1
|
Lu Q, Liu J, Zou X, Huang B, Wu W, Yin J, Liu ZQ, Wang Y. Breaking the Activity-Stability Trade-Off of RuO 2 via Metallic Ru Bilateral Regulation for Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202503733. [PMID: 40123341 DOI: 10.1002/anie.202503733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/25/2025]
Abstract
Developing highly efficient acidic oxygen evolution reaction (OER) electrocatalysts is crucial for proton exchange membrane water electrolyzer. RuO2 electrocatalysts, which followed a kinetically favorable lattice oxygen mechanism, perform a preferable intrinsic activity, but poor stability for acidic OER. Recent work often sacrifices the intrinsic activity of RuO2 to enhance stability. The balance between the activity and stability of RuO2-based catalysts is still overlooked in current research. Here, we report a controlled method to introduce metallic Ru onto RuO2 catalysts to form the Ru4+─O─Ru0 interfacial structure for decreasing the Ru4+ oxidation state and promoting deprotonation kinetics. Metallic Ru can serve as the electron donor to lower the oxidation state of *Vo-RuO4 2- in Ru/RuO2 for stabilizing the structure of *Vo-RuO4 2--Ru/RuO2 to favour the acidic OER stability. Moreover, the deprotonation kinetics via the interfacial oxygen site between Ru4+ and Ru0 is significantly enhanced on Ru/RuO2 catalysts to improve the acidic OER activity. This work offers a unique perspective to balance the acidic OER activity and stability of RuO2.
Collapse
Affiliation(s)
- Qian Lu
- Department of Chemistry, The Chinese University of Hong Kong, Ma Lin building, Shatin 999077 N.T., Hong Kong SAR, P.R. China
- School of Environmental Science and Technology, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, P.R. China
| | - Jinjie Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077 N.T., Hong Kong SAR, P.R. China
| | - Xiaohong Zou
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, 999077 N.T., Hong Kong SAR, P.R. China
| | - Birou Huang
- Department of Chemistry, The Chinese University of Hong Kong, Ma Lin building, Shatin 999077 N.T., Hong Kong SAR, P.R. China
| | - Weixing Wu
- Department of Chemistry, The Chinese University of Hong Kong, Ma Lin building, Shatin 999077 N.T., Hong Kong SAR, P.R. China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, 999077 N.T., Hong Kong SAR, P.R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou, 510006, P.R. China
| | - Ying Wang
- Department of Chemistry, The Chinese University of Hong Kong, Ma Lin building, Shatin 999077 N.T., Hong Kong SAR, P.R. China
| |
Collapse
|
2
|
Wang X, Pi W, Li Z, Hu S, Bao H, Xu W, Yao N. Orbital-level band gap engineering of RuO 2 for enhanced acidic water oxidation. Nat Commun 2025; 16:4845. [PMID: 40413179 PMCID: PMC12103616 DOI: 10.1038/s41467-025-60083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
Developing efficient and stable oxygen evolution reaction electrocatalysts under acidic conditions is crucial for advancing proton-exchange membrane water electrolysers commercialization. Here, we develop a representative strategy through p-orbital atoms (N, P, S, Se) doping in RuO2 to precisely regulate the lattice oxygen-mediated mechanism-oxygen vacancy site mechanism pathway. In situ and ex situ measurements along with theoretical calculations demonstrate that Se doping dynamically adjusts the band gap between the Ru-eg and O-p orbitals during the oxygen evolution reaction process. This modulation accelerates electron diffusion to the external circuit, promotes the lattice oxygen-mediated process, and enhances catalytic activity. Additionally, it facilitates electron feedback and stabilizes oxygen vacancies, thereby promoting the oxygen vacancy site mechanism process and enhancing catalytic stability. The resulting Se-RuOx catalyst achieves efficient proton-exchange membrane water electrolysers performance under industrial conditions with a minimal charge overpotential of 1.67 V to achieve a current density of 1 A cm-2 and maintain long-term cyclability for over 1000 h. This work presents a unique method for guiding the future development of high-performance metal oxide catalysts.
Collapse
Affiliation(s)
- Xing Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Wei Pi
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Zhaobing Li
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Sheng Hu
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Haifeng Bao
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing, School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China.
| |
Collapse
|
3
|
Shang Z, Li H. Distribution of Oxygen Vacancies in RuO 2 Catalysts and Their Roles in Activity and Stability in Acidic Oxygen Evolution Reaction. J Phys Chem Lett 2025:5418-5428. [PMID: 40404579 DOI: 10.1021/acs.jpclett.5c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
By combining density functional theory (DFT) calculations and the cluster expansion (CE) model in an active-learning framework, we comprehensively studied the distribution features of oxygen vacancies (OV's) as well as their contributions to the stability and activity of the RuO2 catalyst in acidic oxygen evolution reaction (OER). The results show that OV's prefer to be located at bridge oxygen sites on the RuO2(110) surface and the next-nearest-neighbor trans positions of surface RuO6 octahedra in pairs due to interactions between two OV's, and high concentrations of OV's exhibit a continuous zigzag distribution in the (110) plane of RuO2. The oxygen vacancy distribution can be explained by the charge repulsion between the low-valent Ru and O, which is referred to as the "heterovalent ion-oxygen exclusion principle". In addition, the DFT results show that the presence of OV's cannot improve the inherent OER activity of specific Ru sites since low-valent Ru sites hinder deprotonation of the second water molecule. Nevertheless, OV's can improve the stability of RuO2 by suppressing the lattice oxygen mechanism (LOM) path. In summary, this work provides deeper insights into the mechanism of the OER of RuO2 with OV's in acidic media and a possible way to improve catalyst performance by using oxygen vacancy engineering.
Collapse
Affiliation(s)
- Zhe Shang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Yuan B, Dang Q, Liu H, Sendeku MG, Peng J, Fan Y, Cai L, Cao A, Chen S, Li H, Kuang Y, Wang F, Sun X. Synergistic niobium and manganese co-doping into RuO 2 nanocrystal enables PEM water splitting under high current. Nat Commun 2025; 16:4583. [PMID: 40379743 PMCID: PMC12084596 DOI: 10.1038/s41467-025-59710-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 04/30/2025] [Indexed: 05/19/2025] Open
Abstract
Low-cost ruthenium-based catalysts with high activity have emerged as promising alternatives to iridium-based counterparts for acidic oxygen evolution reaction (OER) in proton exchange membrane water electrolyzers (PEMWE), but the poor stability under high current density remains as a key challenge. Here, we utilize the synergistic complementary strategy of introducing earth-abundant Mn and Nb dopants in ruthenium dioxide (RuO2) for Nb0.1Mn0.1Ru0.8O2 nanoparticle electrocatalyst that exhibits a low overpotential of 209 mV at 10 mA cm-2 and good stability of > 400 h at 0.2 A cm-2 in 0.5 M H2SO4. Significantly, a PEMWE device fabricated with Nb0.1Mn0.1Ru0.8O2 anode can operate continuously at least for 1000 h at 0.5 A cm-2 with 59 μV h-1 decay rate. Operando Raman spectroscopy analysis, differential electrochemical mass spectroscopy measurements, X-ray absorption spectroscopy analysis and theoretical calculations indicate that OER reaction on Nb0.1Mn0.1Ru0.8O2 primarily follows the adsorbate evolution mechanism with much favorable energy barrier accompanied by a locally passivated lattice oxygen mechanism (AEM-LPLOM) and the co-existed Nb and Mn in RuO2 crystal lattice could not only stabilize the lattice oxygen, but also relieve the valence state fluctuation of Ru site to stabilize the catalyst during the reaction.
Collapse
Affiliation(s)
- Bichen Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Qian Dang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Hai Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, PR China
| | - Jian Peng
- Department of Mechanical and Materials Engineering, Western University, London, ON, Canada
| | - Yameng Fan
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales, Australia
| | - Liang Cai
- MDX Research Center for Element Strategy, International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, Japan
| | - Aiqing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Shiyao Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Hui Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, PR China
| | - Yun Kuang
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, PR China
| | - Fengmei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China.
| |
Collapse
|
5
|
Wu H, Fu Z, Chang J, Hu Z, Li J, Wang S, Yu J, Yong X, Waterhouse GIN, Tang Z, Chang J, Lu S. Engineering high-density microcrystalline boundary with V-doped RuO 2 for high-performance oxygen evolution in acid. Nat Commun 2025; 16:4482. [PMID: 40368887 PMCID: PMC12078799 DOI: 10.1038/s41467-025-59472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Designing efficient acidic oxygen evolution catalysts for proton exchange membrane water electrolyzers is challenging due to a trade-off between activity and stability. In this work, we construct high-density microcrystalline grain boundaries (GBs) with V-dopant in RuO2 matrix (GB-V-RuO2). Our theoretical and experimental results indicate this is a highly active and acid-resistant OER catalyst. Specifically, the GB-V-RuO2 requires low overpotentials of 159, 222, and 300 mV to reach 10, 100, and 1500 mA cm-2geo in 0.5 M H2SO4, respectively. Operando EIS, ATR-SEIRAS FTIR and DEMS measurements reveal the importance of GBs in stabilizing lattice oxygen and thus inhibiting the lattice oxygen mediated OER pathway. As a result, the adsorbate evolution mechanism pathway becomes dominant, even at high current densities. Density functional theory analyses confirm that GBs can stabilize V dopant and that the synergy between them modulates the electronic structure of RuO2, thus optimizing the adsorption of OER intermediate species and enhancing electrocatalyst stability. Our work demonstrates a rational strategy for overcoming the traditional activity/stability dilemma, offering good prospects of developing high-performance acidic OER catalysts.
Collapse
Affiliation(s)
- Han Wu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Zhanzhao Fu
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jiangwei Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China.
| | - Zhiang Hu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Jian Li
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Siyang Wang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Jingkun Yu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Xue Yong
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK
| | | | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P.R. China
| | - Junbiao Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Siyu Lu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, 450001, P.R. China.
| |
Collapse
|
6
|
Sim Y, Yun TG, Park KH, Kim D, Bae HB, Chung SY. Effect of ionic-bonding d 0 cations on structural durability in barium iridates for oxygen evolution electrocatalysis. Nat Commun 2025; 16:4152. [PMID: 40320410 PMCID: PMC12050298 DOI: 10.1038/s41467-024-55290-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/06/2024] [Indexed: 05/08/2025] Open
Abstract
Iridium has the exclusive chemistry guaranteeing both high catalytic activity and sufficient corrosion resistance in a strong acidic environment under anodic potential. Complex iridates thus attract considerable attention as high-activity electrocatalysts with less iridium utilization for the oxygen evolution reaction (OER) in water electrolyzers using a proton-exchange membrane. Here we demonstrate the effect of chemical doping on the durability of hexagonal-perovskite Bax(M,Ir)yOz-type iridates in strong acid (pH ~ 0). Some aliovalent cations are directly visualized to periodically locate at the octahedral sites bridging the two face-sharing [Ir2O9] dimer or [Ir3O12] trimers in hexagonal-perovskite polytypes. In particular, highly ionic bonding of the d0 Nb5+ and Ta5+ cations with oxygen anions results in notable suppression of lattice oxygen participation during the OER and thus effectively preserves the connectivity between the [Ir3O12] trimers without lattice collapse. Providing an in-depth understanding of the correlation between the electronic structure and bonding nature in crystals, our work suggests that proper control of chemical doping in complex oxides promises a simple but efficient tool to realize OER electrocatalysts with markedly improved durability.
