1
|
Lin H, Ma C, Cai K, Guo L, Wang X, Lv L, Zhang C, Lin J, Zhang D, Ye C, Wang T, Huang S, Han J, Zhang Z, Gao J, Zhang M, Pu Z, Li F, Guo Y, Zhou X, Qin C, Yi F, Yu X, Kong W, Jiang C, Sun JP. Metabolic signaling of ceramides through the FPR2 receptor inhibits adipocyte thermogenesis. Science 2025; 388:eado4188. [PMID: 40080544 DOI: 10.1126/science.ado4188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 03/15/2025]
Abstract
Ceramides play a central role in human health and disease, yet their role as systemic signaling molecules remain poorly understood. In this work, we identify formyl peptide receptor 2 (FPR2) as a membrane receptor that specifically binds long-chain ceramides (C14 to C20). In brown and beige adipocytes, C16:0 ceramide binding to FPR2 inhibits thermogenesis through Gi cyclic adenosine monophosphate signaling pathways, an effect that is reversed in the absence of FPR2. We present three cryo-electron microscopy structures of FPR2 in complex with Gi trimers bound to C16:0, C18:0, and C20:0 ceramides. The hydrophobic tails are deeply embedded in the orthosteric ligand pocket, which has a limited amount of plasticity. Modification of the ceramide binding motif in closely related receptors, such as FPR1 or FPR3, converts them from inactive to active ceramide receptors. Our findings provide a structural basis for adipocyte thermogenesis mediated by FPR2.
Collapse
Affiliation(s)
- Hui Lin
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
| | - Chuanshun Ma
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Kui Cai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lulu Guo
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Membrane Receptor Drug Target Discovery and Lead Drug Screening at Shandong Province, Shandong, China
| | - Xuemei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Lin Lv
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jun Lin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chuan Ye
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Tengwei Wang
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shenming Huang
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jifei Han
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Zihao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Junyan Gao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, Shandong, China
| | - Mingxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhao Pu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
- Department of Biochemistry and Human Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fengyang Li
- School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Yongyuan Guo
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaojun Zhou
- School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Chengxue Qin
- School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jin-Peng Sun
- New Cornerstone Science Laboratory, Advanced Medical Research Institute, and NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Biophysics, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Balaji SK, Balasundarasekar B, Khuwaja WM, Dolan KM, Dong X. Antimicrobial Peptide Signaling in Skin Diseases. JID INNOVATIONS 2025; 5:100354. [PMID: 40104692 PMCID: PMC11914806 DOI: 10.1016/j.xjidi.2025.100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 03/20/2025] Open
Abstract
Antimicrobial peptides (AMPs) are important innate immune molecules at microbe-host interfaces. The biophysical properties of AMPs that facilitate direct killing of microbes have been extensively reviewed. In this article, we focus on how AMPs perform immunomodulatory functions through interaction with host receptors on epithelial, immune, and neuronal cell types. We summarize the current knowledge of known AMPs in the skin, the receptors that respond to AMPs, and the downstream intracellular signaling pathways. In the end, we discuss the roles of AMP signaling systems in skin diseases.
