1
|
Zhou Y, Zhou Z, Wang Y, Jiang Q, Liu D. Phenazine-Based Ultra-Narrow Bandgap Acceptors for Efficient Transparent Organic Photovoltaic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500536. [PMID: 40411854 DOI: 10.1002/smll.202500536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/13/2025] [Indexed: 05/26/2025]
Abstract
Developing ultra-narrow bandgap electron acceptors is an effective approach to achieving transparent organic photovoltaics (TOPVs). In this study, two phenazine based non-fullerene acceptors, namely PA-2H and PA-2Br, are synthesized by merging core bromination and extended conjugation. Applying extra ethylene double bonds as π bridge makes the absorption onsets of films red shift to 1021 and 1041 nm for PA-2H and PA-2Br, respectively. Single-crystal data illustrated that PA-2Br exhibits a tight and ordered 3D network packing with improved charge transport, different from the 2D step-like packing of PA-2H. Therefore, PA-2Br-based opaque organic photovoltaics achieves an excellent power conversion efficiency (PCE) of 13.7%. Notably, the TOPV attains a PCE of 4.60% with an average visible transmittance (AVT) of 70.2%, which exhibits promise in efficient TOPVs. This work demonstrates the importance of core bromination in the design of high-performance ultra-narrow bandgap electron acceptors and provides the opportunity to fabricate efficient TOPVs.
Collapse
Affiliation(s)
- Yibin Zhou
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Zibo Zhou
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yifan Wang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qianqing Jiang
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Dianyi Liu
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, Research Center for Industries of the Future, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, Zhejiang, 310000, China
- Westlake Institute for Optoelectronics, Hangzhou, Zhejiang, 311421, China
| |
Collapse
|
2
|
Yang C, Gao Y, Zhang H, Yao ZF, Li EL, Guan HH, Zhi HF, Yuan Q, Jee MH, Woo HY, Min J, Wang JL. Multiple-Asymmetric Molecular Engineering Enables Regioregular Selenium-Substituted Acceptor with High Efficiency and Ultra-low Energy Loss in Binary Organic Solar Cells. Angew Chem Int Ed Engl 2025:e202506795. [PMID: 40320380 DOI: 10.1002/anie.202506795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
Asymmetric molecular engineering is utilized for developing efficient small molecular acceptors (SMAs), whereas adopting multiple asymmetric strategies at the terminals, side chains, and cores of efficient SMAs remains a challenge, and effects on reducing energy loss (Eloss) have been rarely investigation. Herein, four regioregular multiple-asymmetric SMAs (DASe-4F, DASe-4Cl, TASe-2Cl2F, and TASe-2F2Cl) are constructed by delicately manipulating the number and position of F and Cl on end groups. Triple-asymmetric TASe-2F2Cl not only exhibits a unique and most compact 3D network crystal stacking structure but also possesses excellent crystallinity and electron mobility in neat film. Surprisingly, the PM1:TASe-2F2Cl-based binary organic solar cells (OSCs) yield a champion power conversion efficiencies (PCEs) of 19.32%, surpassing the PCE of 18.27%, 17.25%, and 16.30% for DASe-4F, DASe-4Cl, and TASe-2Cl2F-based devices, which attributed to the optimized blend morphology with proper phase separation and more ordered intermolecular stacking and excellent charge transport. Notably, the champion PCE of 19.32% with ultralow nonradiative recombination energy loss (ΔE3) of 0.179 eV marks a record-breaking result for selenium-containing SMAs in binary OSCs. Our innovative multiple-asymmetric molecular engineering of precisely modulating the number and position of fluorinated/chlorinated end groups is an effective strategy for obtaining highly-efficient and minimal ΔE3 of selenium-substituted SMAs-based binary OSCs simultaneously.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuan Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ze-Fan Yao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Er-Long Li
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Hai Guan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Quan Yuan
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Xu Y, Liao Y, Wang W, Wang Y, Wang J, Suo Z, Li F, Wang R, Ni W, Kan B, Meng L, Wan X, Chen Y, Hou J, Li M, Geng Y. An n-Doped Organic Cross-Linked Electron Transport Layer with High Electrical Conductivity for High-Efficiency Tandem Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501653. [PMID: 40123323 DOI: 10.1002/adma.202501653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/28/2025] [Indexed: 03/25/2025]
Abstract
With merits of good solution processability, intrinsic flexibility, etc, organic/organic interconnecting layers (ICLs) are highly desirable for tandem organic photovoltaics (OPVs). Herein, an n-doped cross-linked organic electron transport layer (ETL), named c-NDI-Br:PEI is developed, via a simple in situ quaternization reaction between bromopentyl-substituted naphthalene diimide derivative (NDI-Br) and polyethylenimine (PEI). Due to strong self-doping, c-NDI-Br:PEI films exhibit a high electrical conductivity (0.06 S cm-1), which is important for efficient hole and electron reombination in ICL of tandem OPVs. In addition, the cross-linked ETLs show strong work function modulation ability, and good solvent-resistance. The above features enable c-NDI-Br:PEI to function as an efficient ETL not only for single-junction OPVs, but also for tandem devices without any metal layer in ICL. Under solar radiation, the single-junction device with c-NDI-Br:PEI as ETL achieves a power conversion efficiency (PCE) of 18.18%, surpassing the ZnO-based device (17.09%). The homo- and hetero-tandem devices with m-PEDOT:PSS:c-NDI-Br:PEI as ICL exhibit remarkable PCEs of 19.06% and 20.06%, respectively. Under 808 nm laser radiation with a photon flux of 57 mW cm-2, the homo-tandem device presents a superior PCE of 38.5%. This study provides a new ETL for constructing all-solution-processed organic/organic ICL, which can be integrated in flexible and wearable devices.
Collapse
Affiliation(s)
- Yan Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yifan Liao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yupu Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Jia Wang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zhaochen Suo
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Feng Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Ruochen Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Wang Ni
- Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin, 300384, China
| | - Bin Kan
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiangjian Wan
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, Tianjin Key Laboratory of Functional Polymer Materials, College of Chemistry, and Renewable Energy Conversion and Storage Center, Nankai University, Tianjin, 300071, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Miaomiao Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Science and Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
4
|
Guo F, Yang X, Wang P, Bai X, Kong T, Wang M, Gu Z, Song Y. Advances in Single-Crystal Films: Synergistic Insights from Perovskites and Organic Molecules for High-Performance Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412101. [PMID: 39989101 DOI: 10.1002/smll.202412101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Indexed: 02/25/2025]
Abstract
Semiconductor single-crystal thin films are crucial for the advancement of high-performance optoelectronic devices. Despite significant progress in fabricating perovskite and organic single-crystal films, interdisciplinary insights between these domains remain unexplored. This review aims to bridge this gap by summarizing recent advances in fabrication strategies for perovskite and organic molecular single-crystal films. Five preparation methods-solution-phase epitaxy, solid-phase epitaxy, meniscus-induced crystallization, antisolvent-induced crystallization, and space-confined growth-are analyzed with a focus on their principles, functional properties, and distinct advantages. By comparing these approaches across material systems, this review identifies transferable insights that can drive the development of large-scale, high-quality single-crystal films. Furthermore, the optoelectronic applications of these films are explored, including solar cells, photodetectors, light-emitting devices, and transistors, while addressing challenges such as scalability, defect control, and integration. This work highlights the importance of cross-disciplinary innovation and provides an effective pathway for integrating perovskite and organic molecular processing to advance the next generation of single-crystal film technologies.
