1
|
Hao F, Zhong J, Hao F, Ke S, Li Y, Mao Z, He Y, Gao T, Wang L, Li S, Fang M, Huang Z, Chang X, Shao R, Lu J, Min X. Simple "Directional Trimming" Strategy Engineered Platinum Atomic Clusters with Controllable Coordination Numbers for Efficient Hydrogen Evolution. Angew Chem Int Ed Engl 2025; 64:e202504828. [PMID: 40134075 DOI: 10.1002/anie.202504828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
The coordination number (CN) in atomic cluster (AC) catalysts endows their catalytic performance with flexible tunability. However, the quantitative relationship between the CN and catalytic activity of atomic cluster catalysts remains ambiguity. Herein, inspired by the gardeners trimming plants branches to obtain ornamental value shape, we propose a "directional trimming" strategy to obtain a series of AC catalysts with wide range of Cl CN and establish an inverted volcano curve to explain the effect of CN on hydrogen evolution reaction (HER). Moreover, Pt/CB-90 (moderate Cl CN of 3.7) exhibits the lowest overpotential of 22.94 mV at 10 mA cm-2 and outstanding mass activity (25 times to commercial Pt/C). This proposed synthesis strategy fully utilizes the precursor atoms and is widely applicable. The reaction liquid can be reused up to 20 times to obtain 1130 mg catalysts without introducing any other chemicals. Additionally, theoretical calculations highlight the appropriate Cl CN benefits the HER on Pt2 ACs. This fundamental understanding of the role of CN in catalytic activity offers valuable guidance to promote performance in various catalytic reactions.
Collapse
Affiliation(s)
- Fengkun Hao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Jing Zhong
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Fengqian Hao
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Shaorou Ke
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yanghong Li
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zhengyi Mao
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
- City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen, 518045, China
| | - Yunhu He
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Tengshijie Gao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Linlin Wang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Shuohan Li
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Minghao Fang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Zhaohui Huang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Xiaoxue Chang
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China
| | - Ruiwen Shao
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jian Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Centre for Advanced Structural Materials, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
- City University of Hong Kong Matter Science Research Institute (Futian), Shenzhen, 518045, China
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, China
| | - Xin Min
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
2
|
Xu S, Zhang P, Li L, Moon MW, Chung CH, Li H, Lee JY, Yoo PJ. Challenges and Emerging Trends in Hydrogen Energy Industrialization: From Hydrogen Evolution Reaction to Storage, Transportation, and Utilization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502000. [PMID: 40357720 DOI: 10.1002/smll.202502000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Green hydrogen (H2) emerges as a sustainable alternative to fossil fuels, offering a clean method to store renewable energy through water electrolysis with high energy content and zero carbon emissions. While research largely focuses on specific aspects such as hydrogen evolution reaction (HER), seawater HER electrocatalysts, and electrolyzer development, these studies often overlook the broader hydrogen economy from an integrated industry chain perspective. This review bridges that gap by providing a comprehensive analysis of hydrogen energy industrialization, covering advancements in HER, seawater HER, and electrolyzers, all aim at enabling industrial-scale H2 production. It further explores innovations and challenges in hydrogen storage and transportation, as well as real-world projects spanning the green hydrogen supply chain. Additionally, life cycle assessment studies validate the environmental benefits of using renewable energy sources for green H2 production. Furthermore, this review highlights advancements in counter-oxygen evolution reactions and organic oxidation reactions, alongside strategies to mitigate competing chlorine evolution reactions. Through this comprehensive examination, this review aims to inform readers of the latest developments in hydrogen energy industrialization, explore its growth potential, and provide new insights to propel the hydrogen economy forward.
Collapse
Affiliation(s)
- Shiyu Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Peng Zhang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, 314001, China
| | - Myoung-Woon Moon
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Extreme Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Chan-Hwa Chung
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Pil Jin Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST) and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
3
|
Yu X, Xia M, Qi R, Wang Y, Gao M, Zhong M, Lu X. Interfacial engineering of a nanofibrous Ru/Cr 2O 3 heterojunction for efficient alkaline/acid-universal hydrogen evolution at the ampere level. Chem Sci 2025:d5sc00248f. [PMID: 40336991 PMCID: PMC12054641 DOI: 10.1039/d5sc00248f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/26/2025] [Indexed: 05/09/2025] Open
Abstract
Interfacial engineering of a heterostructured electrocatalyst is an efficient way to boost hydrogen production, yet it still remains a challenging task to achieve superior performance at ampere-grade current density. Herein, a nanofibrous Ru/Cr2O3 heterojunction is prepared for alkaline/acid-universal hydrogen evolution. Theoretical calculations reveal that the introduction of Cr2O3 modulates the electronic structure of Ru, which is beneficial for *H desorption, resulting in a superior HER performance at ampere-grade current density. Accordingly, the resultant Ru/Cr2O3 catalyst presents an ultra-low overpotential of only 88 mV and a long-term stability of 300 h at 1 A cm-2 in 1 M KOH. Furthermore, it also exhibits a small overpotential of 112 mV and steadily operates for 300 h at 1 A cm-2 in 0.5 M H2SO4. The catalyst outperforms not only the benchmark Pt/C catalyst but also most of the top-performing catalysts reported to date. This study offers a novel conceptual approach for designing highly efficient electrocatalysts that hold significant promise for industrial-scale water splitting applications.
