1
|
Mao JH, Shen ZH, Wang J, Liu RL, Liu XF, Lan Y, Zhou M, Jiang JY, Shen Y, Nan CW. Machine Learning-Enabled Emotion Recognition by Multisource Throat Signals. ACS NANO 2025; 19:18397-18408. [PMID: 40329705 DOI: 10.1021/acsnano.5c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Emotion monitoring plays a crucial role in mental health management. However, traditional methods of emotion recognition predominantly rely on subjective questionnaires or facial expression analyses, which are often inadequate for continuous and highly accurate monitoring. In this study, we propose a high-precision, fine-grained emotion recognition system based on multisource throat physiological signals. The system collects signals through optimized flexible multiporous skin sensors and analyzes them using machine learning models capable of efficiently capturing complex feature interactions. First, we adopt a two-step cross-linking strategy to modulate the porous structure of the sensitive layer to enable accurate detection of the diverse and weak physiological signals in the throat. By extracting four-dimensional features from the input of 7025 samples, the platform based on the Light Gradient Boosting Machine (LightGBM) efficiently captures their nonlinear interactions, ultimately achieving precise classification of five emotional states (relaxation, surprise, disgust, fear, and neutral) with an accuracy of 98.9%. Further validation on an independent data set reveals an average emotion recognition accuracy of 99.3%, demonstrating the system's robustness and reliability in real-world applications. This work provides a viable technological solution for real-time and continuous emotion monitoring, offering significant potential in mental health management and related fields.
Collapse
Affiliation(s)
- Jing-Hui Mao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Zhong-Hui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Run-Lin Liu
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao-Fei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Ying Lan
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Mengjun Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | | | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Ishiyama S. The neurobiology of ticklishness. Neurosci Res 2025; 217:104907. [PMID: 40383199 DOI: 10.1016/j.neures.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Ticklishness is an idiosyncratic form of touch observed in multiple animal species, including humans. Although commonly regarded as trivial, it involves complex neurobiological mechanisms and diverse behavioral phenomena observed across species. Two distinct forms exist: knismesis, a mild tingling sensation elicited by gentle touch, and gargalesis, an intense sensation associated with involuntary laughter. Advocating the importance of clearly distinguishing these two types of ticklishness, this review synthesizes current knowledge on their neuronal underpinnings. Topics include somatosensory processing, self-tickling and sensory attenuation, emotional modulation, sociosexual dimensions, and evolutionary perspectives, among others. Special attention is given to the ambivalent nature of gargalesis, challenging conventional single-dimensional models of emotional valence. Ultimately, studying ticklishness provides a valuable opportunity to investigate playful emotional experiences from a naturalistic perspective, addressing fundamental yet underrepresented questions in contemporary neuroscience. Far from trivial, ticklishness thus provides valuable insights into the neural mechanisms underlying complex, context-dependent emotional and social experiences.
Collapse
Affiliation(s)
- Shimpei Ishiyama
- Central Institute of Mental Health, Department of Neuropeptide Research in Psychiatry Research Group for Neurobiology of Positive Emotions, J5, Mannheim 68159, Germany.
| |
Collapse
|
3
|
Liu F, He Z, Wang Y. Neural mechanisms, influencing factors and interventions in empathic pain. Neuropharmacology 2025; 269:110349. [PMID: 39914620 DOI: 10.1016/j.neuropharm.2025.110349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/10/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Empathic pain, defined as the emotional resonance with the suffering of others, is akin to the observer's own experience of pain and is vital for building and sustaining positive interpersonal relationships. Despite its importance, the neural mechanism of empathic pain remains poorly understood. In this review, we integrated and summarized the currently knowledge on the neural networks associated with empathic pain, focusing on key brain regions such as the insula, anterior cingulate cortex (ACC), ventral tegmental area (VTA), nucleus accumbens (NAc), and locus coeruleus (LC)/norepinephrine (NE)-sympatho-adrenomedullar (LC/NE-SAM) system. We also reviewed the factors that affect empathic pain, including gender, personal beliefs, the intimacy of relationships, and the nature of interpersonal relationships, and highlighted the central role of the insula and ACC in the neural circuitry of empathy, the importance of the IC-BLA and ACC-NAc/VTA connections in modulating empathic pain, and the involvement of the LC/NE-SAM system in mediating pain empathy. We further discussed how gender significantly influences empathic pain, with women showing more intense emotional reactions to social distress than men. It also summarized the roles of personal pain history and empathy levels in modulating empathic responses. Furthermore, the review emphasized the impact of social factors such as the nature of interpersonal relationships and experiences of social exclusion on empathic pain. By providing a detailed exploration of the neural mechanisms and influencing factors of empathic pain, this review aims to establish a robust foundation for developing targeted therapeutic strategies and improving pain management in clinical settings.
Collapse
Affiliation(s)
- Furui Liu
- School of Pharmacy, Hangzhou Normal University, 311121, Zhejiang, China
| | - Ziwan He
- School of Pharmacy, Hangzhou Normal University, 311121, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, 311121, Zhejiang, China.
| |
Collapse
|
4
|
Vitale EM, Tbaba AH, Tam K, Gossman KR, Smith AS. Opposite-sex pairing alters social-induced GCaMP and dopamine activity in the insula of male prairie voles. Ann N Y Acad Sci 2025. [PMID: 40375361 DOI: 10.1111/nyas.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The prairie vole (Microtus ochrogaster) is a monogamous rodent species which displays selective social behaviors to conspecifics after establishing a pair-bonded relationship, specifically partner-directed affiliation and stranger-directed aggression. This social selectivity relies on the ability of an individual to respond appropriately to a social context and requires salience detection and valence assignment. The anterior insular cortex (aIC) has been implicated in stimulus processing and categorization across a variety of contexts, but its regulation of pair bond-induced social selectivity in prairie voles has not been studied. Here, we examined whether neural activity and gene expression in the aIC change during male-female pairings in male prairie voles. Opposite-sex pairing was characterized by changes to calcium and dopamine transients in the aIC that corresponded with the display of social selectivity across pair bond maturation. Furthermore, D1 and D2 receptor mRNA expression was significantly higher in males after 48 h of cohabitation with a female partner compared to same-sex housed males, and D2 mRNA remained elevated after a week of cohabitation. Together, these results implicate a role for dopamine and its receptors in the aIC across the transition from early- to late-phase pair bonding.
Collapse
Affiliation(s)
- Erika M Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, USA
| | - Amina H Tbaba
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, USA
| | - Kaitlyn Tam
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, USA
| | - Kyle R Gossman
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
5
|
Liu X, Lai J, Han C, Zhong H, Huang K, Liu Y, Zhu X, Wei P, Tan L, Xu F, Wang L. Neural circuit underlying individual differences in visual escape habituation. Neuron 2025:S0896-6273(25)00301-0. [PMID: 40347942 DOI: 10.1016/j.neuron.2025.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/28/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025]
Abstract
Emotions like fear help organisms respond to threats. Repeated predator exposure leads to adaptive responses with unclear neural mechanisms behind individual variability. We identify two escape behaviors in mice-persistent escape (T1) and rapid habituation (T2)-linked to unique arousal states under repetitive looming stimuli. Combining multichannel recording, circuit mapping, optogenetics, and behavioral analyses, we find parallel pathways from the superior colliculus (SC) to the basolateral amygdala (BLA) via the ventral tegmental area (VTA) for T1 and via the mediodorsal thalamus (MD) for T2. T1 involves heightened arousal, while T2 features rapid habituation. The MD integrates SC and insular cortex inputs to modulate arousal and defensive behaviors. This work reveals neural circuits underpinning adaptive threat responses and individual variability.
