1
|
Nie HJ, Fu YJ, Long S, Wang JY, Zhao WS, Zhai LH, Yang YL, Tan MJ, Hu H, Chen XH. Chemoproteomics reveals proteome-wide covalent and non-covalent targets of withaferin A. Acta Pharmacol Sin 2025; 46:1782-1793. [PMID: 39900821 PMCID: PMC12098870 DOI: 10.1038/s41401-024-01468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/22/2024] [Indexed: 02/05/2025]
Abstract
Withaferin A (WA), a natural product used in traditional medicine, has recently garnered attention because of its diverse pharmacological effects. However, the direct targets responsible for these effects remain elusive. The discovery of targets is usually serendipitous and research has predominantly concentrated on covalent interactions, overlooking non-covalent targets. The unbiased and proteome-wide mapping of WA-interacting proteins in living cells remains largely unexplored. We have developed a chemical proteomics platform that enabled profiling of the covalent/non-covalent interactome and target occupancy in disease-related cells, which was used to reveal the landscape of the targets of WA in triple-negative breast cancer (TNBC) cells. Analysis of the discovered high-occupancy targets suggested that WA was substantially involved in the RNA metabolism pathway, in addition to other biological processes. Moreover, we biochemically validated a selection of previously unknown high-occupancy targets from various important biological pathways, including the non-covalent target MVK and covalent targets HNRNPF and CKAP4, which all play critical roles in TNBC. Collectively, these findings provided a target map for comprehensive understanding of the anti-TNBC activity of WA, and present WA-targetable proteins as new avenues for pharmacological intervention in TNBC. We anticipate that this platform will be applicable for the unbiased profiling of the targets of WA in various other disease-related cell models, as well as for other bioactive electrophilic natural products in different pathophysiological systems.
Collapse
Affiliation(s)
- Hui-Jun Nie
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ying-Jie Fu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital of Henan University, Henan University, Kaifeng, 475004, China
| | - Shang Long
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen-Si Zhao
- School of Medicine, Tongji University, Shanghai, 200433, China
| | - Lin-Hui Zhai
- School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yin-Long Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Min-Jia Tan
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Hu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiao-Hua Chen
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Guo S, Wang P, Wei S, Wang Y. Chemoproteomic Approach for Identifying Nuclear Arsenite-Binding Proteins. Chem Res Toxicol 2025; 38:954-961. [PMID: 40289526 DOI: 10.1021/acs.chemrestox.5c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Trivalent arsenic, i.e., As(III), is the main form of arsenic species in the environment. Prolonged exposure to arsenicals through ingesting contaminated food and water has been implicated in the development of cancer and diabetes as well as cardiovascular and neurodegenerative diseases. A number of studies have been conducted to examine the mechanisms underlying the toxic effects of arsenite exposure, where As(III) was shown to displace Zn(II) and impair the functions of zinc-binding proteins. Considering that many zinc-binding proteins can bind to nucleic acids, we reason that systematic identification of arsenite-binding proteins in the nucleus may provide additional insights into the molecular targets of arsenite, thereby improving our understanding of the mechanisms of arsenic toxicity. Here, we conducted a quantitative proteomics experiment relying on affinity pull-down from nuclear protein lysate with a biotin-As(III) probe to identify nuclear arsenite-binding proteins. We uncovered a number of candidate As(III)-binding proteins that are involved in mRNA splicing, DNA repair, and replication. We also found that As(III) could bind to splicing factor 1 (SF1) and that this binding perturbs mRNA splicing in human cells. Together, our work provided insights into the mechanisms of As(III) toxicity by revealing new nuclear protein targets of As(III).