Collapse
Affiliation(s)
- Xianqiang Yu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Mingze Xia
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Ruikai Qi
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yuezhu Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Mingbin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University Changchun 130012 P. R. China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
4
|
Zhang X, Yan M, Chen P, Li J, Li Y, Li H, Liu X, Chen Z, Yang H, Wang S, Wang J, Tang Z, Huang Q, Lei J, Hayat T, Liu Z, Mao L, Duan T, Wang X. Emerging MOFs, COFs, and their derivatives for energy and environmental applications. Innovation (N Y) 2025; 6:100778. [PMID: 39991481 PMCID: PMC11846040 DOI: 10.1016/j.xinn.2024.100778] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/23/2024] [Indexed: 02/25/2025] Open
Abstract
Traditional fossil fuels significantly contribute to energy supply, economic development, and advancements in science and technology. However, prolonged and extensive use of fossil fuels has resulted in increasingly severe environmental pollution. Consequently, it is imperative to develop new, clean, and pollution-free energy sources with high energy density and versatility as substitutes for conventional fossil fuels, although this remains a considerable challenge. Simultaneously, addressing water pollution is a critical concern. The development, design, and optimization of functional nanomaterials are pivotal to advancing new energy solutions and pollutant remediation. Emerging porous framework materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), recognized as exemplary crystalline porous materials, exhibit potential in energy and environmental applications due to their high specific surface area, adjustable pore sizes and structures, permanent porosity, and customizable functionalities. This work provides a comprehensive and systematic review of the applications of MOFs, COFs, and their derivatives in emerging energy technologies, including the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, lithium-ion batteries, and environmental pollution remediation such as the carbon dioxide reduction reaction and environmental pollution management. In addition, strategies for performance adjustment and the structure-effect relationships of MOFs, COFs, and their derivatives for these applications are explored. Interaction mechanisms are summarized based on experimental discussions, theoretical calculations, and advanced spectroscopy analyses. The challenges, future prospects, and opportunities for tailoring these materials for energy and environmental applications are presented.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Minjia Yan
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Pei Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jiaqi Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuxuan Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hong Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xiaolu Liu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongshan Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Hui Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Suhua Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Jianjun Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenwu Tang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qifei Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jiehong Lei
- School of Physics and Astronomy, China West Normal University, Nanchong 637002, China
| | - Tasawar Hayat
- Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
| | - Zhijian Liu
- Department of Power Engineering, North China Electric Power University, Baoding, Hebei 071003, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China
| | - Tao Duan
- State Key Laboratory of Environment-friendly Energy Materials, CAEA Innovation Center of Nuclear Environmental Safety Technology, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
| | - Xiangke Wang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
5
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Zou J, Li C, Wang L. Enhancing Alkaline Hydrogen Evolution by Regulating H and OH Binding Strength through Strong Metal-Support Interactions. NANO LETTERS 2025; 25:1536-1543. [PMID: 39812782 DOI: 10.1021/acs.nanolett.4c05523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity. For instance, Ru-O-CNT catalyst composite demonstrates an encouragingly low overpotential of 11 mV at 10 mA cm-2 and excellent stability. Electrochemical voltammetry analysis indicates that an effective MSI optimizes the binding strength of both *H and *OH, accelerating the HER process. Furthermore, we showcase that an industrial-level electrolyzer, assembled using Ru-O-CNT as the cathodic catalyst, achieves impressive performance with a low cell voltage of 1.72 V and high stability at a current density of 1 A cm-2.
Collapse
Affiliation(s)
- Jiaxin Zou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
- Hwa Chong Institution, 661 Bukit Timah Road, 269734, Singapore
| | - Chunfeng Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
- Centre for Hydrogen Innovations, National University of Singapore, 117580, Singapore
| |
Collapse
|
7
|
Zhu Y, Tang Z, Yuan L, Li B, Shao Z, Guo W. Beyond conventional structures: emerging complex metal oxides for efficient oxygen and hydrogen electrocatalysis. Chem Soc Rev 2025; 54:1027-1092. [PMID: 39661069 DOI: 10.1039/d3cs01020a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The core of clean energy technologies such as fuel cells, water electrolyzers, and metal-air batteries depends on a series of oxygen and hydrogen-based electrocatalysis reactions, including the oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), which necessitate cost-effective electrocatalysts to improve their energy efficiency. In the recent decade, complex metal oxides (beyond simple transition metal oxides, spinel oxides and ABO3 perovskite oxides) have emerged as promising candidate materials with unexpected electrocatalytic activities for oxygen and hydrogen electrocatalysis owing to their special crystal structures and unique physicochemical properties. In this review, the current progress in complex metal oxides for ORR, OER, and HER electrocatalysis is comprehensively presented. Initially, we present a brief description of some fundamental concepts of the ORR, OER, and HER and a detailed description of complex metal oxides, including their physicochemical characteristics, synthesis methods, and structural characterization. Subsequently, we present a thorough overview of various complex metal oxides reported for ORR, OER, and HER electrocatalysis thus far, such as double/triple/quadruple perovskites, perovskite hydroxides, brownmillerites, Ruddlesden-Popper oxides, Aurivillius oxides, lithium/sodium transition metal oxides, pyrochlores, metal phosphates, polyoxometalates and other specially structured oxides, with emphasis on the designed strategies for promoting their performance and structure-property-performance relationships. Moreover, the practical device applications of complex metal oxides in fuel cells, water electrolyzers, and metal-air batteries are discussed. Finally, some concluding remarks summarizing the challenges, perspectives, and research trends of this topic are presented. We hope that this review provides a clear overview of the current status of this emerging field and stimulate future efforts to design more advanced electrocatalysts.