Collapse
Affiliation(s)
- Xuemei Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Juan Lai
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chuanliang Han
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hao Zhong
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kang Huang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanming Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xutao Zhu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pengfei Wei
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Liming Tan
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China
| | - Fuqiang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 10049, China; Shenzhen Key Lab of Neuropsychiatric Modulation, Chinese Academy of Sciences, Shenzhen, Gudangdong 518055, China; Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Zhao J, Jia H, Ma P, Zhu D, Fang Y. Multidimensional mechanisms of anxiety and depression in Parkinson's disease: Integrating neuroimaging, neurocircuits, and molecular pathways. Pharmacol Res 2025; 215:107717. [PMID: 40157405 DOI: 10.1016/j.phrs.2025.107717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Anxiety and depression are common non-motor symptoms of Parkinson's disease (PD) that significantly affect patients' quality of life. In recent years, our understanding of PD has advanced through multifaceted studies on the pathological mechanisms associated with anxiety and depression in PD. These classic psychiatric symptoms involve complex pathophysiology, with both distinct features and connections to the mechanisms underlying the aetiology of PD. Furthermore, the co-occurrence of anxiety and depression in PD blurs the boundaries between them. Therefore, a comprehensive summary of the pathogenic mechanisms associated with anxiety and depression will aid in better addressing the emergence of these classic psychiatric symptoms in PD. This article integrates neuroanatomical, neural projection, neurotransmitter, neuroinflammatory, brain-gut axis, neurotrophic, hypothalamic-pituitary-adrenal axis, and genetic perspectives to provide a comprehensive description of the core pathological alterations underlying anxiety and depression in PD, aiming to provide an up-to-date perspective and broader therapeutic prospects for PD patients suffering from anxiety or depression.
Collapse
Affiliation(s)
- Jihu Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Huafang Jia
- Qingdao Medical College of Qingdao University, Qingdao, Shandong, China.
| | - Pengju Ma
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Deyuan Zhu
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yibin Fang
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Neurovascular Disease, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
7
|
Gauthier M, Hebert LP, Dugast E, Lardeux V, Letort K, Thiriet N, Belnoue L, Balado E, Solinas M, Belujon P. Sex-dependent effects of stress on aIC-NAc circuit neuroplasticity: Role of the endocannabinoid system. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111335. [PMID: 40113129 DOI: 10.1016/j.pnpbp.2025.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 02/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Stress is a major risk factor for psychiatric disorders and affects neuroplasticity in brain areas like the nucleus accumbens core (NAcC) and the insular cortex (IC). This study examined neuroplasticity changes in the aIC-NAcC circuit after restraint stress in male and female rats, and explored the role of the endocannabinoid system. Male and female rats underwent 2 h of acute restraint stress. Behavioral tests and in vivo electrophysiological recordings were performed immediately and 24 h after stress exposure. cFos was performed immediately after stress. Since stress effects were observed only in males, we evaluated the systemic and intra-NAc blockade of CB1 receptors in male rats. We found increased c-Fos expression in the hypothalamus but not in the IC in both sexes after acute restraint stress, along with heightened anxiety and reduced exploratory behavior. Males and females exhibited different neuronal plasticity in the aIC-NAcC pathway. Under basal conditions, males showed equal proportions of long-term potentiation (LTP) and long-term depression (LTD), whereas females predominantly exhibited LTP. Stress disrupted synaptic plasticity in males by eliminating LTD in the aIC-NAcC pathway 24 h after exposure. This effect was reversed by systemic and local CB1 receptor blockade. These findings suggest that integration of aIC information into NAcC differs by sex, with stress-induced neuroplasticity changes occurring only in males, dependent on the endocannabinoid system. This study provides insight into sex differences in stress reactivity, which may relate to stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Manon Gauthier
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Léo-Paul Hebert
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Kevin Letort
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Laure Belnoue
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Eric Balado
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
8
|
Munguba H, Srivastava I, Gutzeit VA, Singh A, Vijay A, Kristt M, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-targeted photopharmacology reveals distinct anxiolytic roles for presynaptic mGluR2 in prefrontal- and insula-amygdala synapses. Neuron 2025; 113:912-930.e6. [PMID: 39879977 PMCID: PMC11925682 DOI: 10.1016/j.neuron.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/11/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025]
Abstract
Dissecting how membrane receptors regulate neural circuits is critical for deciphering principles of neuromodulation and mechanisms of drug action. Here, we use a battery of optical approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) in the basolateral amygdala (BLA) controls anxiety-related behavior in mice. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of ventromedial prefrontal cortex (vmPFC)-BLA, but not posterior insular cortex (pIC)-BLA, connections produces a long-lasting decrease in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreases social avoidance and novelty-induced hypophagia without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Fiber photometry and viral mapping reveal distinct activity patterns and anatomical organization of vmPFC-BLA and pIC-BLA circuits. Together, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
9
|
Yang Z, Xie L, Zhang B, Hu S, Liu C, Wu Z, Yang C. Neural circuits and therapeutic mechanisms of empathic pain. Neuropharmacology 2025; 265:110268. [PMID: 39674400 DOI: 10.1016/j.neuropharm.2024.110268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Empathy is the capacity to understand and share the experiences of others. This ability fosters connections between individuals, enriching the fabric of our shared world. One notable example is empathy for the pain of others. Such experiences facilitate the identification of potential dangers, both for oneself and for others. Neuroimaging studies have helped to pinpoint brain regions that modulate empathic pain. Recently, there has also been a surge in studies exploring the neural mechanisms of empathic pain in rodent models. Neuropsychiatric disorders such as autism, psychosis, and schizophrenia often exhibit empathy deficits. Targeting the modulation of empathic pain holds potential for alleviating core symptoms in these patients. Interestingly, empathy research may also benefit pain management, leading to new approaches for understanding the negative emotions associated with pain. This review summarizes recent advances in neuroimaging for the study of empathic pain, outlines the underlying neurocircuit mechanisms, describes therapeutic strategies, and explores promising avenues for future research. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Zonghan Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Li Xie
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Anesthesiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 210031, China
| | - Bingyuan Zhang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou 225300, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
10
|
Palchaudhuri S, Lin BX, Osypenko D, Wu J, Kochubey O, Schneggenburger R. A posterior insula to lateral amygdala pathway transmits US-offset information with a limited role in fear learning. Cell Rep 2025; 44:115320. [PMID: 39954251 DOI: 10.1016/j.celrep.2025.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 03/21/2024] [Accepted: 01/27/2025] [Indexed: 02/17/2025] Open
Abstract
During fear learning, associations between a sensory cue (conditioned stimulus, CS) and an aversive stimulus (unconditioned stimulus, US) are formed in specific brain circuits. The lateral amygdala (LA) is involved in CS-US integration; however, US pathways to the LA remain understudied. Here, we investigated whether the posterior insular cortex (pInsCx), a hub for aversive state signaling, transmits US information to the LA during fear learning. We find that the pInsCx makes a robust, glutamatergic projection specifically targeting the anterior LA. In vivo Ca2+ imaging reveals that neurons in the pInsCx and anterior LA display US-onset and US-offset responses; imaging combined with axon silencing shows that the pInsCx selectively transmits US-offset information to the anterior LA. Optogenetic silencing, however, does not show a role for US-driven activity in the anterior LA or its pInsCx afferents in fear memory formation. Thus, we describe a cortical projection that carries US-offset information to the amygdala with a limited role in fear learning.
