1
|
Rui Y, Liu S, Liu S. Kir4.1 channel and voltage-gated calcium channel of astrocyte account for the transition dynamics of seizures. J Theor Biol 2025; 604:112082. [PMID: 40024363 DOI: 10.1016/j.jtbi.2025.112082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Astrocytes have an important role in the indirect regulation of neuronal excitability. The abnormalities of their ion channels cause neurons to discharge abnormally, which may induce seizures. The inwardly rectifying potassium channel 4.1 (Kir4.1 channel) and the voltage-gated calcium channel (VGCC) of an astrocyte play important roles in maintaining the homeostasis of these potassium and calcium ions, and have been found to be associated with seizures. However, the underlying mechanisms by which they induce seizures remain unclear. This paper established a neuron-astrocyte network model, which is a model consisting of a neuron and an astrocyte, to explore some mechanisms of epileptic seizures. Through a series of simulations based on this model, the results showed that low conductance of Kir4.1 channel can induce spontaneous periodic epileptic activity (SPEA) whereas higher conductance results in spontaneous periodic bursting event (SPBE) and high-frequency tonic discharges (HFTD). The abnormalities of VGCC also lead to the generation of SPEA and SPBE. As the changes of potassium concentration in the largest nearby reservoir which is analogous to a bath solution that contains a specific concentration of potassium, SPEA can undergo a process from appearance to disappearance. Thus, the research findings showed that the transitions of seizure-like discharges provide further theoretical analyses to clarify the complex mechanism of seizures.
Collapse
Affiliation(s)
- Yu Rui
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Shu Liu
- Shenzhen Liushu Clinic, Shenzhen, 518118, PR China
| | - Suyu Liu
- School of Sciences, Hangzhou Dianzi University, Hangzhou, 310018, PR China.
| |
Collapse
|
2
|
Wang Y, Hu KY, Zhang QY, Song YJ, Li LJ, Wang F, Tian G, Fei F, Xu CL, Fang JJ, Jiang XH, Wu JN, Li WL, Wang Y, Chen Z. Huperzine A attenuates epileptic seizures via enhancing dCA1-projecting septal cholinergic transmission. Acta Pharmacol Sin 2025:10.1038/s41401-025-01522-w. [PMID: 40140526 DOI: 10.1038/s41401-025-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/23/2025] [Indexed: 03/28/2025]
Abstract
Cholinergic transmission, independent of classical glutamatergic and GABAergic signaling, critically plays a crucial role in epilepsy. Huperzine A (Hup A), an acetylcholinesterase (AChE) inhibitor, exerts potent anticonvulsant activity, but its mechanism of action within cholinergic circuits remains unclear. Here, we show that Hup A mitigates epileptic seizures by enhancing hippocampal dorsal CA1 (dCA1)-projecting cholinergic transmission. We found that systemic injection of Hup A not only reduces seizures in acute models, including the maximal-electroshock seizure (MES), pentylenetetrazol (PTZ), and kainic acid (KA) models but also alleviates the seizure severity in chronic epilepsy models induced by kindling and KA, indicating a broad-spectrum anti-seizure efficacy. Interestingly, using immunohistochemistry, viral tracing, and in vivo fiber photometry, we found that Hup A selectively inhibits AChE in the dCA1 rather than in other hippocampal subregions or cortex, enhancing dCA1-projecting septal cholinergic transmission. Significantly, selective ablation of septal ChAT+ neurons reversed the anti-seizure effects of Hup A. We further identified that α7 nicotinic acetylcholine receptors in the dCA1 region mediate the anti-seizures cholinergic circuit modulated by Hup A. Together, our results demonstrate that Hup A exerts broad-spectrum anti-seizure efficacy via modulating dCA1-projecting septal cholinergic transmission, providing potential therapeutic avenues for epilepsy through targeted cholinergic modulation.
Collapse
Affiliation(s)
- Yu Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ke-Yu Hu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Qing-Yang Zhang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ying-Jie Song
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ling-Jie Li
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Gang Tian
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fan Fei
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences & The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ceng-Lin Xu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Jia Fang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences & The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Hong Jiang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian-Nong Wu
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Wen-Lu Li
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences & The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, School of Pharmaceutical Sciences & The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences & The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Khan WU, Shen Z, Mugo SM, Wang H, Zhang Q. Implantable hydrogels as pioneering materials for next-generation brain-computer interfaces. Chem Soc Rev 2025; 54:2832-2880. [PMID: 40035554 DOI: 10.1039/d4cs01074d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Use of brain-computer interfaces (BCIs) is rapidly becoming a transformative approach for diagnosing and treating various brain disorders. By facilitating direct communication between the brain and external devices, BCIs have the potential to revolutionize neural activity monitoring, targeted neuromodulation strategies, and the restoration of brain functions. However, BCI technology faces significant challenges in achieving long-term, stable, high-quality recordings and accurately modulating neural activity. Traditional implantable electrodes, primarily made from rigid materials like metal, silicon, and carbon, provide excellent conductivity but encounter serious issues such as foreign body rejection, neural signal attenuation, and micromotion with brain tissue. To address these limitations, hydrogels are emerging as promising candidates for BCIs, given their mechanical and chemical similarities to brain tissues. These hydrogels are particularly suitable for implantable neural electrodes due to their three-dimensional water-rich structures, soft elastomeric properties, biocompatibility, and enhanced electrochemical characteristics. These exceptional features make them ideal for signal recording, neural modulation, and effective therapies for neurological conditions. This review highlights the current advancements in implantable hydrogel electrodes, focusing on their unique properties for neural signal recording and neuromodulation technologies, with the ultimate aim of treating brain disorders. A comprehensive overview is provided to encourage future progress in this field. Implantable hydrogel electrodes for BCIs have enormous potential to influence the broader scientific landscape and drive groundbreaking innovations across various sectors.
Collapse
Affiliation(s)
- Wasid Ullah Khan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- CAS Applied Chemistry Science & Technology Co., Ltd, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
4
|
Zou S, Gong Y, Yan M, Yuan Z, Sun M, Zhang S, Yang Y, Guo X, Huang L, Fei F, Wang Y, Chen Z, Xu C. Low-Frequency Stimulation at the Ventromedial Hypothalamus Exhibits Broad-Spectrum Efficacy Across Models of Epilepsy. CNS Neurosci Ther 2025; 31:e70265. [PMID: 39924980 PMCID: PMC11808192 DOI: 10.1111/cns.70265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
AIMS The limited efficacy and very restricted antiseizure range of current deep brain stimulation (DBS) targets highlight the need to find an optimal target for managing various seizure types. Here, we aimed to investigate the efficacy of DBS on the ventromedial hypothalamus (VMH) in the different types of experimental epileptic seizures. METHODS The efficacy of DBS was examined in various epileptic seizure models, and the potential mechanisms were investigated by using in vivo calcium signal recording and optogenetics. RESULTS The c-fos expression was significantly increased in the glutamatergic neurons of VMH (VMHglu) following seizures. Then, 1-Hz low-frequency stimulation (LFS) at the VMH successfully attenuated the seizure severities across models of epilepsy, including the maximal electroshock, the pentylenetetrazol, the absence seizure, the cortical or hippocampal kainic acid-induced acute seizure, and the hippocampal-kindling models. The in vivo calcium imaging recordings revealed that LFS could inhibit the activities of the VMHglu. Optogenetic inhibition of VMHglu mirrored LFS's antiseizure impact. Further anterograde viral tracing confirmed the extensive distributed projections of VMHglu, which may compose the circuitry basis of the broad-spectral efficacy of LFS. CONCLUSION These findings demonstrate that VMH-LFS is a broad-spectrum treatment approach for different seizure types by decreasing VMHglu activity.