Collapse
Affiliation(s)
- Sharan Kumar Balaji
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | | | - Waris Muhammad Khuwaja
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Keean Michael Dolan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Xintong Dong
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
3
|
Russell IC, Lee D, Wootten D, Sexton PM, Bumbak F. Cryoelectron microscopy as a tool for illuminating activation mechanisms of human class A orphan G protein-coupled receptors. Pharmacol Rev 2025; 77:100056. [PMID: 40286430 DOI: 10.1016/j.pharmr.2025.100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
G protein-coupled receptors (GPCRs) are critically important medicinal targets, and the cryogenic electron microscopy (cryo-EM) revolution is providing novel high-resolution GPCR structures at a rapid pace. Orphan G protein-coupled receptors (oGPCRs) are a group of approximately 100 nonolfactory GPCRs for which endogenous ligands are unknown or not validated. The absence of modulating ligands adds difficulties to understanding the physiologic significance of oGPCRs and in the determination of high-resolution structures of isolated receptors that could facilitate drug discovery. Despite the challenges, cryo-EM structures of oGPCR-G protein complexes are emerging. This is being facilitated by numerous developments to stabilize GPCR-G protein complexes such as the use of dominant-negative G proteins, mini-G proteins, complex-stabilizing nanobodies or antibody fragments, and protein tethering methods. Moreover, many oGPCRs are constitutively active, which can facilitate complex formation in the absence of a known activating ligand. Consequently, in addition to providing templates for drug discovery, active oGPCR structures shed light on constitutive GPCR activation mechanisms. These comprise self-activation, whereby mobile extracellular portions of the receptor act as tethered agonists by occupying a canonical orthosteric-binding site in the transmembrane core, constitutive activity due to alterations to conserved molecular switches that stabilize inactive states of GPCRs, as well as receptors activated by cryptic ligands that are copurified with the receptor. Cryo-EM structures of oGPCRs are now being determined at a rapid pace and are expected to be invaluable tools for oGPCR drug discovery. SIGNIFICANCE STATEMENT: Orphan G protein-coupled receptors (GPCRs) provide large untapped potential for development of new medicines. Many of these receptors display constitutive activity, enabling structure determination and insights into observed GPCR constitutive activity including (1) self-activation by mobile receptor extracellular portions that function as tethered agonists, (2) modification of conserved motifs canonically involved in receptor quiescence and/or activation, and (3) activation by cryptic lipid ligands. Collectively, these studies advance fundamental understanding of GPCR function and provide opportunities for novel drug discovery.
Collapse
Affiliation(s)
- Isabella C Russell
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Dongju Lee
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Denise Wootten
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Patrick M Sexton
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| | - Fabian Bumbak
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
He XH, Li JR, Shen SY, Xu HE. AlphaFold3 versus experimental structures: assessment of the accuracy in ligand-bound G protein-coupled receptors. Acta Pharmacol Sin 2025; 46:1111-1122. [PMID: 39643640 PMCID: PMC11950431 DOI: 10.1038/s41401-024-01429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
G protein-coupled receptors (GPCRs) are critical drug targets involved in numerous physiological processes, yet many of their structures remain unresolved due to inherent flexibility and diverse ligand interactions. This study systematically evaluates the accuracy of AlphaFold3-predicted GPCR structures compared to experimentally determined structures, with a primary focus on ligand-bound states. Our analysis reveals that while AlphaFold3 shows improved performance over AlphaFold2 in predicting overall GPCR backbone architecture, significant discrepancies persist in ligand-binding poses, particularly for ions, peptides, and proteins. Despite advancements, these limitations constrain the utility of AlphaFold3 models in functional studies and structure-based drug design, where high-resolution details of ligand interactions are crucial. We assess the accuracy of predicted structures across various ligand types, quantifying deviations in binding pocket geometries and ligand orientations. Our findings highlight specific challenges in the computational prediction of ligand-bound GPCR structures, emphasizing areas where further refinement is needed. This study provides valuable insights for researchers using AlphaFold3 in GPCR studies, underscores the ongoing necessity for experimental structure determination, and offers direction for improving protein-ligand interaction predictions in future computational models.