Collapse
Affiliation(s)
- Shriya Palchaudhuri
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Bei-Xuan Lin
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Denys Osypenko
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Jinyun Wu
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Olexiy Kochubey
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Brain Mind Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
11
|
Jin M, Ogundare SO, Lanio M, Sorid S, Whye AR, Santos SL, Franceschini A, Denny CA. A SMARTTR workflow for multi-ensemble atlas mapping and brain-wide network analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.12.603299. [PMID: 39071434 PMCID: PMC11275872 DOI: 10.1101/2024.07.12.603299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In the last decade, activity-dependent strategies for labelling multiple immediate early gene (IEG) ensembles in mice have generated unprecedented insight into the mechanisms of memory encoding, storage, and retrieval. However, few strategies exist for brain-wide mapping of multiple ensembles, including their overlapping population, and none incorporate capabilities for downstream network analysis. Here, we introduce a scalable workflow to analyze traditionally coronally-sectioned datasets produced by activity-dependent tagging systems. Intrinsic to this pipeline is simple multi-ensemble atlas registration and statistical testing in R (SMARTTR), an R package which wraps mapping capabilities with functions for statistical analysis and network visualization, and support for import of external datasets. We demonstrate the versatility of SMARTTR by mapping the ensembles underlying the acquisition and expression of learned helplessness (LH), a robust stress model. Applying network analysis, we find that exposure to inescapable shock (IS), compared to context training (CT), results in decreased centrality of regions engaged in spatial and contextual processing and higher influence of regions involved in somatosensory and affective processing. During LH expression, the substantia nigra emerges as a highly influential region which shows a functional reversal following IS, indicating a possible regulatory function of motor activity during helplessness. We also report that IS results in a robust decrease in reactivation activity across a number of cortical, hippocampal, and amygdalar regions, indicating suppression of ensemble reactivation may be a neurobiological signature of LH. These results highlight the emergent insights uniquely garnered by applying our analysis approach to multiple ensemble datasets and demonstrate the strength of our workflow as a hypothesis-generating toolkit.
Collapse
Affiliation(s)
- Michelle Jin
- Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA
- Neurobiology and Behavior (NB&B) Graduate Program, Columbia University, New York, NY, 10027, USA
| | - Simon O. Ogundare
- Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA
- Columbia College, New York, NY, 10027, USA
| | - Marcos Lanio
- Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA
- Adult Neurology Residency Program, Stony Brook Medicine, Stony Brook, NY, 11794, USA
| | | | - Alicia R. Whye
- Columbia College, New York, NY, 10027, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sofia Leal Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710-057, Portugal
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA
| | - Alessandra Franceschini
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA
- European Laboratory for Non-linear Spectroscopy (LENS), University of Florence, Sesto Fiorentino, Italy
| | - Christine. A. Denny
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, NY, 10032, USA
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH) / New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| |
Collapse
|
12
|
Imamura A, Araki R, Takahashi Y, Miyatake K, Kato F, Honjoh S, Tsurugizawa T. Zero-echo time imaging achieves whole brain activity mapping without ventral signal loss in mice. Neuroimage 2025; 307:121024. [PMID: 39805408 DOI: 10.1016/j.neuroimage.2025.121024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025] Open
Abstract
Functional MRI (fMRI) is an important tool for investigating functional networks. However, the widely used fMRI with T2*-weighted imaging in rodents has the problem of signal lack in the lateral ventral area of forebrain including the amygdala, which is essential for not only emotion but also noxious pain. Here, we scouted the zero-echo time (ZTE) sequence, which is robust to magnetic susceptibility and motion-derived artifacts, to image activation in the whole brain including the amygdala following the noxious stimulation to the hind paw. ZTE exhibited higher temporal signal-to-noise ratios than conventional fMRI sequences. Electrical sensory stimulation of the hind paw evoked ZTE signal increase in the primary somatosensory cortex. Formalin injection into the hind paw evoked early and latent change of ZTE signals throughout the whole brain including the subregions of amygdala. Furthermore, resting-state fMRI using ZTE demonstrated the functional connectivity, including that of the amygdala. These results indicate the feasibility of ZTE for whole brain fMRI including the amygdala and we first show acute and latent activity in different subnuclei of the amygdala complex after nociceptive stimulation.
Collapse
Affiliation(s)
- Ayako Imamura
- Ph. D. Program in Humanics, University of Tsukuba, Tsukuba, Japan; International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan; Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | | | - Yukari Takahashi
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichi Miyatake
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Sakiko Honjoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Tomokazu Tsurugizawa
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan; Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan; Faculty of Engineering, University of Tsukuba, Tsukuba, Japan; Universite du Quebec a Trios-Rivieres, Trois- Rivières, Canada.
| |
Collapse
|
13
|
Zhou Y, Wang G, Liang X, Xu Z. Hindbrain networks: Exploring the hidden anxiety circuits in rodents. Behav Brain Res 2025; 476:115281. [PMID: 39374875 DOI: 10.1016/j.bbr.2024.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/23/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Anxiety disorders are multifaceted conditions that engage numerous brain regions and circuits. While the hindbrain is pivotal in fundamental biological functions, its role in modulating emotions has been underappreciated. This review will uncover critical targets and circuits within the hindbrain that are essential for both anxiety and anxiolytic effects, expanding on research obtained through behavioral tests. The bidirectional neural pathways between the hindbrain and other brain regions, with a spotlight on vagal afferent signaling, provide a crucial framework for unraveling the neural mechanisms underlying anxiety. Exploring neural circuits within the hindbrain can help to unravel the neurobiological mechanisms of anxiety and elucidate differences in the expression of these circuits between genders, thereby providing valuable insights for the development of future anxiolytic drugs.
Collapse
Affiliation(s)
- Yifu Zhou
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Gang Wang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Xiaosong Liang
- Department of Neurosurgery, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Zhidi Xu
- Department of Anesthesia and Surgery, Affiliated Hospital of Shaoxing University, Shaoxing, China.
| |
Collapse
|
14
|
Jiang H, Zeng Y, He P, Zhu X, Zhu J, Gao Y. Aberrant resting-state voxel-mirrored homotopic connectivity in major depressive disorder with and without anxiety. J Affect Disord 2025; 368:191-199. [PMID: 39173924 DOI: 10.1016/j.jad.2024.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Prior researchers have identified distinct differences in functional connectivity neuroimaging characteristics among MDD patients. However, the auxiliary diagnosis and subtype differentiation roles of VMHC values in MDD patients have yet to be fully understood. We aim to explore the separating ability of VMHC values in patients with anxious MDD or with non-anxious MDD and HCs. METHODS We recruited 90 patients with anxious MDD, 69 patients with non-anxious MDD and 84 HCs. We collected a set of clinical variables included HAMD-17 scores, HAMA scores and rs-fMRI data. The data were analyzed combining difference analysis, SVM, correlation analysis and ROC analysis. RESULTS Relative to HCs, non-anxious MDD patients displayed significant lower VMHC values in the insula and PCG, and anxious MDD patients displayed a significant decrease in VMHC values in the cerebellum_crus2, STG, postCG, MFG and IFG. Compared with non-anxious MDD patients, the anxious MDD showed significant enhanced VMHC values in the PCG. The VMHC values in the insula and cerebellum_crus2 regions showed a better ability to discriminate HCs from patients with non-anxious MDD or with anxious MDD. The VMHC values in PCG showed a better ability to discriminate patients with anxious MDD and non-anxious MDD patients. CONCLUSION The VMHC values in the insula and cerebellum_crus2 regions could be served as imaging markers to differentiate HCs from patients with non-anxious MDD or with anxious MDD respectively. And the VMHC values in the PCG could be used to discriminate patients with anxious MDD from the non-anxious MDD patients.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - YanPing Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peidong He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Xiwei Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Jiangrui Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China; Yichang City Clinical Research Center for Mental Disorders, China.