Collapse
Affiliation(s)
- Shuang Zou
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yiwei Gong
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengqi Yan
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Zhijian Yuan
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Minjuan Sun
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Shuo Zhang
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of PharmacyThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Yuanzhi Yang
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiongfeng Guo
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Lan Huang
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Fan Fei
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Yi Wang
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Zhong Chen
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Cenglin Xu
- Zhejiang Key Laboratory of Neuropsychopharmacology, the Second Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Xinhua Hospital), School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
5
|
Li Y, Zhang J, Ma B, Yu W, Xu M, Luan W, Yu Q, Zhang L, Rong R, Fu Y, Cao H. Nanotechnology used for siRNA delivery for the treatment of neurodegenerative diseases: Focusing on Alzheimer's disease and Parkinson's disease. Int J Pharm 2024; 666:124786. [PMID: 39378955 DOI: 10.1016/j.ijpharm.2024.124786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Neurodegenerative diseases (ND) are often accompanied by dementia, motor dysfunction, or disability. Caring for these patients imposes a significant psychological and financial burden on families. Until now, there are no effective methods for the treatment of NDs. Among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common. Recently, studies have revealed that the overexpression of certain genes may be linked to the occurrence of AD and PD. Small interfering RNAs (siRNAs) are a powerful tool for gene silencing because they can specifically bind to and cleave target mRNA. However, the intrinsic properties of naked siRNA and various physiological barriers limit the application of siRNA in the brain. Nanotechnology is a promising option for addressing these issues. Nanoparticles are not only able to protect siRNA from degradation but also have the advantage of crossing various physiological barriers to reach the brain target of siRNA. In this review, we aim to introduce diverse nanotechnology used for delivering siRNA to treat AD and PD. Finally, we will briefly discuss our perspectives on this promising field.
Collapse
Affiliation(s)
- Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Jiahui Zhang
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Boqin Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Meixia Xu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Weijing Luan
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Qinglong Yu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Li Zhang
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Rong Rong
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Yuanlei Fu
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| | - Haiqiang Cao
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
6
|
Huang S, Dong W, Lin X, Bian J. Na+/K+-ATPase: ion pump, signal transducer, or cytoprotective protein, and novel biological functions. Neural Regen Res 2024; 19:2684-2697. [PMID: 38595287 PMCID: PMC11168508 DOI: 10.4103/nrr.nrr-d-23-01175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/23/2023] [Accepted: 12/09/2023] [Indexed: 04/11/2024] Open
Abstract
Na+/K+-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na+ out of and two K+ into cells. Additionally, Na+/K+-ATPase participates in Ca2+-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane. Na+/K+-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells. Therefore, it is not surprising that Na+/K+-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases. However, published studies have so far only elucidated the important roles of Na+/K+-ATPase dysfunction in disease development, and we are lacking detailed mechanisms to clarify how Na+/K+-ATPase affects cell function. Our recent studies revealed that membrane loss of Na+/K+-ATPase is a key mechanism in many neurological disorders, particularly stroke and Parkinson's disease. Stabilization of plasma membrane Na+/K+-ATPase with an antibody is a novel strategy to treat these diseases. For this reason, Na+/K+-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein, participating in signal transduction such as neuronal autophagy and apoptosis, and glial cell migration. Thus, the present review attempts to summarize the novel biological functions of Na+/K+-ATPase and Na+/K+-ATPase-related pathogenesis. The potential for novel strategies to treat Na+/K+-ATPase-related brain diseases will also be discussed.
Collapse
Affiliation(s)
- Songqiang Huang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wanting Dong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaoqian Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Jinsong Bian
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Xu YZ, Xu ZY, Fu HX, Yue M, Li JQ, Cui CP, Wu D, Li BY. Caution for Multidrug Therapy: Significant Baroreflex Afferent Neuroexcitation Coordinated by Multi-Channels/Pumps Under the Threshold Concentration of Yoda1 and Dobutamine Combination. Biomolecules 2024; 14:1311. [PMID: 39456244 PMCID: PMC11506362 DOI: 10.3390/biom14101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Multi-drug therapies are common in cardiovascular disease intervention; however, io channel/pump coordination has not been tested electrophysiologically. Apparently, inward currents were not elicited by Yoda1/10 nM or Dobutamine/100 nM alone in Ah-type baroreceptor neurons, but were by their combination. To verify this, electroneurography and the whole-cell patch-clamp technique were performed. The results showed that Ah- and C-volley were dramatically increased by the combination at 0.5 V and 5 V, in contrast to A-volley, as consistent with repetitive discharge elicited by step and ramp with markedly reduced current injection/stimulus intensity. Notably, a frequency-dependent action potential (AP) duration was increased with Iberiotoxin-sensitive K+ component. Furthermore, an increased peak in AP measured in phase plots suggested enhanced Na+ influx, cytoplasmic Ca2+ accumulation through reverse mode of Na+/Ca2+ exchanger, and, consequently, functional KCa1.1 up-regulation. Strikingly, the Yoda1- or Dbtm-mediated small/transient Na+/K+-pump currents were robustly increased by their combination, implying a quick ion equilibration that may also be synchronized by hyperpolarization-induced voltage-sag, enabling faster repetitive firing. These novel findings demonstrate multi-channel/pump collaboration together to integrate neurotransmission at the cellular level for baroreflex, providing an afferent explanation in sexual dimorphic blood pressure regulation, and raising the caution regarding the individual drug concentration in multi-drug therapies to optimize efficacy and minimize toxicity.
