1
|
Madhukaran S, Fomina YY, Mahendroo M. Cervical function in pregnancy and disease: new insights from single-cell analysis. Am J Obstet Gynecol 2025; 232:S81-S94. [PMID: 40253084 DOI: 10.1016/j.ajog.2024.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 04/21/2025]
Abstract
The uterine cervix plays an essential role in regulating fertility, maintaining pregnancy, remodeling in preparation for parturition, and protecting the reproductive tract from infection. A compromise in cervical function contributes to adverse clinical outcomes. Understanding molecular events that drive the multifunctional and temporally defined roles of the cervix is necessary to effectively treat infertility, reproductive tract infections, preterm birth, labor dystocia, and cervical cancer. The application of single-cell technologies to study cervical pathophysiology, while in its infancy, underscores the potential of these approaches in developing clinically relevant biomarkers of disease and preventative therapies. This review focuses on insights gained from single-cell transcriptomic studies in human and mouse cervical tissue and highlights outstanding questions in the field. One collective advance from single-cell analysis is the dynamic plasticity of cervical epithelial cells during the reproductive cycle in health and disease. Single-cell comparisons between upper and lower regions of the reproductive tract also highlight the distinct and divergent immunological responses elicited in the cervix during the reproductive lifespan. These findings may reconcile prior controversies in the role of proinflammatory mediators during parturition. In addition to providing obstetric insights, single-cell technologies elucidate the molecular pathways that drive cervical cancer progression. Thus far, these technologies have uncovered cellular heterogeneity in the tumor microenvironment and have identified potential cancer stem cells. While single-cell technology alone will not uncover all the molecular underpinnings contributing to preterm birth or cervical cancer, the insights derived from this valuable technology will accelerate our understanding of cervical biology in health and disease, which ultimately will help develop biomarkers for disease prediction and prevention therapies.
Collapse
Affiliation(s)
- ShanmugaPriyaa Madhukaran
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yevgenia Y Fomina
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mala Mahendroo
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
2
|
Wu KY, Kearn N, Truong D, Choulakian MY, Tran SD. Advances in Regenerative Medicine, Cell Therapy, and 3D Bioprinting for Corneal, Oculoplastic, and Orbital Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40131704 DOI: 10.1007/5584_2025_855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Advances in regenerative medicine, cell therapy, and 3D bioprinting are reshaping the landscape of ocular surgery, offering innovative approaches to address complex conditions affecting the cornea, ocular adnexal structures, and the orbit. These technologies hold the potential to enhance treatment precision, improve functional outcomes, and address limitations in traditional surgical and therapeutic interventions.The cornea, as the eye's primary refractive and protective barrier, is particularly well-suited for regenerative approaches due to its avascular and immune-privileged nature. Cell-based therapies, including limbal stem cell transplantation as well as stromal keratocyte and corneal endothelial cell regeneration, are being investigated for their potential to restore corneal clarity and function in conditions such as limbal stem cell deficiency, keratoconus, and endothelial dysfunction. Simultaneously, 3D bioprinting technologies are enabling the development of biomimetic corneal constructs, potentially addressing the global shortage of donor tissues and facilitating personalized surgical solutions.In oculoplastic and orbital surgery, regenerative strategies and cell therapies are emerging as possible alternatives to conventional approaches for conditions such as eyelid defects, meibomian gland dysfunction, and Graves' orbitopathy. Stem cell-based therapies and bioengineered scaffolds are showing potential in restoring lacrimal glands' function as well as reconstructing complex ocular adnexal and orbital structures. Moreover, 3D-printed orbital implants and scaffolds offer innovative solutions for repairing traumatic, post-tumor resection, and congenital defects, with the potential for improved biocompatibility and precision.Molecular and gene-based therapies, including exosome delivery systems, nanoparticle-based interventions, and gene-editing techniques, are expanding the therapeutic arsenal for ophthalmic disorders. These approaches aim to enhance the efficacy of regenerative treatments by addressing underlying pathophysiological mechanisms of diseases. This chapter provides an overview of these advancements and the challenges of translating laboratory discoveries into effective therapies in clinical practice.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Natalie Kearn
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON, Canada
| | - Doanh Truong
- College of Arts & Science, Case Western Reserve University, Cleveland, OH, USA
| | - Mazen Y Choulakian