Collapse
Affiliation(s)
- Yelyn Sim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ki Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Dongho Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
7
|
Fu Y, Liu C, Song L, Zhao S, Huang M, Li Z, Tang H, Lu Y, Xu J, Liu Q. Electron Itinerancy Mediated by Oxygen Vacancies Breaks the Inert Electron Chain to Boost Lithium-Oxygen Batteries Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202501837. [PMID: 40079665 DOI: 10.1002/anie.202501837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/22/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
The synergistic effect of dopants and oxygen vacancies (Vo) in metal oxides is crucial for enhancing the adsorption and electron transfer processes in lithium-oxygen (Li-O2) batteries; however, the underlying mechanisms remain unclear. Herein, Ru single-atom-modified TiO2 nanorod array (Ru1-TiO2- x) electrocatalysts with abundant Vo were fabricated, serving as an efficient catalyst for Li-O2 batteries. Experimental and theoretical investigations have demonstrated that Vo functions as an "electron pump", facilitating electron itinerant behavior, while Ru1 serves as an "electron buffer" to further activate the [Ru-O-Ti] electronic chain. This synergistic interplay endows Li-O2 batteries with a highly active and stable bidirectional self-regulating capability during the process of circulation, exhibiting an ultra-low charge polarization (0.42V) and exceptional cycling stability (1680 h). Vo and Ru1 synergistically modulate the d-band center at the Ti site to establish an adaptively tunable Ru-Ti dual-active site. This adjustment effectively balances the binding strength with the interface oxygen intermediate (*O), thereby significantly reducing the activation barrier. The Hamiltonian layout further revealed the crucial role of remote orbital coupling in maintaining the structural stability. This study not only provides profound insights into Vo-dependent electron transfer kinetics but also proposes new strategies and theoretical guidance for the activation of inert materials.
Collapse
Affiliation(s)
- Yaning Fu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Chunmei Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Lina Song
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Shaoze Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Mengyao Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Zhongjun Li
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Huabiao Tang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Youcai Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Jijing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Qingchao Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| |
Collapse
|
8
|
Guo K, Chen Y, Jia J, Wang H, Xu C. Sulfur species induced Fe 3+ and Co 3+ enrichment in a low-crystalline FeCoNi hydroxide boosts water oxidation. Chem Commun (Camb) 2025; 61:6667-6670. [PMID: 40200684 DOI: 10.1039/d5cc00724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
A low-crystalline S-doped FeCoNi hydroxide is developed via a one-step electrodeposition method. The incorporation of S species changes the electronic properties of FeCoNi hydroxide, resulting in the enrichment of active Fe3+ and Co3+ sites, thereby achieving excellent performance for water oxidation in 1 M or realistic 30 wt% KOH solution.
Collapse
Affiliation(s)
- Kailu Guo
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
| | - Yinjian Chen
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.
| | - Jinzhi Jia
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Huijiao Wang
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Wang H, Lin C, Tan L, Shen J, Wu X, Pan X, Zhao Y, Zhang H, Sun Y, Mei B, Um HD, Xiao Q, Jiang W, Li X, Luo W. Atomic Ga triggers spatiotemporal coordination of oxygen radicals for efficient water oxidation on crystalline RuO 2. Nat Commun 2025; 16:3976. [PMID: 40295496 PMCID: PMC12037759 DOI: 10.1038/s41467-025-58346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Advancements in proton-exchange membrane water electrolyzer depend on developing oxygen evolution reaction electrocatalysts that synergize high activity with stability. Here, we introduce an approach aimed at elevating oxygen evolution reaction performance by enhancing the spatiotemporal coordination of oxygen radicals to promote efficient O-O coupling. A dense, single-atom configuration of oxygen radical donors within interconnected RuO2 nanocrystal framework is demonstrated. The stable oxygen radicals on gallium sites with adaptable Ga-O bonds are thermodynamically favorable to attract those from Ru sites, addressing dynamic adaptation challenges and boosting O-O coupling efficiency. The optimized catalyst achieves a low overpotential of 188 mV at 10 mA cm-2, operates robustly for 800 h at 100 mA cm-2 in acidic conditions, and shows a large current density of 3 A cm-2 at 1.788 V, with stable performance at 0.5 A cm-2 for 200 h, confirming its long-term viability in proton-exchange membrane water electrolyzer applications.
Collapse
Affiliation(s)
- Haifeng Wang
- School of New Energy, Ningbo University of Technology, Ningbo, PR China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China
| | - Chao Lin
- School of New Energy, Ningbo University of Technology, Ningbo, PR China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China
| | - Lei Tan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China
| | - Jing Shen
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China
| | - Xiaotong Wu
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China
| | - Xiangxiang Pan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China
| | - Yonghui Zhao
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), No. 100, Haike Road, Pudong New District, Shanghai, PR China
| | - Haojie Zhang
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle (Saale), Germany
| | - Yu Sun
- Institute for the Advancement of Higher Education, Hokkaido University, North-10 West-8 Kita-ku, Sapporo, Japan
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, PR China
| | - Han-Don Um
- Department of Chemical Engineering Kangwon National University Chuncheon, Gangwon, Republic of Korea
| | - Qi Xiao
- School of New Energy, Ningbo University of Technology, Ningbo, PR China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China
| | - Wan Jiang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China
| | - Xiaopeng Li
- School of New Energy, Ningbo University of Technology, Ningbo, PR China.
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China.
| | - Wei Luo
- School of New Energy, Ningbo University of Technology, Ningbo, PR China.
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, PR China.
| |
Collapse
|
10
|
Zhang XY, Yin H, Dang CC, Nie H, Huang ZX, Zheng SH, Du M, Gu ZY, Cao JM, Wu XL. Unlocking Enhanced Catalysis Stability in Acidic Oxygen Evolution: Structural Insights for PEM Applications under High-Current Density. Angew Chem Int Ed Engl 2025; 64:e202425569. [PMID: 39948039 DOI: 10.1002/anie.202425569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
In proton exchange membrane water electrolysis (PEMWE), catalysts for acidic oxygen evolution reaction (OER) that demonstrate high current density and stability are essential. Herein, we synthesized La-doped RuO2 (La-RuO2@TM) nanorod composite catalysts in situ on titanium mesh (TM) using a one-step low-temperature pyrolysis method. La-RuO2@TM displays excellent catalytic performance (1.533 V at 100 mA cm-2) and remarkable stability, showing no significant degradation in performance over 450 hours of operation. Density functional theory (DFT) calculations indicate that the formation of the La-O-Ru local structure modulates the adsorption strength of reaction intermediates, alleviates metal (Ru) leaching, and reduces oxygen loss, significantly enhancing the material's durability in acidic OER. The PEM electrolyzer utilizing La-RuO2@TM operates at 1.815 V with a current density of 1.0 A cm-2, maintaining stable performance for 120 h at 60 °C. This study offers valuable insights for designing efficient and durable acidic OER catalysts.
Collapse
Affiliation(s)
- Xin-Yi Zhang
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Hang Yin
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, China
| | - Cong-Cong Dang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Hong Nie
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Zhi-Xiong Huang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Shuo-Hang Zheng
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Miao Du
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jun-Ming Cao
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xing-Long Wu
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
11
|
Niu Z, Qiao Z, Sun P, Chen J, Wang S, Huo F, Cao D. Single-Atom Sb-Doped RuSbO x Bifunctional Catalysts for Ultra-Stable PEM Water Electrolyzers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502088. [PMID: 40244887 DOI: 10.1002/smll.202502088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/24/2025] [Indexed: 04/19/2025]
Abstract
Developing highly efficient and stable Pt/Ir-free bifunctional catalysts is very urgent for lowering the catalyst cost of proton exchange membrane water electrolyzer (PEMWE). Herein, a single-atom Sb-doped RuSbOx bifunctional catalyst is developed for ultra-stable PEMWE. RuSbOx exhibits excellent stability with a long-term operation of 150 h for oxygen evolution reaction (OER) and 300 h for hydrogen evolution reaction (HER) at 100 mA cm-2 in acidic media, respectively. Impressively, the PEMWE with RuSbOx as bifunctional catalysts only needs 1.72 to reach 1.0 A cm-2, and can maintain stable operation for 200 h at 200 mA cm-2. The in situ Raman and molecular probe methods reveal that the single-atom Sb doping can reconstruct the interfacial water structure on the surface of RuSbOx, resulting in an enriched supply of free water, accelerating the deprotonation process and reducing the local acidity of the catalyst surface, thereby improving the acidic OER activity and stability. Density functional theory calculations further confirm the above experimental results. In short, this work reveals that Sb is an outstanding structural stabilizer, and single-atom Sb-doping can maximize the OER stability of Ru-based catalysts in acid, which provides a useful strategy for designing ultra-stable electrocatalysts for PEMWE.
Collapse
Affiliation(s)
- Ziqiang Niu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Panpan Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingzhao Chen
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Huo
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou, 450000, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Kang J, Fang Y, Yang J, Huang L, Chen Y, Li D, Sun J, Jiang R. Recent Development of Ir- and Ru-Based Electrocatalysts for Acidic Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20519-20559. [PMID: 40138357 DOI: 10.1021/acsami.4c22918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton exchange membrane (PEM) water electrolyzers are one type of the most promising technologies for efficient, nonpolluting and sustainable production of high-purity hydrogen. The anode catalysts account for a very large fraction of cost in PEM water electrolyzer and also determine the lifetime of the electrolyzer. To date, Ir- and Ru-based materials are types of promising catalysts for the acidic oxygen evolution reaction (OER), but they still face challenges of high cost or low stability. Hence, exploring low Ir and stable Ru-based electrocatalysts for acidic OER attracts extensive research interest in recent years. Owing to these great research efforts, significant developments have been achieved in this field. In this review, the developments in the field of Ir- and Ru-based electrocatalysts for acidic OER are comprehensively described. The possible OER mechanisms are first presented, followed by the introduction of the criteria for evaluation of the OER electrocatalysts. The development of Ir- and Ru-based OER electrocatalysts are then elucidated according to the strategies utilized to tune the catalytic performances. Lastly, possible future research in this burgeoning field is discussed.
Collapse
Affiliation(s)
- Jianghao Kang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunpeng Fang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Yang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Luo Huang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Chen
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Deng Li
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jie Sun
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ruibin Jiang
- Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
13
|
Ding R, Liu J, Hua K, Wang X, Zhang X, Shao M, Chen Y, Chen J. Leveraging data mining, active learning, and domain adaptation for efficient discovery of advanced oxygen evolution electrocatalysts. SCIENCE ADVANCES 2025; 11:eadr9038. [PMID: 40184453 PMCID: PMC11970465 DOI: 10.1126/sciadv.adr9038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Developing advanced catalysts for acidic oxygen evolution reaction (OER) is crucial for sustainable hydrogen production. This study presents a multistage machine learning (ML) approach to streamline the discovery and optimization of complex multimetallic catalysts. Our method integrates data mining, active learning, and domain adaptation throughout the materials discovery process. Unlike traditional trial-and-error methods, this approach systematically narrows the exploration space using domain knowledge with minimized reliance on subjective intuition. Then, the active learning module efficiently refines element composition and synthesis conditions through iterative experimental feedback. The process culminated in the discovery of a promising Ru-Mn-Ca-Pr oxide catalyst. Our workflow also enhances theoretical simulations with domain adaptation strategy, providing deeper mechanistic insights aligned with experimental findings. By leveraging diverse data sources and multiple ML strategies, we demonstrate an efficient pathway for electrocatalyst discovery and optimization. This comprehensive, data-driven approach represents a paradigm shift and potentially benchmark in electrocatalysts research.
