1
|
Shi D, Xu S, Sun L, Sharma PP, Rathi B, Wang M, Wu L, Jiang X, De Clercq E, Pannecouque C, Liu X, Dick A, Zhan P. Design, synthesis and structure-activity relationships of novel HIV capsid inhibitors with potent antiviral activities. Eur J Med Chem 2025; 295:117784. [PMID: 40424778 DOI: 10.1016/j.ejmech.2025.117784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/08/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025]
Abstract
The HIV capsid (CA) protein is a highly promising target for anti-HIV treatment due to its critical role in viral replication. Based on the optimization of 11L guided by PF74, a series of novel HIV CA inhibitors targeting the NTD-CTD interface were identified, demonstrating potent inhibitory effects against both HIV-1 and HIV-2. Notably, compound IC-2b4 (EC50 = 0.08 ± 0.02 μM) exhibits twice the potency of 11L and three times that of PF74 against HIV-1. For HIV-2, IC-2a4 (EC50 = 0.01 ± 0.00 μM) demonstrates twice the efficacy of 11L and 221 times that of PF74. In mechanistic studies, IC-2b4 was shown to bind directly and stably to CA, exerting robust inhibitory effects during both the early and late stages of infection-a property also observed with IC-2b3. Molecular dynamics simulations revealed that IC-2b4 forms more extensive interactions with CA compared to PF74, thereby enhancing antiviral activity. These novel antiviral compounds collectively provide valuable insights into developing anti-HIV therapies and highlight the therapeutic potential of the CA protein as a drug target.
Collapse
Affiliation(s)
- Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Lin Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Prem Prakash Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India
| | - Mei Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Linan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, K.U. Leuven, Herestraat 49 Postbus 1043 (09.A097), B-3000, Leuven, Belgium.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| | - Alexej Dick
- Department of Biochemistry & Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, 19102, USA
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
2
|
McFadden WM, Faerch M, Kirby KA, Dick RA, Torbett BE, Sarafianos SG. Considerations for capsid-targeting antiretrovirals in pre-exposure prophylaxis. Trends Mol Med 2025:S1471-4914(25)00013-9. [PMID: 40021388 DOI: 10.1016/j.molmed.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 03/03/2025]
Abstract
Antiretroviral therapy (ART) impairs viral replication in people living with HIV (PLWH) by suppressing infection or spread. However, not all treatment strategies apply to preventive applications like pre-exposure prophylaxis (PrEP) for uninfected individuals. To prevent the establishment of HIV infection, PrEP must block viral replication either before, or at the stage of integration into the host genome. A promising PrEP approach under investigation utilizes lenacapavir (LEN), which targets the HIV-1 capsid protein (CA) potently before integration. LEN, a first-in-class antiretroviral, has shown high protective efficacy in the ongoing PURPOSE trials thus far. Here, we discuss clinical investigations of LEN, theoretical suitability of preclinical CA-binding antivirals in PrEP, and other key considerations for preventing HIV-1 infection by targeting the capsid.
Collapse
Affiliation(s)
- William M McFadden
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mia Faerch
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen A Kirby
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Robert A Dick
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Bruce E Torbett
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98101, USA; Institute for Stem Cell and Regenerative Medicine, Seattle, WA 98101, USA
| | - Stefan G Sarafianos
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Borcik CG, DeZonia B, Ravula T, Harding BD, Garg R, Rienstra CM. OPTO: Automated Optimization for Solid-State NMR Spectroscopy. J Am Chem Soc 2025; 147:3293-3303. [PMID: 39814553 PMCID: PMC11808819 DOI: 10.1021/jacs.4c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules. Here, we present OPTO, a software operating environment that addresses these challenges and enhances the performance of many types of commonly utilized SSNMR experiments. OPTO is compatible with Varian OpenVnmrJ and Bruker Topspin, with a front-end graphical user interface that presents the instrument operator with access to powerful underlying optimization algorithms, including simplex and grid searches of the dozens of parameter settings required for optimal performance. Therefore, OPTO efficiently leverages instrument time and enables instrument operators to find optimal experimental conditions reliably. We demonstrate examples including improvements in (1) resolution, with an automated, global search of 21 shimming parameters to achieve a 12 parts per billion line width; (2) sensitivity, with searches and refinements of several cross-polarization conditions dependent on 16 parameters in triple resonance experiments; and (3) robustness, with results from protein samples on several spectrometers operating at different magnetic field strengths and magic-angle spinning rates.