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Ma W, Huang C, Fang W, Liu S, Li Y, Zhong Y, Zuo D, Lu X. Mucin1 N-domain variant contributes to dry eye syndrome in diabetes by increasing immature mucus secretory granules. Life Sci 2025; 363:123412. [PMID: 39848599 DOI: 10.1016/j.lfs.2025.123412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND Diabetes-associated dry eye syndrome (DMDES) affects 20-54 % of diabetes, leading to ocular irritation and blurry vision. Decreased conjunctival goblet cell mucus secretion is one of the major pathological processes of DMDES. This study aims to investigate the mechanism of mucus granule maturation and secretion disturbance in DMDES. METHODS Tear samples from diabetic patients with and without dry eye syndrome were analyzed by mass spectrometry to identify proteins associated with ocular mucous layer reduction. The N-terminal domain fragment of Mucin1 (MUC1-ND) was transfected into the mouse conjunctiva to investigate alterations in goblet cell mucus secretion. Protein localization and granule morphology were explored through transmission electron microscopy with colloidal gold labeling and immunohistochemistry. Immunofluorescence, co-immunoprecipitation, and integrative computational modeling of protein interactions were employed to explore protein-protein interactions. RESULTS Tear proteomic analysis revealed significantly elevated MUC1-ND levels in tears from DMDES patients, which correlated with reduced goblet cell mucus secretion and tear film instability. Upregulation of MUC1-ND in mice conjunctiva inhibited the maturation of secretory mucus granules, contributing to tear mucous layer reduction. Protein docking and co-immunoprecipitation analysis demonstrated that the binding of MUC1-ND and Syntaxin6 prevents granule fusion and maintains the immature state of secretory granules, which leads to reduced mucus secretion. CONCLUSION In DMDES, MUC1-ND binds with Syntaxin6 to disrupt the fusion and maturation of secretory mucus granules in conjunctival goblet cells, which provides a new insight into DMDES pathophysiology.
Collapse
Affiliation(s)
- Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chunling Huang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wanyi Fang
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shanshan Liu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yingli Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Daming Zuo
- School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology, Southern Medical University, Guangzhou 510515, China.
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
4
|
Sun X, Cui H, Li J, An B, Liu R, Guo Z, Chu D, Geng X, Cui B, Zhu L, Li J, Li Z. An injectable shape-adaptive hydrogel system for subconjunctival injuries: In situ and permanently releases rapamycin to prevent fibrosis via promoting autophagy. Mater Today Bio 2025; 30:101380. [PMID: 39790484 PMCID: PMC11713510 DOI: 10.1016/j.mtbio.2024.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Subconjunctival fibrosis (SCF) is a common and refractory eye disease that is a serious threat to vision. The severe side effects of existing drugs and low drug bioavailability due to the ocular barrier are major challenges in SCF treatment. Hence, there is an urgent need to explore safer and more effective strategies for administering anti-SCF drugs. Herein, an injectable and adaptable hydrogel system containing the antifibrotic drug rapamycin was fabricated to address this complex need. This system possesses moderate mechanical properties, self-healing and shape-adaptive capabilities, injectability, and biosafety. It is designed to promote autophagy by modulating the PI3K/AKT/mTOR/WIPI2 pathway, thereby inhibiting SCF. In vivo experiments utilizing a rat subconjunctival injury model indicated that in situ administration of this hydrogel system effectively inhibited SCF. This system constitutes a promising method for promoting autophagy to protect against SCF, which will foster its widespread application for other fibrotic diseases.
Collapse
Affiliation(s)
| | | | - Jingfan Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Boyuan An
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Ruixing Liu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhihua Guo
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Dandan Chu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Xingchen Geng
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Bingbing Cui
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Lei Zhu
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Jingguo Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Zhanrong Li
- Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| |
Collapse
|
5
|
Lee J, Kim S, Choi WJ, Ryu JS, Yoon CH, Kim KH. Surface tracking integrated extended depth-of-field microscopy for rapid non-contact examination of conjunctival goblet cells in humans. Biosens Bioelectron 2025; 267:116681. [PMID: 39277921 DOI: 10.1016/j.bios.2024.116681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
Conjunctival goblet cells (CGCs) are specialized epithelial cells playing key roles for ocular surface homeostasis, and their examination is important for diagnosing ocular surface diseases. Despite recent advancements in high-contrast CGC imaging for non-invasive examination, significant challenges remain for human applications. High-speed large-area imaging over the curved ocular surface is needed to assess statistically meaningful CGCs in the extensive human conjunctiva. To address this challenge, we developed a novel surface detection method and an integrated microscopy system for human use. With both a long detection range of 2 mm and a high update rate of 50 Hz, the surface detection method enabled real-time surface tracking during large-area imaging. The integrated microscopy could complete 5 × 2 patch imaging in approximately 10 s. CGC density analysis showed significantly reduced uncertainties with large-area imaging. This is the first demonstration of non-contact large-area cellular examination in humans, and this new development holds promise for non-invasive CGC examination and accurate diagnosis of ocular surface diseases.