Collapse
Affiliation(s)
- Rui Ding
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave., Chicago, IL 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, 9700 S Cass Ave., Lemont, IL 60439, USA
| | - Jianguo Liu
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing 102206, P. R. China
| | - Kang Hua
- Institute of Energy Power Innovation, North China Electric Power University, 2 Beinong Road, Beijing 102206, P. R. China
| | - Xuebin Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, 22 Hankou Road, Nanjing 210093, P. R. China
| | - Xiaoben Zhang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave., Chicago, IL 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, 9700 S Cass Ave., Lemont, IL 60439, USA
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Energy Institute, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yuxin Chen
- Department of Computer Science, University of Chicago, 5730 S Ellis Ave., Chicago, IL 60637, USA
| | - Junhong Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 S Ellis Ave., Chicago, IL 60637, USA
- Chemical Sciences and Engineering Division, Physical Sciences and Engineering Directorate, Argonne National Laboratory, 9700 S Cass Ave., Lemont, IL 60439, USA
| |
Collapse
|
14
|
Zhou K, Liu H, Liu Z, Li X, Wang N, Wang M, Xue T, Shen Y, Li H, Li H, Li C. W-Mediated Electron Accumulation in Ru-O-W Motifs Enables Ultra-Stable Oxygen Evolution Reaction in Acid. Angew Chem Int Ed Engl 2025; 64:e202422707. [PMID: 39844602 DOI: 10.1002/anie.202422707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/31/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
The development of efficient and durable oxygen evolution reaction (OER) catalysts is crucial for advancing proton exchange membrane water electrolysis (PEMWE) technology, especially in the pursuit of non-iridium alternatives. Herein, we report a Zn, W co-doped Ru3Zn0.85W0.15Ox (RZW) ternary oxide catalyst that exhibits a low overpotential of 200 mV and remarkable stability for over 4000 hours at 10 mA cm-2 in 0.1 M HClO4. The incorporation of highly electronegative W facilitates the efficient capture of electrons released from the sacrificial Zn species during OER, and subsequently mediated to Ru sites. The observed enhancement in electron density within the stable Ru-O-W motifs substantially improves the anti-overoxidation properties of the Ru active sites. Our findings highlight the importance of strategic metal doping in modulating the electronic structure of OER catalysts during operation, thereby facilitating the development of practical and long-lasting water electrolysis technologies.
Collapse
Affiliation(s)
- Kai Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Heng Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Zhongliang Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Nana Wang
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Mingyue Wang
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Tianrui Xue
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yongjun Shen
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Huihui Li
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
15
|
Feng W, Chang B, Ren Y, Kong D, Tao HB, Zhi L, Khan MA, Aleisa R, Rueping M, Zhang H. Proton Exchange Membrane Water Splitting: Advances in Electrode Structure and Mass-Charge Transport Optimization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416012. [PMID: 40035170 PMCID: PMC12004895 DOI: 10.1002/adma.202416012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Indexed: 03/05/2025]
Abstract
Proton exchange membrane water electrolysis (PEMWE) represents a promising technology for renewable hydrogen production. However, the large-scale commercialization of PEMWE faces challenges due to the need for acid oxygen evolution reaction (OER) catalysts with long-term stability and corrosion-resistant membrane electrode assemblies (MEA). This review thoroughly examines the deactivation mechanisms of acidic OER and crucial factors affecting assembly instability in complex reaction environments, including catalyst degradation, dynamic behavior at the MEA triple-phase boundary, and equipment failures. Targeted solutions are proposed, including catalyst improvements, optimized MEA designs, and operational strategies. Finally, the review highlights perspectives on strict activity/stability evaluation standards, in situ/operando characteristics, and practical electrolyzer optimization. These insights emphasize the interrelationship between catalysts, MEAs, activity, and stability, offering new guidance for accelerating the commercialization of PEMWE catalysts and systems.
Collapse
Affiliation(s)
- Wenting Feng
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Bin Chang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Yuanfu Ren
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Debin Kong
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid SurfacesCollaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Linjie Zhi
- School of Materials Science and EngineeringAdvanced Chemical Engineering and Energy Materials Research CenterChina University of Petroleum (East China)Qingdao266580P. R. China
| | - Mohd Adnan Khan
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Rashed Aleisa
- Fuels & Chemicals DivisionResearch & Development Center, Saudi AramcoDhahran31311Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| | - Huabin Zhang
- Center for Renewable Energy and Storage Technologies (CREST)Physical Science and Engineering DivisionKing Abdullah University of Science and TechnologyThuwal23955‐6900Kingdom of Saudi Arabia
- KAUST Catalysis Center (KCC)Division of Physical Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Zhu W, Ma M, Gao D, Chen J, Huang H, Feng K, Wang Q, Wu J, Li P, Guo J, Fan Z, Zhong J, Shao Q, Liao F, Liu Y, Shao M, Kang Z. Establishing the Link Between Oxygen Vacancy and Activity Enhancement in Acidic Water Oxidation of Trigonal Iridium Oxide. Angew Chem Int Ed Engl 2025; 64:e202423353. [PMID: 39794300 DOI: 10.1002/anie.202423353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
Developing durable IrO2-based electrocatalysts with high oxygen evolution reaction (OER) activity under acidic condition is crucial for proton exchange membrane electrolyzers. While oxygen defects are considered potentially important in OER, their direct relationship with catalytic activity has yet to be established. In this study, we introduced abundant oxygen vacancies through Re doping in 2D IrO2 (Re0.03Ir0.97O2), demonstrating their decisive role in enhancing OER performance. The Re0.03Ir0.97O2 catalyst exhibited excellent OER performance with an overpotential of 193 mV at 10 mA cm-2 and sustained activity for over 650 hours, significantly surpassing the undoped catalyst. Moreover, it maintained operation at a cell voltage of 1.70 V (~1200 mA cm-2) for over 140 hours without significant performance degradation. Theoretical calculations coupled with cyclic voltammetry, transient potential scanning and in situ characterizations confirmed the adsorbate evolving mechanism on Re0.03Ir0.97O2, as well as the critical role of Re-induced oxygen vacancies in enhancing OER performance. These findings highlight that oxygen defects directly influence OER activity, providing guidance for the application of oxygen vacancy engineering in electrocatalyst design.
Collapse
Affiliation(s)
- Wenxiang Zhu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Mengjie Ma
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Dongdong Gao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jinxin Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Kun Feng
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Qun Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jie Wu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Penghao Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jinzeng Guo
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhenglong Fan
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Jun Zhong
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Qi Shao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Fan Liao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Mingwang Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, 999078, Macao, China
| |
Collapse
|
17
|
Wang F, Xiao L, Jiang Y, Liu X, Zhao X, Kong Q, Abdukayum A, Hu G. Recent achievements in noble metal-based oxide electrocatalysts for water splitting. MATERIALS HORIZONS 2025; 12:1757-1795. [PMID: 39764744 DOI: 10.1039/d4mh01315h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
The search for sustainable energy sources has accelerated the exploration of water decomposition as a clean H2 production method. Among the methods proposed, H2 production via water electrolysis has garnered considerable attention. However, the process of H2 production from water electrolysis is severely limited by the slow kinetics of the anodic oxygen evolution reaction and large intrinsic overpotentials at the anode; therefore, suitable catalysts need to be found to accelerate the reaction rate. Noble metal-based oxide electrocatalysts retain the advantages of abundant active sites, high electrical conductivity of noble metals, and low cost, which make them promising electrocatalysts; however, they suffer from the challenge of an imbalance between catalytic activity and stability. This review presents recent research progress in noble metals and their oxides as electrocatalysts. In this review, two half-reactions (the hydrogen evolution reaction and the oxygen evolution reaction) of water electrolysis are described. Recently reported methods for the synthesis of noble metal-based oxide electrocatalysts, improvement strategies, and sources of enhanced activity and stability for these types of catalysts are presented. Finally, the challenges and future perspectives in the field are summarised. This review is expected to help improve the understanding of noble metal-based oxide electrocatalysts.
Collapse
Affiliation(s)
- Feng Wang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Linfeng Xiao
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| | - Yuwei Jiang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning 530004, China
| | - Xue Zhao
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China.
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China.
| | - Guangzhi Hu
- Qilu Lake Field Scientific Observation and Research Station for Plateau Shallow Lake in Yunnan Province, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.
| |
Collapse
|
18
|
Zhao S, Dang Q, Cao A, Sendeku MG, Liu H, Peng J, Fan Y, Li H, Wang F, Kuang Y, Sun X. Hydroxylation Strategy Enables Ru-Mn Oxide for Stable Proton Exchange Membrane Water Electrolysis under 1 A cm -2. ACS NANO 2025; 19:8773-8785. [PMID: 39993936 DOI: 10.1021/acsnano.4c15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Ruthenium (Ru)-based catalysts have demonstrated promising utilization potentiality to replace the much expensive iridium (Ir)-based ones for proton exchange membrane water electrolysis (PEMWE) due to their high electrochemical activity and low cost. However, the susceptibility of RuO2-based materials to easily be oxidized to high-valent and soluble Ru species during the oxygen evolution reaction (OER) in acid media hinders the practical application, especially under current density above 500 mA cm-2. Here, a manganese-doped RuO2 catalyst with the hydroxylated metal sites (i.e., H-Mn0.1Ru0.9O2) is synthesized for acidic OER assisted by hydrogen peroxide, where the hydroxylation results in the valence state of the Ru sites below +4. The H-Mn0.1Ru0.9O2 catalyst demonstrates an overpotential of 169 mV at 10 mA cm-2 and promising stability for an OER over 1000 h in an acidic electrolyte. A PEMWE device fabricated with the H-Mn0.1Ru0.9O2 catalyst as the anode shows a current density of 1 A cm-2 at ∼1.65 V, along with a low degradation over continuous tens of hours. Differential electrochemical mass spectrometry (DEMS) results and theoretical calculations confirm that H-Mn0.1Ru0.9O2 performs the OER through the adsorbate evolution mechanism (AEM) pathway, where the synergistic effect of hydroxylation and Mn doping in RuO2 can effectively enhance the stability of Ru sites and lattice oxygen atoms.