| |
Collapse
|
15
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
16
|
Zhang J, Xie C, Xu P, Tong Q, Xiao L, Zhong J. Projections from subfornical organ to bed nucleus of the stria terminalis modulate inflammation-induced anxiety-like behaviors in mice. SCIENCE ADVANCES 2024; 10:eadp9413. [PMID: 39602546 PMCID: PMC11601211 DOI: 10.1126/sciadv.adp9413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Peripheral inflammation is closely related to the pathogenesis of sickness behaviors and psychiatric disorders such as anxiety and depression. The circumventricular organs (CVOs) are important brain sites to perceive peripheral inflammatory signals, but few studies have reported their role in inflammation-induced anxiety or depression. Using a mouse model of lipopolysaccharide (LPS)-induced inflammation, we identified a previously unreported role of the subfornical organ (SFO), one of the CVOs, in combating inflammation-induced anxiety. LPS treatment induced anxiety-like and sickness behaviors in mice. Although both the SFO and the organum vasculosum of the lamina terminalis (a CVO) neurons were activated after LPS treatment, only manipulating SFO neurons modulated LPS-induced anxiety-like behaviors. Activating or inhibiting SFO neurons alleviated or aggravated LPS-induced anxiety-like behaviors. In addition, SFO exerted this effect through glutamatergic projections to the bed nucleus of the stria terminalis. Manipulating SFO neurons did not affect LPS-induced sickness behaviors. Thus, we uncovered an active role of SFO neurons in counteracting peripheral inflammation-induced anxiety.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Chuantong Xie
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Peiyao Xu
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qiuping Tong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lei Xiao
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Jing Zhong
- Department of Anesthesiology, Zhongshan Hospital Fudan University, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and the Institutes of Brain Science, Fudan University, Shanghai 200032, China
- Department of Anesthesiology, Wusong Hospital Branch, Zhongshan Hospital Affiliated to Fudan University, Shanghai 201999, China
| |
Collapse
|
17
|
Vitale EM, Tbaba AH, Tam K, Gossman KR, Smith AS. Opposite-sex pairing alters social interaction-induced GCaMP and dopamine activity in the insular cortex of male prairie voles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624717. [PMID: 39605383 PMCID: PMC11601588 DOI: 10.1101/2024.11.21.624717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The prairie vole (Microtus ochrogaster) is a monogamous rodent species which displays selective social behaviors to conspecifics after establishing a pair bonded relationship, specifically partner-directed affiliation and stranger-directed aggression. This social selectivity relies on the ability of an individual to respond appropriately to a social context and requires salience detection and valence assignment. The anterior insular cortex (aIC) has been implicated in stimulus processing and categorization across a variety of contexts and is well-situated to integrate environmental stimuli and internal affective states to modulate complex goal-directed behaviors and social decision-making. Surprisingly, the contribution of the aIC to the expression of pair bond-induced social selectivity in prairie voles has been drastically understudied. Here we examined whether neural activity and gene expression in the aIC change in response to opposite-sex pairing and/or as a function of pairing length in male prairie voles. Opposite-sex pairing was characterized by changes to calcium and dopamine (DA) transients in the aIC that corresponded with the display of social selectivity across pair bond maturation. Furthermore, D1 and D2 receptor mRNA expression was significantly higher in males after 48 hrs of cohabitation with a female partner compared to same-sex housed males, and D2 mRNA remained significantly higher in males with a female partner compared to same-sex housed males after a week of cohabitation. Together, these results implicate a role for DA and its receptors in the aIC across the transition from early- to late-phase pair bonding.
Collapse
Affiliation(s)
- Erika M. Vitale
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Amina H. Tbaba
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Kaitlyn Tam
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Kyle R. Gossman
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| | - Adam S. Smith
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
18
|
Potapenko IV, Ishikawa T, Okuda H, Hori K, Ozaki N. Chemogenetic inhibition of pain-related neurons in the posterior insula cortex reduces mechanical hyperalgesia and anxiety-like behavior during acute pain. Biochem Biophys Res Commun 2024; 734:150625. [PMID: 39236586 DOI: 10.1016/j.bbrc.2024.150625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/09/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Pain is a complex phenomenon that involves sensory, emotional, and cognitive components. The posterior insula cortex (pIC) has been shown to integrate multisensory experience with emotional and cognitive states. However, the involvement of the pIC in the regulation of affective behavior in pain remains unclear. Here, we investigate the role of pain-related pIC neurons in the regulation of anxiety-like behavior during acute pain. We combined a chemogenetic approach with targeted recombination in active populations (TRAP) in mice. Global chemogenetic inhibition of pIC neurons attenuates chemically-induced mechanical hypersensitivity without affecting pain-related anxiety-like behavior. In contrast, inhibition of pain-related pIC neurons reduces both mechanical hypersensitivity and pain-related anxiety-like behavior. The present study provides important insights into the role of pIC neurons in the regulation of sensory and affective pain-related behavior.
Collapse
Affiliation(s)
- Ilia Viktorovich Potapenko
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8640, Japan; Department of Medical and Biological Physics, Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky, Partizan Zheleznyak st. 1, 660022, Krasnoyarsk, Russia
| | - Tatsuya Ishikawa
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8640, Japan.
| | - Hiroaki Okuda
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8640, Japan
| | - Kiyomi Hori
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8640, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, 920-8640, Japan.
| |
Collapse
|
19
|
Zhang R, Deng H, Xiao X. The Insular Cortex: An Interface Between Sensation, Emotion and Cognition. Neurosci Bull 2024; 40:1763-1773. [PMID: 38722464 PMCID: PMC11607240 DOI: 10.1007/s12264-024-01211-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/22/2024] [Indexed: 11/30/2024] Open
Abstract
The insula is a complex brain region central to the orchestration of taste perception, interoception, emotion, and decision-making. Recent research has shed light on the intricate connections between the insula and other brain regions, revealing the crucial role of this area in integrating sensory, emotional, and cognitive information. The unique anatomical position and extensive connectivity allow the insula to serve as a critical hub in the functional network of the brain. We summarize its role in interoceptive and exteroceptive sensory processing, illustrating insular function as a bridge connecting internal and external experiences. Drawing on recent research, we delineate the insular involvement in emotional processes, highlighting its implications in psychiatric conditions, such as anxiety, depression, and addiction. We further discuss the insular contributions to cognition, focusing on its significant roles in time perception and decision-making. Collectively, the evidence underscores the insular function as a dynamic interface that synthesizes diverse inputs into coherent subjective experiences and decision-making processes. Through this review, we hope to highlight the importance of the insula as an interface between sensation, emotion, and cognition, and to inspire further research into this fascinating brain region.
Collapse
Affiliation(s)
- Ruohan Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hanfei Deng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiong Xiao
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
20
|
Nguyen TT, Hashiguchi K, Waschek JA, Miyata A, Kambe Y. The pivotal role of PACAP/PAC1R signaling from the anterior insular cortex to the locus coeruleus on anxiety-related behaviors of mice. Neurochem Int 2024; 180:105879. [PMID: 39396708 DOI: 10.1016/j.neuint.2024.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) and its specific receptor (PAC1R) are widely present in the central nervous system (CNS), and PACAP/PAC1R signaling has been implicated in anxiety-related behaviors. The locus coeruleus (LC), with its extensive noradrenergic (NA) projections throughout the CNS, is also implicated in anxiety. Although the LC exhibits a high expression of PAC1R, the precise role of PACAP/PAC1R signaling in the LC's involvement in anxiety remains unclear. Histochemical analysis confirmed high levels of PAC1R mRNA in the LC and showed that PAC1R gene transcripts were highly localized to NA neurons. Targeted deletion of PAC1R from these cells led to a hyperactive/low anxiety phenotype in the open field and elevated-plus maze tests. Retrograde neurocircuit tracing indicated PACAP neurons from the anterior insular cortex (aIC) and a few other regions projected axons to the LC. The selective activation of PACAP neurons in the aIC led to significantly increased anxiety behavior without a change in overall locomotor activity. Moreover, shRNA PACAP knockdown in the aIC in wild-type mice led to a selective decrease in anxiety. The present results identify an aIC to LC neurocircuit controlling anxiety that critically requires PACAP/PAC1R signaling.