Collapse
Affiliation(s)
- Yin-zhi Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Zhao-yuan Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hui-xiao Fu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Mao Yue
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jia-qun Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chang-peng Cui
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Di Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Department of Pharmacy, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Bai-yan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology (State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| |
Collapse
|
8
|
Zhang K, Yang Z, Yang Z, Du L, Zhou Y, Fu S, Wang X, Liu D, He X. Targeting microglial GLP1R in epilepsy: A novel approach to modulate neuroinflammation and neuronal apoptosis. Eur J Pharmacol 2024; 981:176903. [PMID: 39154823 DOI: 10.1016/j.ejphar.2024.176903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Epilepsy is a prevalent disorder of the central nervous system. Approximately, one-third of patients show resistance to pharmacological interventions. The pathogenesis of epilepsy is complex, and neuronal apoptosis plays a critical role. Aberrantly reactive astrocytes, induced by cytokine release from activated microglia, may lead to neuronal apoptosis. This study investigated the role of glucagon-like peptide 1 receptor (GLP1R) in microglial activation in epilepsy and its impact on astrocyte-mediated neurotoxicity. METHODS We used human hippocampal tissue from patients with temporal lobe epilepsy and a pilocarpine-induced epileptic mouse model to assess neurobiological changes in epilepsy. BV2 microglial cells and primary astrocytes were used to evaluate cytokine release and astrocyte activation in vitro. The involvement of GLP1R was explored using the GLP1R agonist, Exendin-4 (Ex-4). RESULTS Our findings indicated that reduced GLP1R expression in hippocampal microglia in both epileptic mouse models and human patients, correlated with increased cytokine release and astrocyte activation. Ex-4 treatment restored microglial homeostasis, decreased cytokine secretion, and reduced astrocyte activation, particularly of the A1 phenotype. These changes were associated with a reduction in neuronal apoptosis. In addition, Ex-4 treatment significantly decreased the frequency and duration of seizures in epileptic mice. CONCLUSIONS This study highlights the crucial role of microglial GLP1R in epilepsy pathophysiology. GLP1R downregulation contributes to microglial- and astrocyte-mediated neurotoxicity, exacerbating neuronal death and seizures. Activation of GLP1R with Ex-4 has emerged as a promising therapeutic strategy to reduce neuroinflammation, protect neuronal cells, and control seizures in epilepsy. This study provides a foundation for developing novel antiepileptic therapies targeting microglial GLP1R, with the potential to improve outcomes in patients with epilepsy.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liangchao Du
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Yu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Shiyu Fu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xiaoyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
9
|
Kang K, Wu Y, Gan H, Yang B, Xiao H, Wang D, Qiu H, Dong X, Tang H, Zhai X. Pathophysiological mechanisms underlying the development of focal cortical dysplasia and their association with epilepsy: Experimental models as a research approach. Seizure 2024; 121:176-185. [PMID: 39191070 DOI: 10.1016/j.seizure.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Focal cortical dysplasia (FCD) is a structural lesion that is the most common anatomical lesion identified in children, and the second most common in adults with drug-resistant focal-onset epilepsy. These lesions vary in size, location, and histopathological manifestations. FCDs are classified into three subtypes associated with loss-of-function mutations in PI3K/AKT, TSC1/TSC2, RHEB, and DEPDC/NPRL2/NPRL3. During the decades of research into FCD, experimental models have played an irreplaceable role in the research design of studies investigating disease pathogenesis, pathophysiology, and treatment. Further, the establishment of FCD experimental models has moved the field forward by (1) revealing the cellular processes and signaling pathways underlying FCD pathogenesis and (2) varying the methods and materials to study the function of FCD proteins. Currently, FCD experimental models are predominantly murine, with each model providing unique insights into FCD lesions. This review briefly summarizes the pathology and molecular functions of FCD, further comparing the available modeling methods and indexes, as well as the utilization of models, followed by an analysis of the similarities, advantages, and disadvantages between these models and human FCD.
Collapse
Affiliation(s)
- Kaiyi Kang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Yuxin Wu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hui Gan
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Baohui Yang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China; Department of Neurosurgery, Laboratory of Neurosurgery, Institute of Neurology, Lanzhou University, Lanzhou 730000, China
| | - Han Xiao
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Difei Wang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Hanli Qiu
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xinyu Dong
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Haotian Tang
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China
| | - Xuan Zhai
- Department of Neurosurgery, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Chongqing 400000, China.
| |
Collapse
|
10
|
Zhang K, Yang Z, Yang Z, Du L, Zhou Y, Fu S, Wang X, Li X, Liu D, He X. The m6A reader YTHDC2 promotes the pathophysiology of temporal lobe epilepsy by modulating SLC7A11-dependent glutamate dysregulation in astrocytes. Theranostics 2024; 14:5551-5570. [PMID: 39310099 PMCID: PMC11413790 DOI: 10.7150/thno.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: Epilepsy affects over 70 million people globally, with temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) often progressing to a drug-resistant state. Recent research has highlighted the role of reactive astrocytes and glutamate dysregulation in epilepsy pathophysiology. This study aims to investigate the involvement of astrocytic xCT, a glutamate-cystine antiporter, and its regulation by the m6A reader protein YTHDC2 in TLE-HS. Methods: A pilocarpine-induced epilepsy model in mice was used to study the role of xCT in reactive astrocytes. The expression of xCT and its regulation by YTHDC2 were assessed through various molecular and cellular techniques. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting were used to measure mRNA and protein levels of xCT and YTHDC2, respectively; immunofluorescence was utilized to visualize their localization and expression in astrocytes. In vivo glutamate measurements were conducted using microdialysis to monitor extracellular glutamate levels in the hippocampus. RNA immunoprecipitation-qPCR (RIP-qPCR) was performed to investigate the binding of YTHDC2 to SLC7A11 mRNA, while methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) was performed to quantify m6A modifications on SLC7A11 mRNA. A dual-luciferase reporter assay was conducted to assess the effect of m6A modifications on SLC7A11 mRNA translation, and polysome profiling was employed to evaluate the translational efficiency of SLC7A11 mRNA. Inhibition experiments involved shRNA-mediated knockdown of SLC7A11 (commonly known as xCT) and YTHDC2 expression in astrocytes. Video-electroencephalogram (EEG) recordings were used to monitor seizure activity in mice. Results: The xCT transporter in reactive astrocytes significantly contributes to elevated extracellular glutamate levels, enhancing neuronal excitability and seizure activity. Increased xCT expression is influenced by the m6A reader protein YTHDC2, which regulates its expression through m6A methylation. Inhibition of xCT or YTHDC2 in astrocytes reduces glutamate levels and effectively controls seizures in a mouse model. Specifically, mice with SLC7A11- or YTHDC2-knockdown astrocytes showed decreased glutamate concentration in the hippocampus and reduced frequency and duration of epileptic seizures. Conclusions: This study highlights the therapeutic potential of targeting YTHDC2 and xCT in reactive astrocytes to mitigate epilepsy. The findings provide a novel perspective on the mechanisms of glutamate dysregulation and their implications in seizure pathophysiology, suggesting that modulation of YTHDC2 and xCT could be a promising strategy for treating TLE.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liangchao Du
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Zhou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shiyu Fu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyue Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xing Li
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410078, Hunan Province, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinghui He
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Zhou Z, Zhang P, Ya D, Liu J, Xu Y, Zhang Y, Tang W, Zhou D, Liao R, Liu L. Withaferin A protects against epilepsy by promoting LCN2-mediated astrocyte polarization to stopping neuronal ferroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155892. [PMID: 39032282 DOI: 10.1016/j.phymed.2024.155892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/15/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Epilepsy is among the most frequent severe brain diseases, with few treatment options available. Neuronal ferroptosis is an important pathogenic mechanism in epilepsy. As a result, addressing ferroptosis appears to be a promising treatment approach for epilepsy. Withaferin A (WFA) is a C28 steroidal lactone that has a broad range of neuroprotective properties. Nonetheless, the antiepileptic action of WFA and the intrinsic mechanism by which it inhibits ferroptosis following epilepsy remain unknown. PURPOSE This study aimed at investigating to the antiepileptic potential of WFA in epilepsy, as well as to propose a potential therapeutic approach for epilepsy therapy. METHODS We conducted extensive research to examine the impacts of WFA on epilepsy and ferroptosis, using the kainic acid (KA)-treated primary astrocyte as an in vitro model and KA-induced temporal lobe epilepsy mice as an in vivo model. To analyze the neuroprotective effects of WFA on epileptic mice, electroencephalogram (EEG) recording, Nissl staining, and neurological function assessments such as the Morris water maze (MWM) test, Y-maze test, Elevated-plus maze (O-maze) test, and Open field test were used. Furthermore, the mechanism behind the neuroprotective effect of WFA in epilepsy was investigated using the transcriptomics analysis and verified on epileptic patient and epileptic mouse samples using Western blotting (WB) and immunofluorescence (IF) staining. In addition, WB, IF staining and specific antagonists/agonists were used to investigate astrocyte polarization and the regulatory signaling pathways involved. More critically, ferroptosis was assessed utilizing lipocalin-2 (LCN2) overexpression cell lines, siRNA knockdown, JC-1 staining, WB, IF staining, flow cytometry, electron microscopy (TEM), and ferroptosis-related GSH and MDA indicators. RESULTS In this study, we observed that WFA treatment reduced the number of recurrent seizures and time in seizure, and the loss of neurons in the hippocampal area in in epileptic mice, and even improved cognitive and anxiety impairment after epilepsy in a dose depend. Furthermore, WFA treatment was proven to enhance to the transformation of post-epileptic astrocytes from neurotoxic-type A1 to A2 astrocytes in both in vivo and in vitro experiments by inhibiting the phosphoinositide 3-kinase /AKT signaling pathway. At last, transcriptomics analysis in combination with functional experimental validation, it was discovered that WFA promoted astrocyte polarity transformation and then LCN2 in astrocytes, which inhibited neuronal ferroptosis to exert neuroprotective effects after epilepsy. In addition, we discovered significant astrocytic LCN2 expression in human TLE patient hippocampal samples. CONCLUSIONS Taken together, for the first, our findings suggest that WFA has neuroprotective benefits in epilepsy by modulating astrocyte polarization, and that LCN2 may be a novel potential target for the prevention and treatment of ferroptosis after epilepsy.