Collapse
Affiliation(s)
- Susu Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Qian Dang
- Multi-Scale Simulation Lab for Environment and Energy Science, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Aiqing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Hai Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North, Wollongong, NSW 2500, Australia
| | - Yameng Fan
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North, Wollongong, NSW 2500, Australia
| | - Hui Li
- Multi-Scale Simulation Lab for Environment and Energy Science, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fengmei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yun Kuang
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, P. R. China
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
19
|
Zhu M, Gao J, Zhang C. La-Doping-Induced Lattice Strain and Electronic State Modulation in RuO 2 for Electrocatalytic Oxygen Evolution in Acidic Solutions. Inorg Chem 2025; 64:4571-4579. [PMID: 39999997 DOI: 10.1021/acs.inorgchem.4c05585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Pursuing highly active and stable Ru-based catalysts for the oxygen evolution reaction (OER) under acidic conditions is important in advancing proton exchange membrane (PEM) water electrolyzers. Unfortunately, the inadequate stability, especially under a large current density of Ru-based catalysts, still hinders its practical application. Herein, we report a La doping strategy that simultaneously enhances both OER activity and stability of RuO2 in acidic media. The introduction of La into RuO2 induces tensile strain, which effectively weakens the covalency of Ru-O bonds. This structural modification significantly inhibits Ru dissolution, thereby substantially enhancing the stability of RuO2. Meanwhile, La doping modulates the electronic structure of RuO2 and optimizes the adsorption energy of the reaction intermediates, thereby enhancing the electrocatalytic OER activity. Notably, the optimized La0.05-RuO2 electrocatalyst presents an excellent OER performance in 0.5 M H2SO4 electrolyte, which delivers a low overpotential of 190 mV at 10 mA cm-2 and sustains 150 h without obvious decay at 50 mA cm-2. More importantly, a PEM electrolyzer is constructed by using our La0.05-RuO2 as the anode catalyst, which acquires 200 h stability at 1 A cm-2, highlighting its strong potential for practical industrial applications. This work sheds new light on designing high-performance OER catalysts toward PEM electrolyzer applications.
Collapse
Affiliation(s)
- Min Zhu
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Juan Gao
- School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology, Huainan 232001, China
| | - Chao Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Wang K, Xu S, Wang D, Kou Z, Fu Y, Bielejewski M, Montes-García V, Han B, Ciesielski A, Hou Y, Samorì P. Supramolecular Engineering of Vinylene-Linked Covalent Organic Framework - Ruthenium Oxide Hybrids for Highly Active Proton Exchange Membrane Water Electrolysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417374. [PMID: 39901501 PMCID: PMC11923516 DOI: 10.1002/adma.202417374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/10/2025] [Indexed: 02/05/2025]
Abstract
The controlled formation of a functional adlayer at the catalyst-water interface is a highly challenging yet potentially powerful strategy to accelerate proton transfer and deprotonation for ultimately improving the performance of proton-exchange membrane water electrolysis (PEMWE). In this study, the synthesis of robust vinylene-linked covalent organic frameworks (COFs) possessing high proton conductivities is reported, which are subsequently hybridized with ruthenium dioxide yielding high-performance anodic catalysts for the acidic oxygen evolution reaction (OER). In situ spectroscopic measurements corroborated by theoretical calculations reveal that the assembled hydrogen bonds formed between COFs and adsorbed oxo-intermediates effectively orient interfacial water molecules, stabilizing the transition states for intermediate formation of OER. This determines a decrease in the energy barriers of proton transfer and deprotonation, resulting in exceptional acidic OER performance. When integrated into a PEMWE device, the system achieves a record current density of 1.0 A cm-2 at only 1.54 V cell voltage, with a long-term stability exceeding 180 h at industrial-level 200 mA cm-2. The approach relying on the self-assembly of an oriented hydrogen-bonded adlayer highlights the disruptive potential of COFs with customizable structures and multifunctional sites for advancing PEMWE technologies.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310 027, China
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Shunqi Xu
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
- School of Energy and Environment, Southeast University, Nanjing, 211 189, China
| | - Dashuai Wang
- Institute of Zhejiang University-Quzhou, Quzhou, 324 000, China
| | - Zhenhui Kou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310 027, China
| | - Yubin Fu
- Chair of Molecular Functional Materials, Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 0 1069, Dresden, Germany
| | - Michał Bielejewski
- Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, Poznan, 60-179, Poland
| | - Verónica Montes-García
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Bin Han
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Artur Ciesielski
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310 027, China
- Institute of Zhejiang University-Quzhou, Quzhou, 324 000, China
- Zhejiang University Hydrogen Energy Institute, Hangzhou, 310 027, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, Strasbourg, F-67000, France
| |
Collapse
|
21
|
Yang Z, Ding Y, Chen W, Luo S, Cao D, Long X, Xie L, Zhou X, Cai X, Liu K, Fu XZ, Luo JL. Phase-Engineered Bi-RuO 2 Single-Atom Alloy Oxide Boosting Oxygen Evolution Electrocatalysis in Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417777. [PMID: 39822016 DOI: 10.1002/adma.202417777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Engineering nanomaterials at single-atomic sites can enable unprecedented catalytic properties for broad applications, yet it remains challenging to do so on RuO2-based electrocatalysts for proton exchange membrane water electrolyzer (PEMWE). Herein, the rational design and construction of Bi-RuO2 single-atom alloy oxide (SAAO) are presented to boost acidic oxygen evolution reaction (OER), via phase engineering a novel hexagonal close packed (hcp) RuBi single-atom alloy. This Bi-RuO2 SAAO electrocatalyst exhibits a low overpotential of 192 mV and superb stability over 650 h at 10 mA cm-2, enabling a practical PEMWE that needs only 1.59 V to reach 1.0 A cm-2 under industrial conditions. Operando differential electrochemical mass spectroscopy analysis, coupled with density functional theory studies, confirmed the adsorbate-evolving mechanism on Bi-RuO2 SAAO and that the incorporation of Bi1 improves the activity by electronic density optimization and the stability by hindering surface Ru demetallation. This work not only introduces a new strategy to fabricate high-performance electrocatalysts at atomic-level, but also demonstrates their potential use in industrial electrolyzers.
Collapse
Affiliation(s)
- Zhichao Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R China
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Yutian Ding
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Wen Chen
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Shuiping Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Daofan Cao
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xin Long
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Lei Xie
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xincheng Zhou
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Xinyi Cai
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Ke Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, P. R. China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
22
|
Chen J, Ma Y, Cheng C, Huang T, Luo R, Xu J, Wang X, Jiang T, Liu H, Liu S, Huang T, Zhang L, Chen W. Cobalt-Doped Ru@RuO 2 Core-Shell Heterostructure for Efficient Acidic Water Oxidation in Low-Ru-Loading Proton Exchange Membrane Water Electrolyzers. J Am Chem Soc 2025. [PMID: 39996499 DOI: 10.1021/jacs.4c18238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Proton exchange membrane water electrolysis (PEMWE) is a highly promising hydrogen production technology for enabling a sustainable energy supply. Herein, we synthesize a single-atom Co-doped core-shell heterostructured Ru@RuO2 (Co-Ru@RuO2) catalyst via a combination of ultrafast pulse-heating and calcination methods as an iridium (Ir)-free and durable oxygen evolution reaction (OER) catalyst in acidic conditions. Co-Ru@RuO2 exhibits a low overpotential of 203 mV and excellent stability over a 400 h durability test at 10 mA cm-2. When implemented in industrial PEMWE devices, a current density of 1 A cm-2 is achieved with only 1.58 V under an extremely low catalyst loading of 0.34 mgRu cm-2, which is decreased by 4 to 6 times as compared to other reported Ru-based catalysts. Even at 500 mA cm-2, the PEMWE device could work stably for more than 200 h. Structural characterizations and density functional theory (DFT) calculations reveal that the single-atom Co doping and the core-shell heterostructure of Ru@RuO2 modulate the electronic structure of pristine RuO2, which reduce the energy barriers of OER and improve the stability of surface Ru. This work provides a unique avenue to guide future developments on low-cost PEMWE devices for hydrogen production.
Collapse
Affiliation(s)
- Jinghao Chen
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yirui Ma
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chen Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Tao Huang
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ruihao Luo
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingwen Xu
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoyang Wang
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongxu Liu
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Liu
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ting Huang
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liang Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM) Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wei Chen
- Department of Applied Chemistry School of Chemistry and Materials Science Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
23
|
Chen J, Qi M, Yang Y, Xiao X, Li Y, Jin H, Wang Y. Chloride Residues in RuO 2 Catalysts Enhance Its Stability and Efficiency for Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202420860. [PMID: 39794297 DOI: 10.1002/anie.202420860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
. Ruthenium dioxide (RuO2) is a benchmark electrocatalyst for proton exchange membrane water electrolyzers (PEMWE), but its stability during the oxygen evolution reaction (OER) is often compromised by lattice oxygen involvement and metal dissolution. Despite that the typical synthesis of RuO2 produces chloride residues, the underlying function of chloride have not well investigated. In this study, we synthesized chlorine-containing RuO2 (RuO2-Cl) and pure RuO2 catalysts with similar morphology and crystallinity. RuO2-Cl demonstrated superior stability, three times greater than that of pure RuO2, and a lower overpotential of 176 mV at 10 mA cm-2. Furthermore, the RuO2-Cl catalysts that were in situ synthesized on a platinum-coated titanium felt could maintain high performance for up to 1200 hours at 100 mA cm-2. Computational and experimental analyses show that chloride stabilizes RuO2 by substituting the bridging oxygen atoms, which subsequently inhibits lattice oxygen evolution and Ru demetallation. Notably, this substitution also lowers the energy barrier of the rate-determining step by strengthening the binding of *OOH intermediates. These findings offer new insights into the previously unknown role of chloride residues and how to improve RuO2 stability.
Collapse
Affiliation(s)
- Jiadong Chen
- International Collaborative Laboratory of 2D Materials for, Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Menghui Qi
- Advanced Materials and Catalysis Group, Center of Chemistry for, Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Yun Yang
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Xiaofen Xiao
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Ying Li
- International Collaborative Laboratory of 2D Materials for, Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Huile Jin
- Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for, Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
24
|
Liu Y, Wang Y, Li H, Kim MG, Duan Z, Talat K, Lee JY, Wu M, Lee H. Effectiveness of strain and dopants on breaking the activity-stability trade-off of RuO 2 acidic oxygen evolution electrocatalysts. Nat Commun 2025; 16:1717. [PMID: 39962051 PMCID: PMC11832934 DOI: 10.1038/s41467-025-56638-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/27/2025] [Indexed: 02/20/2025] Open
Abstract
Ruthenium dioxide electrocatalysts for acidic oxygen evolution reaction suffer from mediocre activity and rather instability induced by high ruthenium-oxygen covalency. Here, the tensile strained strontium and tantalum codoped ruthenium dioxide nanocatalysts are synthesized via a molten salt-assisted quenching strategy. The tensile strained spacially elongates the ruthenium-oxygen bond and reduces covalency, thereby inhibiting the lattice oxygen participation and structural decomposition. The synergistic electronic modulations among strontium-tantalum-ruthenium groups both optimize deprotonation on oxygen sites and intermediates absorption on ruthenium sites, lowering the reaction energy barrier. Those result in a well-balanced activity-stability profile, confirmed by comprehensive experimental and theoretical analyses. Our strained electrode demonstrates an overpotential of 166 mV at 10 mA cm-2 in 0.5 M H2SO4 and an order of magnitude higher S-number, indicating comparable stability compared to bare catalyst. It exhibits negligible degradation rates within the long-term operation of single cell and PEM electrolyzer. This study elucidates the effectiveness of tensile strain and strategic doping in enhancing the activity and stability of ruthenium-based catalysts for acidic oxygen evolution reactions.
