1
|
Zhang Y, Du Y, Zhou S, Liu Z, Li P, Du Z. Topical application of insulin encapsulated by chitosan-modified PLGA nanoparticles to alleviate alkali burn-induced corneal neovascularization. NANOSCALE 2025; 17:12323-12339. [PMID: 40278870 DOI: 10.1039/d4nr05507a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Corneal neovascularization (CRNV) severely impairs corneal transparency and is one of the leading causes of vision loss worldwide. Drug therapy is the main approach to inhibit CRNV. Insulin (INS) has been reported to facilitate the healing of corneal injuries and suppress inflammation. However, but due to the unique physiological barriers of the eye, its bioavailability is low, limiting its therapeutic effect. In this study, we developed a chitosan-poly(lactic-co-glycolic acid)-INS nanoparticles (CPI NPs) system for INS delivery. The characterization of CPI NPs was satisfactory. Experimental results demonstrated that CPI NPs effectively inhibited the migration of vascular endothelial cells and the formation of tubular structures. Furthermore, CPI NPs markedly suppressed the neovascularization in a CRNV model without any observable side effects. Quantitative proteomics analysis indicated that INS treatment led to a reduction in FTO levels within the neovascularized cornea. Both in vitro and in vivo experiments substantiated the impact of CPI NPs on FTO protein expression and the N6-methyladenosine modification. In conclusion, this study successfully developed an effective ocular drug delivery system for the treatment of CRNV induced by alkali burns, thereby offering a novel therapeutic option for this condition.
Collapse
Affiliation(s)
- Yuqing Zhang
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400010, China
| | - Yangrui Du
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Sijie Zhou
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Zeqi Liu
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhiyu Du
- Department of Ophthalmology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
2
|
Zhang J, Qi Y, Li Y, Zhu F, Geng Y, Li Y, Xue B, Bi H, Jiao Y, Min H, Jiang D, Nie G, Qi Y. PROTAC based targeted degradation of LRG1 for mitigating corneal neovascularization. J Control Release 2025; 381:113567. [PMID: 39993640 DOI: 10.1016/j.jconrel.2025.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Leucine-rich alpha-2-glycoprotein 1 (LRG1), a secretory glycoprotein associated with angiogenesis, inflammation, fibrosis, and other pivotal pathophysiological processes, is significantly upregulated in corneal neovascularization (CNV), where it drives neovascularization via the TGF-β-Smad signaling pathway, making it a potential therapeutic target for CNV. This study employs proteolysis-targeting chimera (PROTAC) technology, utilizing our newly developed PROTAC agent, ETTAC-2, to selectively degrade LRG1 in a mouse model of alkali burn-induced CNV. The cellular study revealed that ETTAC-2 effectively degraded LRG1 in a time- and dose-dependent manner, with a half-maximal degradation concentration (DC50) of 13.52 μM. In vivo findings confirmed that ETTAC-2 significantly reduced LRG1 levels in corneal neovascular tissues and inhibited the release of angiogenic factors by suppressing the TGF-β-Smad1/5/9 pathway, thus attenuating CNV progression. To enhance corneal drug delivery, ETTAC-2 was encapsulated in liposomes to form Lipo@ETTAC-2, which enhanced drug retention on the corneal surface, resulting in superior therapeutic outcomes in CNV models. This study underscores the pivotal role of LRG1 in CNV and positions Lipo@ETTAC-2 as a promising candidate for CNV therapy.