Collapse
Affiliation(s)
- Zixian Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Pengcheng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dongshan Ya
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, PR China
| | - Jiao Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yinchun Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yu Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Rujia Liao
- Department of Neurology, Affiliated Hospital of Guilin Medical University, Guilin Medical University, Guilin, 541004, PR China.
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
12
|
Mello F, Sampaio TB, Neuberger B, Mallmann MP, Fighera MR, Royes LFF, Furian AF, Larrick JW, Oliveira MS. Electroencephalographic and Behavioral Effects of Intranasal Administration of a Na +, K +-ATPase-Activating Antibody after Status Epilepticus. ACS Chem Neurosci 2024; 15:2695-2702. [PMID: 38989663 PMCID: PMC11311123 DOI: 10.1021/acschemneuro.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Status epilepticus (SE) is a medical emergency associated with high mortality and morbidity. Na+, K+-ATPase, is a promising therapeutic target for SE, given its critical role in regulation of neuron excitability and cellular homeostasis. We investigated the effects of a Na+, K+-ATPase-activating antibody (DRRSAb) on short-term electrophysiological and behavioral consequences of pilocarpine-induced SE. Rats were submitted to pilocarpine-induced SE, followed by intranasal administration (2 μg/nostril). The antibody increased EEG activity following SE, namely, EEG power in theta, beta, and gamma frequency bands, assessed by quantitative analysis of EEG power spectra. One week later, DRRSAb-treated animals displayed less behavioral hyperreactivity in pick-up tests and better performance in novel object recognition tests, indicating that the intranasal administration of this Na+, K+-ATPase activator immediately after SE improves behavioral outcomes at a later time point. These results suggest that Na+, K+-ATPase activation warrants further investigation as an adjunctive therapeutic strategy for SE.
Collapse
Affiliation(s)
- Fernanda
Kulinski Mello
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Tuane Bazanella Sampaio
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Bruna Neuberger
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Pereira Mallmann
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - Michele Rechia Fighera
- Department
of Neuropsychiatry, Federal University of
Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Fernando Freire Royes
- Department
of Sports Methods and Techniques, Federal
University of Santa Maria, Santa
Maria 97105-900, Brazil
| | - Ana Flávia Furian
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| | - James W. Larrick
- Panorama
Research Institute, 1230
Bordeaux Dr., Sunnyvale, California 94089, United States
| | - Mauro Schneider Oliveira
- Graduate
Program in Pharmacology, Federal University
of Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
13
|
Liu X, Zhang Y, Zhao Y, Zhang Q, Han F. The Neurovascular Unit Dysfunction in the Molecular Mechanisms of Epileptogenesis and Targeted Therapy. Neurosci Bull 2024; 40:621-634. [PMID: 38564049 PMCID: PMC11127907 DOI: 10.1007/s12264-024-01193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/09/2023] [Indexed: 04/04/2024] Open
Abstract
Epilepsy is a multifaceted neurological syndrome characterized by recurrent, spontaneous, and synchronous seizures. The pathogenesis of epilepsy, known as epileptogenesis, involves intricate changes in neurons, neuroglia, and endothelium, leading to structural and functional disorders within neurovascular units and culminating in the development of spontaneous epilepsy. Although current research on epilepsy treatments primarily centers around anti-seizure drugs, it is imperative to seek effective interventions capable of disrupting epileptogenesis. To this end, a comprehensive exploration of the changes and the molecular mechanisms underlying epileptogenesis holds the promise of identifying vital biomarkers for accurate diagnosis and potential therapeutic targets. Emphasizing early diagnosis and timely intervention is paramount, as it stands to significantly improve patient prognosis and alleviate the socioeconomic burden. In this review, we highlight the changes and molecular mechanisms of the neurovascular unit in epileptogenesis and provide a theoretical basis for identifying biomarkers and drug targets.
Collapse
Affiliation(s)
- Xiuxiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| | - Ying Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Yanming Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Qian Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Nanjing, 211166, China.
- International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
- Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 211166, China.
- Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 210019, China.
| |
Collapse
|
14
|
Qiu X, Yang Y, Da X, Wang Y, Chen Z, Xu C. Satellite glial cells in sensory ganglia play a wider role in chronic pain via multiple mechanisms. Neural Regen Res 2024; 19:1056-1063. [PMID: 37862208 PMCID: PMC10749601 DOI: 10.4103/1673-5374.382986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 07/10/2023] [Indexed: 10/22/2023] Open
Abstract
Satellite glial cells are unique glial cells that surround the cell body of primary sensory neurons. An increasing body of evidence suggests that in the presence of inflammation and nerve damage, a significant number of satellite glial cells become activated, thus triggering a series of functional changes. This suggests that satellite glial cells are closely related to the occurrence of chronic pain. In this review, we first summarize the morphological structure, molecular markers, and physiological functions of satellite glial cells. Then, we clarify the multiple key roles of satellite glial cells in chronic pain, including gap junction hemichannel Cx43, membrane channel Pannexin1, K channel subunit 4.1, ATP, purinergic P2 receptors, and a series of additional factors and their receptors, including tumor necrosis factor, glutamate, endothelin, and bradykinin. Finally, we propose that future research should focus on the specific sorting of satellite glial cells, and identify genomic differences between physiological and pathological conditions. This review provides an important perspective for clarifying mechanisms underlying the peripheral regulation of chronic pain and will facilitate the formulation of new treatment plans for chronic pain.
Collapse
Affiliation(s)
- Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yuanzhi Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoli Da
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
15
|
Ma MY, Hu LL, Xu WY, Zhang W. L-tryptophan anaerobic fermentation for indole acetic acid production: Bacterial enrichment and effects of zero valent iron. BIORESOURCE TECHNOLOGY 2024; 400:130691. [PMID: 38599347 DOI: 10.1016/j.biortech.2024.130691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/12/2024]
Abstract
Indole acetic acid (IAA) as a plant hormone, was one of the valuable products of anaerobic fermentation. However, the enriching method remained unknown. Moreover, whether zero valent iron (ZVI) could enhance IAA production was unexplored. In this work, IAA producing bacteria Klebsiella (63 %) was enriched successfully. IAA average production rate and concentration were up to 3 mg/L/h and 56 mg/L. With addition of 1 g/L ZVI, IAA average production rate and concentration was increased for 2 and 3 folds. Mechanisms indicated ZVI increased Na+K+-ATP activity and electron transport activity for 2 folds and 1 fold. Moreover, macro transcription determined indole pyruvate pathway activity like primary-amine oxidase, indole pyruvate decarboxylase and aldehyde dehydrogenase were increased for 146 %, 187 %, and 557 %, respectively. Therefore, ZVI was suitable for enhancement IAA production from mixed culture anaerobic fermentation.