Collapse
Affiliation(s)
- Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Barry DeZonia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Thirupathi Ravula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Benjamin D. Harding
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Rajat Garg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M. Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
4
|
Archary M, Mochankana K, Bekker A. Treatment of HIV Infection in Children Across the Age Spectrum: Achievements and New Prospects. Clin Perinatol 2024; 51:817-832. [PMID: 39487022 DOI: 10.1016/j.clp.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Despite advances in human immunodeficiency virus (HIV) prevention, new pediatric HIV infections continue, necessitating optimized and simplified antiretroviral treatment (ART) regimens tailored for children. Advances in treatment options have been made possible by the availability of child-friendly fixed-dose formulations with decreased dosing frequency, especially in low- and middle-income countries. Ongoing work to improve ART options for neonates and supporting the shift toward long-acting ART for children and adolescents remains a priority. Achieving the UNAIDS goal of 95:95:95 for children will require a comprehensive and holistic approach that addresses both the biomedical and social challenges of managing children with HIV.
Collapse
Affiliation(s)
- Moherndran Archary
- Department of Paediatrics and Child Health, Nelson R Mandela School of Medicine, 4th Floor, Main Building, 719 Umbilo Road, Durban, 4001, South Africa; Department of Paediatrics, Victoria Mxenge Hospital (Previously King Edward VIII Hospital), Sydney Road, Durban, 4001, South Africa.
| | - Kagiso Mochankana
- Department of Paediatrics, Victoria Mxenge Hospital (Previously King Edward VIII Hospital), Sydney Road, Durban, 4001, South Africa
| | - Adrie Bekker
- Department of Paediatrics and Child Health, Department of Medicine, 3rd Floor Clinical Building, Francie van Zijl Drive, Tygerberg, 7505, Cape Town, South Africa
| |
Collapse
|
5
|
Wu C, Meuser ME, Rey JS, Meshkin H, Yang R, Devarkar SC, Freniere C, Shi J, Aiken C, Perilla JR, Xiong Y. Structural insights into inhibitor mechanisms on immature HIV-1 Gag lattice revealed by high-resolution in situ single-particle cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.09.617473. [PMID: 39416065 PMCID: PMC11483028 DOI: 10.1101/2024.10.09.617473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
HIV-1 inhibitors, such as Bevirimat (BVM) and Lenacapavir (LEN), block the production and maturation of infectious virions. However, their mechanisms remain unclear due to the absence of high-resolution structures for BVM complexes and LEN's structural data being limited to the mature capsid. Utilizing perforated virus-like particles (VLPs) produced from mammalian cells, we developed an approach to determine in situ cryo-electron microscopy (cryo-EM) structures of HIV-1 with inhibitors. This allowed for the first structural determination of the native immature HIV-1 particle with BVM and LEN bound inside the VLPs at high resolutions. Our findings offer a more accurate model of BVM engaging the Gag lattice and, importantly, demonstrate that LEN not only binds the mature capsid but also targets the immature lattice in a distinct manner. The binding of LEN induces a conformational change in the capsid protein (CA) region and alters the architecture of the Gag lattice, which may affect the maturation process. These insights expand our understanding of the inhibitory mechanisms of BVM and LEN on HIV-1 and provide valuable clues for the design of future inhibitors.
Collapse
Affiliation(s)
- Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Megan E. Meuser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Hamed Meshkin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Rachel Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | | | - Christian Freniere
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
McAuliffe B, Falk P, Chen J, Chen Y, Sit SY, Swidorski J, Hartz RA, Xu L, Venables B, Sin N, Meanwell NA, Regueiro-Ren A, Wensel D, Hanumegowda U, Krystal M. Preclinical Profile of the HIV-1 Maturation Inhibitor VH3739937. Viruses 2024; 16:1508. [PMID: 39459843 PMCID: PMC11512352 DOI: 10.3390/v16101508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
The HIV-1 maturation inhibitor (MI) VH3739937 (VH-937) inhibits cleavage between capsid and spacer peptide 1 and exhibits an oral half-life in humans compatible with once-weekly dosing. Here, the antiviral properties of VH-937 are described. VH-937 exhibited potent antiviral activity against all HIV-1 laboratory strains, clinical isolates, and recombinant viruses examined, with half-maximal effective concentration (EC50) values ≤ 5.0 nM. In multiple-cycle assays, viruses less susceptible to other MIs, including A364V, were inhibited at EC50 values ≤ 8.0 nM and maximal percent inhibition (MPI) values ≥ 92%. However, VH-937 was less potent against A364V in single-cycle assays (EC50, 32.0 nM; MPI, 57%) and A364V emerged in one of four resistance selection cultures. Other substitutions were selected by VH-937, although re-engineered viruses with these sequences were non-functional in multiple-cycle assays. Measured dissociation rates from wild-type and A364V-containing VLPs help explain resistance to the A364V mutation. Overall, the in vitro antiviral activity of VH-937 supports its continued development as a treatment for HIV-1.