Collapse
Affiliation(s)
- Jingjuan Zhang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yongjun Qi
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan 250033, China
| | - Yongzheng Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Furong Zhu
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yizhuo Geng
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Li
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Bai Xue
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hongzheng Bi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ya Jiao
- Department of Emergency, The Second Hospital of Shandong University, Jinan 250033, China
| | - Huan Min
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Duyin Jiang
- Department of Burns and Plastic Surgery, The Second Hospital of Shandong University, Jinan 250033, China; Department of Emergency, The Second Hospital of Shandong University, Jinan 250033, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yingqiu Qi
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
3
|
Duan W, Gao Y, Xu R, Huang S, Xia X, Zhao J, Zeng L, Wei Q, Shen JW, Wu J, Zheng Y. Engineering dual-driven pro-angiogenic nanozyme based on porous silicon for synergistic acceleration of burn infected wound healing. Mater Today Bio 2025; 31:101522. [PMID: 39935892 PMCID: PMC11810849 DOI: 10.1016/j.mtbio.2025.101522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The high mortality risk of burn infected wounds has dictated the clinical need for the development of new biomaterials that can regulate multiple aspects of the healing process in a high-quality manner. Although nanozymes have made progress in inflammation modulation and antibacterial management, they often lack the ability in pro-angiogenesis, which greatly limits their functional application in the synergistic treatment of burn infected wounds. In this study, a smart pro-angiogenic nanozyme is simply and efficiently synthesized by in situ reduction of Pt precursors on porous silicon (PSi) nanocarriers. Owing to the hybridization of Pt, the Pt-decorated PSi (Pt@PSi) nanocomposites exhibit excellent near-infrared (NIR) photothermal activity and peroxidase-like catalytic activity, which can be used for co-efficient antibacterial treatment. After exposure to 808 nm NIR laser, Pt@PSi-based photothermal and nano-catalytic combined therapy can achieve more than 95 % bacterial inhibition in vitro. More importantly, under the stimulation of NIR laser and nanozyme, the smart Pt@PSi nanocomposites can efficiently release bioactive inorganic Si ions from the PSi skeleton, which can efficiently promote endothelial cell migration, tube formation, and angiogenesis. Furthermore, In vivo animal studies have demonstrated that Pt@PSi-based combination therapy can significantly accelerate the healing of infected burn infections by inhibiting bacterial growth, scavenging reactive oxygen species, and promoting angiogenesis with a favorable biosafety. Overall, the dual-driven pro-angiogenic nanozyme based on PSi expands the functional application of nanozyme, providing a novel combined strategy for efficient care of difficult-to-heal burn infected wounds.
Collapse
Affiliation(s)
- Wei Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, PR China
| | - Yue Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Ruru Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Sheng Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xueqian Xia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jingwen Zhao
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Longhuan Zeng
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, PR China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310027, PR China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jianmin Wu
- Lab of Nanomedicine and Omic-based Diagnostics, Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, PR China
| | - Yongke Zheng
- Department of Rehabilitation, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, PR China
| |
Collapse
|
4
|
Ye A, Mei H, Zhang Z, Song F, Jiang L, Huang T, Li P, Du S, Feng Y, Jiang T, Wu F, Cheng L, Qu J, Xiao J. Corneal first aid lens: Collagen-based hydrogels loading aFGF as contact lens for treating corneal injuries. J Control Release 2025; 379:251-265. [PMID: 39800237 DOI: 10.1016/j.jconrel.2025.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Severe corneal injuries can cause visual impairment even blindness. Surgically stitching or implanting biomaterials have been developed, but their implementation requires professional surgeons, failing to address the immediate need of medical treatment. The pressing challenge lies in developing multifunctional biomaterials that enable self-management of corneal injuries. This study introduces collagen-based hydrogels that can be used as contact lenses, incorporating macromolecular collagen into common polymer materials via a dual-step orthogonal cross-linking process. This method ensures superior optical and mechanical performance while preserving the bioactivity and structural stability of the incorporated materials. Specialized contact lens facilitates the controlled release of labile protein therapeutics such as acidic fibroblast growth factor (aFGF), eliminating the need for stabilizers like heparin. This capability allows the lens to deliver a wide range of labile proteins, thus expanding its therapeutic use across various ophthalmic and potentially other medical conditions. The lens's anti-inflammatory and anti-fibrotic properties effectively treat corneal alkali burn. Termed 'corneal first-aids lens', it can provide postoperative clinical care and serve as a viable and safe therapeutic alternative for patients with limited medical access.
Collapse
Affiliation(s)
- Anqi Ye
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), State Key Laboratory of Ophthalmology, Optometry and Visual Science and National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Hao Mei
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), State Key Laboratory of Ophthalmology, Optometry and Visual Science and National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China
| | - Zheng Zhang
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Fuqiang Song
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Linyuan Jiang
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Ting Huang
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Ping Li
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Siting Du
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Yanzhen Feng
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Tianyao Jiang
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China
| | - Fenzan Wu
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China.
| | - Li Cheng
- Laboratory of Translational Medicine, Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, China
| | - Jia Qu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), State Key Laboratory of Ophthalmology, Optometry and Visual Science and National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, Wenzhou, China.
| | - Jian Xiao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Cixi Biomedical Research Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Ningbo, China.