Collapse
Affiliation(s)
- Meng-Yao Ma
- Department of Environmental Science and Engineering, College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Li-Li Hu
- Department of Environmental Science and Engineering, College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Wen-Yan Xu
- Department of Environmental Science and Engineering, College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Wei Zhang
- Department of Environmental Science and Engineering, College of Resources and Environment, Anhui Agriculture University, Hefei, Anhui 230036, China.
| |
Collapse
|
16
|
Su Y, Cao N, Zhang D, Wang M. The effect of ferroptosis-related mitochondrial dysfunction in the development of temporal lobe epilepsy. Ageing Res Rev 2024; 96:102248. [PMID: 38408490 DOI: 10.1016/j.arr.2024.102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/27/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of epileptic syndrome. It has been established that due to its complex pathogenesis, a considerable proportion of TLE patients often progress to drug-resistant epilepsy. Ferroptosis has emerged as an important neuronal death mechanism in TLE, which is primarily influenced by lipid accumulation and oxidative stress. In previous studies of ferroptosis, more attention has been focused on the impact of changes in the levels of proteins related to the redox equilibrium and signaling pathways on epileptic seizures. However, it is worth noting that the oxidative-reduction changes in different organelles may have different pathophysiological significance in the process of ferroptosis-related diseases. Mitochondria, as a key organelle involved in ferroptosis, its structural damage and functional impairment can lead to energy metabolism disorders and disruption of the excitatory inhibitory balance, significantly increasing the susceptibility to epileptic seizures. Therefore, secondary mitochondrial dysfunction in the process of ferroptosis could play a crucial role in TLE pathogenesis. This review focuses on ferroptosis and mitochondria, discussing the pathogenic role of ferroptosis-related mitochondrial dysfunction in TLE, thus aiming to provide novel insights and potential implications of ferroptosis-related secondary mitochondrial dysfunction in epileptic seizures and to offer new insights for the precise exploration of ferroptosis-related therapeutic targets for TLE patients.
Collapse
Affiliation(s)
- Yang Su
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China
| | - Ningrui Cao
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Dingkun Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Minjin Wang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, China; Department of Neurology, West China Hospital of Sichuan University, China.
| |
Collapse
|
17
|
Li Y, Li L, Wang Y, Wang Y, Chen Z. Functional Changes in Astrocytes Lead to Cognitive Deficits After Social Deprivation. Neurosci Bull 2024; 40:547-549. [PMID: 38353839 PMCID: PMC11004102 DOI: 10.1007/s12264-024-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/09/2023] [Indexed: 04/10/2024] Open
Affiliation(s)
- Yulan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lixuan Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Yibei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
18
|
Zhang M, Yang L, Li Z, Fei F, Zhou Y, Jiang D, Zheng Y, Cheng H, Wang Y, Xu C, Fang J, Wang S, Chen Z, Wang Y. Low-frequency stimulation in the zona incerta attenuates seizure via driving GABAergic neuronal activity. Neurobiol Dis 2024; 192:106424. [PMID: 38290566 DOI: 10.1016/j.nbd.2024.106424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Managing refractory epilepsy presents a significant a substantial clinical challenge. Deep brain stimulation (DBS) has emerged as a promising avenue for addressing refractory epilepsy. However, the optimal stimulation targets and effective parameters of DBS to reduce seizures remian unidentified. OBJECTIVES This study endeavors to scrutinize the therapeutic potential of DBS within the zona incerta (ZI) across diverse seizure models and elucidate the associated underlying mechanisms. METHODS We evaluated the therapeutic potential of DBS with different frequencies in the ZI on kainic acid (KA)-induced TLE model or M1-cortical seizures model, pilocarpine-induced M1-cortical seizure models, and KA-induced epilepsy model. Further, employing calcium fiber photometry combined with cell-specific ablation, we sought to clarified the causal role of ZI GABAergic neurons in mediating the therapeutic effects of DBS. RESULTS Our findings reveal that DBS in the ZI alleviated the severity of seizure activities in the KA-induced TLE model. Meanwhile, DBS attenuated seizure activities in KA- or pilocarpine-induced M1-cortical seizure model. In addition, DBS exerts a mitigating influence on KA induced epilepsy model. DBS in the ZI showed anti-seizure effects at low frequency spectrum, with 5 Hz exhibiting optimal efficacy. The low-frequency DBS significantly increased the calcium activities of ZI GABAergic neurons. Furthermore, selective ablation of ZI GABAergic neurons with taCasp3 blocked the anti-seizure effect of low-frequency DBS, indicating the anti-seizure effect of DBS is mediated by the activation of ZI GABAergic neurons. CONCLUSION Our results demonstrate that low-frequency DBS in the ZI attenuates seizure via driving GABAergic neuronal activity. This suggests that the ZI represents a potential DBS target for treating both hippocampal and cortical seizure through the activation of GABAergic neurons, thereby holding therapeutic significance for seizure treatment.
Collapse
Affiliation(s)
- Mengdi Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Lin Yang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yuan Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Dongxiao Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Hui Cheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jiajia Fang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China; Epilepsy Center, Department of Neurology, Second Affiliated Hospital & Forth Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
19
|
Pietrobon D, Conti F. Astrocytic Na +, K + ATPases in physiology and pathophysiology. Cell Calcium 2024; 118:102851. [PMID: 38308916 DOI: 10.1016/j.ceca.2024.102851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
The Na+, K+ ATPases play a fundamental role in the homeostatic functions of astrocytes. After a brief historic prologue and discussion of the subunit composition and localization of the astrocytic Na+, K+ ATPases, the review focuses on the role of the astrocytic Na+, K+ pumps in extracellular K+ and glutamate homeostasis, intracellular Na+ and Ca2+ homeostasis and signaling, regulation of synaptic transmission and neurometabolic coupling between astrocytes and neurons. Loss-of-function mutations in the gene encoding the astrocytic α2 Na+, K+ ATPase cause a rare monogenic form of migraine with aura (familial hemiplegic migraine type 2). On the other hand, the α2 Na+, K+ ATPase is upregulated in spinal cord and brain samples from amyotrophic lateral sclerosis and Alzheimer disease patients, respectively. In the last part, the review focuses on i) the migraine relevant phenotypes shown by familial hemiplegic migraine type 2 knock-in mice with 50 % reduced expression of the astrocytic α2 Na+, K+ ATPase and the insights into the pathophysiology of migraine obtained from these genetic mouse models, and ii) the evidence that upregulation of the astrocytic α2 Na+, K+ ATPase in mouse models of amyotrophic lateral sclerosis and Alzheimer disease promotes neuroinflammation and contributes to progressive neurodegeneration.
Collapse
Affiliation(s)
- Daniela Pietrobon
- Department of Biomedical Sciences and Padova Neuroscience Center (PNC), University of Padova, Padova 35131, Italy.