Collapse
Affiliation(s)
- Yinlong Zhu
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zheng Tang
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Lingjie Yuan
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Bowen Li
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Zongping Shao
- School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6845, Australia.
| | - Wanlin Guo
- Institute for Frontier Science, Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| |
Collapse
|
8
|
Shabana N, Muhsin P, Yang YY, Chou PT. Phase-Engineered Dichalcogenides/Fluorine-Free V 4C 3T x (T = OH, O) Heterostructures for pH-Universal Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2400572. [PMID: 38741547 DOI: 10.1002/smtd.202400572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Indexed: 05/16/2024]
Abstract
This research addresses the pH-dependency limitation in electrocatalytic hydrogen evolution reactions (HER) by creating heterostructures through the chemical bonding between 2D-dichalcogenides and V4C3Tx (T = OH, O) planes. The one-step solvothermal synthesis employed in this study constructs a synergistically interacted 1T phase of, e.g., MoS2 and V4C3Tx MXene, demonstrating an omnidirectional improvement on catalytic stability, active site exposure, surface area enlargement, electrical conductivity, and hence enhancement of water dissociation activities. Despite the notable progress in creating hydrogen production catalysts with ground breaking performances, a significant gap remains in the availability of catalysts capable of functioning effectively under high current densities. The catalyst 1T MoS2@V4C3Tx shows remarkable activities under the current density of 1000 mA cm-2, which require overpotentials of 16, 24, and 37 mV in 0.5 m H2SO4, 1 m KOH, and 0.1 m PBS electrolytes, respectively at 10 mA cm-2, and exhibits excellent HER performance with small overpotentials of 103.16 and 138 mV to achieve current densities of 500 and 1000 mA cm-2, respectively, with outstanding stability for 1000 cylic voltammetric cycle HER test without degradation in acidic media. Enhanced HER performance has also been observed in other 2D-dichalcogenides/V4C3Tx heterostructures, providing prospects for phase-engineered dichalcogenides/fluorine-free V4C3Tx composites for pH-universal HER.
Collapse
Affiliation(s)
- Neermunda Shabana
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Punnoli Muhsin
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Ya-Yun Yang
- Instrumentation Center, College of Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
- Center for Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
9
|
Le F, Jia W, Shu W, Lu Z, Lv Y, Wang T, Wu X, Yang X, Ma F, Jia D. Deep Reconstruction of Ruthenate Perovskite Oxide Enables Efficient pH-Universal Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404894. [PMID: 39169703 DOI: 10.1002/smll.202404894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Designing highly efficient, stable, and pH-universal perovskites for hydrogen evolution reaction (HER) is urgently needed yet remains a grand challenge. Herein, a titanium-containing strontium ruthenate (SrTi0.5Ru0.5O3, STRO) is developed as an excellent HER electrocatalyst in a wide pH range. The introduction of Ti into SrRuO3 significantly reduces the size of STRO, endowing with a high reactivity that facilitates a deep surface-reconstruction during HER. Furthermore, Sr2+ leaching triggered reconstruction leads to STRO breaking into tiny nanoparticles accompanied by high-valence ruthenium (Ru) species reducing to metallic Ru. The generated active species, increased accessible sites, and improved electrical conductivity greatly boost HER. The reconstructed STRO displays remarkable HER activities with exceptional low overpotentials of 18, 24, and 55 mV at 10 mA cm-2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, surpassing most perovskites reported previously and comparable to or even outperforming that of commercial Pt/C. Moreover, the STRO exhibits excellent stabilities over 200 h in alkaline and acidic media, superior to that of Pt/C. This work not only provides insights into structure reconstruction of perovskites during HER, but also opens new perspectives for developing high-efficiency and pH-universal electrocatalysts for future energy applications.
Collapse
Affiliation(s)
- Fuhe Le
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Wei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Wanting Shu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Yan Lv
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Xueyan Wu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Xue Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Fengyun Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| | - Dianzeng Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, College of Chemistry, Xinjiang University, Urumqi, Xinjiang, 830046, P. R. China
| |
Collapse
|
10
|
Chen S, Zhu H, Li T, Liu P, Wu C, Jia S, Li Y, Suo B. Applications of metal nanoclusters supported on the two-dimensional material graphene in electrocatalytic carbon dioxide reduction. Phys Chem Chem Phys 2024; 26:26647-26676. [PMID: 39415712 DOI: 10.1039/d4cp03161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Metal nanoclusters (MNCs) have been demonstrated to exhibit superior catalytic performance compared to single nanoparticles. This is attributed to their quantized electronic structure, unique geometrical stacking and abundant active sites. While the exposed metal atoms can markedly enhance the efficiency of catalysis, unfortunately, MNCs are susceptible to agglomeration, which impairs their catalytic activity and stability. Graphene is a two-dimensional material consisting of a single atomic layer formed by the hybridization of the s and p orbitals of carbon atoms. It exhibits stable physical and chemical properties and has an easily controllable structure, making it an ideal carrier for MNCs. When metal nanoclusters (MNCs) are loaded on a graphene substrate, the MNCs can form a stable binding site on the graphene substrate. Furthermore, the construction of a defective structure on the graphene substrate enables the formation of robust interactions between the metal atoms of the MNCs and the substrate, facilitating the rapid establishment of electron conduction pathways and markedly enhancing the electrocatalytic performance. This paper presents a review of the applications of metal nanoclusters supported on graphene skeletons in the field of the electrocatalytic CO2 reduction reaction (CO2RR). Firstly, we briefly introduce the reaction mechanism of the CO2RR, then we systematically discuss the synthesis strategies, properties and applications of metal nanoclusters in electrocatalytic carbon dioxide reduction from both experimental and theoretical perspectives, and lastly, we discuss the opportunities and challenges of metal nanocluster catalysts supported on carbon materials.