Collapse
Affiliation(s)
- Xin-Heng He
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun-Rui Li
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shi-Yi Shen
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - H Eric Xu
- State Key Laboratory of Drug Research and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Yang H, Chen Y, Wang L, Gan B, Yu L, Ren R, Kwok HF, Wu Y, Cao Z. The Fungal Secretory Peptide Micasin Induces Itch by Activating MRGPRX1/C11/A1 on Peripheral Neurons. J Invest Dermatol 2025; 145:618-630. [PMID: 38945438 DOI: 10.1016/j.jid.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 07/02/2024]
Abstract
Pruritus is the leading symptom of dermatophytosis. Microsporium canis is one of the predominant dermatophytes causing dermatophytosis. However, the pruritogenic agents and the related molecular mechanisms of the dermatophyte M canis remain poorly understood. In this study, the secretion of the dermatophyte M canis was found to dose-dependently evoke itch in mice. The fungal peptide micasin secreted from M canis was then identified to elicit mouse significant scratching and itching responses. The peptide micasin was further revealed to directly activate mouse dorsal root ganglia neurons to mediate the nonhistaminergic itch. Knockout and antagonistic experiments demonstrated that MRGPRX1/C11/A1 rather than MRGPRX2/b2 activated by micasin contributed to pruritus. The chimeras and single-amino acid variants of MRGPRX1 showed that 3 domains (extracellular loop 3, transmembrane helical domain 3, and transmembrane helical domain 6) and 4 hydrophobic residues (Y99, F237, L240, and W241) of MRGPRX1 played the key role in micasin-triggered MRGPRX1 activation. Our study sheds light on the dermatophytosis-associated pruritus and may provide potential therapeutic targets and strategies against pruritus caused by dermatophytes.
Collapse
Affiliation(s)
- Haifeng Yang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China; State Key Laboratory of Virology, Shenzhen Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yian Chen
- State Key Laboratory of Virology, Shenzhen Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Luyao Wang
- State Key Laboratory of Virology, Shenzhen Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bing Gan
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yingliang Wu
- State Key Laboratory of Virology, Shenzhen Research Institute, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhijian Cao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan, China.
| |
Collapse
|
6
|
Wang C, Liu Y, Lanier M, Yeager A, Singh I, Gumpper RH, Krumm BE, DeLeon C, Zhang S, Boehm M, Pittner R, Baron A, Dvorak L, Bacon C, Shoichet BK, Martinborough E, Fay JF, Cao C, Roth BL. High-affinity agonists reveal recognition motifs for the MRGPRD GPCR. Cell Rep 2024; 43:114942. [PMID: 39580805 PMCID: PMC12006980 DOI: 10.1016/j.celrep.2024.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 08/07/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The human MRGPRD protein is a member of the Mas-related G protein-coupled receptors (MRGPRs) that is involved in the sensing of pain, itch, and other inflammatory stimuli. As with other MRGPRs, MRGPRD is a relatively understudied receptor with few known agonists. The most potent small-molecule agonist of MRGPRD reported so far is β-alanine, with an affinity in the micromole range, which largely restricts its functional study. Here, we report two MRGPRD agonists, EP-2825 and EP-3945, that are approximately 100-fold more potent than β-alanine and determine the structures of MRGPRD-Gq in complex with EP-2825 and EP-3945, respectively. The structures reveal distinct agonist binding modes of MRGPRD and large conformational plasticity of the orthosteric pocket. Collectively, the discovery of high-affinity MRGPRD agonists and their distinct binding modes will facilitate the functional study and the structure-based design of ligands targeting this understudied receptor.