Collapse
Affiliation(s)
- Fengmin Guo
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Xiaodong Yang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Pengkun Wang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Xintao Bai
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Tianle Kong
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Mengxuan Wang
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Zhenkun Gu
- Henan Institute of Advanced Technology, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450051, China
| | - Yanlin Song
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Wang Y, Wen J, Shang Z, Zhong Y, Zhang H, Liu W, Han W, Yang H, Liu J, Zhang J, Li H, Liu Y. Enhancing the Built-In Electric Field of Thickness-Insensitive Small Molecule Cathode Interlayers for High-Efficiency and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2025:e202506252. [PMID: 40293795 DOI: 10.1002/anie.202506252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/25/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
The built-in electric field (BEF) is proposed as a critical design parameter for optimizing small-molecule cathode interlayer materials (SM-CIMs) in organic solar cells (OSCs). By strategically transforming imidazole-functionalized triads from a donor-acceptor-donor (D-A-D) to an A-D-A configuration and replacing the A unit with a more electron-deficient moiety, we developed three triads: (TBT)2NDI, (NDI)2TBT, and (PDI)2TBT, each exhibiting progressively enhanced BEF, along with improved conductivity, work function (WF) adjustability, energy level alignment, and crystallinity. Additionally, the A-D-A triads facilitate superior electronic communication with both non-fullerene acceptors (NFAs) and polymer donors, enhancing photoexcitation utilization and reducing triplet state formation. Consequently, transitioning from (TBT)2NDI to (NDI)2TBT and then to (PDI)2TBT significantly boosts OSC efficiency and operational stability. Notably, devices with (PDI)2TBT and (NDI)2TBT retain 85.0% and 82.3% of their peak efficiencies, respectively, far exceeding the (TBT)2NDI-based device (65.9%) at an interlayer thickness of approximately 105 nm. Furthermore, (PDI)2TBT exhibits excellent compatibility with various active layers, and an outstanding performance of 20.10% is recorded in the PM6:L8-BO:BTP-eC9 system. This comprehensive study, encompassing molecular design, theoretical simulation, device fabrication, and fundamental device physics, highlights the importance of strategic donor-acceptor (D-A) electronic framework modifications to enhance BEF, thereby advancing the development of sophisticated SM-CIMs for OSCs.
Collapse
Affiliation(s)
- Yuxing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Junjie Wen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zhe Shang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Yanyi Zhong
- College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073, P.R. China
| | - Huixiang Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Wenxu Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Wentian Han
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Huanhuan Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jiming Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jiangbin Zhang
- College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073, P.R. China
| | - Hui Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Yao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| |
Collapse
|
6
|
Zheng W, Wu SQ, Shui Q, Kanegawa S, Su SQ, Sato O. Giant Near-Infrared Induced Polarization Change via a Long-Lived Hidden Phase of a Valence Tautomeric Complex. J Am Chem Soc 2025; 147:13953-13961. [PMID: 40229943 DOI: 10.1021/jacs.5c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Light-induced polarization change has attracted significant attention due to its rapid response and nondestructive nature, positioning it as a promising candidate for next-generation molecular storage devices and energy harvesting. However, achieving substantial photoconversion that results in giant polarization changes via a hidden phase under near-infrared light irradiation remains a formidable challenge. In this study, we successfully synthesized a novel [CrCo] complex with an enantiopure ligand. Unlike previously reported Co valence tautomeric (VT) complexes, this complex exhibits light-induced VT (LIVT) with nearly complete photoconversion ratio upon irradiation with a 1340 nm laser. Additionally, the molecules pack in the P21 polar space group with an optimized arrangement, leading to a giant NIR-induced polarization change (1.71 μC cm-2), which surpasses that of other nonferroelectric crystals. Importantly, electric measurements and single-crystal X-ray analysis after irradiation revealed that the induced polarization change is related to not only the directional electron transfer but also the displacement of anions, which render a distinct hidden metastable phase compared to the thermally approachable one. Moreover, pyroelectric measurement was first used to characterize relaxation kinetics after light irradiation.
Collapse
Affiliation(s)
- Wenwei Zheng
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shu-Qi Wu
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Qirui Shui
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shinji Kanegawa
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sheng-Qun Su
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Osamu Sato
- Institute for Material Chemistry and Engineering and IRCCS, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Hou H, Wang W, Li T, Zhang Z, Miao X, Cai G, Lu X, Yi Y, Lin Y. Efficient Infrared-Detecting Organic Semiconductors Featuring a Tetraheterocyclic Core with Reduced Ionization Potential. Angew Chem Int Ed Engl 2025; 64:e202425420. [PMID: 39906002 DOI: 10.1002/anie.202425420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Infrared organic semiconductors are crucial in organic optoelectronics, yet high-performance materials with photoresponse beyond 1.1 μm (the limit of crystalline silicon) remain scarce due to the limit of building blocks including strong electron-donating units. Here, we report an asymmetric tetraheterocycle (TPCT) with a reduced ionization potential of 6.18 eV relative to those reported dithiophene-based electron-donating blocks, and TPCT-2F and TPCTO-2F constructed with TPCT as the core exhibit absorption onset up to 1 μm and 1.4 μm, respectively. Especially, TPCTO-2F possesses a narrow band gap of 1.00 eV and displays a small Urbach energy of 22.0 meV comparable to or even lower than those of some typical inorganic short-wave infrared (SWIR) semiconductors (13-44 meV). The organic photodetectors (OPDs) based on TPCT-2F achieve a peak detectivity (D*) of 2.2×1013 Jones at 810 nm under zero bias, among the highest values for reported OPDs and on par with commercial silicon photodetectors. Impressively, TPCTO-2F-based OPDs demonstrate a wide response from 0.3 to 1.4 μm and high D* comparable to germanium photodetector at wavelengths <1.2 μm with a maximum D* of 2.3×1011 Jones at 1.06 μm in SWIR region.
Collapse
Affiliation(s)
- Huiqing Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tengfei Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenzhen Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaodan Miao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guilong Cai
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, 999077, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuze Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
Huang K, Jiang B, Lu H, Xue Y, Lu C, Chang Y, Huang C, Chien S, Chen C, Cheng Y. Electron-Rich Heptacyclic S,N Heteroacene Enabling C-Shaped A-D-A-type Electron Acceptors With Photoelectric Response beyond 1000 Nm for Highly Sensitive Near-Infrared Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413045. [PMID: 39807075 PMCID: PMC11884573 DOI: 10.1002/advs.202413045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Indexed: 01/16/2025]
Abstract
A highly electron-rich S,N heteroacene building block is developed and condensed with FIC and Cl-IC acceptors to furnish CT-F and CT-Cl, which exhibit near-infrared (NIR) absorption beyond 1000 nm. The C-shaped CT-F and CT-Cl self-assemble into a highly ordered 3D intermolecular packing network via multiple π-π interactions in the single crystal structures. The CT-F-based organic photovoltaic (OPV) achieved an impressive efficiency of 14.30% with a broad external quantum efficiency response extending from the UV-vis to the NIR (300-1050 nm) regions, outperforming most binary OPVs employing NIR A-D-A-type acceptors. CT-Cl possesses a higher surface energy than CT-F, promoting vertical phase segregation and resulting in its preferential accumulation near the bottom interface of the blend. This arrangement, combined with the lower HOMO energy level of CT-Cl, effectively reduces undesired hole and electron injection under reverse voltage. The PM6:CT-Cl-based organic photodetectors (OPDs) devices achieved an ultra-high shot-noise-limited specific detectivity (Dsh*) values exceeding 1014 Jones in the NIR region from 620 to 1000 nm, reaching an unprecedentedly high value of 1.3 × 1014 Jones at 950 nm. When utilizing a 780 nm light source, the PM6:CT-Cl-based OPDs show record-high rise/fall times of 0.33/0.11 µs and an exceptional cut-off frequency (f-3dB) of 590 kHz at -1 V.