Collapse
Affiliation(s)
- Brian McAuliffe
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| | - Paul Falk
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| | - Jie Chen
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Yan Chen
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Sing-Yuen Sit
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Jacob Swidorski
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Richard A. Hartz
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Li Xu
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Brian Venables
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Ny Sin
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Nicholas A. Meanwell
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - Alicia Regueiro-Ren
- Bristol Myers Squibb, 5 Research Parkway, Wallingford, CT 06492, USA; (J.C.); (Y.C.); (S.-Y.S.); (J.S.); (R.A.H.); (L.X.); (B.V.); (N.S.); (N.A.M.); (A.R.-R.)
| | - David Wensel
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| | - Umesh Hanumegowda
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| | - Mark Krystal
- ViiV Healthcare, 36 East Industrial Road, Branford, CT 06405, USA; (B.M.); (P.F.); (D.W.); (U.H.)
| |
Collapse
|
7
|
McGraw A, Hillmer G, Medehincu SM, Hikichi Y, Gagliardi S, Narayan K, Tibebe H, Marquez D, Mei Bose L, Keating A, Izumi C, Peese K, Joshi S, Krystal M, DeCicco-Skinner KL, Freed EO, Sardo L, Izumi T. Exploring HIV-1 Maturation: A New Frontier in Antiviral Development. Viruses 2024; 16:1423. [PMID: 39339899 PMCID: PMC11437483 DOI: 10.3390/v16091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
HIV-1 virion maturation is an essential step in the viral replication cycle to produce infectious virus particles. Gag and Gag-Pol polyproteins are assembled at the plasma membrane of the virus-producer cells and bud from it to the extracellular compartment. The newly released progeny virions are initially immature and noninfectious. However, once the Gag polyprotein is cleaved by the viral protease in progeny virions, the mature capsid proteins assemble to form the fullerene core. This core, harboring two copies of viral genomic RNA, transforms the virion morphology into infectious virus particles. This morphological transformation is referred to as maturation. Virion maturation influences the distribution of the Env glycoprotein on the virion surface and induces conformational changes necessary for the subsequent interaction with the CD4 receptor. Several host factors, including proteins like cyclophilin A, metabolites such as IP6, and lipid rafts containing sphingomyelins, have been demonstrated to have an influence on virion maturation. This review article delves into the processes of virus maturation and Env glycoprotein recruitment, with an emphasis on the role of host cell factors and environmental conditions. Additionally, we discuss microscopic technologies for assessing virion maturation and the development of current antivirals specifically targeting this critical step in viral replication, offering long-acting therapeutic options.
Collapse
Affiliation(s)
- Aidan McGraw
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Grace Hillmer
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Stefania M. Medehincu
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Yuta Hikichi
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Sophia Gagliardi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kedhar Narayan
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Hasset Tibebe
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Dacia Marquez
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Lilia Mei Bose
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Adleigh Keating
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Coco Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Kevin Peese
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Samit Joshi
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Mark Krystal
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Kathleen L. DeCicco-Skinner
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, MS 21702, USA; (Y.H.); (E.O.F.)
| | - Luca Sardo
- ViiV Healthcare, 36 E. Industrial Road, Branford, CT 06405, USA; (K.P.) (S.J.); (M.K.)
| | - Taisuke Izumi
- Department Biology, College of Arts and Sciences, American University, Washington, DC 20016, USA; (A.M.); (G.H.); (S.M.M.); (S.G.); (K.N.); (H.T.); (D.M.); (L.M.B.); (A.K.); (C.I.); (K.L.D.-S.)