Collapse
Affiliation(s)
- Shanlin Chen
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Haiyan Zhu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Tingting Li
- Institute of Yulin Carbon Neutral College, Northwest University, Xi'an, Yulin 719000, China
| | - Ping Liu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Chou Wu
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| | - Shaobo Jia
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127 Xi'an, P. R. China
| | - Yawei Li
- School of Energy, Power and Mechanical Engineering, Institute of Energy and Power Innovation, North China Electric Power University, Beijing 102206, China.
| | - Bingbing Suo
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
11
|
Zhao JW, Li Y, Luan D, Lou XW(D. Structural evolution and catalytic mechanisms of perovskite oxides in electrocatalysis. SCIENCE ADVANCES 2024; 10:eadq4696. [PMID: 39321283 PMCID: PMC11804782 DOI: 10.1126/sciadv.adq4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/27/2024]
Abstract
Electrocatalysis plays a pivotal role in driving the progress of modern technologies and industrial processes such as energy conversion and emission reduction. Perovskite oxides, an important family of electrocatalysts, have garnered substantial attention in diverse catalytic reactions because of their highly tunable composition and structure, as well as their considerable activity and stability. This review delves into the mechanisms of electrocatalytic reactions that use perovskite oxides as electrocatalysts, while also providing a comprehensive summary of the potential key factors that influence catalytic activity across various reactions. Furthermore, this review offers an overview of advanced characterizations used for studying catalytic mechanisms and proposes approaches to designing highly efficient perovskite oxide electrocatalysts.
Collapse
Affiliation(s)
- Jia-Wei Zhao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong 999077, China
| | - Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| | - Xiong Wen (David) Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Hong Kong 999077, China
| |
Collapse
|
12
|
Sun S, Zhang Y, Shi X, Sun W, Felser C, Li W, Li G. From Charge to Spin: An In-Depth Exploration of Electron Transfer in Energy Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312524. [PMID: 38482969 DOI: 10.1002/adma.202312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/24/2024] [Indexed: 05/01/2024]
Abstract
Catalytic materials play crucial roles in various energy-related processes, ranging from large-scale chemical production to advancements in renewable energy technologies. Despite a century of dedicated research, major enduring challenges associated with enhancing catalyst efficiency and durability, particularly in green energy-related electrochemical reactions, remain. Focusing only on either the crystal structure or electronic structure of a catalyst is deemed insufficient to break the linear scaling relationship (LSR), which is the golden rule for the design of advanced catalysts. The discourse in this review intricately outlines the essence of heterogeneous catalysis reactions by highlighting the vital roles played by electron properties. The physical and electrochemical properties of electron charge and spin that govern catalysis efficiencies are analyzed. Emphasis is placed on the pronounced influence of external fields in perturbing the LSR, underscoring the vital role that electron spin plays in advancing high-performance catalyst design. The review culminates by proffering insights into the potential applications of spin catalysis, concluding with a discussion of extant challenges and inherent limitations.
Collapse
Affiliation(s)
- Shubin Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology Key Laboratory of Green Chemistry-Synthesis Technology of Zhejiang Province, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yudi Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Xin Shi
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Materials Science and Chemical Engineering, Ningbo University, 818 A Fenghua Rd, Jiangbei District, Ningbo, 315211, China
| | - Wen Sun
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Claudia Felser
- Topological Quantum Chemistry, Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Strasse 40, 01187, Dresden, Germany
| | - Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- CISRI & NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Chinese Academy of Sciences, Ningbo Institute of Material Technology and Engineering, Ningbo, 315201, China
| | - Guowei Li
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- College of Material Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
13
|
Xie L, Wang L, Liu X, Chen J, Wen X, Zhao W, Liu S, Zhao Q. Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers. Nat Commun 2024; 15:5702. [PMID: 38977693 PMCID: PMC11231348 DOI: 10.1038/s41467-024-50117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Anion exchange membrane (AEM) water electrolysis employing non-precious metal electrocatalysts is a promising strategy for achieving sustainable hydrogen production. However, it still suffers from many challenges, including sluggish alkaline hydrogen evolution reaction (HER) kinetics, insufficient activity and limited lifetime of non-precious metal electrocatalysts for ampere-level-current-density alkaline HER. Here, we report an efficient alkaline HER strategy at industrial-level current density wherein a flexible WS2 superstructure is designed to serve as the cathode catalyst for AEM water electrolysis. The superstructure features bond-free van der Waals interaction among the low Young's modulus nanosheets to ensure excellent mechanical flexibility, as well as a stepped edge defect structure of nanosheets to realize high catalytic activity and a favorable reaction interface micro-environment. The unique flexible WS2 superstructure can effectively withstand the impact of high-density gas-liquid exchanges and facilitate mass transfer, endowing excellent long-term durability under industrial-scale current density. An AEM electrolyser containing this catalyst at the cathode exhibits a cell voltage of 1.70 V to deliver a constant catalytic current density of 1 A cm-2 over 1000 h with a negligible decay rate of 9.67 μV h-1.