Collapse
Affiliation(s)
- Kuo‐Hsiu Huang
- Department of Applied ChemistryNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Bing‐Huang Jiang
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City243303Taiwan
| | - Han‐Cheng Lu
- Department of Applied ChemistryNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Yung‐Jing Xue
- Department of Applied ChemistryNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Chia‐Fang Lu
- Department of Applied ChemistryNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Yung‐Yung Chang
- Department of Applied ChemistryNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Ching‐Li Huang
- Department of Applied ChemistryNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| | - Su‐Ying Chien
- Instrumentation CenterNational Taiwan UniversityTaipei10617Taiwan
| | - Chih‐Ping Chen
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City243303Taiwan
- College of Engineering and Center for Sustainability and Energy TechnologiesChang Gung UniversityTaoyuan33302Taiwan
| | - Yen‐Ju Cheng
- Department of Applied ChemistryNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
- Center for Emergent Functional Matter ScienceNational Yang Ming Chiao Tung UniversityHsinchu30010Taiwan
| |
Collapse
|
9
|
Yin H, Cui Y, Chen D, Liu S, Wu T, Yu M, Ye L, Liang A, Chen Y. Preparation of Dual-Asymmetric Acceptors via Selenium Substitution Combined with Terminal Group Optimization Strategy for High Efficiency Organic Solar Cells. J Am Chem Soc 2025. [PMID: 39998467 DOI: 10.1021/jacs.5c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Improving both the open-circuit voltage (VOC) and short-circuit current density (JSC) through the development of photovoltaic materials to achieve high power conversion efficiency (PCE) is critical and a significant challenge for organic solar cells (OSCs). Here, we designed novel dual-asymmetric acceptors A-SSe-TCF and A-SSe-LSF by simultaneously asymmetrically regulating the backbone and terminal groups and investigated their synergistic effects on photovoltaic performance in comparison with the monoasymmetric acceptor A-SSe-4F. The dual-asymmetric acceptors exhibit broader spectral absorption and larger half-molecule dipole moment differences, which favored the enhancement of JSC and the reduction of energy loss (Eloss). Among the binary blends, PM6:A-SSe-TCF exhibits superior phase separation, vertical phase distribution morphology, and more ordered π-π stacking compared to PM6:A-SSe-LSF and PM6:A-SSe-4F. As a result, OSCs based on PM6:A-SSe-TCF achieved a higher PCE of 18.53% with both higher VOC and JSC due to the suppressed nonradiative recombination and enhanced charge extraction capabilities. Furthermore, by incorporating A-SSe-TCF as the third component, the PM6:L8-BO:A-SSe-TCF-based device achieves a champion PCE of 19.73% without VOC loss on account of the decrement of Eloss. The novel dual-asymmetric strategy provides new insights into the molecular design and the improvement of PCE for OSCs.
Collapse
Affiliation(s)
- Haoran Yin
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yongjie Cui
- School of Energy and Materials, Shanghai Polytechnic University, Shanghai 201209, China
| | - Dong Chen
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Siqi Liu
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Tuhong Wu
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Mengqi Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Key Laboratory of Organic Integrated Circuits, Ministry of Education, Collaborative innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Aihui Liang
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiwang Chen
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/ /Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang 330031, China
| |
Collapse
|
10
|
Zeng R, Deng J, Xue X, Tan S, Kan L, Lin Y, Zhong W, Zhu L, Han F, Zhou Y, Gao X, Zhang M, Zhang Y, Xu S, Liu F. Construction of Linear Tetramer-Type Acceptors for High-Efficiency and High-Stability Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202420453. [PMID: 39746868 DOI: 10.1002/anie.202420453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/23/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Thanks to the development of non-fullerene acceptor (NFA) materials, the photovoltaic conversion efficiency (PCE) of organic solar cells (OSCs) has exceeded 20 %, which has met the requirements for commercialisation. In the current stage, the main focus is to balance the performance and stability. It has been shown that all-polymer formulation can improve device stability, however, PCE is not in satifsfaction, and the batch-to-batch variation leads to quality control issues. In this work, we constructed monodispersed tetramer NFA materials named G-1 and G-2, to best integrate the merits of small molecule and polymer. Density functional theory (DFT) calculations and experimental results showed that different connecting units at the centre could significantly affect the molecular planarity and thin film morphology. The alkene-bonded tetramer G-1 had a more regioregular structure, which leads to better molecular planarity, and more ordered packing in thin film. More importantly, the oligomeration induced a favourable face-on orientation, achieved a lower binding energy and exhibited a higher photoluminescence yield. As a result, the exciton and charge carrier kinetics was optimized with reduced non-radiative energy loss. The OSC based on PM6 : G-1 achieved a PCE of 19.6 %, which is the highest PCE reported so far for oligomer-based binary OSC. In addition, the device stability was largely improved, showing a lifetime over 10000 hours in the inverted OSC device.
Collapse
Affiliation(s)
- Rui Zeng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawei Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaonan Xue
- Shanghai OPV Solar New Energy Technology Co. Ltd., Shanghai, 201210, China
| | - Sengke Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lixuan Kan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Lin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wenkai Zhong
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Lei Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuhao Zhou
- College of Computer Science, Sichuan university, Chendu, 610207, China
| | - Xingyu Gao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, China
| | - Shengjie Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Fluorinated Functional Membrane Materials and Dongyue Future Hydrogen Energy Materials Company, Zibo City, Shandong, 256401, China
- Suzhou Laboratory, Suzhou, 215100, P. R. China
| |
Collapse
|
11
|
Zhang N, Chen T, Li Y, Li S, Yu J, Liu H, Wang M, Ye XK, Ding X, Lu X, Li CZ, Zhu H, Shi M, Chen H. Benzothiadiazole-Fused Cyanoindone: A Superior Building Block for Designing Ultra-Narrow Bandgap Electron Acceptor with Long-Range Ordered Stacking. Angew Chem Int Ed Engl 2025; 64:e202420090. [PMID: 39612240 DOI: 10.1002/anie.202420090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/28/2024] [Indexed: 12/01/2024]
Abstract
There are great demands of developing ultra-narrow bandgap electron acceptors for multifunctional electronic devices, particularly semi-transparent organic photovoltaics (OPVs) for building-integrated applications. However, current ultra-narrow bandgap materials applied in OPVs, primarily based on electron-rich cores, exhibit defects of high-lying energy levels and inferior performance. We herein proposed a novel strategy by designing the benzothiazole-fused cyanoindone (BTC) unit with ultra-strong electron-withdrawing ability as the terminal to synthesize the acceptor BTC-2. The BTC unit imparts red-shifted absorption up to 1000 nm to BTC-2, attributed to enhanced intramolecular charge transfer and the quinoid resonance effect. Additionally, BTC-2 features deep-lying energy levels with the highest occupied molecular orbital level of -5.81 eV, due to the ultra-strong electron-withdrawing ability of BTC. Furthermore, BTC-2 exhibits long-range ordering in both molecular packing and macroscopic blend morphology, resulting from shoulder-to-shoulder packing of two BTC units, leading to an ultra-long exciton lifetime over 1.1 ns. These superiorities facilitated a 17.17 % efficiency in the binary OPV device with an extremely high photocurrent of 30.34 mA cm-2, representing the best performance for ultra-narrow bandgap electron acceptors, and a record light utilization efficiency of 4.88 % in binary semi-transparent systems. Overall, BTC is a superior building block for designing ultra-narrow bandgap electron acceptors.
Collapse
Affiliation(s)
- Nuo Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tianyi Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yaokai Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Shuixing Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jinyang Yu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Heng Liu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Mengting Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xiu-Kun Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xueyan Ding
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Chang-Zhi Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Haiming Zhu
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Minmin Shi
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hongzheng Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| |
Collapse
|
12
|
Wang J, Li Y, Bi F, Yang C, Vasilopoulou M, Chu J, Bao X. Revealing Intrinsic Free Charge Generation: Promoting the Construction of Over 19% Efficient Planar p-n Heterojunction Organic Solar Cells. Angew Chem Int Ed Engl 2025; 64:e202417143. [PMID: 39776226 DOI: 10.1002/anie.202417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Due to high binding energy and extremely short diffusion distance of Frenkel excitons in common organic semiconductors at early stage, mechanism of interface charge transfer-mediated free carrier generation has dominated the development of bulk heterojunction (BHJ) organic solar cells (OSCs). However, considering the advancements in materials and device performance, it is necessary to reexamine the photoelectric conversion in current-stage efficient OSCs. Here, we propose that the conjugated materials with specific three-dimensional donor-acceptor conjugated packing potentially exhibit distinctive charge photogeneration mechanism, which spontaneously split Wannier-Mott excitons to free carriers in pure phases. Subsequently, the pure planar p-n heterojunction (PHJ) OSCs based on green orthogonal solvents were prepared and exhibited comparable even greater performance to that of BHJ OSCs. More interestingly, by introducing PVDF-TrFE as intrinsic region to regulate built-in electric field of the device, the planar p-i-n PHJ OSCs achieved much higher efficiency (>18%) and stability. Moreover, a prominent efficiency of over 19% has been obtained via ternary optimization, which is the new efficiency record for PHJ OSCs up to date. This study points towards the distinguishing intrinsic free charge generation mechanism, opens up a new avenue for OSCs to collectively realize high-efficiency, long-term duration, and simplified device engineering for future commercialization.