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
20
|
Wang TY, Weng EFJ, Hsu YC, Shiu LP, Huang TW, Wu HC, Hong JS, Wang SM. Inhibition of MMP8 effectively alleviates manic-like behavior and reduces neuroinflammation by modulating astrocytic CEBPD. J Neuroinflammation 2024; 21:61. [PMID: 38419037 PMCID: PMC10900742 DOI: 10.1186/s12974-024-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
There is an intrinsic relationship between psychiatric disorders and neuroinflammation, including bipolar disorder. Ouabain, an inhibitor of Na+/K+-ATPase, has been implicated in the mouse model with manic-like behavior. However, the molecular mechanisms linking neuroinflammation and manic-like behavior require further investigation. CCAAT/Enhancer-Binding Protein Delta (CEBPD) is an inflammatory transcription factor that contributes to neurological disease progression. In this study, we demonstrated that the expression of CEBPD in astrocytes was increased in ouabain-treated mice. Furthermore, we observed an increase in the expression and transcript levels of CEBPD in human primary astrocytes following ouabain treatment. Transcriptome analysis revealed high MMP8 expression in human primary astrocytes following CEBPD overexpression and ouabain treatment. We confirmed that MMP8 is a CEBPD-regulated gene that mediates ouabain-induced neuroinflammation. In our animal model, treatment of ouabain-injected mice with M8I (an inhibitor of MMP8) resulted in the inhibition of manic-like behavior compared to ouabain-injected mice that were not treated with M8I. Additionally, the reduction in the activation of astrocytes and microglia was observed, particularly in the hippocampal CA1 region. Excessive reactive oxygen species formation was observed in ouabain-injected mice, and treating these mice with M8I resulted in the reduction of oxidative stress, as indicated by nitrotyrosine staining. These findings suggest that MMP8 inhibitors may serve as therapeutic agents in mitigating manic symptoms in bipolar disorder.
Collapse
Affiliation(s)
- Tzu-Yun Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Eddie Feng-Ju Weng
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Yun-Chen Hsu
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Lu-Ping Shiu
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
| | - Teng-Wei Huang
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 404333, Taiwan
- Ph.D. Program for Aging, China Medical University, Taichung, Taiwan
| | - Hsuan-Cheng Wu
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA
| | - Shao-Ming Wang
- Neuroscience and Brain Disease Center, China Medical University, Taichung, Taiwan.
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, 404333, Taiwan.
| |
Collapse
|
21
|
Wang J, Cheng P, Qu Y, Zhu G. Astrocytes and Memory: Implications for the Treatment of Memory-related Disorders. Curr Neuropharmacol 2024; 22:2217-2239. [PMID: 38288836 PMCID: PMC11337689 DOI: 10.2174/1570159x22666240128102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/29/2023] [Indexed: 08/23/2024] Open
Abstract
Memory refers to the imprint accumulated in the brain by life experiences and represents the basis for humans to engage in advanced psychological activities such as thinking and imagination. Previously, research activities focused on memory have always targeted neurons. However, in addition to neurons, astrocytes are also involved in the encoding, consolidation, and extinction of memory. In particular, astrocytes are known to affect the recruitment and function of neurons at the level of local synapses and brain networks. Moreover, the involvement of astrocytes in memory and memory-related disorders, especially in Alzheimer's disease (AD) and post-traumatic stress disorder (PTSD), has been investigated extensively. In this review, we describe the unique contributions of astrocytes to synaptic plasticity and neuronal networks and discuss the role of astrocytes in different types of memory processing. In addition, we also explore the roles of astrocytes in the pathogenesis of memory-related disorders, such as AD, brain aging, PTSD and addiction, thus suggesting that targeting astrocytes may represent a potential strategy to treat memory-related neurological diseases. In conclusion, this review emphasizes that thinking from the perspective of astrocytes will provide new ideas for the diagnosis and therapy of memory-related neurological disorders.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ping Cheng
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Qu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoqi Zhu
- Key Laboratory of Xin’an Medicine, The Ministry of Education and Key Laboratory of Molecular Biology (Brain Diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
22
|
Kong S, Chen TX, Jia XL, Cheng XL, Zeng ML, Liang JY, He XH, Yin J, Han S, Liu WH, Fan YT, Zhou T, Liu YM, Peng BW. Cell-specific NFIA upregulation promotes epileptogenesis by TRPV4-mediated astrocyte reactivity. J Neuroinflammation 2023; 20:247. [PMID: 37880726 PMCID: PMC10601220 DOI: 10.1186/s12974-023-02909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The astrocytes in the central nervous system (CNS) exhibit morphological and functional diversity in brain region-specific pattern. Functional alterations of reactive astrocytes are commonly present in human temporal lobe epilepsy (TLE) cases, meanwhile the neuroinflammation mediated by reactive astrocytes may advance the development of hippocampal epilepsy in animal models. Nuclear factor I-A (NFIA) may regulate astrocyte diversity in the adult brain. However, whether NFIA endows the astrocytes with regional specificity to be involved in epileptogenesis remains elusive. METHODS Here, we utilize an interference RNA targeting NFIA to explore the characteristics of NFIA expression and its role in astrocyte reactivity in a 4-aminopyridine (4-AP)-induced seizure model in vivo and in vitro. Combined with the employment of a HA-tagged plasmid overexpressing NFIA, we further investigate the precise mechanisms how NIFA facilitates epileptogenesis. RESULTS 4-AP-induced NFIA upregulation in hippocampal region is astrocyte-specific, and primarily promotes detrimental actions of reactive astrocyte. In line with this phenomenon, both NFIA and vanilloid transient receptor potential 4 (TRPV4) are upregulated in hippocampal astrocytes in human samples from the TLE surgical patients and mouse samples with intraperitoneal 4-AP. NFIA directly regulates mouse astrocytic TRPV4 expression while the quantity and the functional activity of TRPV4 are required for 4-AP-induced astrocyte reactivity and release of proinflammatory cytokines in the charge of NFIA upregulation. NFIA deficiency efficiently inhibits 4-AP-induced TRPV4 upregulation, weakens astrocytic calcium activity and specific astrocyte reactivity, thereby mitigating aberrant neuronal discharges and neuronal damage, and suppressing epileptic seizure. CONCLUSIONS Our results uncover the critical role of NFIA in astrocyte reactivity and illustrate how epileptogenic brain injury initiates cell-specific signaling pathway to dictate the astrocyte responses.
Collapse
Affiliation(s)
- Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiang-Lei Jia
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xue-Lei Cheng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing-Yi Liang
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao-Hua He
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wan-Hong Liu
- Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yuan-Teng Fan
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, Wuhan, 430071, China
| | - Ting Zhou
- Department of Neurology, People's Hospital of Dongxihu District, Wuhan, 430040, Hubei, China
| | - Yu-Min Liu
- Department of Neurology, Zhongnan Hospital, Wuhan University, Donghu Road 169#, Wuhan, 430071, China.
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
23
|
Jing D, Hou X, Guo X, Zhao X, Zhang K, Zhang J, Kan C, Han F, Liu J, Sun X. Astrocytes in Post-Stroke Depression: Roles in Inflammation, Neurotransmission, and Neurotrophin Signaling. Cell Mol Neurobiol 2023; 43:3301-3313. [PMID: 37470888 PMCID: PMC11409983 DOI: 10.1007/s10571-023-01386-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Post-stroke depression (PSD) is a frequent and disabling complication of stroke that affects up to one-third of stroke survivors. The pathophysiology of PSD involves multiple mechanisms, including neurochemical, neuroinflammatory, neurotrophic, and neuroplastic changes. Astrocytes are a type of glial cell that is plentiful and adaptable in the central nervous system. They play key roles in various mechanisms by modulating neurotransmission, inflammation, neurogenesis, and synaptic plasticity. This review summarizes the latest evidence of astrocyte involvement in PSD from human and animal studies, focusing on the alterations of astrocyte markers and functions in relation to monoamine neurotransmitters, inflammatory cytokines, brain-derived neurotrophic factor, and glutamate excitotoxicity. We also discuss the potential therapeutic implications of targeting astrocytes for PSD prevention and treatment. Astrocytes could be new candidates for antidepressant medications and other interventions that aim to restore astrocyte homeostasis and function in PSD. Astrocytes could be new candidates for antidepressant medications and other interventions that aim to restore astrocyte homeostasis and function in PSD.