| |
Collapse
|
5
|
Duenki T, Ikeuchi Y. Insulative Compression of Neuronal Tissues on Microelectrode Arrays by Perfluorodecalin Enhances Electrophysiological Measurements. Adv Healthc Mater 2025; 14:e2403771. [PMID: 39757474 PMCID: PMC11874680 DOI: 10.1002/adhm.202403771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Indexed: 01/07/2025]
Abstract
Microelectrode array (MEA) techniques provide a powerful method for exploration of neural network dynamics. A critical challenge is to interface 3D neural tissues including neural organoids with the flat MEAs surface, as it is essential to place neurons near to the electrodes for recording weak extracellular signals of neurons. To enhance performance of MEAs, most research have focused on improving their surface treatment, while little attention has been given to improve the tissue-MEA interactions from the medium side. Here, a strategy is introduced to augment MEA measurements by overlaying perfluorodecalin (PFD), a biocompatible fluorinated solvent, over neural tissues. Laying PFD over cerebral organoids insulates and compresses the tissues on MEA, which significantly enhances electrophysiological recordings. Even subtle signals such as the propagation of action potentials in bundled axons of motor nerve organoids can be detected with the technique. Moreover, PFD stabilizes tissues in acute recordings and its transparency allows optogenetic manipulations. This research highlights the potential of PFD as a tool for refining electrophysiological measurements of in vitro neuronal cultures. This can open new avenues to leverage precision of neuroscientific investigations and expanding the toolkit for in vitro studies of neural function and connectivity.
Collapse
Affiliation(s)
- Tomoya Duenki
- Institute of Industrial ScienceThe University of TokyoMeguroTokyo153‐8505Japan
- Institute for AI and BeyondThe University of TokyoBunkyoTokyo113‐8655Japan
- Department of Chemistry and BiotechnologyThe University of TokyoBunkyoTokyo113‐8655Japan
- LIMMSCNRS‐Institute of Industrial ScienceThe University of TokyoIRL 2820MeguroTokyo153‐8505Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial ScienceThe University of TokyoMeguroTokyo153‐8505Japan
- Institute for AI and BeyondThe University of TokyoBunkyoTokyo113‐8655Japan
- Department of Chemistry and BiotechnologyThe University of TokyoBunkyoTokyo113‐8655Japan
- LIMMSCNRS‐Institute of Industrial ScienceThe University of TokyoIRL 2820MeguroTokyo153‐8505Japan
| |
Collapse
|
6
|
Wan C, He S, Cheng Q, Du K, Song Y, Yu X, Jiang H, Huang C, Xu J, Ma C, Zhu J. Bridged emulsion gels from polymer-nanoparticle enabling large-amount biomedical encapsulation and functionalization. Nat Commun 2024; 15:10789. [PMID: 39737995 PMCID: PMC11685963 DOI: 10.1038/s41467-024-55099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks. Their bridged skeletons and rheology are tunable over a vast range and deterministic on the basis of components' inputs. Furthermore, emulsion gels with high encapsulation and storage ability encapsulating active sunscreen ingredients, as a proof-of-concept, outperform commercial products. The ease (only seconds by strongly mixing two solutions) and the versatile chemical selection of our synthetic emulsion gels suggest an exciting general, scalable strategy for the next-generation cosmetic, ointment or otherwise food gel systems.
Collapse
Affiliation(s)
- Chuchu Wan
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Si He
- Key Laboratory of Molecular Biophysics of the Ministry of Education (HUST), College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanyong Cheng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Kehan Du
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Yuhang Song
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiang Yu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Hao Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Caili Huang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education (HUST), College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
7
|
Huang J, Jiang T, Qie J, Cheng X, Wang Y, Ye Y, Yang Z, Yan H, Yao K, Han H. Biologically inspired bioactive hydrogels for scarless corneal repair. SCIENCE ADVANCES 2024; 10:eadt1643. [PMID: 39693435 DOI: 10.1126/sciadv.adt1643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
Corneal injury-induced fibrosis occurs because of corneal epithelial basement membrane (EBM) injury and defective regeneration. Corneal fibrosis inhibition and transparency restoration depend on reestablished EBM, where the collagen network provides structural stability and heparan sulfate binds corneal epithelium-derived cytokines to regulate homeostasis. Inspired by this, bioactive hydrogels (Hep@Gel) composed of collagen-derived gelatins and highly anionic heparin were constructed for scarless corneal repair. Hep@Gel resembled the barrier function of the EBM regarding surface-confined binding, long-time sequestration, and progressive degradation of IL-1, TGF-β, and PDGF-BB, which robustly inhibited the apoptosis and myofibroblast transition of keratocytes. Animal models of rabbits and nonhuman primates confirmed that Hep@Gel effectively limited the influx of inflammatory and fibrotic cytokines from the epithelium into the stroma to down-regulate the wound healing cascade, contributing to better vision quality with 73% reduced fibrosis. Hep@Gel offers a solution for preventing corneal injury-induced scarring and substituting for lamellar keratoplasty to remove scarring.