Collapse
Affiliation(s)
- Jungbin Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seonghan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Wan Jae Choi
- Department of Ophthalmology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jin Suk Ryu
- Department of Ophthalmology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea; Medical Science and Engineering Program, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
6
|
Li P, Wang Y, Qiu M, Wang Y, Lu Z, Yu J, Xia F, Feng Y, Tian Y. Rapid spread, slow evaporation: a long-lasting water film on hydrogel nanowire arrays for continuous wearables. MATERIALS HORIZONS 2024; 11:5768-5776. [PMID: 39279680 DOI: 10.1039/d4mh00755g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
A successful flexible wearable not only has to fulfill its function, but also has to ensure long-term wettability and comfort during wearing. In biological systems, tears spread rapidly across the cornea to ensure clear imaging while slowly evaporating to maintain moisture in the eyes. This dynamic behavior of 'rapid spread, slow evaporation' ensures durative humidity and comfort, which can provide design guidelines for continuous wearable devices. However, realizing this dynamic process in vitro remains a challenge. Herein, inspired by a healthy ocular surface, we biomimetically construct a hybrid surface featuring mucin-like hydrophilic layer@hydrogel nanowire arrays (HL@HNWs). A droplet (2 μL) rapidly spreads into a thin film, stabilizing for ∼10 minutes, whereas the contrast sample rapidly ruptures and dewets within 1 minute. We demonstrate that enhancing the proportion of hydrated water (HW), which includes intermediate water (IW) and bound water (BW), and introducing the capillary resistance of the nanowire arrays could synergistically stabilize the water film and improve the wettability. Hydrogel-based nanowire array contact lenses can ensure wettability during continuous wear, and a stable water film can substantially improve comfort and provide superior visual quality.
Collapse
Affiliation(s)
- Peijia Li
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Wang
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Qiu
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yixiao Wang
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhaoxiang Lu
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.
| | - Jianning Yu
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Yun Feng
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China.
| | - Ye Tian
- Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
7
|
Zhong X, D’Antona AM, Rouse JC. Mechanistic and Therapeutic Implications of Protein and Lipid Sialylation in Human Diseases. Int J Mol Sci 2024; 25:11962. [PMID: 39596031 PMCID: PMC11594235 DOI: 10.3390/ijms252211962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Glycan structures of glycoproteins and glycolipids on the surface glycocalyx and luminal sugar layers of intracellular membrane compartments in human cells constitute a key interface between intracellular biological processes and external environments. Sialic acids, a class of alpha-keto acid sugars with a nine-carbon backbone, are frequently found as the terminal residues of these glycoconjugates, forming the critical components of these sugar layers. Changes in the status and content of cellular sialic acids are closely linked to many human diseases such as cancer, cardiovascular, neurological, inflammatory, infectious, and lysosomal storage diseases. The molecular machineries responsible for the biosynthesis of the sialylated glycans, along with their biological interacting partners, are important therapeutic strategies and targets for drug development. The purpose of this article is to comprehensively review the recent literature and provide new scientific insights into the mechanisms and therapeutic implications of sialylation in glycoproteins and glycolipids across various human diseases. Recent advances in the clinical developments of sialic acid-related therapies are also summarized and discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Aaron M. D’Antona
- BioMedicine Design, Discovery and Early Development, Pfizer Research and Development, 610 Main Street, Cambridge, MA 02139, USA;
| | - Jason C. Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA 01810, USA;
| |
Collapse
|
8
|
Ma X, Li M, Wang X, Qi G, Wei L, Zhang D. Sialylation in the gut: From mucosal protection to disease pathogenesis. Carbohydr Polym 2024; 343:122471. [PMID: 39174097 DOI: 10.1016/j.carbpol.2024.122471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 08/24/2024]
Abstract
Sialylation, a crucial post-translational modification of glycoconjugates, entails the attachment of sialic acid (SA) to the terminal glycans of glycoproteins and glycolipids through a tightly regulated enzymatic process involving various enzymes. This review offers a comprehensive exploration of sialylation within the gut, encompassing its involvement in mucosal protection and its impact on disease progression. The sialylation of mucins and epithelial glycoproteins contributes to the integrity of the intestinal mucosal barrier. Furthermore, sialylation regulates immune responses in the gut, shaping interactions among immune cells, as well as their activation and tolerance. Additionally, the gut microbiota and gut-brain axis communication are involved in the role of sialylation in intestinal health. Altered sialylation patterns have been implicated in various intestinal diseases, including inflammatory bowel disease (IBD), colorectal cancer (CRC), and other intestinal disorders. Emerging research underscores sialylation as a promising avenue for diagnostic, prognostic, and therapeutic interventions in intestinal diseases. Potential strategies such as sialic acid supplementation, inhibition of sialidases, immunotherapy targeting sialylated antigens, and modulation of sialyltransferases have been utilized in the treatment of intestinal diseases. Future research directions will focus on elucidating the molecular mechanisms underlying sialylation alterations, identifying sialylation-based biomarkers, and developing targeted interventions for precision medicine approaches.