Collapse
Affiliation(s)
- Junjie Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- Key Laboratory of Rubber-Plastics, Ministry of Education, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yonghai Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Fuzhen Bi
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chunpeng Yang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research Demokritos, Athens, 15341, Greece
| | - Junhao Chu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xichang Bao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Functional Laboratory of Solar Energy, Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| |
Collapse
|
13
|
Zhang TS, He JM, Liu YT, Li J, Zhuang W, Sun H, Hao WJ, Wu Q, Liu S, Jiang B. Radical-Triggered Bicyclization and Aryl Migration of 1,7-Diynes with Diphenyl Diselenide for the Synthesis of Selenopheno[3,4- c]quinolines. Org Lett 2025; 27:1000-1005. [PMID: 39818924 DOI: 10.1021/acs.orglett.4c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The translocation of an aryl group from selenium into carbon enabled by the cleavage of the C-Se bond is reported by using nitrogen atom-linked 1,7-diynes and diaryl diselenides as starting materials, leading to various selenophene derivatives in a regioselective manner. This method enables the construction of two C-Se bonds and two C-C bonds through sequential radical bicyclization and 1,2-aryl migration under metal-free conditions. Control experiments and mechanistic studies suggest that this reaction proceeds through the cleavage of the inert C(Ph)-Se bond, facilitating the aryl translocation process. This transformation enables the one-step conversion of simple diselenides into diverse selenopheno[3,4-c]quinolines via a radical-promoted process, holding significant potential for new seleniferous heterocycles.
Collapse
Affiliation(s)
- Tian-Shu Zhang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Jia-Ming He
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Yu-Tao Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Jing Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Hua Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Qiong Wu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Shuai Liu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, P. R. China
| | - Bo Jiang
- School of Chemistry & Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, P. R. China
| |
Collapse
|
14
|
Kim D, Tamilavan V, Huang CS, Lu Y, Yang E, Shin I, Yang HS, Park SH, Stranks SD, Lee BR. Reinforcing Bulk Heterojunction Morphology through Side Chain-Engineered Pyrrolopyrrole-1,3-dione Polymeric Donors for Nonfullerene Organic Solar Cells. ACS APPLIED ENERGY MATERIALS 2025; 8:1220-1229. [PMID: 39886452 PMCID: PMC11775866 DOI: 10.1021/acsaem.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 02/01/2025]
Abstract
Organic solar cells (OSCs) are attracting significant attention due to their low cost, lightweight, and flexible nature. The introduction of nonfullerene acceptors (NFAs) has propelled OSC development into a transformative era. However, the limited availability of wide band gap polymer donors for NFAs poses a critical challenge, hindering further advancements. This study examines the role of developed wide band gap halogenated pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (PPD)-based polymers, in combination with the Y6 nonfullerene acceptor, in bulk heterojunction (BHJ) OSCs. We first focus on the electronic and absorbance modifications brought about by halogen substitution in PPD-based polymers, revealing how these adjustments influence the HOMO/LUMO energy levels and, subsequently, photovoltaic performance. Despite the increased V oc of halogenated polymers due to the optimal band alignment, power conversion efficiencies (PCEs) were decreased due to suboptimal blend morphologies. We second implemented PPD as a solid additive to PM6:Y6, forming ternary OSCs and further improving the PCE. The study provides a nuanced understanding of the interplay between molecular design, device morphology, and OSC performance and opens insights for future research to achieve an optimal balance between band alignment and favorable blend morphology for high-efficiency OSCs.
Collapse
Affiliation(s)
- Danbi Kim
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | | | - Chieh-Szu Huang
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Yang Lu
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Eunhye Yang
- Department
of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Insoo Shin
- Department
of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, New York 11201, United States
| | - Hyun-Seock Yang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sung Heum Park
- Department
of Physics, Pukyong National University, Busan 48513, Republic of Korea
| | - Samuel D. Stranks
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge Site, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- Cavendish
Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Bo Ram Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Wang YT, Sun WJ, Zhang Y, Zhang BY, Ding YT, Zhang ZQ, Meng L, Huang K, Ma W, Zhang HL. Integrated Omnidirectional Design of Non-Volatile Solid Additive Enables Binary Organic Solar Cells with Efficiency Exceeding 19.5 . Angew Chem Int Ed Engl 2025; 64:e202417643. [PMID: 39407361 DOI: 10.1002/anie.202417643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Indexed: 11/14/2024]
Abstract
Solid additives have drawn great attention due to their numerous appealing benefits in enhancing the power conversion efficiencies (PCEs) of organic solar cells (OSCs). To date, various strategies have been reported for the selection or design of non-volatile solid additives. However, the lack of a general design/evaluation principles for developing non-volatile solid additives often results in individual solid additives offering only one or two efficiency-boosting attributes. In this work, we propose an integrated omnidirectional strategy for designing non-volatile solid additives. By validating the method on the 4,5,9,10-pyrene diimide (PyDI) system, a novel non-volatile solid additive named PyMC5 was designed. PyMC5 is capable of enhancing device performance by establishing synergistic dual charge transfer channels, forming appropriate interactions with active layer materials, reducing non-radiative voltage loss and optimizing film morphology. Notably, the binary device (PM6 : L8-BO) treated by PyMC5 achieved a PCE over 19.5 %, ranking among the highest reported to date. In addition, the integration of PyMC5 mitigated the degradation process of the devices under photo- and thermal-stress conditions. This work demonstrates an efficient integrated omnidirectional approach for designing non-volatile solid additives, offering a promising avenue for further advancements in OSC development.
Collapse
Affiliation(s)
- Ya-Ting Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wen-Jing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yamin Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Bo-Yang Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yun-Tao Ding
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Ze-Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Lingxian Meng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Kexin Huang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
16
|
Iqbal MA, Fang X, Abbas Y, Weng X, He T, Zeng YJ. Unlocking high-performance near-infrared photodetection: polaron-assisted organic integer charge transfer hybrids. LIGHT, SCIENCE & APPLICATIONS 2024; 13:318. [PMID: 39648203 PMCID: PMC11625827 DOI: 10.1038/s41377-024-01695-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/17/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024]
Abstract
Room temperature femtowatt sensitivity remains a sought-after attribute, even among commercial inorganic infrared (IR) photodetectors (PDs). While organic IR PDs are poised to emerge as a pivotal sensor technology in the forthcoming Fourth-Generation Industrial Era, their performance lags behind that of their inorganic counterparts. This discrepancy primarily stems from poor external quantum efficiencies (EQE), driven by inadequate exciton dissociation (high exciton binding energy) within organic IR materials, exacerbated by pronounced non-radiative recombination at narrow bandgaps. Here, we unveil a high-performance organic Near-IR (NIR) PD via integer charge transfer between Poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (C-14PBTTT) donor (D) and Tetrafluorotetracyanoquinodimethane (TCNQF4) acceptor (A) molecules, showcasing strong low-energy subgap absorptions up to 2.5 µm. We observe that specifically, polaron excitation in these radical and neutral D-A blended molecules enables bound charges to exceed the Coulombic attraction to their counterions, leading to an elevated EQE (polaron absorption region) compared to Frenkel excitons. As a result, our devices achieve a high EQE of ∼107%, femtowatt sensitivity (NEP) of ~0.12 fW Hz-1/2 along a response time of ~81 ms, at room temperature for a wavelength of 1.0 µm. Our innovative utilization of polarons highlights their potential as alternatives to Frenkel excitons in high-performance organic IR PDs.
Collapse
Affiliation(s)
- Muhammad Ahsan Iqbal
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan University of Technology, Dongguan, 523808, China
- Department of Mechanics, Tianjin University, Tianjin, 300350, China
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueqian Fang
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
- Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan University of Technology, Dongguan, 523808, China.
- Department of Mechanics, Tianjin University, Tianjin, 300350, China.
| | - Yasir Abbas
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Xiaoliang Weng
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tingchao He
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu-Jia Zeng
- Shenzhen Key Laboratory of Laser Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
17
|
Li C, Yao G, Gu X, Lv J, Hou Y, Lin Q, Yu N, Abbasi MS, Zhang X, Zhang J, Tang Z, Peng Q, Zhang C, Cai Y, Huang H. Highly efficient organic solar cells enabled by suppressing triplet exciton formation and non-radiative recombination. Nat Commun 2024; 15:8872. [PMID: 39402068 PMCID: PMC11473827 DOI: 10.1038/s41467-024-53286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/08/2024] [Indexed: 10/17/2024] Open
Abstract
The high non-radiative energy loss is a bottleneck issue that impedes the improvement of organic solar cells. The formation of triplet exciton is thought to be the main source of the large non-radiative energy loss. Decreasing the rate of back charge transfer is considered as an effective approach to alleviate the relaxation of the charge-transfer state and the triplet exciton generation. Herein, we develops an efficient ternary system based on D18:N3-BO:F-BTA3 by regulating the charge-transfer state disorder and the rate of back charge transfer of the blend. With the addition of F-BTA3, a well-defined morphology with a more condensed molecular packing is obtained. Moreover, a reduced charge-transfer state disorder is demonstrated in the ternary blend, which decreases the rate of back charge transfer as well as the triplet exciton formation, and therefore hinders the non-radiative recombination pathways. Consequently, D18:N3-BO:F-BTA3-based device produces a low non-radiative energy loss of 0.183 eV and a record-high efficiency of 20.25%. This work not only points towards the significant role of the charge-transfer state disorder on the suppression of triplet exciton formation and the non-radiative energy loss, but also provides a valuable insight for enhancing the performance of OSCs.