Collapse
Affiliation(s)
- Jianan Huang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Tuoying Jiang
- MOE Laboratory of Biosystems Homeostasis and Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiqiao Qie
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Xiaoyu Cheng
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Yiyao Wang
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Yang Ye
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Zhuoheng Yang
- MOE Laboratory of Biosystems Homeostasis and Protection and College of Life Sciences-iCell Biotechnology Regenerative Biomedicine Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Hongji Yan
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, Royal Institute of Technology (KTH), 171 65, Solna, Sweden
- Department of Medical Cell Biology, Uppsala University, 752 36 Uppsala, Sweden; and AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 171 65 Stockholm, Sweden
| | - Ke Yao
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
| | - Haijie Han
- Eye Center, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310009, P. R. China
- State Key Laboratory of Trauma Burn and Combined Injury, Third Military Medical University, Chongqing 400038, P. R. China
| |
Collapse
|
8
|
Corti G, Kim J, Enguita FJ, Guarnieri JW, Grossman LI, Costes SV, Fuentealba M, Scott RT, Magrini A, Sanders LM, Singh K, Sen CK, Juran CM, Paul AM, Furman D, Calleja-Agius J, Mason CE, Galeano D, Bottini M, Beheshti A. To boldly go where no microRNAs have gone before: spaceflight impact on risk for small-for-gestational-age infants. Commun Biol 2024; 7:1268. [PMID: 39369042 PMCID: PMC11455966 DOI: 10.1038/s42003-024-06944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
In the era of renewed space exploration, comprehending the effects of the space environment on human health, particularly for deep space missions, is crucial. While extensive research exists on the impacts of spaceflight, there is a gap regarding female reproductive risks. We hypothesize that space stressors could have enduring effects on female health, potentially increasing risks for future pregnancies upon return to Earth, particularly related to small-for-gestational-age (SGA) fetuses. To address this, we identify a shared microRNA (miRNA) signature between SGA and the space environment, conserved across humans and mice. These miRNAs target genes and pathways relevant to diseases and development. Employing a machine learning approach, we identify potential FDA-approved drugs to mitigate these risks, including estrogen and progesterone receptor antagonists, vitamin D receptor antagonists, and DNA polymerase inhibitors. This study underscores potential pregnancy-related health risks for female astronauts and proposes pharmaceutical interventions to counteract the impact of space travel on female health.
Collapse
Affiliation(s)
- Giada Corti
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lawrence I Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | | | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Andrea Magrini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Kanhaiya Singh
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandan K Sen
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra M Juran
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - Amber M Paul
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- Embry-Riddle Aeronautical University, Department of Human Factors and Behavioral Neurobiology, Daytona Beach, FL, USA
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
- Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, MF9M + 958, San Lorenzo, Paraguay
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Sanford Children's Health Research Center, Sanford Burnham Prebys, La Jolla, CA, USA
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine and Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Space Biomedicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Yan D, Zhang Y, Huang Y, Ouyang W. Progranulin Facilitates Corneal Repair Through Dual Mechanisms of Inflammation Suppression and Regeneration Promotion. Inflammation 2024; 47:1648-1666. [PMID: 38460093 DOI: 10.1007/s10753-024-01999-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects modulating Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.
Collapse
Affiliation(s)
- Dan Yan
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yunuo Zhang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yuhan Huang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Weijie Ouyang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China.