Collapse
Affiliation(s)
- Xueni Ma
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Muyang Li
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaochun Wang
- Department of Gastroenterology, Gansu Provincial Hospital, Lanzhou, China
| | - Guoqing Qi
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lina Wei
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China
| | - Dekui Zhang
- Key Laboratory of Digestive Diseases, Lanzhou University Second Hospital, Lanzhou, China; Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
9
|
Dong X, Wang H, Cai J, Wang Y, Chai D, Sun Z, Chen J, Li M, Xiao T, Shan C, Zhang JV, Yu M. ST6GALNAC1-mediated sialylation in uterine endometrial epithelium facilitates the epithelium-embryo attachment. J Adv Res 2024:S2090-1232(24)00306-0. [PMID: 39111624 DOI: 10.1016/j.jare.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024] Open
Abstract
INTRODUCTION Embryo implantation requires synergistic interaction between the embryo and the receptive endometrium. Glycoproteins and glycan-binding proteins are involved in endometrium-embryo attachment. Sialyl Tn (sTn), a truncated O-glycan, is catalyzed by ST6 N-Acetylgalactosaminide Alpha-2,6-Sialyltransferase 1 (ST6GALNAC1) and can be detected by specific Sialic-acid-binding immunoglobulin-like lectins (Siglecs). Whether the sTn-Siglecs axis supports embryo implantation remains unknown. OBJECTIVES This paper aims to study the role of ST6GALNAC1/sTn-Siglecs axis in embryo implantation. METHODS ST6GALNAC1 and sTn in human endometrium were analyzed by immunohistochemistry. An in vitro implantation model was conducted to evaluate the effects of ST6GALNAC1/sTn on the receptivity of human endometrial AN3CA cells to JAR spheroids. Immunoprecipitation combined with mass spectrometry analysis was carried out to identify the key proteins modified by sTn in endometrial cells. Siglec-6 in human embryos was analyzed by published single-cell RNA sequencing (scRNA-seq) datasets. Protein interaction assay was applied to verify the bond between the Siglec-6 with sTn-modified CD44. St6galnac1 siRNAs and anti-sTn antibodies were injected into the uterine horn of the mouse at the pre-implantation stage to evaluate the role of endometrial St6galnac1/sTn in embryo implantation. Siglec-G in murine embryos was analyzed by immunofluorescence staining. The function of Siglec-G is evidenced by uterine horn injection and protein interaction assay. RESULTS Both human and murine endometrium at the receptive stage exhibit higher ST6GALNAC1 and sTn levels compared to the non-receptive stage. Overexpression of ST6GALNAC1 significantly enhanced the receptivity of AN3CA cells to JAR spheroids. Inhibition of endometrial ST6GALNAC1/sTn substantially impaired embryo implantation in vivo. CD44 was identified as a carrier for sTn in the endometrial cells of both species. Siglec-6 and Siglec-G, expressed in the embryonic trophectoderm, were found to promote embryo attachment, which may be achieved through binding with sTn-modified CD44. CONCLUSION ST6GALNAC1-regulated sTn in the endometrium aids in embryo attachment through interaction with trophoblastic Siglecs.