Collapse
Affiliation(s)
- Yang Liu
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, PR China
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
- Suzhou Research Institute, Shandong University, Suzhou, PR China
| | - Yixuan Wang
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hao Li
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Ziyang Duan
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kainat Talat
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, College of New Energy, China University of Petroleum (East China), Qingdao, PR China
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, Republic of Korea.
- Creative Research Institute, Sungkyunkwan University, Suwon, Republic of Korea.
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
25
|
Wang Y, Yin Y, Yang B, Tian W, Yang X, Zou B. Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent-Organic Frameworks via the Pressure-Tuned π-π Stacking Mode. NANO LETTERS 2025; 25:2141-2149. [PMID: 39848922 DOI: 10.1021/acs.nanolett.4c04949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF). Intriguingly, the TTI-COF experiences a 24-fold enhancement under a mild pressure of 2.7 GPa compared with the initial state. Joint experimental and theoretical results reveal that the restricted intramolecular chemical bond vibrations and the reduced π-π interactions originating from the offset stacking mode account for the significant pressure-induced emission enhancement. Furthermore, such piezochromic behavior may be ascribed to the decreased energy gap and enhanced intermolecular interaction. Our investigation offers constructive guidelines for designing 2D COF materials with high photoluminescence performance.
Collapse
Affiliation(s)
- Yixuan Wang
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yanfeng Yin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Binhao Yang
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xinyi Yang
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Zou
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
26
|
Ji X, Zhu Z, Zhou M, Zhang Y, Gan L, Zhang Y, Xiao P. Unravelling the pH-dependent mechanism of ferroelectric polarization on different dynamic pathways of photoelectrochemical water oxidation. Chem Sci 2025; 16:3296-3306. [PMID: 39845875 PMCID: PMC11747817 DOI: 10.1039/d4sc08291e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Ferroelectric polarization is considered to be an effective strategy to improve the oxygen evolution reaction (OER) of photoelectrocatalysis. The primary challenge is to clarify how the polarization field controls the OER dynamic pathway at a molecular level. Here, electrochemical fingerprint tests were used, together with theoretical calculations, to systematically investigate the free energy change in oxo and hydroxyl intermediates on TiO2-BaTiO3 core-shell nanowires (BTO@TiO2) upon polarization in different pH environments. We demonstrate that the adsorbate evolution mechanism (AEM) dominated in acidic environments, and both positive and negative polarization resulted in a reduction in the oxo-free energy, which inhibited the reaction kinetics. In the oxide path mechanism (OPM) that occurs in alkaline conditions, the ferroelectric polarization exhibits repulsive adsorbate-adsorbate interaction for OH- coverage and free energy shift of the OH- groups. We elucidate that a weakly alkaline electrolyte is the optimal environment for ferroelectric polarization because the positive polarization promotes OH- coverage and facilitates reaction pathway transfer from AEM to OPM; therefore, BTO@TiO2 exhibited a record polarization enhancement to 0.52 mA cm-2 at 1.23 VRHE in pH = 11. This work provides a more accurate insight into the pH-dependent effect of ferroelectric polarization on the OER dynamic pathway than conventional models that are based solely on the regulation of band bending.
Collapse
Affiliation(s)
- Xing Ji
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Zhouhao Zhu
- College of Physics, Chongqing University Chongqing 401331 China
| | - Ming Zhou
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Ying Zhang
- College of Chemical and Environmental Engineering, Xinjiang Institute of Engineering Urumqi 830023 China
| | - Liyong Gan
- College of Physics, Chongqing University Chongqing 401331 China
| | - Yunhuai Zhang
- College of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Peng Xiao
- College of Physics, Chongqing University Chongqing 401331 China
| |
Collapse
|
27
|
Liu H, Li M, Zhang Z, Li Y, Hao Q, Liang L, Zhang W. Uncovering the role of the Cr dopant in RuO 2 in highly efficient acid water oxidation. Dalton Trans 2025; 54:2922-2929. [PMID: 39804025 DOI: 10.1039/d4dt03131h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
The design of acidic oxygen evolution reaction (OER) electrocatalysts with high activity and durability is the key to achieving efficient hydrogen production. Herein, we report a Cr-doped RuO2 (Ru0.9Cr0.1O2) catalyst that exhibits good OER activity in acidic electrolytes. The doping of Cr increases the valence state of Ru, which enhances the activity of the catalyst, and a current density of 10 mA cm-2 can be achieved at only 235 mV, which is superior to that of unmodified RuO2 of 299 mV. The Tafel slope of the catalyst was 63.9 mV dec-1, which is much better than that of unmodified RuO2 at 91.1 mV dec-1. In addition, this catalyst was able to maintain stable catalytic performance in 0.5 M H2SO4 for up to 30 hours. Density functional theory (DFT) calculations also showed that Cr doping optimized the adsorption of intermediates at Ru sites and significantly increased the catalytic activity of the Ru sites.
Collapse
Affiliation(s)
- Hui Liu
- School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
- Advanced Research Center of Thermal and New Energy Technologies, Hebei Vocational University of Technology and Engineering, Hebei 054000, China
| | - Maolin Li
- School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Zhizhao Zhang
- School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ying Li
- School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Qiuyan Hao
- School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Limin Liang
- School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Wen Zhang
- School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
28
|
Lu F, Zhang B, Shen L, Chen A, Chen Y, Zhou Y, Zhang X, Liu B, Zhou M. Enhancing the Kinetics of Glucose Electro-Oxidation by Modulating the Binding Energy of Hydroxyl on Cobalt-Based Catalysts. Inorg Chem 2025; 64:2245-2255. [PMID: 39853310 DOI: 10.1021/acs.inorgchem.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Replacing the sluggish anodic water oxidation reaction with the glucose oxidation reaction (GOR) offers an energy-saving strategy to obtain value-added products during the hydrogen production process. However, rational design of the GOR electrocatalyst with an explicit structure-property relationship remains a challenge. In this study, by using cobalt chalcogenides as model catalysts, we performed an in-depth study of the GOR catalytic mechanism of CoS and CoSe nanosheets. Experimental and theoretical results revealed that the reaction pathway on cobalt chalcogenides strongly depends on their binding energy to hydroxyl (OHBE). For CoS with a weak OHBE, the reaction proceeds through an "electrophilic oxygen" route. While for CoSe, due to the strong OHBE, a surface reconstruction occurs before the GOR and therefore follows the "electrochemical-chemical" route. Inspired by these findings, a customized strategy was proposed to regulate the OHBE of the catalysts, which involved introducing F atoms into CoS to enhance its OHBE, and weakening the OHBE of CoSe by doping with Zn atoms. The optimized F-doped CoS and Zn-doped CoSe catalysts both exhibited significantly improved performance for GOR. This study thus provides a verifiable paradigm for improving the GOR performance via a customized strategy and sheds light on the design of novel catalysts in the future.
Collapse
Affiliation(s)
- Fei Lu
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Bin Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Lifeng Shen
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Anjie Chen
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Yuhe Chen
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Yuxue Zhou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Xiuyun Zhang
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
| | - Bitao Liu
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China
| | - Min Zhou
- College of Physical Science and Technology, Yangzhou University, Yangzhou 225002, People's Republic of China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, People's Republic of China
| |
Collapse
|
29
|
Gao T, Jiao D, Wang L, Ge X, Wen X, Zhang L, Zheng L, Zou X, Zhang W, Zheng W, Fan J, Cui X. Switchable Acidic Oxygen Evolution Mechanisms on Atomic Skin of Ruthenium Metallene Oxides. J Am Chem Soc 2025; 147:4159-4166. [PMID: 39722537 DOI: 10.1021/jacs.4c13656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
RuO2 has been considered as a promising, low-cost, and highly efficient catalyst in the acidic oxygen evolution reaction (OER). However, it suffers from poor stability due to the inevitable involvement of the lattice oxygen mechanism (LOM). Here, we construct a unique metallene-based core-skin structure and unveil that the OER pathway of atomic RuO2 skin can be regulated from the LOM to an adsorbate evolution mechanism by altering the core species from metallene oxides to metallenes. This switch is achieved without sacrificing the number of active sites, enabling Pd@RuO2 metallenes to exhibit outstanding acidic OER activity with a low overpotential of 189 mV at 10 mA cm-2, which is 54 mV lower than that of the counterpart PdO@RuO2 metallenes. Additionally, they also exhibit robust stability with negligible activity decay over 100 h at 50 mA cm-2, outperforming most reported RuO2-based catalysts. Multiple spectroscopic analyses and theoretical calculations demonstrate that the Pd-metallene core, acting as an electron donor, increases the migration energy of subsurface oxygen atoms and optimizes the adsorption energy of intermediates on the active Ru sites, enabling a switch in the reaction mechanism. Such a unique metallene-based core-skin structure offers a novel way for tuning the catalytic behaviors of electrocatalysts.
Collapse
Affiliation(s)
- Tianyi Gao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Dongxu Jiao
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Lina Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xin Ge
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Xin Wen
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Lei Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wei Zhang
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Weitao Zheng
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Jinchang Fan
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| | - Xiaoqiang Cui
- School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Electron Microscopy Center, Jilin University, Changchun 130012, China
| |
Collapse
|
30
|
Shi Y, Miao H, Gao J, Liu F, Deng Y, Li H, Chi J, Li C, Liu F, Lai J, Wang L. Bifunctional fluorine doped Ru/RuO 2 clusters with dynamic electron modification and strong metal-support interaction boost proton exchange membrane water electrolyzer. J Colloid Interface Sci 2025; 679:578-585. [PMID: 39383836 DOI: 10.1016/j.jcis.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
The sluggish kinetics and inherent instability over the Ru/RuO2 clusters are still enormous challenges in proton exchange membrane (PEM) water electrolyzer. Herein, we innovatively report synergistic modulation of dynamic electron modification and strong metal-support interaction (SMSI) to activate and stabilize bifunctional fluorine doped Ru/RuO2 clusters anchored on carbon nanotube (CNT), thus achieving efficient and stable acidic overall water splitting. Theoretical and experimental studies found that surface metal-fluorine modification layer could dynamically regulate the interfacial electronic environment to stabilize and activate multiple active Ru species; and the SMSI between Ru/RuO2 cluster and CNT maintains stable electronic environment for dynamic electron modification and avoids migrating or shedding of active species in acidic environment. Therefore, the PEM electrolyzer assembled with optimal F5.5-Ru/RuO2@CNT can operate stably for 100 h at a high current density of 100 mA cm-2, which is the first time that bifunctional Ru-based nanocatalysts applied to PEM device at a high current density.
