1
|
Zaccariotto GDC, Bistaffa MJ, Zapata AMM, Rodero C, Coelho F, Quitiba JV, Lima L, Sterman R, Cardoso VDO, Zucolotto V. Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation. ACS NANO 2025; 19:16204-16223. [PMID: 40202241 PMCID: PMC12060653 DOI: 10.1021/acsnano.4c15765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Cancer immunotherapy has transformed the landscape of oncological treatment by employing various strategies to teach the immune system to eliminate tumors. Among these, cancer nanovaccines are an emerging strategy that utilizes nanotechnology to enhance immune activation in response to tumor antigens. This review addresses the principles behind the different technologies in this field aimed at generating a robust and effective immune response. The diversity of strategies adopted for the design of nanovaccines is discussed, including the types of active agents, nanocarriers, their functionalizations, and the incorporation of adjuvants. Furthermore, strategies to optimize nanoparticle formulations to enhance the antigen presentation, target immune cells, and organs and promote strong and durable antitumor responses are explored. Finally, we analyze the current state of clinical application, highlighting ongoing clinical trials and the future potential of cancer nanovaccines. The insights presented in this review aim to guide future research and development efforts in the field, contributing to the advancement of more effective and targeted nanovaccines in the fight against cancer.
Collapse
Affiliation(s)
- Gabriel de Camargo Zaccariotto
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Angelica Maria Mazuera Zapata
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Camila Rodero
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Fernanda Coelho
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - João Victor
Brandão Quitiba
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Lorena Lima
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | - Raquel Sterman
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| | | | - Valtencir Zucolotto
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, São Paulo 13566-590, Brazil
| |
Collapse
|
2
|
Zhong H, Liang J, Xu X, Ding C, Yu M, Abuduaini N, Liu J, Wang X, Zhang S, Wang F, Feng B. Hematoporphyrin-Modified Dendrimers Combined Immunoadjuvants for Enhanced Photoimmunotherapy of Colorectal Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25059-25070. [PMID: 40257172 DOI: 10.1021/acsami.5c02413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Photoimmunotherapy has emerged as a promising strategy for cancer therapy due to its increased therapeutic effect, ability to reverse drug resistance, and enhanced immune activation. But there is still a lack of effective nanomaterial-based photothermal therapy (PTT) or photodynamic therapy (PDT) agents in photoimmunotherapy. In this study, photosensitizer hematoporphyrin-modified G5 PAMAM (G5-HP) nanomaterials are synthesized, which exhibit excellent photothermal conversion capability and photodynamic effects under 660 nm irradiation, effectively inducing tumor cell ablation and immunogenic cell death (ICD). Besides, ICD induced by G5-HP can generate tumor-associated antigens, thereby enhancing dendritic cell (DC) maturation and subsequent T cell activation. In addition, G5-HP polymers can bind to Toll-like receptor (TLR) agonists CpG-ODN through electrostatic interaction, forming stable G5-HP/CpG nanoparticles. The incorporation of CpG-ODN as an immunoadjuvant further amplified DC maturation, synergizing with phototherapy to strengthen antitumor immunity. Notably, in vivo studies confirmed that G5-HP/CpG nanoparticles significantly suppressed colorectal tumor growth under laser irradiation, while maintaining excellent biocompatibility. Taken together, the synthesized G5-HP polymers perform excellent PTT and PDT efficacy, and the formed G5-HP/CpG nanoparticles effectively integrate phototherapy with DC-mediated immunotherapy. This study offers a promising strategy for colorectal cancer treatment, leveraging the synergistic effects of phototherapy and immunotherapy to achieve superior antitumor outcomes.
Collapse
Affiliation(s)
- Hao Zhong
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Liang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ximo Xu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mengqin Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Naijipu Abuduaini
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaohan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Zhou Y, Chen J, Zhou Y, Liu Y, Yang X, Wang X, Chen W, Xu W, Cai H, Huang J. Renal-Clearable Molecular Reporters for Near-Infrared Fluorescence Imaging and Urinalysis of Pulmonary Metastatic Tumor. Anal Chem 2025; 97:8459-8467. [PMID: 40216593 DOI: 10.1021/acs.analchem.5c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Despite approximately 40% of all patients with cancer developing pulmonary metastases in the course of their disease, it remains a diagnostic challenge in clinical practice. Herein, we propose a fluorogenic probe (CPRG) with gamma-glutamyl transferase (GGT)-triggered signal turn-on for near-infrared fluorescence imaging (NIRF) and urinalysis of orthotopic pulmonary metastatic tumors in living mice. CPRG comprised four key moieties: a GGT-reactive moiety, a hemicyanine-based signal unit, a polyethylene glycol linker, and an active tumor targeting moiety. Such a tailored probe is intrinsically nonfluorescent and only activates its NIRF signals in the presence of GGT. After intratracheal administration into the lungs of living tumor-bearing mice, CPRG can efficiently accumulate in the pulmonary tumors and sensitively turn-on the NIRF signal for real-time imaging. Relying on the high renal clearance efficiency (∼70% ID), it can be rapidly excreted through kidneys for urinalysis and assessed by the chemotherapeutic efficacy of cisplatin. This study not only reports fluorogenic tracers for imaging of pulmonary metastatic tumors but also provides guidelines for the development of molecular probes for companion diagnosis of metastatic cancer.