Collapse
Affiliation(s)
- Lingbin Xie
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Xixing Wen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Weiwei Zhao
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Shujuan Liu
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
Mymoona P, Rival JV, Nonappa, Shibu ES, Jeyabharathi C. Platinum-Grafted Twenty-Five Atom Gold Nanoclusters for Robust Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308610. [PMID: 38128011 DOI: 10.1002/smll.202308610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/15/2023] [Indexed: 12/23/2023]
Abstract
A robust hydrogen evolution is demonstrated from Au25(PET)18]- nanoclusters (PET = 2-phenylethanethiol) grafted with minimal platinum atoms. The fabrication involves an electrochemical activation of nanoclusters by partial removal of thiols, without affecting the metallic core, which exposes Au-sites adsorbed with hydrogen and enables an electroless grafting of platinum. The exposed Au-sites feature the (111)-facet of the fcc-Au25 nanoclusters as assessed through lead underpotential deposition. The electrochemically activated nanoclusters (without Pt loading) show better electrocatalytic reactivity toward hydrogen evolution reaction than the pristine nanoclusters in an acidic medium. The platinum-grafted nanocluster outperformed with a lower overpotential of 0.117 V vs RHE (RHE = Reversible Hydrogen Electrode) compared to electrochemically activated nanoclusters (0.353 V vs RHE ) at 10 mA cm-2 and is comparable with commercial Pt/C. The electrochemically activated nanoclusters show better reactivity at higher current density owing to the ease of hydrogen release from the active sites. The modified nanoclusters show unique supramolecular self-assembly characteristics as observed in electron microscopy and tomography due to the possible metallophilic interactions. These results suggest that the post-surface modification of nanoclusters will be an ideal tool to address the sustainable production of green hydrogen.
Collapse
Affiliation(s)
- Paloli Mymoona
- Electroplating and Metal Finishing Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jose V Rival
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut (UOC), Malappuram, Kerala, 673635, India
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere, FI-33101, Finland
| | - Edakkattuparambil Sidharth Shibu
- Smart Materials Lab, Department of Nanoscience and Technology (DNST), University of Calicut (UOC), Malappuram, Kerala, 673635, India
| | - Chinnaiah Jeyabharathi
- Electroplating and Metal Finishing Division, Council of Scientific and Industrial Research (CSIR)-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
15
|
Rodriguez-Miguel S, Ma Y, Farid G, Amade R, Ospina R, Andujar JL, Bertran-Serra E, Chaitoglou S. Vertical graphene nanowalls supported hybrid W 2C/WO x composite material as an efficient non-noble metal electrocatalyst for hydrogen evolution. Heliyon 2024; 10:e31230. [PMID: 38813160 PMCID: PMC11133850 DOI: 10.1016/j.heliyon.2024.e31230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
Research for the development of noble metal-free electrodes for hydrogen evolution has blossomed in recent years. Transition metal carbides compounds, such as W2C, have been considered as a promising alternative to replace Pt-family metals as electrocatalysts towards hydrogen evolution reaction (HER). Moreover, hybridization of TMCs with graphene nanostructures has emerged as a reliable strategy for the preparation of compounds with high surface to volume ratio and abundant active sites. The present study focuses in the preparation of tungsten carbide/oxide compounds deposited in a three-dimensional vertical graphene nanowalls (VGNW) substrate via chemical vapor deposition, magnetron sputtering and thermal annealing processes. Structural and chemical characterization reveals the partial carburization and oxidation of the W film sputtered on the VGNWs, due to C and O migration from VGNWs towards W during the high temperature annealing process. Electrochemical characterization shows the enhanced performance of the nanostructured hybrid W2C/WOx on VGNW compound towards HER, when compared with planar W2C/WOx films. The W2C/WOx nanoparticles on VGNWs require an overpotential of -252 mV for the generation of 10 mA cm-2. Chronoamperometry tests in high overpotentials reveal the compounds stability while sustaining high currents, in the order of hundreds of mA. Post-chronoamperometry test XPS characterization unveils the formation of a W hydroxide layer which favours hydrogen evolution in acidic electrolytes. We aspire that the presented insights can be valuable for those working on the preparation of hybrid electrodes for electrochemical processes.
Collapse
Affiliation(s)
- Shahadev Rodriguez-Miguel
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
| | - Yang Ma
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
- ENPHOCAMAT Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
| | - Ghulam Farid
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
- ENPHOCAMAT Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
| | - Roger Amade
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
- ENPHOCAMAT Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
| | - Rogelio Ospina
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
- ENPHOCAMAT Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
- Escuela de Física, Universidad Industrial de Santander, Carrera 27 calle 9 Ciudad Universitaria Bucaramanga, Colombia
| | - Jose Luis Andujar
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
- ENPHOCAMAT Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
| | - Enric Bertran-Serra
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
- ENPHOCAMAT Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
| | - Stefanos Chaitoglou
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
- ENPHOCAMAT Group, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, C/Martí i Franquès, 1, 08028, Barcelona, Catalunya, Spain
| |
Collapse
|
16
|
Ma X, Ma C, Xia J, Han S, Zhang H, He C, Feng F, Lin G, Cao W, Meng X, Zhu L, Zhu X, Wang AL, Yin H, Lu Q. Heterophase Intermetallic Compounds for Electrocatalytic Hydrogen Production at Industrial-Scale Current Densities. J Am Chem Soc 2024. [PMID: 38767649 DOI: 10.1021/jacs.4c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Heterophase nanomaterials have sparked significant research interest in catalysis due to their distinctive properties arising from synergistic effects of different components and the formed phase boundary. However, challenges persist in the controlled synthesis of heterophase intermetallic compounds (IMCs), primarily due to the lattice mismatch of distinct crystal phases and the difficulty in achieving precise control of the phase transitions. Herein, orthorhombic/cubic Ru2Ge3/RuGe IMCs with engineered boundary architecture are synthesized and anchored on the reduced graphene oxide. The Ru2Ge3/RuGe IMCs exhibit excellent hydrogen evolution reaction (HER) performance with a high current density of 1000 mA cm-2 at a low overpotential of 135 mV. The presence of phase boundaries enhances charge transfer and improves the kinetics of water dissociation while optimizing the processes of hydrogen adsorption/desorption, thus boosting the HER performance. Moreover, an anion exchange membrane electrolyzer is constructed using Ru2Ge3/RuGe as the cathode electrocatalyst, which achieves a current density of 1000 mA cm-2 at a low voltage of 1.73 V, and the activity remains virtually undiminished over 500 h.