- District of Columbia Center for AIDS Research, Washington, DC 20052, USA
| |
Collapse
|
8
|
Garg R, DeZonia B, Paterson AL, Rienstra CM. Low power supercycled TPPM decoupling. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107726. [PMID: 38991267 PMCID: PMC11364148 DOI: 10.1016/j.jmr.2024.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024]
Abstract
Improving the spectral sensitivity and resolution of biological solids is one of the long-standing problems in nuclear magnetic resonance (NMR) spectroscopy. In this report, we introduce low-power supercycled variants of two-pulse phase-modulated (TPPM) sequence for heteronuclear decoupling. The utility of the sequence is shown by improvements in the transverse relaxation time of observed nuclei (with 1H decoupling) with its application to different samples (uniformly 13C, 15N, 2H-labeled GB1 back-exchanged with 25% H2O and 75% D2O, uniformly 13C, 15N, 2H-labeled human derived Asyn fibril back-exchanged with 100% H2O and uniformly 13C, 15N -labeled human derived Asyn fibril) at fast MAS using low radiofrequency (RF) fields. To understand the effect of spinning speed, the transverse relaxation time is monitored under different spinning frequencies. In comparison to existing heteronuclear decoupling sequences, the supercycled TPPM (sTPPM) sequence significantly improves the spectral sensitivity and resolution and is robust towards B1 inhomogeneity and decoupler offset.
Collapse
Affiliation(s)
- Rajat Garg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Barry DeZonia
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Alexander L Paterson
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, 53706, United States.
| | - Chad M Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, United States; National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, 53706, United States; Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53715, United States.
| |
Collapse
|
9
|
Han R, Borcik CG, Wang S, Warmuth OA, Geohring K, Mullen C, Incitti M, Stringer JA, Rienstra CM. Solid-State NMR 13C sensitivity at high magnetic field. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 365:107709. [PMID: 38991265 PMCID: PMC11391299 DOI: 10.1016/j.jmr.2024.107709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
Sensitivity is the foundation of every NMR experiment, and the signal-to-noise ratio (SNR) should increase with static (B0) magnetic field, by a proportionality that primarily depends on the design of the NMR probe and receiver. In the low B0 field limit, where the coil geometry is much smaller than the wavelength of the NMR frequency, SNR can increase in proportion to B0 to the power 7/4. For modern magic-angle spinning (MAS) probes, this approximation holds for rotor sizes up to 3.2 mm at 14.1 Tesla (T), corresponding to 600 MHz 1H and 151 MHz 13C Larmor frequencies. To obtain the anticipated benefit of larger coils and/or higher B0 fields requires a quantitative understanding of the contributions to SNR, utilizing standard samples and protocols that reproduce SNR measurements with high accuracy and precision. Here, we present such a systematic and comprehensive study of 13C SNR under MAS over the range of 14.1 to 21.1 T. We evaluate a range of probe designs utilizing 1.6, 2.5 and 3.2 mm rotors, including 24 different sets of measurements on 17 probe configurations using five spectrometers. We utilize N-acetyl valine as the primary standard and compare and contrast with other commonly used standard samples (adamantane, glycine, hexamethylbenzene, and 3-methylglutaric acid). These robust approaches and standard operating procedures provide an improved understanding of the contributions from probe efficiency, receiver noise figure, and B0 dependence in a range of custom-designed and commercially available probes. We find that the optimal raw SNR is obtained with balanced 3.2 mm design at 17.6 T, that the best mass-limited SNR is achieved with a balanced 1.6 mm design at 21.1 T, and that the raw SNR at 21.1 T reaches diminishing returns with rotors larger than 2.5 mm.
