1
|
Baker RE, Yang W, Vecchi GA, Takahashi S. Increasing intensity of enterovirus outbreaks projected with climate change. Nat Commun 2024; 15:6466. [PMID: 39085256 PMCID: PMC11291881 DOI: 10.1038/s41467-024-50936-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Pathogens of the enterovirus genus, including poliovirus and coxsackieviruses, typically circulate in the summer months suggesting a possible positive association between warmer weather and transmission. Here we evaluate the environmental and demographic drivers of enterovirus transmission, as well as the implications of climate change for future enterovirus circulation. We leverage pre-vaccination era data on polio in the US as well as data on two enterovirus A serotypes in China and Japan that are known to cause hand, foot, and mouth disease. Using mechanistic modeling and statistical approaches, we find that enterovirus transmission appears positively correlated with temperature although demographic factors, particularly the timing of school semesters, remain important. We use temperature projections from Coupled Model Intercomparison Project Phase 6 (CMIP6) to simulate future outbreaks under late 21st-century climate change for Chinese provinces. We find that outbreak size increases with climate change on average, though results differ across climate models depending on the degree of wintertime warming. In the worst-case scenario, we project peak outbreaks in some locations could increase by up to 40%.
Collapse
Affiliation(s)
- Rachel E Baker
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI, USA.
- Institute at Brown for Environment and Society, Brown University, Providence, RI, USA.
| | - Wenchang Yang
- Department of Geosciences, Princeton University, Princeton, NJ, USA
| | - Gabriel A Vecchi
- Department of Geosciences, Princeton University, Princeton, NJ, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
2
|
Xie Z, Khamrin P, Maneekarn N, Kumthip K. Epidemiology of Enterovirus Genotypes in Association with Human Diseases. Viruses 2024; 16:1165. [PMID: 39066327 PMCID: PMC11281466 DOI: 10.3390/v16071165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Enteroviruses (EVs) are well-known causes of a wide range of infectious diseases in infants and young children, ranging from mild illnesses to severe conditions, depending on the virus genotypes and the host's immunity. Recent advances in molecular surveillance and genotyping tools have identified over 116 different human EV genotypes from various types of clinical samples. However, the current knowledge about most of these genotypes, except for those of well-known genotypes like EV-A71 and EV-D68, is still limited due to a lack of comprehensive EV surveillance systems. This limited information makes it difficult to understand the true burden of EV-related diseases globally. Furthermore, the specific EV genotype associated with diseases varies according to country, population group, and study period. The same genotype can exhibit different epidemiological features in different areas. By integrating the data from established EV surveillance systems in the USA, Europe, Japan, and China, in combination with other EV infection studies, we can elaborate a better understanding of the distribution of prevalent EV genotypes and the diseases associated with EV. This review analyzed the data from various EV surveillance databases and explored the EV seroprevalence and the association of specific EV genotypes with human diseases.
Collapse
Affiliation(s)
- Zhenfeng Xie
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Guangxi Colleges and Universities Key Laboratory of Basic Research and Transformation of Cancer Immunity and Infectious Diseases, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Pattara Khamrin
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Niwat Maneekarn
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kattareeya Kumthip
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (Z.X.); (P.K.); (N.M.)
- Center of Excellence in Emerging and Re-Emerging Diarrheal Viruses, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Wang W, O'Driscoll M, Wang Q, Zhao S, Salje H, Yu H. Dynamics of measles immunity from birth and following vaccination. Nat Microbiol 2024; 9:1676-1685. [PMID: 38740931 DOI: 10.1038/s41564-024-01694-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
Measles remains a major threat to human health despite widespread vaccination. While we know that maternal antibodies can impair vaccine-induced immunity, the relative contributions of pre-existing immunity levels, maternal and infant characteristics on vaccine responses remain unclear, hampering evidence-based vaccination policy development. Here we combine serological data from 1,505 individuals (aged 0-12 years) in a mother-infant cohort and in a child cohort with empirical models to reconstruct antibody trajectories from birth. We show that while highly heterogeneous across a population, measles antibody evolution is strongly predictive from birth at the individual level, including following vaccination. Further, we find that caesarean section births were linked with 2.56 (95% confidence interval: 1.06-6.37) increased odds of primary vaccine failure, highlighting the long-term immunological consequences of birth route. Finally, we use our new understanding of antibody evolution to critically assess the population-level consequences of different vaccination schedules, the results of which will allow country-level evaluations of vaccine policy.
Collapse
Affiliation(s)
- Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | | | - Qianli Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Sihong Zhao
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Henrik Salje
- Department of Genetics, University of Cambridge, Cambridge, UK.
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China.
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Chen Y, Nguyet LA, Nhan LNT, Qui PT, Nhu LNT, Hong NTT, Ny NTH, Anh NT, Thanh LK, Phuong HT, Vy NHT, Thanh NTL, Khanh TH, Hung NT, Viet DC, Nam NT, Chau NVV, van Doorn HR, Tan LV, Clapham H. Age-time-specific transmission of hand-foot-and-mouth disease enterovirus serotypes in Vietnam: A catalytic model with maternal immunity. Epidemics 2024; 46:100754. [PMID: 38428358 PMCID: PMC10945305 DOI: 10.1016/j.epidem.2024.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/05/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024] Open
Abstract
Hand, foot and mouth disease (HFMD) is highly prevalent in the Asia Pacific region, particularly in Vietnam. To develop effective interventions and efficient vaccination programs, we inferred the age-time-specific transmission patterns of HFMD serotypes enterovirus A71 (EV-A71), coxsackievirus A6 (CV-A6), coxsackievirus A10 (CV-A10), coxsackievirus A16 (CV-A16) in Ho Chi Minh City, Vietnam from a case data collected during 2013-2018 and a serological survey data collected in 2015 and 2017. We proposed a catalytic model framework with good adaptability to incorporate maternal immunity using various mathematical functions. Our results indicate the high-level transmission of CV-A6 and CV-A10 which is not obvious in the case data, due to the variation of disease severity across serotypes. Our results provide statistical evidence supporting the strong association between severe illness and CV-A6 and EV-A71 infections. The HFMD dynamic pattern presents a cyclical pattern with large outbreaks followed by a decline in subsequent years. Additionally, we identify the age group with highest risk of infection as 1-2 years and emphasise the risk of future outbreaks as over 50% of children aged 6-7 years were estimated to be susceptible to CV-A16 and EV-A71. Our study highlights the importance of multivalent vaccines and active surveillance for different serotypes, supports early vaccination prior to 1 year old, and points out the potential utility for vaccinating children older than 5 years old in Vietnam.
Collapse
Affiliation(s)
- Yining Chen
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
| | - Lam Anh Nguyet
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | - Phan Tu Qui
- Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | | | | | - Nguyen Thi Han Ny
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen To Anh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Le Kim Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Huynh Thi Phuong
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | - Nguyen Ha Thao Vy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam
| | | | | | | | - Do Chau Viet
- Children's Hospital 2, Ho Chi Minh City, Viet Nam
| | | | - Nguyen Van Vinh Chau
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Hospital for Tropical Diseases, Ho Chi Minh City, Viet Nam
| | - H Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Le Van Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Viet Nam; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| |
Collapse
|