals. We then combined our scoring scheme with an in silico mutagenesis, to characterise the position- and residue-specific theoretical mutational impact on immunogenicity. While we predict many escape trajectories from the theoretical landscape of substitutions, our study suggests that Omicron mutations in T cell epitopes did not develop under cell-mediated pressure. Our study provides a generalisable platform for fostering a deeper understanding of existing and novel variant impact on antigen-specific vaccine- and/or infection-induced T cell immunity.
Collapse
Affiliation(s)
- Paul R Buckley
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Chloe H Lee
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Agne Antanaviciute
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alison Simmons
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hashem Koohy
- Medical Research Council (MRC) Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine (WIMM), John Radcliffe Hospital, University of Oxford, Oxford, UK
- MRC WIMM Centre for Computational Biology, Medical Research Council (MRC) Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Alan Turing Fellow in Health and Medicine
| |
Collapse
|