Collapse
Affiliation(s)
- Congqi Li
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Guo Yao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiaobin Gu
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jikai Lv
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuqi Hou
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qijie Lin
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Yu
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Misbah Sehar Abbasi
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xin Zhang
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Zheng Tang
- Center for Advanced Low-Dimension Materials State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yunhao Cai
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology Center of Materials Science and Optoelectronics Engineering CAS Center for Excellence in Topological Quantum Computation CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
18
|
Chang B, Jiang BH, Chen CP, Chen K, Chen BH, Tan S, Lu TC, Tsao CS, Su YW, Yang SD, Chen CS, Wei KH. Achieving High Efficiency and Stability in Organic Photovoltaics with a Nanometer-Scale Twin p-i-n Structured Active Layer. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41244-41256. [PMID: 39041930 PMCID: PMC11311131 DOI: 10.1021/acsami.4c08868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/24/2024]
Abstract
In pursuing high stability and power conversion efficiency for organic photovoltaics (OPVs), a sequential deposition (SD) approach to fabricate active layers with p-i-n structures (where p, i, and n represent the electron donor, mixed donor:acceptor, and electron acceptor regions, respectively, distinctively different from the bulk heterojunction (BHJ) structure) has emerged. Here, we present a novel approach that by incorporating two polymer donors, PBDBT-DTBT and PTQ-2F, and one small-molecule acceptor, BTP-3-EH-4Cl, into the active layer with sequential deposition, we formed a device with nanometer-scale twin p-i-n structured active layer. The twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device involved first depositing a PBDBT-DTBT:PTQ-2F blend under layer and then a BTP-3-EH-4Cl top layer and exhibited an improved power conversion efficiency (PCE) value of 18.6%, as compared to the 16.4% for the control BHJ PBDBT-DTBT:PTQ-2F:BTP-3-EH-4Cl device or 16.6% for the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl device. The PCE enhancement resulted mainly from the twin p-i-n active layer's multiple nanoscale charge carrier pathways that contributed to an improved fill factor and faster photocurrent generation based on transient absorption studies. The PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl film possessed a vertical twin p-i-n morphology that was revealed through secondary ion mass spectrometry and synchrotron grazing-incidence small-angle X-ray scattering analyses. The thermal stability (T80) at 85 °C of the twin p-i-n PBDBT-DTBT:PTQ-2F/BTP-3-EH-4Cl device surpassed that of the single p-i-n PBDBT-DTBT/BTP-3-EH-4Cl devices (906 vs 196 h). This approach of providing a twin p-i-n structure in the active layer can lead to substantial enhancements in both the PCE and stability of organic photovoltaics, laying a solid foundation for future commercialization of the organic photovoltaics technology.
Collapse
Affiliation(s)
- Bin Chang
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Bing-Huang Jiang
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei City 243303, Taiwan
| | - Chih-Ping Chen
- Department
of Materials Engineering, Ming Chi University
of Technology, New Taipei City 243303, Taiwan
- College
of Engineering, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kai Chen
- Robinson
Research Institute, Victoria University
of Wellington, Wellington 6012, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand
- The Dodd-Walls
Centre for Photonic and Quantum TechnologiesUniversity of Otago, Denedin 9016, New Zealand
| | - Bo-Han Chen
- Institute
of Photonics Technologies, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Shaun Tan
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Tzu-Ching Lu
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Cheng-Si Tsao
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 106319, Taiwan
- National
Synchrotron Radiation Research Center, Hsinchu 30010, Taiwan
| | - Yu-Wei Su
- Department of Molecular Science and Engineering,
Institute of Organic
and Polymeric Materials, National Taipei
University of Technology, Taipei 10608, Taiwan
| | - Shang-Da Yang
- Institute
of Photonics Technologies, National Tsing
Hua University, Hsinchu 300044, Taiwan
| | - Cheng-Sheng Chen
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kung-Hwa Wei
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
19
|
Gao J, Bai H, Li P, Zhou Y, Su W, Liu C, Li X, Wu Y, Hu B, Liang Z, Bi Z, Li X, Yan L, Du H, Lu G, Gao C, Wang K, Liu Y, Ma W, Fan Q. Halogenated Dibenzo[f,h]quinoxaline Units Constructed 2D-Conjugated Guest Acceptors for 19% Efficiency Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403334. [PMID: 38884140 PMCID: PMC11336942 DOI: 10.1002/advs.202403334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.
Collapse
Affiliation(s)
- Jingshun Gao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Hairui Bai
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Ping Li
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Yibo Zhou
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Wenyan Su
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Chang Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiaoxiao Li
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and DevicesCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123China
| | - Yue Wu
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and DevicesCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123China
| | - Bin Hu
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & ShaanxiKey Lab of Photonic Technique for InformationSchool of Electronics Science & EngineeringFaculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiong Li
- Department of PhysicsBeijing Technology and Business UniversityBeijing100048China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & ShaanxiKey Lab of Photonic Technique for InformationSchool of Electronics Science & EngineeringFaculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Huiling Du
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Guanghao Lu
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Chao Gao
- Key Laboratory of Liquid Crystal and Organic Photovoltaic MaterialsState Key Laboratory of Fluorine & Nitrogen ChemicalsXi'an Modern Chemistry Research InstituteXi'an710065China
| | - Kun Wang
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Yuhang Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
20
|
Wang Y, Cui Y, Wang J, Xiao Y, Chen Z, Wang W, Yu Y, Yang S, Yu R, Hao X, Zhang S, Hou J. Highly Efficient and Stable Organic Photovoltaic Cells for Underwater Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402575. [PMID: 38631046 DOI: 10.1002/adma.202402575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Organic photovoltaic (OPV) technology holds tremendous promise as a sustainable power source for underwater off-grid systems. However, research on underwater OPV cells is relatively scarce. Here, this gap is addressed by focusing on the exploration and development of OPV cells specifically designed for underwater applications. An acceptor, named ITO-4Cl, with excellent water resistance, is rationally designed and synthesized. Benefiting from its low energetic disorder and an absorption spectrum well-suited to the underwater environment, the ITO-4Cl-based OPV cell achieves an unprecedented power conversion efficiency (PCE) of over 25.6% at a water depth of 1 m. Additionally, under 660 nm laser irradiation, the cell demonstrates a notable PCE of 31.6%, indicating its potential for underwater wireless energy transfer. Due to the mitigation of thermal effects from solar irradiation, the lifetime of the ITO-4Cl-based OPV cell exceeds 7000 h. Additionally, a flexible OPV cell is fabricated that maintains its initial PCE even under exposure to high pressures of 5 MPa. A 32.5 cm2 flexible module achieves an excellent PCE of 17%. This work fosters a deeper understanding of underwater OPV cells and highlights the promising prospects of OPV cells for underwater applications.
Collapse
Affiliation(s)
- Yafei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong Cui
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yang Xiao
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shiwei Yang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Runnan Yu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
21
|
Xie Q, Deng X, Zhao C, Fang J, Xia D, Zhang Y, Ding F, Wang J, Li M, Zhang Z, Xiao C, Liao X, Jiang L, Huang B, Dai R, Li W. Ethylenedioxythiophene-Based Small Molecular Donor with Multiple Conformation Locks for Organic Solar Cells with Efficiency of 19.3 . Angew Chem Int Ed Engl 2024; 63:e202403015. [PMID: 38623043 DOI: 10.1002/anie.202403015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.