Collapse
Affiliation(s)
- Xinyue Dong
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; College of Life Science, Northeast Forestry University, Harbin, China
| | - Hao Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jinxuan Cai
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Yichun Wang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Department of Medical Oncology, The Fourth Hospital of China Medical University, Shenyang, Liaoning, China
| | - Dezhi Chai
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Zichen Sun
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jie Chen
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Mengxia Li
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Tianxia Xiao
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Chunhua Shan
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jian V Zhang
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, China.
| | - Ming Yu
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China.
| |
Collapse
|
10
|
Xie M, Wu Y, Zhang Y, Lu R, Zhai Z, Huang Y, Wang F, Xin C, Rong G, Zhao C, Jiang K, Zhou X, Zhou X, Zhu X, Hong J, Zhang C. Membrane Fusion-Mediated Loading of Therapeutic siRNA into Exosome for Tissue-Specific Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403935. [PMID: 38889294 DOI: 10.1002/adma.202403935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/30/2024] [Indexed: 06/20/2024]
Abstract
Tissue-specific delivery of oligonucleotide therapeutics beyond the liver remains a key challenge in nucleic acid drug development. To address this issue, exploiting exosomes as a novel carrier has emerged as a promising approach for efficient nucleic acid drug delivery. However, current exosome-based delivery systems still face multiple hurdles in their clinical applications. Herein, this work presents a strategy for constructing a hybrid exosome vehicle (HEV) through a DNA zipper-mediated membrane fusion approach for tissue-specific siRNA delivery. As a proof-of-concept, this work successfully fuses a liposome encapsulating anti-NFKBIZ siRNAs with corneal epithelium cell (CEC)-derived exosomes to form a HEV construct for the treatment of dry eye disease (DED). With homing characteristics inherited from exosomes, the siRNA-bearing HEV can target its parent cells and efficiently deliver the siRNA payloads to the cornea. Subsequently, the NFKBIZ gene silencing significantly reduces pro-inflammatory cytokine secretions from the ocular surface, reshapes its inflammatory microenvironment, and ultimately achieves an excellent therapeutic outcome in a DED mouse model. As a versatile platform, this hybrid exosome with targeting capability and designed therapeutic siRNAs may hold great potential in various disease treatments.
Collapse
Affiliation(s)
- Miao Xie
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuqing Wu
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Yilun Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruiyang Lu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zimeng Zhai
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Yangyang Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fujun Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Changchang Xin
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Guangyu Rong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Chen Zhao
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Kai Jiang
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Xingtao Zhou
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiaxu Hong
- Department of Ophthalmology, Eye & ENT Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200031, P. R. China
- Department of Ophthalmology, Children's Hospital of Fudan University, Shanghai, 201102, P. R. China
- Key Laboratory of Myopia and Related Eye Diseases, NHC, Shanghai, 200031, P. R. China
- Shanghai Engineering Research Center for Synthetic Immunology, Shanghai, 200032, P. R. China
| | - Chuan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
11
|
Mortensen JS, Bohr SSR, Krog LS, Bøtker JP, Kapousidou V, Saaby L, Hatzakis NS, Mørck Nielsen H, Nguyen DN, Rønholt S. Neonatal intestinal mucus barrier changes in response to maturity, inflammation, and sodium decanoate supplementation. Sci Rep 2024; 14:7665. [PMID: 38561398 PMCID: PMC10985073 DOI: 10.1038/s41598-024-58356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
The integrity of the intestinal mucus barrier is crucial for human health, as it serves as the body's first line of defense against pathogens. However, postnatal development of the mucus barrier and interactions between maturity and its ability to adapt to external challenges in neonatal infants remain unclear. In this study, we unveil a distinct developmental trajectory of the mucus barrier in preterm piglets, leading to enhanced mucus microstructure and reduced mucus diffusivity compared to term piglets. Notably, we found that necrotizing enterocolitis (NEC) is associated with increased mucus diffusivity of our large pathogen model compound, establishing a direct link between the NEC condition and the mucus barrier. Furthermore, we observed that addition of sodium decanoate had varying effects on mucus diffusivity depending on maturity and health state of the piglets. These findings demonstrate that regulatory mechanisms governing the neonatal mucosal barrier are highly complex and are influenced by age, maturity, and health conditions. Therefore, our results highlight the need for specific therapeutic strategies tailored to each neonatal period to ensure optimal gut health.
Collapse
Affiliation(s)
- Janni Støvring Mortensen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Søren S-R Bohr
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Lasse Skjoldborg Krog
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Johan Peter Bøtker
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Vaya Kapousidou
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Lasse Saaby
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
- Bioneer A/S, Kogle Allé 2, 2970, Hørsholm, Denmark
| | - Nikos S Hatzakis
- Department of Chemistry and Nanoscience Center, Faculty of Science, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
- NovoNordisk Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark
| | - Duc Ninh Nguyen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Dyrlægevej 68, 1870, Frederiksberg C, Denmark.
| | - Stine Rønholt
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|