Collapse
Affiliation(s)
- Thi Thu Nguyen
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - Kohei Hashiguchi
- Department of Dental Anesthesiology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - James A Waschek
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, United States
| | - Atsuro Miyata
- Department of Drug Discovery for DDS, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Science, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima, 890-8544, Japan.
| |
Collapse
|
21
|
Cao Y, Zhang J, He X, Wu C, Liu Z, Zhu B, Miao L. Empathic pain: Exploring the multidimensional impacts of biological and social aspects in pain. Neuropharmacology 2024; 258:110091. [PMID: 39059575 DOI: 10.1016/j.neuropharm.2024.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Empathic pain refers to an individual's perception, judgment, and emotional response to others' pain. This complex social cognitive ability is crucial for healthy interactions in human society. In recent years, with the development of multidisciplinary research in neuroscience, psychology and sociology, empathic pain has become a focal point of widespread attention in these fields. However, the neural mechanism underlying empathic pain remain a controversial and unresolved area. This review aims to comprehensively summarize the history, influencing factors, neural mechanisms and pharmacological interventions of empathic pain. We hope to provide a comprehensive scientific perspective on how humans perceive and respond to others' pain experiences and to provide guidance for future research directions and clinical applications. This article is part of the Special Issue on "Empathic Pain".
Collapse
Affiliation(s)
- Yuchun Cao
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Jiahui Zhang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Xiaofang He
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Chenye Wu
- Department of Emergency Medicine, Changshu Hospital Affiliated to Soochow University, Changshu, 215500, China
| | - Zeyuan Liu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, China.
| | - Liying Miao
- Department of Blood Purification Center, The Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China.
| |
Collapse
|
22
|
Iezzi D, Cáceres-Rodríguez A, Pereira-Silva J, Chavis P, Manzoni OJJ. Gestational CBD Shapes Insular Cortex in Adulthood. Cells 2024; 13:1486. [PMID: 39273056 PMCID: PMC11394289 DOI: 10.3390/cells13171486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Many expectant mothers use CBD to alleviate symptoms like nausea, insomnia, anxiety, and pain, despite limited research on its long-term effects. However, CBD passes through the placenta, affecting fetal development and impacting offspring behavior. We investigated how prenatal CBD exposure affects the insular cortex (IC), a brain region involved in emotional processing and linked to psychiatric disorders. The IC is divided into two territories: the anterior IC (aIC), processing socioemotional signals, and the posterior IC (pIC), specializing in interoception and pain perception. Pyramidal neurons in the aIC and pIC exhibit sex-specific electrophysiological properties, including variations in excitability and the excitatory/inhibitory balance. We investigated IC's cellular properties and synaptic strength in the offspring of both sexes from mice exposed to low-dose CBD during gestation (E5-E18; 3 mg/kg, s.c.). Prenatal CBD exposure induced sex-specific and territory-specific changes in the active and passive membrane properties, as well as intrinsic excitability and the excitatory/inhibitory balance, in the IC of adult offspring. The data indicate that in utero CBD exposure disrupts IC neuronal development, leading to a loss of functional distinction between IC territories. These findings may have significant implications for understanding the effects of CBD on emotional behaviors in offspring.
Collapse
Affiliation(s)
- Daniela Iezzi
- INMED, INSERM, Aix-Marseille University, 13273 Marseille, France; (A.C.-R.); (J.P.-S.); (P.C.)
| | | | | | | | | |
Collapse
|
23
|
Lynch CJ, Elbau IG, Ng T, Ayaz A, Zhu S, Wolk D, Manfredi N, Johnson M, Chang M, Chou J, Summerville I, Ho C, Lueckel M, Bukhari H, Buchanan D, Victoria LW, Solomonov N, Goldwaser E, Moia S, Caballero-Gaudes C, Downar J, Vila-Rodriguez F, Daskalakis ZJ, Blumberger DM, Kay K, Aloysi A, Gordon EM, Bhati MT, Williams N, Power JD, Zebley B, Grosenick L, Gunning FM, Liston C. Frontostriatal salience network expansion in individuals in depression. Nature 2024; 633:624-633. [PMID: 39232159 PMCID: PMC11410656 DOI: 10.1038/s41586-024-07805-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 07/09/2024] [Indexed: 09/06/2024]
Abstract
Decades of neuroimaging studies have shown modest differences in brain structure and connectivity in depression, hindering mechanistic insights or the identification of risk factors for disease onset1. Furthermore, whereas depression is episodic, few longitudinal neuroimaging studies exist, limiting understanding of mechanisms that drive mood-state transitions. The emerging field of precision functional mapping has used densely sampled longitudinal neuroimaging data to show behaviourally meaningful differences in brain network topography and connectivity between and in healthy individuals2-4, but this approach has not been applied in depression. Here, using precision functional mapping and several samples of deeply sampled individuals, we found that the frontostriatal salience network is expanded nearly twofold in the cortex of most individuals with depression. This effect was replicable in several samples and caused primarily by network border shifts, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was stable over time, unaffected by mood state and detectable in children before the onset of depression later in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in frontostriatal circuits that tracked fluctuations in specific symptoms and predicted future anhedonia symptoms. Together, these findings identify a trait-like brain network topology that may confer risk for depression and mood-state-dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.
Collapse
Affiliation(s)
- Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| | - Immanuel G Elbau
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Tommy Ng
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Aliza Ayaz
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Shasha Zhu
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Danielle Wolk
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Nicola Manfredi
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Johnson
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Megan Chang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jolin Chou
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | | - Claire Ho
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Maximilian Lueckel
- Leibniz Institute for Resilience Research, Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Hussain Bukhari
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Derrick Buchanan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | | | - Nili Solomonov
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Eric Goldwaser
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Stefano Moia
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | | | - Jonathan Downar
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Fidel Vila-Rodriguez
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Daniel M Blumberger
- Department of Psychiatry and Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Temerty Centre for Therapeutic Brain Intervention, Toronto, Ontario, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Kendrick Kay
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Amy Aloysi
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mahendra T Bhati
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Nolan Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Jonathan D Power
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin Zebley
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Logan Grosenick
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Faith M Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Shiratori R, Yokoi T, Kinoshita K, Xue W, Sasaki T, Kuga N. The Posterior Insular Cortex is Necessary for Feeding-Induced Jejunal Myoelectrical Activity in Male Rats. Neuroscience 2024; 553:40-47. [PMID: 38936460 DOI: 10.1016/j.neuroscience.2024.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The gastrointestinal tract exhibits coordinated muscle motility in response to food digestion, which is regulated by the central nervous system through autonomic control. The insular cortex is one of the brain regions that may regulate the muscle motility. In this study, we examined whether, and how, the insular cortex, especially the posterior part, regulates gastrointestinal motility by recording jejunal myoelectrical signals in response to feeding in freely moving male rats. Feeding was found to induce increases in jejunal myoelectrical signal amplitudes. This increase in the jejunal myoelectrical signals was abolished by vagotomy and pharmacological inhibition of the posterior insular cortex. Additionally, feeding induced a decrease and increase in sympathetic and parasympathetic nervous activities, respectively, both of which were eliminated by posterior insular cortical inhibition. These results suggest that the posterior insular cortex regulates jejunal motility in response to feeding by modulating autonomic tone.