Collapse
Affiliation(s)
- Ruixian Han
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Collin G Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Songlin Wang
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, United States
| | - Owen A Warmuth
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States
| | | | | | | | | | - Chad M Rienstra
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States; Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, United States; National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
10
|
Porat-Dahlerbruch G, Struppe J, Polenova T. High-efficiency low-power 13C- 15N cross polarization in MAS NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 361:107649. [PMID: 38452523 PMCID: PMC11031345 DOI: 10.1016/j.jmr.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/09/2024]
Abstract
Biomolecular solid-state magic angle spinning (MAS) NMR spectroscopy frequently relies on selective 13C-15N magnetization transfers, for various kinds of correlation experiments. Introduced in 1998, spectrally induced filtering in combination with cross polarization (SPECIFIC-CP) is a selective heteronuclear magnetization transfer experiment widely used for biological applications. At MAS frequencies below 20 kHz, commonly used for 13C-detected MAS NMR experiments, SPECIFIC-CP transfer between amide 15N and 13Cα atoms (NCA) is typically performed with radiofrequency (rf) fields set higher than the MAS frequency for both 13C and 15N channels, and high-power 1H decoupling rf field is simultaneously applied. Here, we experimentally explore a broad range of NCA zero-quantum (ZQ) SPECIFIC-CP matching conditions at the MAS frequency of 14 kHz and compare the best high- and low-power matching conditions with respect to selectivity, robustness, and sensitivity at lower 1H decoupling rf fields. We show that low-power NCA SPECIFIC-CP matching condition gives rise to 20% sensitivity enhancement compared to high-power conditions, in 2D NCA spectra of microcrystalline assemblies of HIV-1 CACTD-SP1 protein with inositol hexakis-phosphate (IP6).
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15261, United States.
| |
Collapse
|
11
|
Zadorozhnyi R, Gronenborn AM, Polenova T. Integrative approaches for characterizing protein dynamics: NMR, CryoEM, and computer simulations. Curr Opin Struct Biol 2024; 84:102736. [PMID: 38048753 PMCID: PMC10922663 DOI: 10.1016/j.sbi.2023.102736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
Proteins are inherently dynamic and their internal motions are essential for biological function. Protein motions cover a broad range of timescales: 10-14-10 s, spanning from sub-picosecond vibrational motions of atoms via microsecond loop conformational rearrangements to millisecond large amplitude domain reorientations. Observing protein dynamics over all timescales and connecting motions and structure to biological mechanisms requires integration of multiple experimental and computational techniques. This review reports on state-of-the-art approaches for assessing dynamics in biological systems using recent examples of virus assemblies, enzymes, and molecular machines. By integrating NMR spectroscopy in solution and the solid state, cryo electron microscopy, and molecular dynamics simulations, atomistic pictures of protein motions are obtained, not accessible from any single method in isolation. This information provides fundamental insights into protein behavior that can guide the development of future therapeutics.
Collapse
Affiliation(s)
- Roman Zadorozhnyi
- University of Delaware, Department of Chemistry and Biochemistry, Newark DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States; Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Tatyana Polenova
- University of Delaware, Department of Chemistry and Biochemistry, Newark DE, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh PA, United States.
| |
Collapse
|
12
|
Banerjee P, Voth GA. Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding. Biophys J 2024; 123:42-56. [PMID: 37978800 PMCID: PMC10808027 DOI: 10.1016/j.bpj.2023.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-genomic RNA (gRNA) interactions play a crucial role in the multimerization process, which is yet to be fully understood. We performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to affect mainly the SP1 domain of the 18-mer and the matrix-capsid linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the nucleocapsid domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, and also regulates the dynamic organization of the local membrane region itself.
Collapse
Affiliation(s)
- Puja Banerjee
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
13
|
Wimmerová M, Bildziukevich U, Wimmer Z. Selected Plant Triterpenoids and Their Derivatives as Antiviral Agents. Molecules 2023; 28:7718. [PMID: 38067449 PMCID: PMC10707653 DOI: 10.3390/molecules28237718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The results of the most recent investigation of triterpenoid-based antiviral agents namely in the HIV-1 and HSV-1 treatment were reviewed and summarized. Several key historical achievements are included to stress consequences and continuity in this research. Most of the agents studied belong to a series of compounds derived from betulin or betulinic acid, and their synthetic derivative is called bevirimat. A termination of clinical trials of bevirimat in Phase IIb initiated a search for more successful compounds partly derived from bevirimat or designed independently of bevirimat structure. Surprisingly, a majority of bevirimat mimics are derivatives of betulinic acid, while other plant triterpenoids, such as ursolic acid, oleanolic acid, glycyrrhetinic acid, or other miscellaneous triterpenoids, are relatively rarely involved in a search for a novel antiviral agent. Therefore, this review article is divided into three parts based on the leading triterpenoid core structure.