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
Kong B, Liu R, Kong T, Zhao Y. Bioinspired Wet Adhesive Proanthocyanidins Microneedles for Ocular Wound Healing. RESEARCH (WASHINGTON, D.C.) 2024; 7:0485. [PMID: 39319347 PMCID: PMC11420907 DOI: 10.34133/research.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Microneedles have shown considerable potential in treating ocular diseases, yet enhancing their architecture and functionality to improve therapeutic efficacy poses marked challenges. Here, inspired by the antioxidant strategy of blueberries and the wet adhesive mechanism of clingfish, we construct hierarchical and multifunctional microneedles. These microneedles possess both wet adhesive and antioxidant properties, making them highly effective for ocular wound healing. Constructed using polyacrylic acid-N-hydroxysuccinimide-based hydrogel with hexagonal structures, these generated microneedles ensure strong adhesion in wet environments. Furthermore, by incorporating proanthocyanidins (pAc) into the tips, the microneedle is imparted with excellent competence to scavenge reactive oxygen species (ROS). In the rat model of ocular alkali burns, the designed microneedle not only exhibited robust adhesion and desirable antioxidant properties in the moist ocular environment but also facilitated sustained drug release and effective treatment. These results suggest that our bioinspired microneedles with multifunctional properties offer substantial advancement over conventional approaches, positioning them as promising candidates for versatile wound healing applications.
Collapse
Affiliation(s)
- Bin Kong
- School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518000, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Tiantian Kong
- School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518000, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| |
Collapse
|
11
|
Hill DM, Reger M, Todor LA, Boyd AN, Cogle S, DeWitt A, Drabick Z, Faris J, Zavala S, Adams B, Alexander KM, Carter K, Gayed RM, Gutenschwager DW, Hall A, Hansen M, Krantz EN, Pham F, Quan AN, Smith L, Tran N, Walroth TA, Mueller SW. An Appraisal of Pharmacotherapy-Pertinent Literature Published in 2021 and 2022 for Clinicians Caring for Patients With Thermal or Inhalation Injury. J Burn Care Res 2024; 45:614-624. [PMID: 38285011 DOI: 10.1093/jbcr/irae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Studies focusing on pharmacotherapy interventions to aid patients after thermal injury are a minor focus in burn injury-centered studies and published across a wide array of journals, which challenges those with limited resources to keep their knowledge current. This review is a renewal of previous years' work to facilitate extraction and review of the most recent pharmacotherapy-centric studies in patients with thermal and inhalation injury. Twenty-three geographically dispersed, board-certified pharmacists participated in the review. A Medical Subject Heading-based, filtered search returned 2336 manuscripts over the previous 2-year period. After manual review, 98 (4%) manuscripts were determined to have a potential impact on current pharmacotherapy practice. The top 10 scored manuscripts are discussed. Only 17% of those reviewed were assessed to likely have little effect on current practice. The overall impact of the current cohort was higher than previous editions of this review, which is encouraging. There remains a need for investment in well-designed, high-impact, pharmacotherapy-pertinent research for patients sustaining thermal or inhalation injuries.
Collapse
Affiliation(s)
- David M Hill
- Department of Pharmacy, Regional One Health, Memphis, TN 38139, USA
| | - Melissa Reger
- Department of Pharmacy, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Lorraine A Todor
- Department of Pharmacy, Regional One Health, Memphis, TN 38139, USA
| | - Allison N Boyd
- Department of Pharmacy, Eskenazi Health, Indianapolis, IN 46202, USA
| | - Sarah Cogle
- Pharmacy Clinical Programs, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alexandra DeWitt
- Department of Pharmacy, University Medical Center New Orleans, New Orleans, LA 70112, USA
| | - Zachary Drabick
- Department of Pharmacy, University of Florida Health Shands Hospital, Gainesville, FL 32608, USA
| | - Janie Faris
- Department of Pharmacy, Parkland Health & Hospital System, Dallas, TX 35235, USA
| | - Sarah Zavala
- Department of Pharmacy, Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Beatrice Adams
- Department of Pharmacy, Tampa General Hospital, Tampa, FL 33606, USA
| | - Kaitlin M Alexander
- Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Kristen Carter
- Department of Pharmacy, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Rita M Gayed
- Department of Pharmacy and Medical Nutrition, Grady Burn Center, Atlanta, GA 71644, USA
| | | | - Alexandria Hall