Collapse
Affiliation(s)
- Xiao Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chaoqun Ma
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sumei Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huaifang Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Caihong He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fukai Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Gang Lin
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbin Cao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangmin Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lijie Zhu
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiaojuan Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - An-Liang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Haiqing Yin
- Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan 528399, China
- State Key Laboratory of Nuclear Power Safety Technology and Equipment, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
17
|
Long Z, Yu C, Cao M, Ma J, Jiang L. Bioinspired Gas Manipulation for Regulating Multiphase Interactions in Electrochemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312179. [PMID: 38388808 DOI: 10.1002/adma.202312179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/13/2024] [Indexed: 02/24/2024]
Abstract
The manipulation of gas in multiphase interactions plays a crucial role in various electrochemical processes. Inspired by nature, researchers have explored bioinspired strategies for regulating these interactions, leading to remarkable advancements in design, mechanism, and applications. This paper provides a comprehensive overview of bioinspired gas manipulation in electrochemistry. It traces the evolution of gas manipulation in gas-involving electrochemical reactions, highlighting the key milestones and breakthroughs achieved thus far. The paper then delves into the design principles and underlying mechanisms of superaerophobic and (super)aerophilic electrodes, as well as asymmetric electrodes. Furthermore, the applications of bioinspired gas manipulation in hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), and other gas-involving electrochemical reactions are summarized. The promising prospects and future directions in advancing multiphase interactions through gas manipulation are also discussed.
Collapse
Affiliation(s)
- Zhiyun Long
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Cunming Yu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
18
|
Zhao Q, Zhang Y, Ke C, Yang W, Yue J, Yang X, Xiao W. Pt nanoparticles anchored by oxygen vacancies in MXenes for efficient electrocatalytic hydrogen evolution reaction. NANOSCALE 2024; 16:8020-8027. [PMID: 38545879 DOI: 10.1039/d4nr00020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The improvement of the hydrogen evolution reaction (HER) performance of nanomaterials is associated with the interfacial synergistic interaction and their hydrogen adsorption kinetics. Nevertheless, it is still a challenge to accelerate the proton transfer and optimize the HER kinetics by constructing Pt-supported heterostructures based on the hydrogen spillover phenomenon. Herein, oxygen vacancies on the surface of MXene nanosheets were constructed via a high-temperature annealing method, which was employed to anchor/stabilize Pt nanoparticles and fabricate a Pt/MXene heterostructure. EPR and XPS analyses verified the presence of oxygen vacancies, which could enhance the intrinsic HER activity of the MXene. The HER catalytic performance was investigated by taking into account the surface structure of the MXene affected by the annealing temperature, the concentration of Pt and the number of deposition cycles. Electrochemical results showed that Pt/MXene with higher utilization of Pt was obtained at 900 °C and 0.05 mgPt mL-1. The 0.05-Pt/MXene-900 obtained at deposition of 60 cycles in 0.5 M H2SO4 solution exhibited the optimized HER activity. The overpotential was 22 mV at a current density of 10 mA cm-2 and the Tafel slope was 42.41 mV dec-1. Furthermore, the accelerated HER kinetics was mainly due to the electron trapping ability of the MXene, small particles of Pt, as well as the enhanced charge transfer between the oxygen vacancies of the MXene and Pt. This strategy for constructing Pt-supported heterostructures based on the vacancy anchoring effects provides new ideas for the design of well-defined electrocatalysts toward the HER.
Collapse
Affiliation(s)
- Qin Zhao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Yue Zhang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Changwang Ke
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Weilin Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianshu Yue
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofei Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiping Xiao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Qiao M, Li B, Fei T, Xue M, Yao T, Tang Q, Zhu D. Design Strategies towards Advanced Hydrogen Evolution Reaction Electrocatalysts at Large Current Densities. Chemistry 2024; 30:e202303826. [PMID: 38221628 DOI: 10.1002/chem.202303826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/16/2024]
Abstract
Hydrogen (H2), produced by water electrolysis with the electricity from renewable sources, is an ideal energy carrier for achieving a carbon-neutral and sustainable society. Hydrogen evolution reaction (HER) is the cathodic half-reaction of water electrolysis, which requires active and robust electrocatalysts to reduce the energy consumption for H2 generation. Despite numerous electrocatalysts have been reported by the academia for HER, most of them were only tested under relatively small current densities for a short period, which cannot meet the requirements for industrial water electrolysis. To bridge the gap between academia and industry, it is crucial to develop highly active HER electrocatalysts which can operate at large current densities for a long time. In this review, the mechanisms of HER in acidic and alkaline electrolytes are firstly introduced. Then, design strategies towards high-performance large-current-density HER electrocatalysts from five aspects including number of active sites, intrinsic activity of each site, charge transfer, mass transfer, and stability are discussed via featured examples. Finally, our own insights about the challenges and future opportunities in this emerging field are presented.