Collapse
Affiliation(s)
- Yue Shi
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongfu Miao
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianyang Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Feifei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Ying Deng
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Hongdong Li
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jingqi Chi
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Caixia Li
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Fusheng Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
31
|
Do VH, Lee JM. Transforming Adsorbate Surface Dynamics in Aqueous Electrocatalysis: Pathways to Unconstrained Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417516. [PMID: 39871686 DOI: 10.1002/adma.202417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Indexed: 01/29/2025]
Abstract
Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability. The immense promise and rapid evolution of this design strategy, however, do not overshadow the substantial challenges and ambiguities that persist, impeding the realization of significant breakthroughs in electrocatalyst development. This review explores the latest insights into the principles guiding the design of catalytic surfaces that enable favorable adsorbate dynamics within the contexts of hydrogen and oxygen electrochemistry. Innovative approaches for tailoring adsorbate-surface interactions are discussed, delving into underlying principles that govern these dynamics. Additionally, perspectives on the prevailing challenges are presented and future research directions are proposed. By evaluating the core principles and identifying critical research gaps, this review seeks to inspire rational electrocatalyst design, the discovery of novel reaction mechanisms and concepts, and ultimately, advance the large-scale implementation of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| |
Collapse
|
32
|
Zhang T, Liu Q, Bao H, Wang M, Wang N, Zhang B, Fan HJ. Atomically thin high-entropy oxides via naked metal ion self-assembly for proton exchange membrane electrolysis. Nat Commun 2025; 16:1037. [PMID: 39863593 PMCID: PMC11763053 DOI: 10.1038/s41467-025-56189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
Designing efficient Ruthenium-based catalysts as practical anodes is of critical importance in proton exchange membrane water electrolysis. Here, we develop a self-assembly technique to synthesize 1 nm-thick rutile-structured high-entropy oxides (RuIrFeCoCrO2) from naked metal ions assembly and oxidation at air-molten salt interface. The RuIrFeCoCrO2 requires an overpotential of 185 mV at 10 m A cm-2 and maintains the high activity for over 1000 h in an acidic electrolyte via the adsorption evolution mechanism. We discuss the role of each element in the RuIrFeCoCrO2 and find that the Cr, Co, and Ir sites contribute to the catalytic activity, while the Cr atoms weaken the Ru-O bond covalency and improves the catalyst stability. The assembled proton exchange membrane electrolyzer operates stably for more than 600 h at a large current of 1 A cm-2. The naked ion assembly demonstrated in this work may provide an effective pathway for the controlled synthesis of a diversity of high-entropy materials.
Collapse
Affiliation(s)
- Tao Zhang
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| | - Qingyi Liu
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Haoming Bao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Mingyue Wang
- Institute for Superconducting and Electronic Materials, Faculty of Engineering and Information Sciences, University of Wollongong, North Wollongong, NSW 2500, Australia
| | - Nana Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, PR China.
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
33
|
Tang J, Guan D, Xu H, Zhao L, Arshad U, Fang Z, Zhu T, Kim M, Pao CW, Hu Z, Ge J, Shao Z. Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction. Nat Commun 2025; 16:801. [PMID: 39824866 PMCID: PMC11742407 DOI: 10.1038/s41467-025-56188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/10/2025] [Indexed: 01/20/2025] Open
Abstract
Reducing green hydrogen production cost is critical for its widespread application. Proton-exchange-membrane water electrolyzers are among the most promising technologies, and significant research has been focused on developing more active, durable, and cost-effective catalysts to replace expensive iridium in the anode. Ruthenium oxide is a leading alternative while its stability is inadequate. While considerable progress has been made in designing doped Ru oxides and composites to improve stability, the uncertainty in true failure mechanism in acidic oxygen evolution reaction inhibits their further optimization. This study reveals that proton participation capability within Ru oxides is a critical factor contributing to their instability, which can induce catalyst pulverization and the collapse of the electrode structure. By restricting proton participation in the bulk phase and stabilizing the reaction interface, we demonstrate that the stability of Ru-oxide anodes can be notably improved, even under a high current density of 4 A cm‒2 for over 100 h. This work provides some insights into designing Ru oxide-based catalysts and anodes for practical water electrolyzer applications.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Daqin Guan
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Hengyue Xu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Leqi Zhao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Ushtar Arshad
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Zijun Fang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Tianjiu Zhu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
- School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Manjin Kim
- John de Laeter Centre, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Chi-Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max-Planck-Institute for Chemical Physics of Solids Nöthnitzer Str. 40, 01187, Dresden, Germany
| | - Junjie Ge
- State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.
| |
Collapse
|
34
|
Yang M, Guan X, Shi Z, Wu H, Cheng Y, Wang Z, Liu W, Xiao F, Shao M, Xiao M, Liu C, Xing W. Electron-Donating Zr Induces Suppressed Ru Over-Oxidation and Accelerated Deprotonation Process Toward Efficient and Durable Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411117. [PMID: 39817880 DOI: 10.1002/smll.202411117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/07/2025] [Indexed: 01/18/2025]
Abstract
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuOx under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.%) enhances durability noticeably, with a 77% reduction in degradation rate in the durability test of 10 mA cm-2 in 0.5 m H2SO4. When integrated into a homemade PEMWE device, the Zr-doped catalyst achieves excellent long-term stability, lasting up to 650 h at 100 mA cm⁻2. Additionally, the electronic modulation from the Zr modification leads to superior activity with a low overpotential of 208 mV at 10 mA cm-2. Theoretical calculation results further reveal that electron-donating Zr modification effectively suppresses Ru overoxidation and lattice oxygen participation, maintaining a robust structure during acidic OER. This modification also promotes deprotonation through stronger Brønsted acid sites, significantly improving both long-term stability and activity.
Collapse
Affiliation(s)
- Ming Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xin Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Zhaoping Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Hongxiang Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yuqing Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Ziang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Wei Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- CIAC-HKUST Joint Laboratory for Hydrogen Energy, Energy Institute, The Hong Kong University of Science and Technology, Clear Watery Bay, Kowloon, Hong Kong, 999077, China
- Guangzhou Key Laboratory of Electrochemical Energy Storage Technologies, Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Meiling Xiao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- CAS - HK Joint Laboratory for Hydrogen Energy, Changchun, Jilin, 130022, China
| | - Changpeng Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- CAS - HK Joint Laboratory for Hydrogen Energy, Changchun, Jilin, 130022, China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Advanced Power Sources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- CAS - HK Joint Laboratory for Hydrogen Energy, Changchun, Jilin, 130022, China
| |
Collapse
|
35
|
Park W, Chung DY. Activity-Stability Relationships in Oxygen Evolution Reaction. ACS MATERIALS AU 2025; 5:1-10. [PMID: 39802143 PMCID: PMC11718537 DOI: 10.1021/acsmaterialsau.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 01/16/2025]
Abstract
The oxygen evolution reaction (OER) is a critical process in various sustainable energy technologies. Despite substantial progress in catalyst development, the practical application of OER catalysts remains hindered by the ongoing challenge of balancing high catalytic activity with long-term stability. We explore the inverse trends often observed between activity and stability, drawing on key insights from both experimental and theoretical studies. Special focus is placed on the performance of different electrodes and their interaction with acidic and alkaline media across a range of electrochemical conditions. This Perspective integrates recent advancements to present a thorough framework for understanding the mechanisms underlying the activity-stability relationship, offering strategies for the rational design of next-generation OER catalysts that successfully meet the dual demands of activity and durability.
Collapse
Affiliation(s)
- Wonchul Park
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of
Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular
Engineering, Korea Advanced Institute of
Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
36
|
Zhang J, Fu X, Kwon S, Chen K, Liu X, Yang J, Sun H, Wang Y, Uchiyama T, Uchimoto Y, Li S, Li Y, Fan X, Chen G, Xia F, Wu J, Li Y, Yue Q, Qiao L, Su D, Zhou H, Goddard WA, Kang Y. Tantalum-stabilized ruthenium oxide electrocatalysts for industrial water electrolysis. Science 2025; 387:48-55. [PMID: 39745949 DOI: 10.1126/science.ado9938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/20/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025]
Abstract
The iridium oxide (IrO2) catalyst for the oxygen evolution reaction used industrially (in proton exchange membrane water electrolyzers) is scarce and costly. Although ruthenium oxide (RuO2) is a promising alternative, its poor stability has hindered practical application. We used well-defined extended surface models to identify that RuO2 undergoes structure-dependent corrosion that causes Ru dissolution. Tantalum (Ta) doping effectively stabilized RuO2 against such corrosion and enhanced the intrinsic activity of RuO2. In an industrial demonstration, Ta-RuO2 electrocatalyst exhibited stability near that of IrO2 and had a performance decay rate of ~14 microvolts per hour in a 2800-hour test. At current densities of 1 ampere per square centimeter, it had an overpotential 330 millivolts less than that of IrO2.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianbiao Fu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Soonho Kwon
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, USA
| | - Kaifeng Chen
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Jin Yang
- DongFang Boiler Group Co., LTD, Chengdu, China
| | - Haoran Sun
- DongFang Boiler Group Co., LTD, Chengdu, China
| | - Yanchang Wang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shaofeng Li
- Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Yan Li
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Xiaolong Fan
- The Key Laboratory for Magnetism and Magnetic Materials, Lanzhou University, Lanzhou, China
| | - Gong Chen
- National Laboratory of Solid State Microstructures, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Fanjie Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jinsong Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Yanbo Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA, USA
| | - Yijin Kang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Zheng WX, Cheng XX, Chen PP, Wang LL, Duan Y, Feng GJ, Wang XR, Li JJ, Zhang C, Yu ZY, Lu TB. Boosting the durability of RuO 2 via confinement effect for proton exchange membrane water electrolyzer. Nat Commun 2025; 16:337. [PMID: 39747082 PMCID: PMC11695614 DOI: 10.1038/s41467-024-55747-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Ruthenium dioxide has attracted extensive attention as a promising catalyst for oxygen evolution reaction in acid. However, the over-oxidation of RuO2 into soluble H2RuO5 species results in a poor durability, which hinders the practical application of RuO2 in proton exchange membrane water electrolysis. Here, we report a confinement strategy by enriching a high local concentration of in-situ formed H2RuO5 species, which can effectively suppress the RuO2 degradation by shifting the redox equilibrium away from the RuO2 over-oxidation, greatly boosting its durability during acidic oxygen evolution. Therefore, the confined RuO2 catalyst can continuously operate at 10 mA cm-2 for over 400 h with negligible attenuation, and has a 14.8 times higher stability number than the unconfined RuO2 catalyst. An electrolyzer cell using the confined RuO2 catalyst as anode displays a notable durability of 300 h at 500 mA cm-2 and at 60 °C. This work demonstrates a promising design strategy for durable oxygen evolution reaction catalysts in acid via confinement engineering.
Collapse
Affiliation(s)
- Wen-Xing Zheng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Xuan-Xuan Cheng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Ping-Ping Chen
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Lin-Lin Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Ying Duan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Guo-Jin Feng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Xiao-Ran Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Jing-Jing Li
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China
| | - Zi-You Yu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China.