Collapse
|
3
|
Wang J, Ruan GX, Li Y, Xiao X, Zhu Z, Chen W, Huang H, Zhang R, Wang R, Chen M, Guo L, Li Y, Xu S, Ou X. Minor Splicing Factor RNPC3 Is Essential for the Germinal Center B Cell Response. Eur J Immunol 2025; 55:e202451508. [PMID: 40170400 DOI: 10.1002/eji.202451508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 04/03/2025]
Abstract
Germinal center (GC) response ensures the generation of diverse and high-affinity antibodies during the T cell-dependent (TD) immune response. This process is controlled by coordinated transcriptional and posttranscriptional gene regulatory mechanisms. Minor intron splicing is known to be involved in posttranscriptional regulation of gene expression. RNA-binding region (RNP1, RRM) containing 3 (RNPC3) is a minor spliceosome component involved in stabilizing the U11/U12 di-snRNP complex, which is essential for minor intron splicing. However, it remains unclear if RNPC3 and RNPC3-related gene regulatory mechanisms are important for the TD immune response. In this study, we conditionally ablated RNPC3 in activated B cells and showed that the mutant mice had defective antibody generation due to impaired GC B cell response. We demonstrate that RNPC3 deficiency inhibits the proliferation and promotes the apoptosis of activated B cells. Mechanistically, we show that RNPC3 regulates the development of GC B cells in a minor spliceosome-dependent manner by controlling the removal of minor introns from minor intron-containing genes associated with cell proliferation and apoptosis. Our study thus uncovers a previously unappreciated role for RNPC3 in regulating GC B cell response.
Collapse
Affiliation(s)
- Jing Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Gui-Xin Ruan
- Department of Basic Medicine, School of Medicine, Taizhou University, Taizhou, China
| | - Yuxing Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Xiong Xiao
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Zhijian Zhu
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Wenjing Chen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hengjun Huang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang, China
| | - Rui Zhang
- School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ruisi Wang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Meiyuan Chen
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Ling Guo
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yan Li
- Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Shengli Xu
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | - Xijun Ou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
4
|
Chen Y, Sun S, Lu C, Li Y, Fang B, Tang X, Li X, Yu W, Lei Y, Sun L, Zhang M, Sun J, Liu P, Luo Y, Zhao X, Zhan J, Liu L, Liu R, Huang J, Yi Z, Yu Y, Xiao W, Ding Z, Li L, Su D, Ren F, Cao C, Wang R, Shi W, Chen J. The RNA Binding Protein Bcas2 is Required for Antibody Class Switch in Activated‐B Cells. EXPLORATION 2025. [DOI: 10.1002/exp.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 03/18/2025]
Abstract
ABSTRACTIn children, hyper‐IgM syndrome type 1 (HIGM1) is a type of severe antibody disorder, the pathogenesis of which remains unclear. The antibody diversity is partially determined by the alternative splicing (AS) in the germline, which is mainly regulated by RNA‐binding proteins, including Breast cancer amplified sequence 2 (Bcas2). However, the effect of Bcas2 on AS and antibody production in activated B cells, the main immune cell type in the germline, remains unknown. To fill this gap, we created a conditional knockout (cKO, B cell‐specific AID‐Cre Bcas2fl/fl) mouse model and performed integrated mechanistic analysis on alternative splicing (AS) and CSR in B cells through the RNA‐sequencing approach, cross‐linking immunoprecipitation and sequencing (CLIP‐seq) analysis, and interactome proteomics. The results demonstrate that Bcas2‐cKO significantly decreased CSR in activated B cells without inhibiting the B cell development. Mechanistically, Bcas2 interacts with SRSF7 at a conservative circular domain, forming a complex to regulate the AS of genes involved in the post‐switch transcription, thereby causing broad‐spectrum changes in antibody production. Importantly, we identified GAAGAA as the binding motif of Bcas2 to RNAs and revealed its essential role in the regulation of Bcas2‐dependent AS and CSR. In addition, we detected a mutation of at the 3’UTR of Bcas2 gene in children with HIGM1 and observed similar patterns of AS events and CSR in the patient that were discovered in the Bcas2‐cKO B cells. Combined, our study elucidates the mechanism by which Bcas2‐mediated AS affects CSR, offering potential insights into the clinical implications of Bcas2 in HIGM1.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Chenxu Lu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Xiangfeng Tang
- National Engineering Laboratory for Birth Defects Prevention and Control of Key Technology Beijing Key Laboratory of Pediatric Organ Failure Department of Pediatrics The Seventh Medical Center of PLA General Hospital Beijing China
| | - Xuepeng Li
- College of Food Science and Engineering Bohai University Liaoning China
| | - Weiru Yu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Longjie Sun
- State Key Laboratory of Animal Biotech Breeding College of Biological Sciences China Agricultural University Beijing China
| | - Ming Zhang
- School of Food and Health Beijing Technology and Business University Beijing China
| | - Jiazeng Sun