Collapse
Affiliation(s)
- Man Qiao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bo Li
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Teng Fei
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mingren Xue
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Tianxin Yao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Qin Tang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Anhui Key Laboratory of low temperature Co-fired Materials, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
20
|
Cheng Y, Chen H, Zhang L, Xu X, Cheng H, Yan C, Qian T. Evolution of Grain Boundaries Promoted Hydrogen Production for Industrial-Grade Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313156. [PMID: 38242541 DOI: 10.1002/adma.202313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The development of efficient and durable high-current-density hydrogen production electrocatalysts is crucial for the large-scale production of green hydrogen and the early realization of hydrogen economic blueprint. Herein, the evolution of grain boundaries through Cu-mediated NiMo bimetallic oxides (MCu-BNiMo), which leading to the high efficiency of electrocatalyst for hydrogen evolution process (HER) in industrial-grade current density, is successfully driven. The optimal MCu0.10-BNiMo demonstrates ultrahigh current density (>2 A cm-2) at a smaller overpotential in 1 m KOH (572 mV), than that of BNiMo, which does not have lattice strain. Experimental and theoretical calculations reveal that MCu0.10-BNiMo with optimal lattice strain generated more electrophilic Mo sites with partial oxidation owing to accelerated charge transfer from Cu to Mo, which lowers the energy barriers for H* adsorption. These synergistic effects lead to the enhanced HER performance of MCu0.10-BNiMo. More importantly, industrial application of MCu0.10-BNiMo operated in alkaline electrolytic cell is also determined, with its current density reached 0.5 A cm-2 at 2.12 V and 0.1 A cm-2 at 1.79 V, which is nearly five-fold that of the state-of-the-art HER electrocatalyst Pt/C. The strategy provides valuable insights for achieving industrial-scale hydrogen production through a highly efficient HER electrocatalyst.
Collapse
Affiliation(s)
- Yu Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Huanyu Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Xinnan Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Huili Cheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| | - Chenglin Yan
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou, 215006, P. R. China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China
| |
Collapse
|
21
|
Yao R, Sun K, Zhang K, Wu Y, Du Y, Zhao Q, Liu G, Chen C, Sun Y, Li J. Stable hydrogen evolution reaction at high current densities via designing the Ni single atoms and Ru nanoparticles linked by carbon bridges. Nat Commun 2024; 15:2218. [PMID: 38472249 DOI: 10.1038/s41467-024-46553-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Continuous and effective hydrogen evolution under high current densities remains a challenge for water electrolysis owing to the rapid performance degradation under continuous large-current operation. In this study, theoretical calculations, operando Raman spectroscopy, and CO stripping experiments confirm that Ru nanocrystals have a high resistance against deactivation because of the synergistic adsorption of OH intermediates (OHad) on the Ru and single atoms. Based on this conceptual model, we design the Ni single atoms modifying ultra-small Ru nanoparticle with defect carbon bridging structure (UP-RuNiSAs/C) via a unique unipolar pulse electrodeposition (UPED) strategy. As a result, the UP-RuNiSAs/C is found capable of running steadily for 100 h at 3 A cm-2, and shows a low overpotential of 9 mV at a current density of 10 mA cm-2 under alkaline conditions. Moreover, the UP-RuNiSAs/C allows an anion exchange membrane (AEM) electrolyzer to operate stably at 1.95 Vcell for 250 h at 1 A cm-2.
Collapse
Affiliation(s)
- Rui Yao
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Kaian Sun
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Kaiyang Zhang
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yun Wu
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yujie Du
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qiang Zhao
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Guang Liu
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuhan Sun
- Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030031, China.
- 2060 Research Institute, Shanghai Tech University, Shanghai, 201210, China.
| | - Jinping Li
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024, China.
- Shanxi Research Institute of Huairou Laboratory, Taiyuan, 030031, China.
| |
Collapse
|
22
|
Wan Y, Chen W, Wu S, Gao S, Xiong F, Guo W, Feng L, Cai K, Zheng L, Wang Y, Zhong R, Zou R. Confinement Engineering of Zinc Single-Atom Triggered Charge Redistribution on Ruthenium Site for Alkaline Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308798. [PMID: 38085468 DOI: 10.1002/adma.202308798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/04/2023] [Indexed: 12/20/2023]
Abstract
Optimizing the interaction between metal and support in the supported metal catalysts effectively refines the electronic structure and boosts the catalytic properties of loaded active components. Herein a method is introduced to confine ultrafine ruthenium (Ru) nanoparticles within atomically dispersed Zn-N4 sites on a N-doped carbon network (Ru/Zn-N-C) through the strong electronic metal-support interaction, achieving superior catalytic activity and stability for alkaline hydrogen evolution. Spectroscopic data and theoretical modeling elucidate that the remarkable catalytic performance of Ru sites stems from their strong electronic coupling with neighboring Zn-N4 moiety and pyridinic N/pyrrolic N. This interaction induces an electron-deficient state of Ru, thereby accelerating the dissociation of H2 O and lowering the energy barriers for the desorption of OH* and H*. This insight provides a deeper understanding of the catalytic mechanisms at play. Furthermore, alkaline water electrolyzer using this catalyst as cathode delivers a mass activity of 3 A mgcat -1 at 2.0 V, much surpassing Ru-C. This research opens a novel pathway for the development of advanced materials , tailored for energy storage and conversion applications.