Collapse
Affiliation(s)
- Dongqing Jing
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xiaoli Hou
- Department of General Practice, Weifang Sixth People's Hospital, Weifang, China
| | - Xiao Guo
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xin Zhao
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Junling Liu
- Department of Neurology 1, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, China.
| |
Collapse
|
24
|
Wang Y, Qiu XY, Liu JY, Tan B, Wang F, Sun MJ, Jiang XH, Ji XM, Xu CL, Wang Y, Chen Z. (+)-Borneol enantiomer ameliorates epileptic seizure via decreasing the excitability of glutamatergic transmission. Acta Pharmacol Sin 2023; 44:1600-1611. [PMID: 36973542 PMCID: PMC10374614 DOI: 10.1038/s41401-023-01075-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023]
Abstract
Epilepsy is one common brain disorder, which is not well controlled by current pharmacotherapy. In this study we characterized the therapeutic potential of borneol, a plant-derived bicyclic monoterpene compound, in the treatment of epilepsy and elucidated the underlying mechanisms. The anti-seizure potency and properties of borneol were assessed in both acute and chronic mouse epilepsy models. Administration of (+)-borneol (10, 30, 100 mg/kg, i.p.) dose-dependently attenuated acute epileptic seizure in maximal-electroshock seizure (MES) and pentylenetetrazol (PTZ)-induced seizure models without obvious side-effect on motor function. Meanwhile, (+)-borneol administration retarded kindling-induced epileptogenesis and relieved fully kindled seizures. Importantly, (+)-borneol administration also showed therapeutic potential in kainic acid-induced chronic spontaneous seizure model, which was considered as a drug-resistant model. We compared the anti-seizure efficacy of 3 borneol enantiomers in the acute seizure models, and found (+)-borneol being the most satisfying one with long-term anti-seizure effect. In electrophysiological study conducted in mouse brain slices containing the subiculum region, we revealed that borneol enantiomers displayed different anti-seizure mechanisms, (+)-borneol (10 μM) markedly suppressed the high frequency burst firing of subicular neurons and decreased glutamatergic synaptic transmission. In vivo calcium fiber photometry analysis further verified that administration of (+)-borneol (100 mg/kg) inhibited the enhanced glutamatergic synaptic transmission in epilepsy mice. We conclude that (+)-borneol displays broad-spectrum anti-seizure potential in different experimental models via decreasing the glutamatergic synaptic transmission without obvious side-effect, suggesting (+)-borneol as a promising anti-seizure compound for pharmacotherapy in epilepsy.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Yun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jia-Ying Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fei Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Min-Juan Sun
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xu-Hong Jiang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xu-Ming Ji
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ceng-Lin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310061, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Department of Neurology, The First Affiliated Hospital, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
25
|
Çarçak N, Onat F, Sitnikova E. Astrocytes as a target for therapeutic strategies in epilepsy: current insights. Front Mol Neurosci 2023; 16:1183775. [PMID: 37583518 PMCID: PMC10423940 DOI: 10.3389/fnmol.2023.1183775] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/12/2023] [Indexed: 08/17/2023] Open
Abstract
Astrocytes are specialized non-neuronal glial cells of the central nervous system, contributing to neuronal excitability and synaptic transmission (gliotransmission). Astrocytes play a key roles in epileptogenesis and seizure generation. Epilepsy, as a chronic disorder characterized by neuronal hyperexcitation and hypersynchronization, is accompanied by substantial disturbances of glial cells and impairment of astrocytic functions and neuronal signaling. Anti-seizure drugs that provide symptomatic control of seizures primarily target neural activity. In epileptic patients with inadequate control of seizures with available anti-seizure drugs, novel therapeutic candidates are needed. These candidates should treat epilepsy with anti-epileptogenic and disease-modifying effects. Evidence from human and animal studies shows that astrocytes have value for developing new anti-seizure and anti-epileptogenic drugs. In this review, we present the key functions of astrocytes contributing to neuronal hyperexcitability and synaptic activity following an etiology-based approach. We analyze the role of astrocytes in both development (epileptogenesis) and generation of seizures (ictogenesis). Several promising new strategies that attempted to modify astroglial functions for treating epilepsy are being developed: (1) selective targeting of glia-related molecular mechanisms of glutamate transport; (2) modulation of tonic GABA release from astrocytes; (3) gliotransmission; (4) targeting the astrocytic Kir4.1-BDNF system; (5) astrocytic Na+/K+/ATPase activity; (6) targeting DNA hypo- or hypermethylation of candidate genes in astrocytes; (7) targeting astrocytic gap junction regulators; (8) targeting astrocytic adenosine kinase (the major adenosine-metabolizing enzyme); and (9) targeting microglia-astrocyte communication and inflammatory pathways. Novel disease-modifying therapeutic strategies have now been developed, such as astroglia-targeted gene therapy with a broad spectrum of genetic constructs to target astroglial cells.