Collapse
Affiliation(s)
- Qian Xie
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Xiangmeng Deng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Chaowei Zhao
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Jie Fang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Dongdong Xia
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Yuefeng Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Feng Ding
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Jiali Wang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Mengdi Li
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang, 330096, P. R. China
| | - Zhou Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xunfan Liao
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China
| | - Runying Dai
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, P. R. China
| | - Weiwei Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
22
|
Kong L, Luo Y, Wu Q, Xiao X, Wang Y, Chen G, Zhang J, Wang K, Choy WCH, Zhao YB, Li H, Chiba T, Kido J, Yang X. Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent. LIGHT, SCIENCE & APPLICATIONS 2024; 13:138. [PMID: 38866757 PMCID: PMC11169476 DOI: 10.1038/s41377-024-01500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024]
Abstract
Light-emitting diodes (LEDs) based on perovskite semiconductor materials with tunable emission wavelength in visible light range as well as narrow linewidth are potential competitors among current light-emitting display technologies, but still suffer from severe instability driven by electric field. Here, we develop a stable, efficient and high-color purity hybrid LED with a tandem structure by combining the perovskite LED and the commercial organic LED technologies to accelerate the practical application of perovskites. Perovskite LED and organic LED with close photoluminescence peak are selected to maximize photon emission without photon reabsorption and to achieve the narrowed emission spectra. By designing an efficient interconnecting layer with p-type interface doping that provides good opto-electric coupling and reduces Joule heating, the resulting green emitting hybrid LED shows a narrow linewidth of around 30 nm, a peak luminance of over 176,000 cd m-2, a maximum external quantum efficiency of over 40%, and an operational half-lifetime of over 42,000 h.
Collapse
Affiliation(s)
- Lingmei Kong
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Yun Luo
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Qianqian Wu
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Xiangtian Xiao
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanzhi Wang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Guo Chen
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China.
| | - Kai Wang
- Institute of Nanoscience and Applications, Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Yong-Biao Zhao
- Department of Physics and Lakeside AR/VR Laboratory, International Joint Research Center for Optoelectronic and Engineering Research, Yunnan University, Kunming, 650091, China
| | - Hongbo Li
- Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Takayuki Chiba
- Graduate School of Organic Materials Science, Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510, Japan
| | - Junji Kido
- Graduate School of Organic Materials Science, Frontier Center for Organic Materials, Yamagata University, 4-3-16 Jonan, Yonezawa, 992-8510, Japan
| | - Xuyong Yang
- Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, Shanghai, 200072, China.
| |
Collapse
|
23
|
Basumatary B, Tsuruda H, Szczepanik DW, Lee J, Ryu J, Mori S, Yamagata K, Tanaka T, Muranaka A, Uchiyama M, Kim J, Ishida M, Furuta H. Metalla-Carbaporphyrinoids Consisting of an Acyclic N-Confused Tetrapyrrole Analogue Served as Stable Near-Infrared-II Dyes. Angew Chem Int Ed Engl 2024; 63:e202405059. [PMID: 38563771 DOI: 10.1002/anie.202405059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
We present herein the synthesis of novel pseudo-metalla-carbaporphyrinoid species (1M: M=Pd and Pt) achieved through the inner coordination of palladium(II) and platinum(II) with an acyclic N-confused tetrapyrrin analogue. Despite their tetrapyrrole frameworks being small, akin to well-known porphyrins, these species exhibit an unusually narrow HOMO-LUMO gap, resulting in an unprecedentedly low-energy absorption in the second near-infrared (NIR-II) region. Density functional theory (DFT) calculations revealed unique dπ-pπ-conjugated electronic structures involving the metal dπ-ligand pπ hybridized molecular orbitals of 1M. Magnetic circular dichroism (MCD) spectroscopy confirmed distinct electronic structures. Remarkably, the complexes feature an open-metal coordination site in the peripheral NN dipyrrin site, forming hetero-metal complexes (1Pd-BF2 and 1Pt-BF2) through boron difluoride complexation. The resulting hetero metalla-carbaporphyrinoid species displayed further redshifted NIR-II absorption, highly efficient photothermal conversion efficiencies (η; 62-65 %), and exceptional photostability. Despite the challenges associated with the theoretical and experimental assessment of dπ-pπ-conjugated metalla-aromaticity in relatively larger (more than 18π electrons) polycyclic ring systems, these organometallic planar tetrapyrrole systems could serve as potential molecular platforms for aromaticity-relevant NIR-II dyes.
Collapse
Affiliation(s)
- Biju Basumatary
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Hidetoshi Tsuruda
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| | - Dariusz W Szczepanik
- Department of Theoretical Chemistry, Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Jiyeon Lee
- School of Integrated Technology, College of Computing, Integrated Science and Engineering Division, Underwood International College, Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, Incheon, 21983, Korea
| | - Jaehyeok Ryu
- School of Integrated Technology, College of Computing, Integrated Science and Engineering Division, Underwood International College, Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, Incheon, 21983, Korea
| | - Shigeki Mori
- Advanced Research Support Center, Ehime University, Matsuyama, 790-8577, Japan
| | - Kyo Yamagata
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8195, Japan
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8195, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Jiwon Kim
- School of Integrated Technology, College of Computing, Integrated Science and Engineering Division, Underwood International College, Integrative Biotechnology and Translational Medicine, Graduate School, Yonsei University, Incheon, 21983, Korea
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Sciences, Tokyo Metropolitan University, Hachioji, 192-0397, Japan
| | - Hiroyuki Furuta
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
24
|
Patel K, Khatua R, Patrikar K, Mondal A. Exploring structure-property landscape of non-fullerene acceptors for organic solar cells. J Chem Phys 2024; 160:144709. [PMID: 38606738 DOI: 10.1063/5.0191650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/10/2024] [Indexed: 04/13/2024] Open
Abstract
We present a comprehensive analysis of the structure-property relationship in small molecule non-fullerene acceptors (NFAs) featuring an acceptor-donor-acceptor configuration employing state-of-the-art quantum chemical computational methods. Our focus lies in the strategic functionalization of halogen groups at the terminal positions of NFAs as an effective means to mitigate non-radiative voltage losses and augment photovoltaic and photophysical properties relevant to organic solar cells. Through photophysical studies, we observe a bathochromic shift in the visible region for all halogen-functionalized NFAs, except type-2, compared to the unmodified compound. Most of these functionalized compounds exhibit exciton binding energies below 0.3 eV and ΔLUMO less than 0.3 eV, indicating their potential as promising candidates for organic solar cells. Selected candidate structures undergo an analysis of charge transport properties using the semi-classical Marcus theory based on hopping transport formalism. Molecular dynamics simulations followed by charge transport simulations reveal an ambipolar nature of charge transport in the investigated NFAs, with equivalent hole and electron mobilities compared to the parent compound. Our findings underscore the crucial role of end-group functionalization in enhancing the photovoltaic and photophysical characteristics of NFAs, ultimately improving the overall performance of organic solar cells. This study advances our understanding of the structure-property relationships in NFAs and provides valuable insights into the design and optimization of organic solar cell materials.
Collapse
Affiliation(s)
- Khantil Patel
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Rudranarayan Khatua
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Kalyani Patrikar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| | - Anirban Mondal
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
25
|
Wang J, Wang C, Wang Y, Qiao J, Ren J, Li J, Wang W, Chen Z, Yu Y, Hao X, Zhang S, Hou J. Pyrrole-Based Fully Non-fused Acceptor for Efficient and Stable Organic Solar Cells. Angew Chem Int Ed Engl 2024; 63:e202400565. [PMID: 38291011 DOI: 10.1002/anie.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Organic solar cells (OSCs) are still suffering from the low light utilization and unstable under ultraviolet irradiation. To tackle these challenges, we design and synthesize a non-fused acceptor based on 1-(2-butyloctyl)-1H-pyrrole as π-bridge unit, denoted as GS70, which serves as active layer in the front-cell for constructing tandem OSCs with a parallel configuration. Benefiting from the well-complementary absorption spectra with the rear-cell, GS70-based parallel tandem OSCs exhibit an improved photoelectron response over the range between 600-700 nm, yielding a high short-circuit current density of 28.4 mA cm-2. The improvement in light utilization translates to a power conversion efficiency of 19.4 %, the highest value among all parallel tandem OSCs. Notably, owing to the intrinsic stability of GS70, the manufactured parallel tandem OSCs retain 84.9 % of their initial PCE after continuous illumination for 1000 hours. Overall, this work offers novel insight into the molecular design of low-cost and stability non-fused acceptors, emphasizing the importance of adopting a parallel tandem configuration for achieving efficient light harvesting and improved photostability in OSCs.