Collapse
Affiliation(s)
- Reina Shiratori
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Taiki Yokoi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Kosuke Kinoshita
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Wenfeng Xue
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan; Department of Neuropharmacology, Tohoku University School of Medicine, 4-1 Seiryo-machi, Aoba-Ku, Sendai 980-8575, Japan.
| | - Nahoko Kuga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai 980-8578, Japan.
| |
Collapse
|
25
|
Lim H, Zhang Y, Peters C, Straub T, Mayer JL, Klein R. Genetically- and spatially-defined basolateral amygdala neurons control food consumption and social interaction. Nat Commun 2024; 15:6868. [PMID: 39127719 PMCID: PMC11316773 DOI: 10.1038/s41467-024-50889-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
The basolateral amygdala (BLA) contains discrete neuronal circuits that integrate positive or negative emotional information and drive the appropriate innate and learned behaviors. Whether these circuits consist of genetically-identifiable and anatomically segregated neuron types, is poorly understood. Also, our understanding of the response patterns and behavioral spectra of genetically-identifiable BLA neurons is limited. Here, we classified 11 glutamatergic cell clusters in mouse BLA and found that several of them were anatomically segregated in lateral versus basal amygdala, and anterior versus posterior regions of the BLA. Two of these BLA subpopulations innately responded to valence-specific, whereas one responded to mixed - aversive and social - cues. Positive-valence BLA neurons promoted normal feeding, while mixed selectivity neurons promoted fear learning and social interactions. These findings enhance our understanding of cell type diversity and spatial organization of the BLA and the role of distinct BLA populations in representing valence-specific and mixed stimuli.
Collapse
Affiliation(s)
- Hansol Lim
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Yue Zhang
- Department Synapses - Circuits - Plasticity, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Christian Peters
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Tobias Straub
- Biomedical Center Core Facility Bioinformatics, LMU, Munich, Germany
| | - Johanna Luise Mayer
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany
| | - Rüdiger Klein
- Department Molecules - Signaling - Development, Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| |
Collapse
|
26
|
Park S, Huh Y, Kim JJ, Cho J. Bidirectional fear modulation by discrete anterior insular circuits in male mice. eLife 2024; 13:RP95821. [PMID: 39088250 PMCID: PMC11293866 DOI: 10.7554/elife.95821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The brain's ability to appraise threats and execute appropriate defensive responses is essential for survival in a dynamic environment. Humans studies have implicated the anterior insular cortex (aIC) in subjective fear regulation and its abnormal activity in fear/anxiety disorders. However, the complex aIC connectivity patterns involved in regulating fear remain under investigated. To address this, we recorded single units in the aIC of freely moving male mice that had previously undergone auditory fear conditioning, assessed the effect of optogenetically activating specific aIC output structures in fear, and examined the organization of aIC neurons projecting to the specific structures with retrograde tracing. Single-unit recordings revealed that a balanced number of aIC pyramidal neurons' activity either positively or negatively correlated with a conditioned tone-induced freezing (fear) response. Optogenetic manipulations of aIC pyramidal neuronal activity during conditioned tone presentation altered the expression of conditioned freezing. Neural tracing showed that non-overlapping populations of aIC neurons project to the amygdala or the medial thalamus, and the pathway bidirectionally modulated conditioned fear. Specifically, optogenetic stimulation of the aIC-amygdala pathway increased conditioned freezing, while optogenetic stimulation of the aIC-medial thalamus pathway decreased it. Our findings suggest that the balance of freezing-excited and freezing-inhibited neuronal activity in the aIC and the distinct efferent circuits interact collectively to modulate fear behavior.
Collapse
Affiliation(s)
- Sanggeon Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Brain Disease Research Institute, Ewha Brain Institute, Ewha Womans UniversitySeoulRepublic of Korea
| | - Yeowool Huh
- Department of Basic Medical Science, College of Medicine, Catholic Kwandong UniversityGangneungRepublic of Korea
- Institute for Bio-Medical Convergence, International St. Mary’s Hospital, Catholic Kwandong UniversityIncheonRepublic of Korea
| | - Jeansok J Kim
- Department of Psychology, University of WashingtonSeattleUnited States
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans UniversitySeoulRepublic of Korea
- Brain Disease Research Institute, Ewha Brain Institute, Ewha Womans UniversitySeoulRepublic of Korea
| |
Collapse
|
27
|
Freitas AE, Feng B, Woo T, Galli S, Baker C, Ban Y, Truong J, Beyeler A, Zou Y. Planar cell polarity proteins mediate ketamine-induced restoration of glutamatergic synapses in prefrontal cortical neurons in a mouse model for chronic stress. Nat Commun 2024; 15:4945. [PMID: 38858386 PMCID: PMC11165002 DOI: 10.1038/s41467-024-48257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/23/2024] [Indexed: 06/12/2024] Open
Abstract
Single administration of low-dose ketamine has both acute and sustained anti-depressant effects. Sustained effect is associated with restoration of glutamatergic synapses in medial prefrontal cortic (mFPC) neurons. Ketamine induced profound changes in a number of molecular pathways in a mouse model for chronic stress. Cell-cell communication analyses predicted that planar-cell-polarity (PCP) signaling was decreased after chronic administration of corticosterone but increased following ketamine administration in most of the excitatory neurons. Similar decrease of PCP signaling in excitatory neurons was predicted in dorsolateral prefrontal cortical (dl-PFC) neurons of patients with major depressive disorder (MDD). We showed that the basolateral amygdala (BLA)-projecting infralimbic prefrontal cortex (IL PFC) neurons regulate immobility time in the tail suspension test and food consumption. Conditionally knocking out Celsr2 and Celsr3 or Prickle2 in the BLA-projecting IL PFC neurons abolished ketamine-induced synapse restoration and behavioral remission. Therefore, PCP proteins in IL PFC-BLA neurons mediate synapse restoration induced by of low-dose ketamine.
Collapse
Affiliation(s)
- Andiara E Freitas
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bo Feng
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy Woo
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shae Galli
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Clayton Baker
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Yue Ban
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jonathan Truong
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anna Beyeler
- Neurocentre Magendie, University of Bordeaux, 146, Rue Leo Saignat, 33000, Bordeaux, France
| | - Yimin Zou
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
28
|
Li Y, Li C, Chen QY, Hao S, Mao J, Zhang W, Han X, Dong Z, Liu R, Tang W, Zhuo M, Yu S, Liu Y. Alleviation of migraine related pain and anxiety by inhibiting calcium-stimulating AC1-dependent CGRP in the insula of adult rats. J Headache Pain 2024; 25:81. [PMID: 38760739 PMCID: PMC11100092 DOI: 10.1186/s10194-024-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Recent animal and clinical findings consistently highlight the critical role of calcitonin gene-related peptide (CGRP) in chronic migraine (CM) and related emotional responses. CGRP antibodies and receptor antagonists have been approved for CM treatment. However, the underlying CGRP-related signaling pathways in the pain-related cortex remain poorly understood. METHODS The SD rats were used to establish the CM model by dural infusions of inflammatory soup. Periorbital mechanical thresholds were assessed using von-Frey filaments, and anxiety-like behaviors were observed via open field and elevated plus maze tests. Expression of c-Fos, CGRP and NMDA GluN2B receptors was detected using immunofluorescence and western blotting analyses. The excitatory synaptic transmission was detected by whole-cell patch-clamp recording. A human-used adenylate cyclase 1 (AC1) inhibitor, hNB001, was applied via insula stereotaxic and intraperitoneal injections in CM rats. RESULTS The insular cortex (IC) was activated in the migraine model rats. Glutamate-mediated excitatory transmission and NMDA GluN2B receptors in the IC were potentiated. CGRP levels in the IC significantly increased during nociceptive and anxiety-like activities. Locally applied hNB001 in the IC or intraperitoneally alleviated periorbital mechanical thresholds and anxiety behaviors in migraine rats. Furthermore, CGRP expression in the IC decreased after the hNB001 application. CONCLUSIONS Our study indicated that AC1-dependent IC plasticity contributes to migraine and AC1 may be a promising target for treating migraine in the future.