Collapse
Affiliation(s)
- Martina Wimmerová
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague, Czech Republic;
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic;
| | - Uladzimir Bildziukevich
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic;
| | - Zdeněk Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16028 Prague, Czech Republic;
- Isotope Laboratory, Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague, Czech Republic;
| |
Collapse
|
14
|
Banerjee P, Voth GA. Conformational transitions of the HIV-1 Gag polyprotein upon multimerization and gRNA binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553549. [PMID: 37645781 PMCID: PMC10462060 DOI: 10.1101/2023.08.16.553549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-gRNA interactions play a crucial role in the multimerization process, which is yet to be fully understood. We have performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model (hENM) applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to impact mainly the SP1 domain of the 18-mer and the MA-CA linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the NC domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, as well as regulates the dynamic organization of the local membrane region itself. Significance Gag(Pr 55 Gag ) polyprotein orchestrates many essential events in HIV-1 assembly, including packaging of the genomic RNA (gRNA) in the immature virion. Although various experimental techniques, such as cryo-ET, X-ray, and NMR, have revealed structural properties of individual domains in the immature Gag clusters, structural and biophysical characterization of a full-length Gag molecule remains a challenge for existing experimental techniques. Using atomistic molecular dynamics simulations of the different model systems of Gag polyprotein, we present here a detailed structural characterization of Gag molecules in different multimerization states and interrogate the synergy between Gag-Gag, Gag-membrane, and Gag-gRNA interactions during the viral assembly process.
Collapse
|
15
|
Meanwell NA. Sub-stoichiometric Modulation of Viral Targets-Potent Antiviral Agents That Exploit Target Vulnerability. ACS Med Chem Lett 2023; 14:1021-1030. [PMID: 37583823 PMCID: PMC10424314 DOI: 10.1021/acsmedchemlett.3c00279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 08/17/2023] Open
Abstract
The modulation of oligomeric viral targets at sub-stoichiometric ratios of drug to target has been advocated for its efficacy and potency, but there are only a limited number of documented examples. In this Viewpoint, we summarize the invention of the HIV-1 maturation inhibitor fipravirimat and discuss the emerging details around the mode of action of this class of drug that reflects inhibition of a protein composed of 1,300-1,600 monomers that interact in a cooperative fashion. Similarly, the HCV NS5A inhibitor daclatasvir has been shown to act in a highly sub-stoichiometric fashion, inhibiting viral replication at concentrations that are ∼23,500 lower than that of the protein target.
Collapse
|
16
|
Talledge N, Yang H, Shi K, Coray R, Yu G, Arndt WG, Meng S, Baxter GC, Mendonça LM, Castaño-Díez D, Aihara H, Mansky LM, Zhang W. HIV-2 Immature Particle Morphology Provides Insights into Gag Lattice Stability and Virus Maturation. J Mol Biol 2023; 435:168143. [PMID: 37150290 PMCID: PMC10524356 DOI: 10.1016/j.jmb.2023.168143] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 05/01/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Retrovirus immature particle morphology consists of a membrane enclosed, pleomorphic, spherical and incomplete lattice of Gag hexamers. Previously, we demonstrated that human immunodeficiency virus type 2 (HIV-2) immature particles possess a distinct and extensive Gag lattice morphology. To better understand the nature of the continuously curved hexagonal Gag lattice, we have used the single particle cryo-electron microscopy method to determine the HIV-2 Gag lattice structure for immature virions. The reconstruction map at 5.5 Å resolution revealed a stable, wineglass-shaped Gag hexamer structure with structural features consistent with other lentiviral immature Gag lattice structures. Cryo-electron tomography provided evidence for nearly complete ordered Gag lattice structures in HIV-2 immature particles. We also solved a 1.98 Å resolution crystal structure of the carboxyl-terminal domain (CTD) of the HIV-2 capsid (CA) protein that identified a structured helix 12 supported via an interaction of helix 10 in the absence of the SP1 region of Gag. Residues at the helix 10-12 interface proved critical in maintaining HIV-2 particle release and infectivity. Taken together, our findings provide the first 3D organization of HIV-2 immature Gag lattice and important insights into both HIV Gag lattice stabilization and virus maturation.
Collapse
Affiliation(s)
- Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA. https://twitter.com/BioChemTalledge
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Ke Shi
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Raffaele Coray
- BioEM Lab, Biozentrum, University of Basel - Basel, Switzerland
| | - Guichuan Yu
- Minnesota Supercomputing Institute, Office of the Vice President for Research, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Gloria C Baxter
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular, Cellular, Developmental Biology, and Genetics Graduate Program, University of Minnesota - Twin Cities, USA
| | - Luiza M Mendonça
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | | | - Hideki Aihara
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology and Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|