Collapse
Affiliation(s)
- Jianqiu Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Chaoyi Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Yafei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiawei Qiao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, Shandong, China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jiayao Li
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wenxuan Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhihao Chen
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Yue Yu
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, Shandong, China
| | - Shaoqing Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, 100083, Beijing, China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemistry and Biology Engineering, University of Science and Technology Beijing, 100083, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
26
|
Musiienko A, Yang F, Gries TW, Frasca C, Friedrich D, Al-Ashouri A, Sağlamkaya E, Lang F, Kojda D, Huang YT, Stacchini V, Hoye RLZ, Ahmadi M, Kanak A, Abate A. Resolving electron and hole transport properties in semiconductor materials by constant light-induced magneto transport. Nat Commun 2024; 15:316. [PMID: 38182589 PMCID: PMC10770130 DOI: 10.1038/s41467-023-44418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
The knowledge of minority and majority charge carrier properties enables controlling the performance of solar cells, transistors, detectors, sensors, and LEDs. Here, we developed the constant light induced magneto transport method which resolves electron and hole mobility, lifetime, diffusion coefficient and length, and quasi-Fermi level splitting. We demonstrate the implication of the constant light induced magneto transport for silicon and metal halide perovskite films. We resolve the transport properties of electrons and holes predicting the material's effectiveness for solar cell application without making the full device. The accessibility of fourteen material parameters paves the way for in-depth exploration of causal mechanisms limiting the efficiency and functionality of material structures. To demonstrate broad applicability, we further characterized twelve materials with drift mobilities spanning from 10-3 to 103 cm2V-1s-1 and lifetimes varying between 10-9 and 10-3 seconds. The universality of our method its potential to advance optoelectronic devices in various technological fields.
Collapse
Affiliation(s)
- Artem Musiienko
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany.
| | - Fengjiu Yang
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Thomas William Gries
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
- Department of Chemistry, University of Bielefeld, Bielefeld, Germany
| | - Chiara Frasca
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
- Department of Chemistry, University of Bielefeld, Bielefeld, Germany
| | - Dennis Friedrich
- Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109, Berlin, Germany
| | - Amran Al-Ashouri
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Elifnaz Sağlamkaya
- Disordered Semiconductor Optoelectronics, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Felix Lang
- ROSI Freigeist Juniorgroup, Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Danny Kojda
- Department Dynamics and Transport in Quantum Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 14109, Berlin, Germany
| | - Yi-Teng Huang
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge, CB3 0HE, UK
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Valerio Stacchini
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Mahshid Ahmadi
- Institute for Advanced Materials and Manufacturing, Department of Materials Science and Engineering, The University of Tennessee Knoxville, Knoxville, TN, 37996, USA
| | - Andrii Kanak
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Department of General Chemistry and Chemistry of Materials, Yuriy Fedkovych Chernivtsi National University, Chernivtsi, 58012, Ukraine
| | - Antonio Abate
- Solar Energy Division, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489, Berlin, Germany
- Department of Chemistry, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
27
|
Wen L, Mao H, Zhang L, Zhang J, Qin Z, Tan L, Chen Y. Achieving Desired Pseudo-Planar Heterojunction Organic Solar Cells via Binary-Dilution Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308159. [PMID: 37831921 DOI: 10.1002/adma.202308159] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The sequential deposition process has demonstrated the great possibility to achieve a photolayer architecture with an ideal gradient phase separation morphology, which has a vital influence on the physical processes that determine the performance of organic solar cells (OSCs). However, the controllable preparation of pseudo-planar heterojunction (P-PHJ) with gradient distribution has not been effectively elucidated. Herein, a binary-dilution strategy is proposed, the PM6 solution with micro acceptor BO-4Cl and the L8-BO solution with micro donor PM6 respectively, to form P-PHJ film. This architecture exists good donor (D) and acceptor (A) vertical gradient distribution and larger D/A interpenetrating regions, which promotes exciton generation and dissociation, shortens charge transport distance and optimizes carrier dynamics. Moreover, the dilution of PM6 by BO-4Cl promotes the regulation of active layer aggregation size and phase purity, thus alleviating energy disorder and voltage loss. As a result, the P-PHJ device exhibits an outstanding power conversion efficiency of 19.32% with an excellent short-circuit current density of 26.92 mA cm-2 , much higher than planar binary heterojunction (17.67%) and ternary bulk heterojunction (18.49%) devices. This research proves a simple but effective method to provide an avenue for constructing desirable active layer morphology and high-performance OSCs.
Collapse
Affiliation(s)
- Lin Wen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Houdong Mao
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Lifu Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Jiayou Zhang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| | - Zhao Qin
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC) Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
28
|
Liu L, Yan Y, Zhao S, Wang T, Zhang W, Zhang J, Hao X, Zhang Y, Zhang X, Wei Z. Stereoisomeric Non-Fullerene Acceptors-Based Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305638. [PMID: 37699757 DOI: 10.1002/smll.202305638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Chiral alkyl chains are ubiquitously observed in organic semiconductor materials and can regulate solution processability and active layer morphology, but the effect of stereoisomers on photovoltaic performance has rarely been investigated. For the racemic Y-type acceptors widely used in organic solar cells, it remains unknown if the individual chiral molecules separate into the conglomerate phase or if racemic phase prevails. Here, the photovoltaic performance of enantiomerically pure Y6 derivatives, (S,S)/(R,R)-BTP-4F, and their chiral mixtures are compared. It is found that (S,S) and (R,R)-BTP-4F molecule in the racemic mixtures tends to interact with its enantiomer. The racemic mixtures enable efficient light harvesting, fast hole transfer, and long polaron lifetime, which is conducive to charge generation and suppresses the recombination losses. Moreover, abundant charge diffusion pathways provided by the racemate contribute to efficient charge transport. As a result, the racemate system maximizes the power output and minimizes losses, leading to a higher efficiency of 18.16% and a reduced energy loss of 0.549 eV, as compared to the enantiomerically pure molecules. This study demonstrates that the chirality of non-fullerene acceptors should receive more attention and be designed rationally to enhance the efficiency of organic solar cells.
Collapse
Affiliation(s)
- Lixuan Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Yangjun Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Shengda Zhao
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Tong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenqing Zhang
- School of Physics, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Material, Shandong University, Jinan, 250100, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xinghua Zhang
- School of Science, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| |
Collapse
|
29
|
Yang C, An Q, Jiang M, Ma X, Mahmood A, Zhang H, Zhao X, Zhi HF, Jee MH, Woo HY, Liao X, Deng D, Wei Z, Wang JL. Optimized Crystal Framework by Asymmetric Core Isomerization in Selenium-Substituted Acceptor for Efficient Binary Organic Solar Cells. Angew Chem Int Ed Engl 2023; 62:e202313016. [PMID: 37823882 DOI: 10.1002/anie.202313016] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/13/2023]
Abstract
Both the regional isomerization and selenium-substitution of the small molecular acceptors (SMAs) play significant roles in developing efficient organic solar cells (OSCs), while their synergistic effects remain elusive. Herein, we developed three isomeric SMAs (S-CSeF, A-ISeF, and A-OSeF) via subtly manipulating the mono-selenium substituted position (central, inner, or outer) and type of heteroaromatic ring on the central core by synergistic strategies for efficient OSCs, respectively. Crystallography of asymmetric A-OSeF presents a closer intermolecular π-π stacking and more ordered 3-dimensional network packing and efficient charge-hopping pathways. With the successive out-shift of the mono-selenium substituted position, the neat films give a slightly wider band gap and gradually higher crystallinity and electron mobility. The PM1 : A-OSeF afford favourable fibrous phase separation morphology with more ordered molecular packing and efficient charge transportation compared to the other two counterparts. Consequently, the A-OSeF-based devices achieve a champion efficiency of 18.5 %, which represents the record value for the reported selenium-containing SMAs in binary OSCs. Our developed precise molecular engineering of the position and type of selenium-based heteroaromatic ring of SMAs provides a promising synergistic approach to optimizing crystal stacking and boosting top-ranked selenium-containing SMAs-based OSCs.