- Department of Pharmacy, Harborview Medical Center, Seattle, WA 98104, USA
| | - Meaghan Hansen
- Department of Pharmacy, UPMC Mercy, Pittsburgh, PA 15219, USA
| | - Erica N Krantz
- Department of Pharmacy, Ascension Via Christi, Wichita, KS 67214, USA
| | - Felix Pham
- Department of Pharmacy, Torrance Memorial Medical Center, Torrance, CA 90505, USA
| | - Asia N Quan
- Department of Pharmacy, The Arizona Burn Center Valleywise Health, Phoenix, AZ 85008, USA
| | - Lisa Smith
- Department of Pharmacy, Doctors Hospital, Augusta, GA 30909, USA
| | - Nicolas Tran
- Department of Pharmacy, Tampa General Hospital, Tampa, FL 33606, USA
| | - Todd A Walroth
- Department of Pharmacy, Eskenazi Health, Indianapolis, IN 46202, USA
| | - Scott W Mueller
- Department of Pharmacy, University of Colorado Health, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Li L, Yu Y, Zhuang Z, Wu Q, Lin S, Hu J. Dopamine Receptor 1 Treatment Promotes Epithelial Repair of Corneal Injury by Inhibiting NOD-Like Receptor Protein 3-Associated Inflammation. Invest Ophthalmol Vis Sci 2024; 65:49. [PMID: 38294802 PMCID: PMC10839817 DOI: 10.1167/iovs.65.1.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Purpose To elucidate the influence of dopamine receptor 1 (DRD1) on the proliferation of mouse corneal epithelial cells (MCECs) under inflammatory conditions. Methods In vitro, immortalized MCECs (iMCECs) were treated with IL-1β, with and without pcDNA3.1_DRD1. Primary MCECs (pMCECs) were exposed to IL-1β, with and without DRD1 agonist (A68930). Cell proliferation was quantified using the Cell Counting Kit-8 (CCK-8) assay and immunofluorescence staining for Ki-67 and p63. Expression levels of NOD-like receptor protein 3 (NLRP3), IL-1β, and IL-6 were assessed. To establish a corneal injury model in mice, a 2-mm superficial keratectomy was performed. Either 0.1% A68930 or PBS was topically administered three times daily to the injured eyes for up to 5 days post-injury. Immunofluorescence analysis was employed to evaluate the expression of Ki-67, p63, and CD45 in mouse corneas. Western blotting and real-time quantitative PCR were utilized for quantitative analysis of DRD1, NLRP3, IL-1β, and IL-6 in mouse corneas. Corneal epithelial regeneration was monitored through fluorescein sodium staining for a duration of up to 5 days following the injury. Results Overexpression of DRD1 and A68930 promoted MCEC proliferation and suppressed the expression of NLRP3, IL-1β, and IL-6 in vitro. Topical application of the 0.1% A68930 following mechanical corneal injury in mice led to increased Ki-67 and p63 expression compared to PBS treatment. Furthermore, topical administration of the 0.1% A68930 reduced the expression of CD45, NLRP3, IL-1β, and IL-6. Analysis with fluorescein sodium indicated accelerated corneal epithelial regeneration in the 0.1% A68930 treatment group. Conclusions DRD1 treatment counteracts NLRP3-associated inflammation and facilitates epithelial repair of corneal injury.
Collapse
Affiliation(s)
- Licheng Li
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Yang Yu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Zihao Zhuang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
| | - Qi Wu
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
| | - Shu Lin
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, Australia
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jianmin Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Engineering Research Centre of Assistive Technology for Visual Impairment, Fujian Province University, Quanzhou, Fujian Province, China
- The School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
13
|
Abstract
Ischemia or hypoxia can lead to pathological changes in the metabolism and function of tissues and then lead to various diseases. Timely and effective blood resuscitation or improvement of hypoxia is very important for the treatment of diseases. However, there is a need to develop stable, nontoxic, and immunologically inert oxygen carriers due to limitations such as blood shortages, different blood types, and the risk of transmitting infections. With the development of various technologies, oxygen carriers based on hemoglobin and perfluorocarbon have been widely studied in recent years. This paper reviews the development and application of hemoglobin and perfluorocarbon oxygen carriers. The design of oxygen carriers was analyzed, and their application as blood substitutes or oxygen carriers in various hypoxic diseases was discussed. Finally, the characteristics and future research of ideal oxygen carriers were prospected to provide reference for follow-up research.
Collapse
Affiliation(s)
- Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Deyuan Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Kaiyuan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, 22 Hankou Road, Nanjing 210093, China
| |
Collapse
|