Collapse
Affiliation(s)
- Yinji Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Weibin Chen
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Shengqiang Wu
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Song Gao
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Feng Xiong
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Wenhan Guo
- School of Physical Sciences, Great Bay University, Dongguan, Guangdong Province, 523000, China
| | - Long Feng
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Kunting Cai
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing, 100049, China
| | - Yonggang Wang
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| | - Ruiqin Zhong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, No. 18 Fuxue Road, Changping District, Beijing, 102249, China
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China
| |
Collapse
|
23
|
He X, Du P, Yu G, Wang R, Long Y, Deng B, Yang C, Zhao W, Zhang Z, Huang K, Lei M, Li X, Wu H. High-Performance Hydrogen Evolution Reaction Catalytic Electrodes by Liquid Joule-Heating Growth. SMALL METHODS 2023; 7:e2300544. [PMID: 37715330 DOI: 10.1002/smtd.202300544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Indexed: 09/17/2023]
Abstract
Despite the great progress in the research of integrated catalytic electrodes for hydrogen evolution reaction, the efficient preparation of high-performance catalytic electrodes with high current density remains a challenging issue. In this work, a metal (Pt)-amorphous oxide (NiO) heterostructure catalyst is successfully in situ grown on nickel foam using liquid Joule-heating. Based on the superhydrophilic surface of the electrode and its superior mechanical and chemical stability, the catalytic electrode exhibits excellent catalytic performance in alkaline electrolytes with only 100 mV overpotential to achieve 5000 mA cm-2 current density and maintains a stable performance of 500 h under a fixed current density of 1000 mA cm-2 . Further verification of the practical application of the Pt@NiO-Ni electrode in the alkaline electrolyzer is conducted. The results show that the alkaline water electrolyzer with NiFe layered double hydroxide as the anode and Pt@NiO-Ni as the cathode exhibits superior performance than the previously reported electrolyzers, with a current density of 1 A cm-2 already achieved at 1.75 V, which is even comparable to some anion exchange membrane water electrolyzers. These experimental results illustrate the strong applicability of Pt@NiO-Ni electrode at industrial scale current densities.
Collapse
Affiliation(s)
- Xian He
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Peng Du
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- Beijing Key Laboratory of Space-ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing, 100876, China
| | - Guangqiang Yu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ruyue Wang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
- Beijing Key Laboratory of Space-ground Interconnection and Convergence, Beijing University of Posts and Telecommunications (BUPT), Beijing, 100876, China
| | - Yuanzheng Long
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bohan Deng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Cheng Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Wei Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhuting Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Kai Huang
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Ming Lei
- State Key Laboratory of Information Photonics and Optical Communications, School of Science, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xibo Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Lin G, Zhang Z, Ju Q, Wu T, Segre CU, Chen W, Peng H, Zhang H, Liu Q, Liu Z, Zhang Y, Kong S, Mao Y, Zhao W, Suenaga K, Huang F, Wang J. Bottom-up evolution of perovskite clusters into high-activity rhodium nanoparticles toward alkaline hydrogen evolution. Nat Commun 2023; 14:280. [PMID: 36650135 PMCID: PMC9845238 DOI: 10.1038/s41467-023-35783-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Self-reconstruction has been considered an efficient means to prepare efficient electrocatalysts in various energy transformation process for bond activation and breaking. However, developing nano-sized electrocatalysts through complete in-situ reconstruction with improved activity remains challenging. Herein, we report a bottom-up evolution route of electrochemically reducing Cs3Rh2I9 halide-perovskite clusters on N-doped carbon to prepare ultrafine Rh nanoparticles (~2.2 nm) with large lattice spacings and grain boundaries. Various in-situ and ex-situ characterizations including electrochemical quartz crystal microbalance experiments elucidate the Cs and I extraction and Rh reduction during the electrochemical reduction. These Rh nanoparticles from Cs3Rh2I9 clusters show significantly enhanced mass and area activity toward hydrogen evolution reaction in both alkaline and chlor-alkali electrolyte, superior to liquid-reduced Rh nanoparticles as well as bulk Cs3Rh2I9-derived Rh via top-down electro-reduction transformation. Theoretical calculations demonstrate water activation could be boosted on Cs3Rh2I9 clusters-derived Rh nanoparticles enriched with multiply sites, thus smoothing alkaline hydrogen evolution.
Collapse
Affiliation(s)
- Gaoxin Lin
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Zhuang Zhang
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qiangjian Ju
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Tong Wu
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Carlo U. Segre
- grid.62813.3e0000 0004 1936 7806Department of Physics & Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Wei Chen
- grid.62813.3e0000 0004 1936 7806Department of Mechanical, Materials and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
| | - Hongru Peng
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Hui Zhang
- grid.458459.10000 0004 1792 5798State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Qiunan Liu
- grid.136593.b0000 0004 0373 3971SANKEN, Osaka University, Ibaraki, 567-0047 Japan
| | - Zhi Liu
- grid.440637.20000 0004 4657 8879School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, China ,grid.458459.10000 0004 1792 5798State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Yifan Zhang
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Shuyi Kong
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yuanlv Mao
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Wei Zhao
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Kazu Suenaga
- grid.136593.b0000 0004 0373 3971SANKEN, Osaka University, Ibaraki, 567-0047 Japan
| | - Fuqiang Huang
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.11135.370000 0001 2256 9319State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Jiacheng Wang
- grid.454856.e0000 0001 1957 6294State Key Lab of High Performance Ceramics and Superfine microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 201899 Shanghai, China ,grid.410726.60000 0004 1797 8419Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China ,grid.440734.00000 0001 0707 0296Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, 063210 Tangshan, China ,grid.440657.40000 0004 1762 5832School of Materials Science and Engineering, Taizhou University, 318000 Taizhou, Zhejiang China
| |
Collapse
|