Collapse
Affiliation(s)
- Can Yang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiaoshi An
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Mengyun Jiang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaoming Ma
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Asif Mahmood
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Heng Zhang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xin Zhao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Hong-Fu Zhi
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Min Hun Jee
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 136-713, Republic of Korea
| | - Xilin Liao
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dan Deng
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jin-Liang Wang
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
30
|
Fan B, Gao W, Zhang R, Kaminsky W, Tang L, Lin FR, Wang Y, Fan Q, Ma W, Gao F, Jen AKY. Correlation of Broad Absorption Band with Small Singlet-Triplet Energy Gap in Organic Photovoltaics. Angew Chem Int Ed Engl 2023; 62:e202311559. [PMID: 37792667 DOI: 10.1002/anie.202311559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023]
Abstract
Organic photovoltaics (OPV) are one of the most effective ways to harvest renewable solar energy, with the power conversion efficiency (PCE) of the devices soaring above 19 % when processed with halogenated solvents. The superior photocurrent of OPV over other emerging photovoltaics offers more opportunities to further improve the efficiency. Tailoring the absorption band of photoactive materials is an effective way to further enhance OPV photocurrent. However, the field has mostly been focusing on improving the near-infrared region photo-response, with the absorption shoulders in short-wavelength region (SWR) usually being neglected. Herein, by developing a series of non-fullerene acceptors (NFAs) with varied side-group conjugations, we observe an enhanced SWR absorption band with increased side-group conjugation length. The underpinning factors of how molecular structures and geometries improve SWR absorption are clearly elucidated through theoretical modelling and crystallography. Moreover, a clear relationship between the enhanced SWR absorption and reduced singlet-triplet energy gap is established, both of which are favorable for the OPV performance and can be tailored by rational structure design of NFAs. Finally, the rationally designed NFA, BO-TTBr, affords a decent PCE of 18.5 % when processed with a non-halogenated green solvent.
Collapse
Affiliation(s)
- Baobing Fan
- Department of Chemistry, City University of Hong Kong Kowloon, Hong Kong, 999077, China
- Institute of Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, China
| | - Wei Gao
- Institute of Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, China
- Department of Material Science & Engineering, City University of Hong Kong Kowloon, Hong Kong, 999077, China
| | - Rui Zhang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Werner Kaminsky
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington, 98195, United States
| | - Lingxiao Tang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong Kowloon, Hong Kong, 999077, China
- Institute of Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, China
| | - Yiwen Wang
- Institute of Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, China
- Department of Material Science & Engineering, City University of Hong Kong Kowloon, Hong Kong, 999077, China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, 58183, Sweden
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong Kowloon, Hong Kong, 999077, China
- Institute of Clean Energy, City University of Hong Kong Kowloon, Hong Kong, 999077, China
- Department of Material Science & Engineering, City University of Hong Kong Kowloon, Hong Kong, 999077, China
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington, 98195, United States
- State Key Laboratory of Marine Pollution, City University of Hong Kong Kowloon, Hong Kong, 999077, China
| |
Collapse
|
31
|
Li X, Yu H, Liu Z, Huang J, Ma X, Liu Y, Sun Q, Dai L, Ahmad S, Shen Y, Wang M. Progress and Challenges Toward Effective Flexible Perovskite Solar Cells. NANO-MICRO LETTERS 2023; 15:206. [PMID: 37651002 PMCID: PMC10471566 DOI: 10.1007/s40820-023-01165-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/15/2023] [Indexed: 09/01/2023]
Abstract
The demand for building-integrated photovoltaics and portable energy systems based on flexible photovoltaic technology such as perovskite embedded with exceptional flexibility and a superior power-to-mass ratio is enormous. The photoactive layer, i.e., the perovskite thin film, as a critical component of flexible perovskite solar cells (F-PSCs), still faces long-term stability issues when deformation occurs due to encountering temperature changes that also affect intrinsic rigidity. This literature investigation summarizes the main factors responsible for the rapid destruction of F-PSCs. We focus on long-term mechanical stability of F-PSCs together with the recent research protocols for improving this performance. Furthermore, we specify the progress in F-PSCs concerning precise design strategies of the functional layer to enhance the flexural endurance of perovskite films, such as internal stress engineering, grain boundary modification, self-healing strategy, and crystallization regulation. The existing challenges of oxygen-moisture stability and advanced encapsulation technologies of F-PSCs are also discussed. As concluding remarks, we propose our viewpoints on the large-scale commercial application of F-PSCs.
Collapse
Affiliation(s)
- Xiongjie Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Haixuan Yu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Zhirong Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Junyi Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Xiaoting Ma
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Yuping Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Qiang Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Letian Dai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Shahzada Ahmad
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, University of Basque Country Science Park, 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| | - Yan Shen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China
| | - Mingkui Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
32
|
Gong K, Xu F, Zhao Z, Li W, Liu D, Zhou X, Wang L. Theoretical investigation on the functional group modulation of UV-Vis absorption profiles of triphenylamine derivatives. Phys Chem Chem Phys 2023; 25:22002-22010. [PMID: 37555282 DOI: 10.1039/d3cp01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Understanding the functional group modulation of electronic structure and excitation is pivotal to the design of organic small molecules (OSMs) for photoelectric applications. In this study, we employed density functional theory (DFT) and time-dependent DFT (TDDFT) calculations to explore the unique absorption character of four triphenylamine photosensitizers. The various conformations were investigated given the multiple single bonds in the compounds, and the resemblance in the electronic structure of different conformations is affirmed because the coplanarity and consequent long-range conjugation is maintained regardless of the orientation of the flexible blocks. Six functionals were evaluated, and MN15 was found to successfully reproduce the intense secondary absorption peak for the double 3,4-ethylenedioxythiophene (EDOT) modified sensitizer over B3LYP, PBE0, M062X, CAM-B3LYP, and ωB97XD. The introduction of EDOT gives rise to a new excited state S4, which is a local excitation constrained in the EDOT substituent triphenylamine block. This new excited state S4, in combination with inherent S2 and S3 derived from prototype molecule TPA-Pyc, jointly contributes to the hump of the secondary absorption peak of ETE-Pyc and finally affects the light-harvesting ability of the dye-sensitized TiO2 photoanode. The current findings provide guidance toward the rational design of OSMs with good light-harvest ability.
Collapse
Affiliation(s)
- Kun Gong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Fang Xu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Zhen Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Wei Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Dongzhi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Xueqin Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin, 300350, P. R. China
| | - Lichang Wang
- Department of Chemistry and Biochemistry; and the Materials Technology Center, Southern Illinois University, Carbondale, IL 62901, USA.
| |
Collapse
|
33
|
Wang Y, Zhao C, Cai Z, Wang L, Zhu L, Huang H, Zhang G, You P, Xie C, Wang Y, Bai Q, Yang T, Li S, Zhang G. All-Polymer Solar Cells Sequentially Solution Processed from Hydrocarbon Solvent with a Thick Active Layer. Polymers (Basel) 2023; 15:3462. [PMID: 37631520 PMCID: PMC10459458 DOI: 10.3390/polym15163462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Organic solar cells (OSCs) have gained increasing attention. Among the various directions in OSCs, all-polymer solar cells (all-PSCs) have emerged as a highly promising and currently active research area due to their excellent film formation properties, mechanical properties, and thermal stabilities. However, most of the high-efficiency all-PSCs are processed from chloroform with an active layer thickness of ~100 nm. In order to meet the requirements for industrialization, a thicker active layer processed from low-vapor pressure solvents (preferentially a hydrocarbon solvent) is strongly desired. Herein, we employ toluene (a hydrocarbon solvent with a much higher boiling point than chloroform) and a method known as sequential processing (SqP) to mitigate the rapid decline in efficiency with increasing film thickness. We show that SqP enables a more favorable vertical phase segregation that leads to less trap-assisted recombination and enhanced charge extraction and lifetime than blend-cast devices at higher film thicknesses.
Collapse
Affiliation(s)
- Yajie Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Chaoyue Zhao
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Ziqi Cai
- Julong College, Shenzhen Technology University, Shenzhen 518118, China; (Z.C.)
| | - Lihong Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Liangxiang Zhu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Hui Huang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Guoping Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Peng You
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Chen Xie
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Yaping Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Qing Bai
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Tao Yang
- Julong College, Shenzhen Technology University, Shenzhen 518118, China; (Z.C.)
| | - Shunpu Li
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| | - Guangye Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China (G.Z.)
| |
Collapse
|