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin, China.
| |
Collapse
|
38
|
Wu L, Huang W, Li D, Jia H, Zhao B, Zhu J, Zhou H, Luo W. Unveiling the Structure and Dissociation of Interfacial Water on RuO 2 for Efficient Acidic Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2025; 64:e202413334. [PMID: 39377206 DOI: 10.1002/anie.202413334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
Understanding the structure and dynamic process of interfacial water molecules at the catalyst-electrolyte interface on acidic oxygen evolution reaction (OER) kinetics is highly desirable for the development of proton exchange membrane water electrolyzers. Herein, we construct a series of p-block metal elements (Ga, In, Sn) doped RuO2 catalysts with manipulated electronic structure and Ru-O covalency to investigate the effect of electrochemical interfacial engineering on the improvement of acidic OER activity. Associated with operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy measurements and theoretical analysis, we uncover the free-H2O enriched local environment and dynamic evolution from 4-coordinated hydrogen-bonded water and 2-coordinated hydrogen-bonded water to free-H2O on the surface of Ga-RuO2, are responsible for the optimized connectivity of hydrogen bonding network in the electrical double layer by promoting solvent reorganization. In addition, the structurally ordered interfacial water molecules facilitate high-efficiency proton-coupled electron transfer across the interface, leading to reduced energy barrier of the follow-up dissociation process and enhanced acidic OER performance. This work highlights the key role of structure and dynamic process of interfacial water for acidic OER, and demonstrates the electrochemical interfacial engineering as an efficient strategy to design high-performance electrocatalysts.
Collapse
Affiliation(s)
- Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Wenxia Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Dongyang Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Bingbing Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
39
|
Yang CY, Zhang Q, Li T, Chen XH, Li XL, Luo HQ, Li NB. Binary ruthenium dioxide and nickel oxide ultrafine particles loaded on carbon nanotubes for high-stability oxygen evolution reaction at high current densities. J Colloid Interface Sci 2025; 677:323-330. [PMID: 39151225 DOI: 10.1016/j.jcis.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
RuO2 is an efficient electrocatalyst for the oxygen evolution reaction (OER). However, during the OER process, RuO2 is prone to oxidation into Rux+ (x > 4), leading to its dissolution in the electrolyte and resulting in poor stability of RuO2. Here, we report a bicomponent electrocatalyst, NiO and RuO2 co-loaded on carbon nanotubes (RuO2/NiO/CNT). The results demonstrate that the introduction of NiO suppresses the over-oxidation of RuO2 during the OER process, not only inheriting the excellent catalytic performance of RuO2, but also significantly enhancing the stability of the catalyst for OER at high current densities. In contrast to RuO2/CNT, RuO2/NiO/CNT shows no significant change in activity after 150 h of OER at a current density of 100 mA cm-2. Density functional theory (DFT) calculations indicate that NiO transfers a large number of electrons to RuO2, thereby reducing the oxidation state of Ru. In conclusion, this study provides a detailed analysis of the phenomenon where low-valent metal oxides have the ability to enhance the stability of RuO2 catalysts.
Collapse
Affiliation(s)
- Chen Yu Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao Hui Chen
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiao Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
40
|
Wu W, Xu L, Lu Q, Sun J, Xu Z, Song C, Yu JC, Wang Y. Addressing the Carbonate Issue: Electrocatalysts for Acidic CO 2 Reduction Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312894. [PMID: 38722084 PMCID: PMC11733726 DOI: 10.1002/adma.202312894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) powered by renewable energy provides a promising route to CO2 conversion and utilization. However, the widely used neutral/alkaline electrolyte consumes a large amount of CO2 to produce (bi)carbonate byproducts, leading to significant challenges at the device level, thereby impeding the further deployment of this reaction. Conducting CO2RR in acidic electrolytes offers a promising solution to address the "carbonate issue"; however, it presents inherent difficulties due to the competitive hydrogen evolution reaction, necessitating concerted efforts toward advanced catalyst and electrode designs to achieve high selectivity and activity. This review encompasses recent developments of acidic CO2RR, from mechanism elucidation to catalyst design and device engineering. This review begins by discussing the mechanistic understanding of the reaction pathway, laying the foundation for catalyst design in acidic CO2RR. Subsequently, an in-depth analysis of recent advancements in acidic CO2RR catalysts is provided, highlighting heterogeneous catalysts, surface immobilized molecular catalysts, and catalyst surface enhancement. Furthermore, the progress made in device-level applications is summarized, aiming to develop high-performance acidic CO2RR systems. Finally, the existing challenges and future directions in the design of acidic CO2RR catalysts are outlined, emphasizing the need for improved selectivity, activity, stability, and scalability.
Collapse
Affiliation(s)
- Weixing Wu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Liangpang Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Qian Lu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jiping Sun
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Zhanyou Xu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Chunshan Song
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Jimmy C. Yu
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| | - Ying Wang
- Department of ChemistryThe Chinese University of Hong KongHong Kong S. A. R.China
| |
Collapse
|
41
|
Zou X, Li Z, Liang Q, Liu F, Xu T, Song K, Jiang Z, Zhang W, Zheng W. Multitasking-Effect Ca Ions Triggered Symmetry-Breaking of RuO 2 Coordination for Acidic Oxygen Evolution Reaction. NANO LETTERS 2024; 24:16151-16158. [PMID: 39652069 DOI: 10.1021/acs.nanolett.4c05139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
The development of highly active and stable electrocatalysts for the acid oxygen evolution reaction (OER) is both appealing and challenging. The generation of defects is an emerging strategy for improving the water oxidation efficiency. Herein, we introduced multitasking Ca ions to trigger oxygen vacancies in RuO2, resulting in vacancy-rich RuO2 (RuO2-Ov) nanoparticles with enhanced and sustainable OER activity. The oxygen vacancy in RuO2-Ov breaks the symmetry of the RuO6 octahedron, enhancing the d-band center of Ru and reducing the level of 4d-2p hybridization in Ru-O bonds. This effectively optimizes intermediate adsorption and inhibits Ru dissolution. The RuO2-OV catalyst achieves a current density of 10 mA/cm2 with an overpotential of only 198 mV, stabilizing for over 100 h (degradation rate: 0.2 mV/h). Its mass activity is 17.9 times higher than that of commercial RuO2. Our work highlights that multitasking atomic construction defect engineering effectively balances the seesaw relationship between catalytic activity and stability.
Collapse
Affiliation(s)
- Xu Zou
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Zhenyu Li
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Qing Liang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Fuxi Liu
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Tiantian Xu
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Kexin Song
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Zhou Jiang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun 130012, China
| |
Collapse
|
42
|
Sun Y, Xiao M, Liu F, Gan J, Gao S, Liu J. Oxygen Vacancy-Electron Polarons Featured InSnRuO 2 Oxides: Orderly and Concerted In-Ov-Ru-O-Sn Substructures for Acidic Water Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414579. [PMID: 39491504 DOI: 10.1002/adma.202414579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Polymetallic oxides with extraordinary electrons/geometry structure ensembles, trimmed electron bands, and way-out coordination environments, built by an isomorphic substitution strategy, may create unique contributing to concertedly catalyze water oxidation, which is of great significance for proton exchange membrane water electrolysis (PEMWE). Herein, well-defined rutile InSnRuO2 oxides with density-controllable oxygen vacancy (Ov)-free electron polarons are firstly fabricated by in situ isomorphic substitution, using trivalent In species as Ov generators and the adjacent metal ions as electron donors to form orderly and concerted In-Ov-Ru-O-Sn substructures in the tetravalent oxides. For acidic water oxidation, the obtained InSnRuO2 displays an ultralow overpotential of 183 mV (versus RHE) and a mass activity (MA) of 103.02 A mgRu -1, respectively. For a long-term stability test of PEMWE, it can run at a low and unchangeable cell potential (1.56 V) for 200 h at 50 mA cm-2, far exceeding current IrO2||Pt/C assembly in 0.5 m H2SO4. Accelerated degradation testing results of PEMWE with pure water as the electrolyte show no significant increase in voltage even when the voltage is gradually increased from 1 to 5 A cm-2. The remarkably improved performance is associated with the concerted In-Ov-Ru-O-Sn substructures stabilized by the dense Ov-electron polarons, which synergistically activates band structure of oxygen species and adjacent Ru sites and then boosting the oxygen evolution kinetics. More importantly, the self-trapped Ov-electron polaron induces a decrease in the entropy and enthalpy, and efficiently hinder Ru atoms leaching by increasing the lattice atom diffusion energy barrier, achieves long-term stability of the oxide. This work may open a door to design next-generation Ru-based catalysts with polarons to create orderly and asymmetric substructures as active sites for efficient electrocatalysis in PEMWE application.
Collapse
Affiliation(s)
- Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingyue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
43
|
Wu H, Chang J, Yu J, Wang S, Hu Z, Waterhouse GIN, Yong X, Tang Z, Chang J, Lu S. Atomically engineered interfaces inducing bridging oxygen-mediated deprotonation for enhanced oxygen evolution in acidic conditions. Nat Commun 2024; 15:10315. [PMID: 39609455 PMCID: PMC11605066 DOI: 10.1038/s41467-024-54798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
The development of efficient and stable electrocatalysts for water oxidation in acidic media is vital for the commercialization of the proton exchange membrane electrolyzers. In this work, we successfully construct Ru-O-Ir atomic interfaces for acidic oxygen evolution reaction (OER). The catalysts achieve overpotentials as low as 167, 300, and 390 mV at 10, 500, and 1500 mA cm-2 in 0.5 M H2SO4, respectively, with the electrocatalyst showing robust stability for >1000 h of operation at 10 mA cm-2 and negligible degradation after 200,000 cyclic voltammetry cycles. Operando spectroelectrochemical measurements together with theoretical investigations reveal that the OER pathway over the Ru-O-Ir active site is near-optimal, where the bridging oxygen site of Ir-OBRI serves as the proton acceptor to accelerate proton transfer on an adjacent Ru centre, breaking the typical adsorption-dissociation linear scaling relationship on a single Ru site and thus enhancing OER activity. Here, we show that rational design of multiple active sites can break the activity/stability trade-off commonly encountered for OER catalysts, offering good approaches towards high-performance acidic OER catalysts.