Collapse
Affiliation(s)
- Yang Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Chenhao Li
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Qi-Yu Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China
| | - Shun Hao
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China
| | - Jingrui Mao
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Wenwen Zhang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xun Han
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruozhuo Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenjing Tang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Min Zhuo
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
- Zhuomin Institute of Brain Research, Qingdao, Shandong Province, China.
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Shengyuan Yu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| | - Yinglu Liu
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
29
|
Zhao Z, Covelo A, Couderc Y, Mitra A, Varilh M, Wu Y, Jacky D, Fayad R, Cannich A, Bellocchio L, Marsicano G, Beyeler A. Cannabinoids regulate an insula circuit controlling water intake. Curr Biol 2024; 34:1918-1929.e5. [PMID: 38636514 DOI: 10.1016/j.cub.2024.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 02/29/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
The insular cortex, or insula, is a large brain region involved in the detection of thirst and the regulation of water intake. However, our understanding of the topographical, circuit, and molecular mechanisms for controlling water intake within the insula remains parcellated. We found that type-1 cannabinoid (CB1) receptors in the insular cortex cells participate in the regulation of water intake and deconstructed the circuit mechanisms of this control. Topographically, we revealed that the activity of excitatory neurons in both the anterior insula (aIC) and posterior insula (pIC) increases in response to water intake, yet only the specific removal of CB1 receptors in the pIC decreases water intake. Interestingly, we found that CB1 receptors are highly expressed in insula projections to the basolateral amygdala (BLA), while undetectable in the neighboring central part of the amygdala. Thus, we recorded the neurons of the aIC or pIC targeting the BLA (aIC-BLA and pIC-BLA) and found that they decreased their activity upon water drinking. Additionally, chemogenetic activation of pIC-BLA projection neurons decreased water intake. Finally, we uncovered CB1-dependent short-term synaptic plasticity (depolarization-induced suppression of excitation [DSE]) selectively in pIC-BLA, compared with aIC-BLA synapses. Altogether, our results support a model where CB1 receptor signaling promotes water intake by inhibiting the pIC-BLA pathway, thereby contributing to the fine top-down control of thirst responses.
Collapse
Affiliation(s)
- Zhe Zhao
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France; Max Planck Florida Institute for Neuroscience, 1 Max Planck Way, Jupiter, FL 33458, USA
| | - Ana Covelo
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Yoni Couderc
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Arojit Mitra
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Marjorie Varilh
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Yifan Wu
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Débora Jacky
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Rim Fayad
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Astrid Cannich
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Luigi Bellocchio
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Giovanni Marsicano
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| | - Anna Beyeler
- INSERM 1215, Neurocentre Magendie, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France.
| |
Collapse
|
30
|
Talpir I, Livneh Y. Stereotyped goal-directed manifold dynamics in the insular cortex. Cell Rep 2024; 43:114027. [PMID: 38568813 PMCID: PMC11063631 DOI: 10.1016/j.celrep.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
The insular cortex is involved in diverse processes, including bodily homeostasis, emotions, and cognition. However, we lack a comprehensive understanding of how it processes information at the level of neuronal populations. We leveraged recent advances in unsupervised machine learning to study insular cortex population activity patterns (i.e., neuronal manifold) in mice performing goal-directed behaviors. We find that the insular cortex activity manifold is remarkably consistent across different animals and under different motivational states. Activity dynamics within the neuronal manifold are highly stereotyped during rewarded trials, enabling robust prediction of single-trial outcomes across different mice and across various natural and artificial motivational states. Comparing goal-directed behavior with self-paced free consumption, we find that the stereotyped activity patterns reflect task-dependent goal-directed reward anticipation, and not licking, taste, or positive valence. These findings reveal a core computation in insular cortex that could explain its involvement in pathologies involving aberrant motivations.
Collapse
Affiliation(s)
- Itay Talpir
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
31
|
Yin Y, Haggerty DL, Zhou S, Atwood BK, Sheets PL. Converging Effects of Chronic Pain and Binge Alcohol Consumption on Anterior Insular Cortex Neurons Projecting to the Dorsolateral Striatum in Male Mice. J Neurosci 2024; 44:e1287232024. [PMID: 38453466 PMCID: PMC11026341 DOI: 10.1523/jneurosci.1287-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024] Open
Abstract
Chronic pain and alcohol use disorder (AUD) are highly comorbid, and patients with chronic pain are more likely to meet the criteria for AUD. Evidence suggests that both conditions alter similar brain pathways, yet this relationship remains poorly understood. Prior work shows that the anterior insular cortex (AIC) is involved in both chronic pain and AUD. However, circuit-specific changes elicited by the combination of pain and alcohol use remain understudied. The goal of this work was to elucidate the converging effects of binge alcohol consumption and chronic pain on AIC neurons that send projections to the dorsolateral striatum (DLS). Here, we used the Drinking-in-the-Dark (DID) paradigm to model binge-like alcohol drinking in mice that underwent spared nerve injury (SNI), after which whole-cell patch-clamp electrophysiological recordings were performed in acute brain slices to measure intrinsic and synaptic properties of AIC→DLS neurons. In male, but not female, mice, we found that SNI mice with no prior alcohol exposure consumed less alcohol compared with sham mice. Electrophysiological analyses showed that AIC→DLS neurons from SNI-alcohol male mice displayed increased neuronal excitability and increased frequency of miniature excitatory postsynaptic currents. However, mice exposed to alcohol prior to SNI consumed similar amounts of alcohol compared with sham mice following SNI. Together, our data suggest that the interaction of chronic pain and alcohol drinking have a direct effect on both intrinsic excitability and synaptic transmission onto AIC→DLS neurons in mice, which may be critical in understanding how chronic pain alters motivated behaviors associated with alcohol.