Collapse
Affiliation(s)
- Chunyu Wang
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Yongfeng Liu
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Marion Lanier
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Adam Yeager
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Isha Singh
- Department of Pharmaceutical Sciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Ryan H Gumpper
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Division of Chemical Biology and Medicinal Chemistry, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Brian E Krumm
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Chelsea DeLeon
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shicheng Zhang
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Marcus Boehm
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Richard Pittner
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Alain Baron
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Lisa Dvorak
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Corinne Bacon
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA
| | - Brian K Shoichet
- Department of Pharmaceutical Sciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Esther Martinborough
- Escient Pharmaceuticals, 10578 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
| | - Jonathan F Fay
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Can Cao
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA; National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina School of Medicine, Chapel Hill, NC, USA; Division of Chemical Biology and Medicinal Chemistry, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Yang J, Zhao T, Fan J, Zou H, Lan G, Guo F, Shi Y, Ke H, Yu H, Yue Z, Wang X, Bai Y, Li S, Liu Y, Wang X, Chen Y, Li Y, Lei X. Structure-guided discovery of bile acid derivatives for treating liver diseases without causing itch. Cell 2024; 187:7164-7182.e18. [PMID: 39476841 DOI: 10.1016/j.cell.2024.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/11/2024] [Accepted: 10/02/2024] [Indexed: 12/15/2024]
Abstract
Chronic itch is a debilitating symptom profoundly impacting the quality of life in patients with liver diseases like cholestasis. Activation of the human G-protein coupled receptor, MRGPRX4 (hX4), by bile acids (BAs) is implicated in promoting cholestasis itch. However, the detailed underlying mechanisms remain elusive. Here, we identified 3-sulfated BAs that are elevated in cholestatic patients with itch symptoms. We solved the cryo-EM structure of hX4-Gq in a complex with 3-phosphated deoxycholic acid (DCA-3P), a mimic of the endogenous 3-sulfated deoxycholic acid (DCA-3S). This structure revealed an unprecedented ligand-binding pocket in MRGPR family proteins, highlighting the crucial role of the 3-hydroxyl (3-OH) group on BAs in activating hX4. Guided by this structural information, we designed and developed compound 7 (C7), a BA derivative lacking the 3-OH. Notably, C7 effectively alleviates hepatic injury and fibrosis in liver disease models while significantly mitigating the itch side effects.
Collapse
Affiliation(s)
- Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tianjun Zhao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaibin Zou
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guangyi Lan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China
| | - Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yaocheng Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Ke
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zongwei Yue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yingjie Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Shuai Li
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yingjun Liu
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Xiaoming Wang
- Hepaitech (Beijing) Biopharma Technology Co., Ltd., Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China.
| | - Yulong Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing 100871, China.
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Institute for Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| |
Collapse
|
8
|
Wang M, Zan T, Fan C, Li Z, Wang D, Li Q, Zhang C. Advances in GPCR-targeted drug development in dermatology. Trends Pharmacol Sci 2024; 45:678-690. [PMID: 39060127 DOI: 10.1016/j.tips.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Achieving the efficacy and specificity of G-protein-coupled receptor (GPCR) targeting-drugs in the skin remains challenging. Understanding the molecular mechanism underlying GPCR dysfunction is crucial for developing targeted therapies. Recent advances in genetic, signal transduction, and structural studies have significantly improved our understanding of cutaneous GPCR functions in both normal and pathological states. In this review, we summarize recent discoveries of pathogenic GPCRs in dermal injuries, chronic inflammatory dermatoses, cutaneous malignancies, as well as the development of potent potential drugs. We also discuss targeting of cutaneous GPCR complexes via the transient receptor potential (TRP) channel and structure elucidation, which provide new opportunities for therapeutic targeting of GPCRs involved in skin disorders. These insights are expected to lead to more effective and specific treatments for various skin conditions.
Collapse
Affiliation(s)
- Meng Wang
- Songjiang Research Institute, Songjiang Hospital, affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chengang Fan
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Danru Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Chao Zhang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
9
|
Gour N, Dong X. The MRGPR family of receptors in immunity. Immunity 2024; 57:28-39. [PMID: 38198852 PMCID: PMC10825802 DOI: 10.1016/j.immuni.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
The discovery of Mas-related G protein-coupled receptors (Mrgprs) has opened a compelling chapter in our understanding of immunity and sensory biology. This family of receptors, with their unique expression and diverse ligands, has emerged as key players in inflammatory states and hold the potential to alleviate human diseases. This review will focus on the members of this receptor family expressed on immune cells and how they govern immune and neuro-immune pathways underlying various physiological and pathological states. Immune cell-specific Mrgprs have been shown to control a variety of manifestations, including adverse drug reactions, inflammatory conditions, bacterial immunity, and the sensing of environmental exposures like allergens and irritants.
Collapse
Affiliation(s)
- Naina Gour
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|