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Ping Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yongting Luo
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Xingwang Zhao
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Libing Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Rong Liu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Ziwei Yi
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Yifei Yu
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Weihan Xiao
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Zheng Ding
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Dan Su
- Department of Chemistry and Chemical Biology Cornell University Ithaca New York USA
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Changchang Cao
- State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Diseases Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Wenbiao Shi
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality Department of Nutrition and Health China Agricultural University Beijing China
| |
Collapse
|
5
|
Nishanth MJ, Jha S. Evolutionary Analysis of the hnRNP Interactomes and Their Functions in Eukaryotes. Biochem Genet 2024:10.1007/s10528-024-10956-6. [PMID: 39540958 DOI: 10.1007/s10528-024-10956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are central regulators of several fundamental biological processes across eukaryotes. hnRNPs have been implicated in transcriptional and post-transcriptional regulation, telomere maintenance, stem cell maintenance, among other processes in major model organisms. Though hnRNPs are known to be conserved in eukaryotes, the evolutionary conservation/diversification of their functions across species is yet to be understood. To this end, the present work employed computational analyses to identify potential hnRNP orthologs in eighty eukaryotic species, and their interactors. Subsequently, a comprehensive analysis of the biological processes influenced by hnRNP interactomes showed alternative splicing and splicing regulation to be commonly associated with most species, while a few processes were uniquely associated with particular species. Further studies of the clustering patterns of the top-ranking hub nodes of the hnRNP protein networks revealed a notable clustering pattern of hnRNP K orthologs from five species. Subsequent analysis of the genes with overrepresented hnRNP K target sites within their untranslated regions showed hnRNP K orthologs from humans and Ciona intestanilis to potentially target transcripts involved in membrane-related processes. Remarkably, the hnRNP K ortholog from Lottia gigantea was found to possibly regulate other RNA-binding proteins (RBPs), suggesting a regulatory cascade involving hnRNPs and other RBPs. Further experimental studies in this regard would be of scientific and clinical importance, owing to the druggability of several human hnRNPs.
Collapse
Affiliation(s)
- M J Nishanth
- Department of Biotechnology, School of Life Sciences, St Joseph's University, Bengaluru, 560027, India.
| | - Shanker Jha
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, 613401, India.
| |
Collapse
|
6
|
Subramani PG, Fraszczak J, Helness A, Estall JL, Möröy T, Di Noia JM. Conserved role of hnRNPL in alternative splicing of epigenetic modifiers enables B cell activation. EMBO Rep 2024; 25:2662-2697. [PMID: 38744970 PMCID: PMC11169469 DOI: 10.1038/s44319-024-00152-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
The multifunctional RNA-binding protein hnRNPL is implicated in antibody class switching but its broader function in B cells is unknown. Here, we show that hnRNPL is essential for B cell activation, germinal center formation, and antibody responses. Upon activation, hnRNPL-deficient B cells show proliferation defects and increased apoptosis. Comparative analysis of RNA-seq data from activated B cells and another eight hnRNPL-depleted cell types reveals common effects on MYC and E2F transcriptional programs required for proliferation. Notably, while individual gene expression changes are cell type specific, several alternative splicing events affecting histone modifiers like KDM6A and SIRT1, are conserved across cell types. Moreover, hnRNPL-deficient B cells show global changes in H3K27me3 and H3K9ac. Epigenetic dysregulation after hnRNPL loss could underlie differential gene expression and upregulation of lncRNAs, and explain common and cell type-specific phenotypes, such as dysfunctional mitochondria and ROS overproduction in mouse B cells. Thus, hnRNPL is essential for the resting-to-activated B cell transition by regulating transcriptional programs and metabolism, at least in part through the alternative splicing of several histone modifiers.
Collapse
Affiliation(s)
- Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
| | - Jennifer Fraszczak
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Anne Helness
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Department of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 Boul Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Javier M Di Noia
- Institut de Recherches Cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada.
- Department of Medicine, Division of Experimental Medicine, McGill University, 1001 Boulevard Decarie, Montreal, QC, H4A 3J1, Canada.
- Molecular Biology Programs, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Department of Medicine, Université de Montréal, C.P. 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada.
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900 Boul Edouard-Montpetit, Montréal, QC, H3T 1J4, Canada.