Collapse
Affiliation(s)
- Yuexi Yin
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David L Haggerty
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Shudi Zhou
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Brady K Atwood
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Patrick L Sheets
- Medical Neurosciences Graduate Program, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
32
|
Zhang Q, Xue Y, Wei K, Wang H, Ma Y, Wei Y, Fan Y, Gao L, Yao H, Wu F, Ding X, Zhang Q, Ding J, Fan Y, Lu M, Hu G. Locus Coeruleus-Dorsolateral Septum Projections Modulate Depression-Like Behaviors via BDNF But Not Norepinephrine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303503. [PMID: 38155473 PMCID: PMC10933643 DOI: 10.1002/advs.202303503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/14/2023] [Indexed: 12/30/2023]
Abstract
Locus coeruleus (LC) dysfunction is involved in the pathophysiology of depression; however, the neural circuits and specific molecular mechanisms responsible for this dysfunction remain unclear. Here, it is shown that activation of tyrosine hydroxylase (TH) neurons in the LC alleviates depression-like behaviors in susceptible mice. The dorsolateral septum (dLS) is the most physiologically relevant output from the LC under stress. Stimulation of the LCTH -dLSSST innervation with optogenetic and chemogenetic tools bidirectionally can regulate depression-like behaviors in both male and female mice. Mechanistically, it is found that brain-derived neurotrophic factor (BDNF), but not norepinephrine, is required for the circuit to produce antidepressant-like effects. Genetic overexpression of BDNF in the circuit or supplementation with BDNF protein in the dLS is sufficient to produce antidepressant-like effects. Furthermore, viral knockdown of BDNF in this circuit abolishes the antidepressant-like effect of ketamine, but not fluoxetine. Collectively, these findings underscore the notable antidepressant-like role of the LCTH -dLSSST pathway in depression via BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Qian Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - You Xue
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Ke Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hao Wang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yuan Ma
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yao Wei
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Yi Fan
- Department of NeurologyAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjing210024China
| | - Lei Gao
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Hang Yao
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Fangfang Wu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Xin Ding
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Qingyu Zhang
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
| | - Jianhua Ding
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Yi Fan
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Ming Lu
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| | - Gang Hu
- Department of PharmacologySchool of MedicineNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory of NeurodegenerationDepartment of PharmacologyNanjing Medical UniversityNanjing211166China
| |
Collapse
|
33
|
Agoitia A, Cruz-Sanchez A, Balderas I, Bermúdez-Rattoni F. The anterior insula and its projection to amygdala nuclei modulate the abstinence-exacerbated expression of conditioned place preference. Psychopharmacology (Berl) 2024; 241:445-459. [PMID: 38010515 PMCID: PMC10884150 DOI: 10.1007/s00213-023-06499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
RATIONALE Relapse into substance use is often triggered by exposure to drug-related environmental cues. The magnitude of drug seeking depends on the duration of abstinence, a phenomenon known as the incubation of drug craving. Clinical and preclinical research shows that the insular cortex is involved in substance use disorders and cue-induced drug seeking. However, the role of the insula on memory retrieval and motivational integration for cue-elicited drug seeking remains to be determined. OBJECTIVES We investigated the role of the anterior insular cortex (aIC) and its glutamatergic projection to amygdala nuclei (aIC-AMY) on the expression of conditioned place preference (CPP) during early and late abstinence. METHODS Male adult C57BL/6J mice underwent amphetamine-induced CPP, and their preference was tested following 1 or 14 days of abstinence. aIC and aIC-AMY functional role in CPP expression was assessed at both abstinence periods by employing optogenetic silencing and behavioral pharmacology. RESULTS Compared to a single day, an exacerbated preference for the amphetamine-paired context was observed after 14 days of abstinence. Photoinhibition of either aIC or aIC-AMY projection reduced CPP expression following late but not early abstinence. Similarly, the antagonism of aIC NMDA receptors reduced CPP expression after 14 days of abstinence but not 1 day. CONCLUSIONS These results suggest that aIC and its glutamatergic output to amygdala nuclei constitute critical neurobiological substrates mediating enhanced motivational cue reactivity during the incubation of amphetamine craving rather than contextual memory recall. Moreover, cortical NMDA receptor signaling may become sensitized during abstinence, ultimately modulating disproportioned drug seeking.
Collapse
Affiliation(s)
- Andrés Agoitia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Apolinar Cruz-Sanchez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Israela Balderas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
34
|
Munguba H, Gutzeit VA, Srivastava I, Kristt M, Singh A, Vijay A, Arefin A, Thukral S, Broichhagen J, Stujenske JM, Liston C, Levitz J. Projection-Targeted Photopharmacology Reveals Distinct Anxiolytic Roles for Presynaptic mGluR2 in Prefrontal- and Insula-Amygdala Synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575699. [PMID: 38293136 PMCID: PMC10827048 DOI: 10.1101/2024.01.15.575699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Dissecting how membrane receptors regulate neural circuit function is critical for deciphering basic principles of neuromodulation and mechanisms of therapeutic drug action. Classical pharmacological and genetic approaches are not well-equipped to untangle the roles of specific receptor populations, especially in long-range projections which coordinate communication between brain regions. Here we use viral tracing, electrophysiological, optogenetic, and photopharmacological approaches to determine how presynaptic metabotropic glutamate receptor 2 (mGluR2) activation in the basolateral amygdala (BLA) alters anxiety-related behavior. We find that mGluR2-expressing neurons from the ventromedial prefrontal cortex (vmPFC) and posterior insular cortex (pIC) preferentially target distinct cell types and subregions of the BLA to regulate different forms of avoidant behavior. Using projection-specific photopharmacological activation, we find that mGluR2-mediated presynaptic inhibition of vmPFC-BLA, but not pIC-BLA, connections can produce long-lasting decreases in spatial avoidance. In contrast, presynaptic inhibition of pIC-BLA connections decreased social avoidance, novelty-induced hypophagia, and increased exploratory behavior without impairing working memory, establishing this projection as a novel target for the treatment of anxiety disorders. Overall, this work reveals new aspects of BLA neuromodulation with therapeutic implications while establishing a powerful approach for optical mapping of drug action via photopharmacology.
Collapse
Affiliation(s)
- Hermany Munguba
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Vanessa A. Gutzeit
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ipsit Srivastava
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Melanie Kristt
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ashna Singh
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Akshara Vijay
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anisul Arefin
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Sonal Thukral
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Joseph M. Stujenske
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA
| | - Conor Liston
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
35
|
Braine A, Georges F. Emotion in action: When emotions meet motor circuits. Neurosci Biobehav Rev 2023; 155:105475. [PMID: 37996047 DOI: 10.1016/j.neubiorev.2023.105475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
The brain is a remarkably complex organ responsible for a wide range of functions, including the modulation of emotional states and movement. Neuronal circuits are believed to play a crucial role in integrating sensory, cognitive, and emotional information to ultimately guide motor behavior. Over the years, numerous studies employing diverse techniques such as electrophysiology, imaging, and optogenetics have revealed a complex network of neural circuits involved in the regulation of emotional or motor processes. Emotions can exert a substantial influence on motor performance, encompassing both everyday activities and pathological conditions. The aim of this review is to explore how emotional states can shape movements by connecting the neural circuits for emotional processing to motor neural circuits. We first provide a comprehensive overview of the impact of different emotional states on motor control in humans and rodents. In line with behavioral studies, we set out to identify emotion-related structures capable of modulating motor output, behaviorally and anatomically. Neuronal circuits involved in emotional processing are extensively connected to the motor system. These circuits can drive emotional behavior, essential for survival, but can also continuously shape ongoing movement. In summary, the investigation of the intricate relationship between emotion and movement offers valuable insights into human behavior, including opportunities to enhance performance, and holds promise for improving mental and physical health. This review integrates findings from multiple scientific approaches, including anatomical tracing, circuit-based dissection, and behavioral studies, conducted in both animal and human subjects. By incorporating these different methodologies, we aim to present a comprehensive overview of the current understanding of the emotional modulation of movement in both physiological and pathological conditions.
Collapse
Affiliation(s)
- Anaelle Braine
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | |
Collapse
|
36
|
Zhao H, Zhou M, Liu Y, Jiang J, Wang Y. Recent advances in anxiety disorders: Focus on animal models and pathological mechanisms. Animal Model Exp Med 2023; 6:559-572. [PMID: 38013621 PMCID: PMC10757213 DOI: 10.1002/ame2.12360] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders have become one of the most severe psychiatric disorders, and the incidence is increasing every year. They impose an extraordinary personal and socioeconomic burden. Anxiety disorders are influenced by multiple complex and interacting genetic, psychological, social, and environmental factors, which contribute to disruption or imbalance in homeostasis and eventually cause pathologic anxiety. The selection of a suitable animal model is important for the exploration of disease etiology and pathophysiology, and the development of new drugs. Therefore, a more comprehensive understanding of the advantages and limitations of existing animal models of anxiety disorders is helpful to further study the underlying pathological mechanisms of the disease. This review summarizes animal models and the pathogenesis of anxiety disorders, and discusses the current research status to provide insights for further study of anxiety disorders.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Mi Zhou
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yang Liu
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Jiaqi Jiang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yuhong Wang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| |
Collapse
|