Collapse
Affiliation(s)
- Nihan Çarçak
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Filiz Onat
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Department of Medical Pharmacology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Evgenia Sitnikova
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
26
|
Tang Y, Zhang S, Xu C. Now We Can Tame the Wild West of Controlling Astrocytes for Treating Neocortical Epilepsy. Neurosci Bull 2023; 39:1189-1190. [PMID: 36947391 PMCID: PMC10313607 DOI: 10.1007/s12264-023-01048-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 03/23/2023] Open
Affiliation(s)
- Yingying Tang
- Department of Pharmacy, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| | - Shuo Zhang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Pharmacy, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310003, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
27
|
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8:217. [PMID: 37231000 PMCID: PMC10212980 DOI: 10.1038/s41392-023-01481-w] [Citation(s) in RCA: 447] [Impact Index Per Article: 223.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Blood-brain barrier (BBB) is a natural protective membrane that prevents central nervous system (CNS) from toxins and pathogens in blood. However, the presence of BBB complicates the pharmacotherapy for CNS disorders as the most chemical drugs and biopharmaceuticals have been impeded to enter the brain. Insufficient drug delivery into the brain leads to low therapeutic efficacy as well as aggravated side effects due to the accumulation in other organs and tissues. Recent breakthrough in materials science and nanotechnology provides a library of advanced materials with customized structure and property serving as a powerful toolkit for targeted drug delivery. In-depth research in the field of anatomical and pathological study on brain and BBB further facilitates the development of brain-targeted strategies for enhanced BBB crossing. In this review, the physiological structure and different cells contributing to this barrier are summarized. Various emerging strategies for permeability regulation and BBB crossing including passive transcytosis, intranasal administration, ligands conjugation, membrane coating, stimuli-triggered BBB disruption, and other strategies to overcome BBB obstacle are highlighted. Versatile drug delivery systems ranging from organic, inorganic, and biologics-derived materials with their synthesis procedures and unique physio-chemical properties are summarized and analyzed. This review aims to provide an up-to-date and comprehensive guideline for researchers in diverse fields, offering perspectives on further development of brain-targeted drug delivery system.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|
28
|
Zheng Y, Xu C, Sun J, Ming W, Dai S, Shao Y, Qiu X, Li M, Shen C, Xu J, Fei F, Fang J, Jiang X, Zheng G, Hu W, Wang Y, Wang S, Ding M, Chen Z. Excitatory somatostatin interneurons in the dentate gyrus drive a widespread seizure network in cortical dysplasia. Signal Transduct Target Ther 2023; 8:186. [PMID: 37193687 DOI: 10.1038/s41392-023-01404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/19/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023] Open
Abstract
Seizures due to cortical dysplasia are notorious for their poor prognosis even with medications and surgery, likely due to the widespread seizure network. Previous studies have primarily focused on the disruption of dysplastic lesions, rather than remote regions such as the hippocampus. Here, we first quantified the epileptogenicity of the hippocampus in patients with late-stage cortical dysplasia. We further investigated the cellular substrates leading to the epileptic hippocampus, using multiscale tools including calcium imaging, optogenetics, immunohistochemistry and electrophysiology. For the first time, we revealed the role of hippocampal somatostatin-positive interneurons in cortical dysplasia-related seizures. Somatostatin-positive were recruited during cortical dysplasia-related seizures. Interestingly, optogenetic studies suggested that somatostatin-positive interneurons paradoxically facilitated seizure generalization. By contrast, parvalbumin-positive interneurons retained an inhibitory role as in controls. Electrophysiological recordings and immunohistochemical studies revealed glutamate-mediated excitatory transmission from somatostatin-positive interneurons in the dentate gyrus. Taken together, our study reveals a novel role of excitatory somatostatin-positive neurons in the seizure network and brings new insights into the cellular basis of cortical dysplasia.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Cenglin Xu
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Jinyi Sun
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjie Ming
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Sijie Dai
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuying Shao
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Menghan Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Chunhong Shen
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jinghong Xu
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Fan Fei
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiajia Fang
- Department of Neurology, Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Xuhong Jiang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Guoqing Zheng
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
| | - Weiwei Hu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi Wang
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Shuang Wang
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Meiping Ding
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Zhong Chen
- Department of Neurology, Zhejiang Provincial Hospital of Chinese Medicine, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310060, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Epilepsy Center, Department of Neurology, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
29
|
Eyal S. An Electric Light Orchestra in the Brain: Optogenetics for Controlling Seizures via Modulation of Astrocyte Activity. Epilepsy Curr 2023; 23:188-190. [PMID: 37334415 PMCID: PMC10273822 DOI: 10.1177/15357597231160600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Activated Astrocytes Attenuate Neocortical Seizures in Rodent Models Through Driving Na(+)-K(+)-ATPase Zhao J, Sun J, Zheng Y, Zheng Y, Shao Y, Li Y, Fei F, Xu C, Liu X, Wang S, Ruan Y, Liu J, Duan S, Chen Z, Wang Y. Nat Commun . 2022;13(1):7136. doi:10.1038/s41467-022-34662-2 Epileptic seizures are widely regarded to occur as a result of the excitation-inhibition imbalance from a neuro-centric view. Although astrocyte-neuron interactions are increasingly recognized in seizure, elementary questions about the causal role of astrocytes in seizure remain unanswered. Here we show that optogenetic activation of channelrhodopsin-2-expressing astrocytes effectively attenuates neocortical seizures in rodent models. This anti-seizure effect is independent from classical calcium signaling, and instead related to astrocytic Na+-K+-ATPase-mediated buffering K+, which activity-dependently inhibits firing in highly active pyramidal neurons during seizure. Compared with inhibition of pyramidal neurons, astrocyte stimulation exhibits anti-seizure effects with several advantages, including a wider therapeutic window, large-space efficacy, and minimal side effects. Finally, optogenetic-driven astrocytic Na+-K+-ATPase shows promising therapeutic effects in a chronic focal cortical dysplasia epilepsy model. Together, we uncover a promising anti-seizure strategy with optogenetic control of astrocytic Na+-K+-ATPase activity, providing alternative ideas and a potential target for the treatment of intractable epilepsy.
Collapse
Affiliation(s)
- Sara Eyal
- Institute for Drug Research and the David R. Bloom Centre for Pharmacy and Dr. Adolf and Klara Brettler Center for Research in Molecular Pharmacology and Therapeutics, - The Hebrew University of Jerusalem
| |
Collapse
|
30
|
Zhang YY, Li XS, Ren KD, Peng J, Luo XJ. Restoration of metal homeostasis: a potential strategy against neurodegenerative diseases. Ageing Res Rev 2023; 87:101931. [PMID: 37031723 DOI: 10.1016/j.arr.2023.101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Metal homeostasis is critical to normal neurophysiological activity. Metal ions are involved in the development, metabolism, redox and neurotransmitter transmission of the central nervous system (CNS). Thus, disturbance of homeostasis (such as metal deficiency or excess) can result in serious consequences, including neurooxidative stress, excitotoxicity, neuroinflammation, and nerve cell death. The uptake, transport and metabolism of metal ions are highly regulated by ion channels. There is growing evidence that metal ion disorders and/or the dysfunction of ion channels contribute to the progression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Therefore, metal homeostasis-related signaling pathways are emerging as promising therapeutic targets for diverse neurological diseases. This review summarizes recent advances in the studies regarding the physiological and pathophysiological functions of metal ions and their channels, as well as their role in neurodegenerative diseases. In addition, currently available metal ion modulators and in vivo quantitative metal ion imaging methods are also discussed. Current work provides certain recommendations based on literatures and in-depth reflections to improve neurodegenerative diseases. Future studies should turn to crosstalk and interactions between different metal ions and their channels. Concomitant pharmacological interventions for two or more metal signaling pathways may offer clinical advantages in treating the neurodegenerative diseases.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xi-Sheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China
| | - Kai-Di Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013,China.
| |
Collapse
|
31
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
32
|
Zou S, Lan YL, Gong Y, Chen Z, Xu C. The role of ATP1A3 gene in epilepsy: We need to know more. Front Cell Neurosci 2023; 17:1143956. [PMID: 36866063 PMCID: PMC9972585 DOI: 10.3389/fncel.2023.1143956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
The ATP1A3 gene, which encodes the Na+/K+-ATPase α3 catalytic subunit, plays a crucial role in both physiological and pathological conditions in the brain, and mutations in this gene have been associated with a wide variety of neurological diseases by impacting the whole infant development stages. Cumulative clinical evidence suggests that some severe epileptic syndromes have been linked to mutations in ATP1A3, among which inactivating mutation of ATP1A3 has been intriguingly found to be a candidate pathogenesis for complex partial and generalized seizures, proposing ATP1A3 regulators as putative targets for the rational design of antiepileptic therapies. In this review, we introduced the physiological function of ATP1A3 and summarized the findings about ATP1A3 in epileptic conditions from both clinical and laboratory aspects at first. Then, some possible mechanisms of how ATP1A3 mutations result in epilepsy are provided. We think this review timely introduces the potential contribution of ATP1A3 mutations in both the genesis and progression of epilepsy. Taken that both the detailed mechanisms and therapeutic significance of ATP1A3 for epilepsy are not yet fully illustrated, we think that both in-depth mechanisms investigations and systematic intervention experiments targeting ATP1A3 are needed, and by doing so, perhaps a new light can be shed on treating ATP1A3-associated epilepsy.
Collapse
Affiliation(s)
- Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu-Long Lan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Yu-Long Lan ✉
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China,Cenglin Xu ✉
| |
Collapse
|