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Song J, Cheng X, Zhou C, Huang S, Zhao W, Zong Z, Yang L. Targeting the "tumor microenvironment": RNA-binding proteins in the spotlight in colorectal cancer therapy. Int Immunopharmacol 2024; 131:111876. [PMID: 38493688 DOI: 10.1016/j.intimp.2024.111876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer and has the second highest mortality rate among cancers. The development of CRC involves both genetic and epigenetic abnormalities, and recent research has focused on exploring the ex-transcriptome, particularly post-transcriptional modifications. RNA-binding proteins (RBPs) are emerging epigenetic regulators that play crucial roles in post-transcriptional events. Dysregulation of RBPs can result in aberrant expression of downstream target genes, thereby affecting the progression of colorectal tumors and the prognosis of patients. Recent studies have shown that RBPs can influence CRC pathogenesis and progression by regulating various components of the tumor microenvironment (TME). Although previous research on RBPs has primarily focused on their direct regulation of colorectal tumor development, their involvement in the remodeling of the TME has not been systematically reported. This review aims to highlight the significant role of RBPs in the intricate interactions within the CRC tumor microenvironment, including tumor immune microenvironment, inflammatory microenvironment, extracellular matrix, tumor vasculature, and CRC cancer stem cells. We also highlight several compounds under investigation for RBP-TME-based treatment of CRC, including small molecule inhibitors such as antisense oligonucleotides (ASOs), siRNAs, agonists, gene manipulation, and tumor vaccines. The insights gained from this review may lead to the development of RBP-based targeted novel therapeutic strategies aimed at modulating the TME, potentially inhibiting the progression and metastasis of CRC.
Collapse
Affiliation(s)
- Yiwei Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; Queen Mary School, Nanchang University, 330006 Nanchang, China
| | - Yujun Zhang
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China
| | - Jingjing Song
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China; Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China; School of Ophthalmology and Optometry of Nanchang University, China
| | - Xifu Cheng
- School of Ophthalmology and Optometry of Nanchang University, China
| | - Chulin Zhou
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Shuo Huang
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wentao Zhao
- The 3rd Clinical Department of China Medical University, 10159 Shenyang, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, No. 1 MinDe Road, 330006 Nanchang, China.
| | - Lingling Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, No. 1 Mingde Rd., Nanchang 330006, Jiangxi, China.
| |
Collapse
|
8
|
White TLA, Jin Y, Roberts SDA, Gable MJ, Morel PA. Phosphorylation of hnRNP A1-Serine 199 Is Not Required for T Cell Differentiation and Function. Immunohorizons 2024; 8:136-146. [PMID: 38334757 PMCID: PMC10916359 DOI: 10.4049/immunohorizons.2300074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024] Open
Abstract
hnRNP A1 is an important RNA-binding protein that influences many stages of RNA processing, including transcription, alternative splicing, mRNA nuclear export, and RNA stability. However, the role of hnRNP A1 in immune cells, specifically CD4+ T cells, remains unclear. We previously showed that Akt phosphorylation of hnRNP A1 was dependent on TCR signal strength and was associated with Treg differentiation. To explore the impact of hnRNP A1 phosphorylation by Akt on CD4+ T cell differentiation, our laboratory generated a mutant mouse model, hnRNP A1-S199A (A1-MUT) in which the major Akt phosphorylation site on hnRNP A1 was mutated to alanine using CRISPR Cas9 technology. Immune profiling of A1-MUT mice revealed changes in the numbers of Tregs in the mesenteric lymph node. We found no significant differences in naive CD4+ T cell differentiation into Th1, Th2, Th17, or T regulatory cells (Tregs) in vitro. In vivo, Treg differentiation assays using OTII-A1-Mut CD4+ T cells exposed to OVA food revealed migration and homing defects in the A1-MUT but no change in Treg induction. A1-MUT mice were immunized with NP- keyhole limpet hemocyanin, and normal germinal center development, normal numbers of NP-specific B cells, and no change in Tfh numbers were observed. In conclusion, Akt phosphorylation of hnRNP A1 S199 does not play a role in CD4+ T cell fate or function in the models tested. This hnRNP A1-S199A mouse model should be a valuable tool to study the role of Akt phosphorylation of hnRNP A1-S199 in different cell types or other mouse models of human disease.
Collapse
Affiliation(s)
- Tristan L. A. White
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ye Jin
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sean D. A. Roberts
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Matthew J. Gable
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Penelope A. Morel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|