Collapse
Affiliation(s)
- Han Wu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiangwei Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China.
| | - Jingkun Yu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Siyang Wang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Zhiang Hu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | | | - Xue Yong
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, UK
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Junbiao Chang
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China
| | - Siyu Lu
- College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, P.R. China.
| |
Collapse
|
44
|
Zhang Y, Mu X, Liu Z, Zhao H, Zhuang Z, Zhang Y, Mu S, Liu S, Wang D, Dai Z. Twin-distortion modulated ultra-low coordination PtRuNi-O x catalyst for enhanced hydrogen production from chemical wastewater. Nat Commun 2024; 15:10149. [PMID: 39578452 PMCID: PMC11584716 DOI: 10.1038/s41467-024-54513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The development of efficient and robust catalysts for hydrogen evolution reaction is crucial for advancing the hydrogen economy. In this study, we demonstrate that ultra-low coordinated hollow PtRuNi-Ox nanocages exhibit superior catalytic activity and stability across varied conditions, notably surpassing commercial Pt/C catalysts. Notably, the PtRuNi-Ox catalysts achieve current densities of 10 mA cm-2 at only 19.6 ± 0.1, 20.9 ± 0.1, and 21.0 ± 0.1 mV in alkaline freshwater, chemical wastewater, and seawater, respectively, while maintaining satisfied stability with minimal activity loss after 40,000 cycles. In situ experiments and theoretical calculations reveal that the ultra-low coordination of Pt, Ru, and Ni atoms creates numerous dangling bonds, which lower the water dissociation barrier and optimizing hydrogen adsorption. This research marks a notable advancement in the precise engineering of atomically dispersed multi-metallic centers in catalysts for energy-related applications.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Institution, 430070, Wuhan, China
| | - Zhengyang Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Institution, 430070, Wuhan, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yifan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Institution, 430070, Wuhan, China
| | - Suli Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, 100084, Beijing, China.
| | - Zhihui Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816, Nanjing, China.
| |
Collapse
|
45
|
Chen S, Liu H, Yuan B, Xu W, Cao A, Sendeku MG, Li Y, Sun X, Wang F. Bi-doped ruthenium oxide nanocrystal for water oxidation in acidic media. NANOSCALE 2024; 16:20940-20947. [PMID: 39449263 DOI: 10.1039/d4nr02745k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
There is an urgent need to develop a cost-effective and highly efficient acidic OER catalyst to support the progress of proton exchange membrane water electrolysis technology. Ruthenium-based catalysts, which possess high activity and significantly lower cost compared to iridium-based catalysts, emerge as competitive candidates. However, their suboptimal stability constrains the wide application of RuO2. Herein, we develop ultra-small Bi0.05Ru0.95O2 nanocrystal with diameter of approximately 6.5 ± 0.1 nm for acidic OER. The Bi0.05Ru0.95O2 nanocrystal electrocatalyst exhibits a low overpotential of 203.5 mV at 10 mA cm-2 and 300+ hour stability at a high water-splitting current density of 100 mA cm-2 in 0.5 M H2SO4 with a low decay rate of 0.44 mV h-1. Density functional theory (DFT) calculation results confirmed the adsorbate evolving mechanism (AEM) occurring on Bi0.05Ru0.95O2, which prevents lattice oxygen from participating in the reaction, thus avoiding the collapse of the structure. We proved that the Bi dopants could play a crucial role in not only reducing the energy barrier of the potential-determining step, but also delivering electrons to Ru sites, thereby alleviating the over-oxidation of Ru active sites and enhancing operation durability.
Collapse
Affiliation(s)
- Shiyao Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Hai Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Bichen Yuan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Wenhai Xu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Aiqing Cao
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Marshet Getaye Sendeku
- Ocean Hydrogen Energy R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, P. R. China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Fengmei Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
46
|
Wu H, Li F, Huang S, Wang Z, Ma Y, Bian H, Wang C, Zhou Q, Jia S, Xue G, Hu Z, Gu J, Tang S, Meng X. Dual-synergistic effect of medium-entropy metal sulfoselenide nanoparticles toward efficient overall seawater splitting. J Colloid Interface Sci 2024; 680:472-483. [PMID: 39577244 DOI: 10.1016/j.jcis.2024.11.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Developing efficient and durable electrodes for overall water splitting (OWS) in seawater electrolytes is a major challenge. Herein, we synthesized highly active and stable Fe1.2(CoNi)1.8S3Se3 medium-entropy metal sulfoselenide (MESSe) nanoparticles for the electrodes. The Fe1.2(CoNi)1.8S3Se3 MESSe electrode exhibited excellent electrocatalytic performance in alkaline simulated seawater, with a η100 value of 156 mV for the hydrogen evolution reaction and 262 mV for the oxygen evolution reaction. Compared to Fe1.2(CoNi)1.8S6 sulfide and Fe1.2(CoNi)1.8Se6 selenide, the electronic structure of Fe1.2(CoNi)1.8S3Se3 MESSe positively modulates the adsorption/desorption process of *H/*OH intermediate and significantly reduces the free energy of the rate-determining step, thereby accelerating the reaction kinetics of both hydrogen/oxygen evolution reactions. The performance of OWS is significantly enhanced by utilizing the prepared electrode, enabling it to achieve 100 mA cm-2 with only 1.77 V in alkaline simulated seawater. Furthermore, the durability of the electrode is maintained at this high current density in alkaline simulated seawater, alkaline seawater as well as seawater electrolyte. This work will lay the foundation for the development of innovative medium-entropy metal sulfoselenides, promoting their application in a wide range of electrochemical energy systems operating under extreme conditions.
Collapse
Affiliation(s)
- Hao Wu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Fengqi Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Sirui Huang
- College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zhichao Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Yujie Ma
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Haifeng Bian
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Cong Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Qing Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Shunshun Jia
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Ge Xue
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Zhonglu Hu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Jian Gu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Shaochun Tang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Xiangkang Meng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
47
|
Cao X, Qin H, Zhang J, Chen X, Jiao L. Regulation of Oxide Pathway Mechanism for Sustainable Acidic Water Oxidation. J Am Chem Soc 2024; 146:32049-32058. [PMID: 39529602 DOI: 10.1021/jacs.4c12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The advancement of acid-stable oxygen evolution reaction (OER) electrocatalysts is crucial for efficient hydrogen production through proton exchange membrane (PEM) water electrolysis. Unfortunately, the activity of electrocatalysts is constrained by a linear scaling relationship in the adsorbed evolution mechanism, while the lattice-oxygen-mediated mechanism undermines stability. Here, we propose a heterogeneous dual-site oxide pathway mechanism (OPM) that avoids these limitations through direct dioxygen radical coupling. A combination of Lewis acid (Cr) and Ru to form solid solution oxides (CrxRu1-xO2) promotes OH adsorption and shortens the dual-site distance, which facilitates the formation of *O radical and promotes the coupling of dioxygen radical, thereby altering the OER mechanism to a Cr-Ru dual-site OPM. The Cr0.6Ru0.4O2 catalyst demonstrates a lower overpotential than that of RuO2 and maintains stable operation for over 350 h in a PEM water electrolyzer at 300 mA cm-2. This mechanism regulation strategy paves the way for an optimal catalytic pathway, essential for large-scale green hydrogen production.
Collapse
Affiliation(s)
- Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| | - Jinyang Zhang
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaojie Chen
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education State Key Laboratory of Advanced Chemical Power Sources Collaborative Innovation Center of Chemical Science and Engineering, TianjinCollege of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
48
|
Zeng L, Yuan B, Zhou Q. Enabling Efficient Oxygen Evolution via Anchoring Carbon-Layer-Confined RuO x on a Well-Matched Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24696-24705. [PMID: 39504472 DOI: 10.1021/acs.langmuir.4c03507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Oxygen evolution reaction (OER) is a multistep proton-coupled four-electron process with sluggish kinetics, which seriously limits the hydrogen production efficiency, thus it is of great importance to develop an efficient and stable OER catalyst. In this study, a two-step differential pyrolysis strategy is employed to design a three-dimensional porous microstructured material consisting of RuOx nanoparticles coated by a thin-layer carbon, where the active particles were isolated in separate chambers and the RuOx nanoparticles mainly existed in the form of a heterogeneous interface between RuO2 and partial metallic Ru. The preparation parameters of the catalysts are optimized via combining transient and steady-state polarization properties, and the target catalyst Cat-500-1.5t shows the best OER catalytic performance after ca. 60 h of a chronopotentiometry test in an acidic medium with a much smaller performance change than other samples. The unique design of adopting a carbon layer to form separate reaction chambers largely mitigates the excessive oxidation loss of the active components under strong oxidation potential. The suitability of the catalyst with the loaded substrate and test media is explored, and in an acidic medium, the carbon paper is much better than the titanium fiber, while in an alkaline medium, the titanium fiber is obviously superior to the carbon paper. On both carbon paper and titanium fiber, the performance in an alkaline medium outperforms that in an acidic medium, and the possible reasons for the performance difference are analyzed. Herein, to obtain the actual electrocatalytic performance, the optimal design of the catalyst structure and matching suitable conductive substrate in a specific medium are quite necessary, which provides a feasible strategy for the acquisition of efficient and stable electrocatalysts and the desirable presentation of performance.
Collapse
Affiliation(s)
- Liming Zeng
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bang Yuan
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Qing Zhou
- State Key Laboratory of Separation and Comprehensive Utilization of Rare Metals, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
- Guangdong Provincial Key Laboratory of Rare Earth Development and Application, Institute of Resources Utilization and Rare Earth Development, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
49
|
Duan Y, Wang LL, Zheng WX, Zhang XL, Wang XR, Feng GJ, Yu ZY, Lu TB. Oxyanion Engineering on RuO 2 for Efficient Proton Exchange Membrane Water Electrolysis. Angew Chem Int Ed Engl 2024; 63:e202413653. [PMID: 39133139 DOI: 10.1002/anie.202413653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
In acidic proton exchange membrane water electrolysis (PEMWE), the anode oxygen evolution reaction (OER) catalysts rely heavily on the expensive and scarce iridium-based materials. Ruthenium dioxide (RuO2) with lower price and higher OER activity, has been explored for the similar task, but has been restricted by the poor stability. Herein, we developed an anion modification strategy to improve the OER performance of RuO2 in acidic media. The designed multicomponent catalyst based on sulfate anchored on RuO2/MoO3 displays a low overpotential of 190 mV at 10 mA cm-2 and stably operates for 500 hours with a very low degradation rate of 20 μV h-1 in acidic electrolyte. When assembled in a PEMWE cell, this catalyst as an anode shows an excellent stability at 500 mA cm-2 for 150 h. Experimental and theoretical results revealed that MoO3 could stabilize sulfate anion on RuO2 surface to suppress its leaching during OER. Such MoO3-anchored sulfate not only reduces the formation energy of *OOH intermediate on RuO2, but also impedes both the surface Ru and lattice oxygen loss, thereby achieving the high OER activity and exceptional durability.
Collapse
Affiliation(s)
- Ying Duan
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Lin-Lin Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Wen-Xing Zheng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, China
| | - Xiao-Ran Wang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Guo-Jin Feng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Zi-You Yu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science & Engineering, Tianjin University of Technology, 300384, Tianjin, China
| |
Collapse
|
50
|
Yin ZH, Liu H, Hu JS, Wang JJ. The breakthrough of oxide pathway mechanism in stability and scaling relationship for water oxidation. Natl Sci Rev 2024; 11:nwae362. [PMID: 39588208 PMCID: PMC11587812 DOI: 10.1093/nsr/nwae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/27/2024] Open
Abstract
An in-depth understanding of electrocatalytic mechanisms is essential for advancing electrocatalysts for the oxygen evolution reaction (OER). The emerging oxide pathway mechanism (OPM) streamlines direct O-O radical coupling, circumventing the formation of oxygen vacancy defects featured in the lattice oxygen mechanism (LOM) and bypassing additional reaction intermediates (*OOH) inherent to the adsorbate evolution mechanism (AEM). With only *O and *OH as intermediates, OPM-driven electrocatalysts stand out for their ability to disrupt traditional scaling relationships while ensuring stability. This review compiles the latest significant advances in OPM-based electrocatalysis, detailing design principles, synthetic methods, and sophisticated techniques to identify active sites and pathways. We conclude with prospective challenges and opportunities for OPM-driven electrocatalysts, aiming to advance the field into a new era by overcoming traditional constraints.
Collapse
Affiliation(s)
- Zhao-Hua Yin
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Science, Beijing 100190, China
| | - Jian-Jun Wang
- State Key Laboratory of Crystal Materials, School of Cystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|