Collapse
Affiliation(s)
- Ya Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiangxian Chen
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yang Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Yi Liu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyue Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxiao Wang
- Department of Pharmacy, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing 400030, China
| | - Weiping Xu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, 66 Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Jiaguo Huang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Miao Y, Ge J, Zheng L, Liu G. Bioinspired Membrane-Based Cancer Vaccines for Immunotherapy: Progress and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412679. [PMID: 40255117 DOI: 10.1002/smll.202412679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/25/2025] [Indexed: 04/22/2025]
Abstract
Cancer vaccines hold promise for tumor immunotherapy, with their success hinging on effective systems to boost anti-tumor immunity. Biological membranes are not only a delivery vehicle but also a source of antigens and adjuvants, garnering growing interest in vaccine research. This review starts with an introduction to the composition and mechanisms of cancer vaccines and describes the sources, advantages/disadvantages, engineering strategies, and applications of these membrane-based platforms for cancer vaccine development. This review also offers a critical analysis and discusses the further direction of the vaccine platform in view of clinical translation for tumor immunotherapy.
Collapse
Affiliation(s)
- Yanyu Miao
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianlin Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Longyi Zheng
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
5
|
Moura LIF, Malfanti A, Matos AI, Peres C, Armiñán A, Duro‐Castaño A, Conejos‐Sánchez I, Medel M, Đorđević S, Carrascosa P, Carreira B, Acúrcio RC, Xavier‐Ferreira H, Hernández‐Barranco A, Castellano E, Roselló E, Machado JC, Peinado H, Vicent MJ, Florindo HF. Off-The-Shelf Multivalent Nanoconjugate Cancer Vaccine Rescues Host Immune Response against Melanoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417348. [PMID: 39937158 PMCID: PMC12016742 DOI: 10.1002/adma.202417348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/18/2025] [Indexed: 02/13/2025]
Abstract
Tumor-associated antigen-based cancer vaccines suffer from limited clinical success compared to alternative immunotherapies in melanoma, an aggressive skin cancer with an immunosuppressive tumor microenvironment. The anti-tumor potential of a multivalent nanoconjugate cancer vaccine platform - a cross-linked star-shaped polyglutamate carrier (StCl) with marked lymphotropic character conjugated with melanoma-associated peptide antigens is evaluated through redox-responsive linkers. The co-delivery of melanoma-associated peptide antigens by the nanoconjugate platform induced significant effector immune responses in a mouse melanoma model. The nanoconjugate platform synergized with a PD-1 inhibitor to revert the immunosuppressive melanoma tumor microenvironment by improving cytotoxic T-cell infiltration, which prompted a superior anti-tumor effect with prolonged overall survival without acute organ toxicity. The antigen-specific anti-tumor immune response induced by the nanoconjugate platform is also validated in a melanoma patient-derived xenograft mouse model. A promising, versatile StCl-based platform is reported for generating off-the-shelf multivalent nanoconjugate cancer vaccines for the safe and efficient immunotherapeutic treatment of melanoma.
Collapse
Affiliation(s)
- Liane IF Moura
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Alessio Malfanti
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Present address:
Department of Pharmaceutical and Pharmacological SciencesUniversity of PadovaVia F. Marzolo 5Padova35131Italy
| | - Ana I Matos
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Ana Armiñán
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| | - Aroa Duro‐Castaño
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Present address:
CurapathAv. Benjamin Franklin 19Paterna46980Spain
| | - Inmaculada Conejos‐Sánchez
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| | - María Medel
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| | - Snežana Đorđević
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
- Present address:
Tosoh Bioscience GmbHIm Leuschnerpark 4, Griesheim64347HesseGermany
| | - Paula Carrascosa
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Rita C Acúrcio
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
| | - Helena Xavier‐Ferreira
- i3S – Instituto de Investigação e Inovação em SaúdeMedical Faculty of PortoUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Alberto Hernández‐Barranco
- Microenvironment and Metastasis LaboratoryDepartment of Molecular OncologySpanish National Cancer Research Center (CNIO)C. de Melchor Fernández Almagro, 3Madrid28029Spain
| | - Elena Castellano
- Microenvironment and Metastasis LaboratoryDepartment of Molecular OncologySpanish National Cancer Research Center (CNIO)C. de Melchor Fernández Almagro, 3Madrid28029Spain
| | - Esther Roselló
- Department of PathologyHospital General Universitario de ValenciaAv. de les Tres Creus, 2, L'OliveretaValencia46014Spain
| | - José C. Machado
- i3S – Instituto de Investigação e Inovação em SaúdeMedical Faculty of PortoUniversidade do PortoRua Alfredo Allen, 208Porto4200‐135Portugal
| | - Héctor Peinado
- Microenvironment and Metastasis LaboratoryDepartment of Molecular OncologySpanish National Cancer Research Center (CNIO)C. de Melchor Fernández Almagro, 3Madrid28029Spain
| | - María J. Vicent
- Polymer Therapeutics LabPrince Felipe Research Center (CIPF)C/Eduardo Primo Yúfera 3Valencia46012Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaAv. Prof. Gama PintoLisboa1649‐003Portugal
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC)Health Institute Carlos III (IISCIII)Av. Monforte de Lemos, 3‐5. Pabellón 11. Planta 0Madrid28029Spain
| |
Collapse
|
6
|
Zhang Q, Ma RF, Chen SW, Cao K, Wang Y, Xu ZR. Biomineralized and metallized small extracellular vesicles encapsulated in hydrogels for mitochondrial-targeted synergistic tumor therapy. Acta Biomater 2025; 194:428-441. [PMID: 39870149 DOI: 10.1016/j.actbio.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Targeted organelle therapy is a promising therapeutic method for significantly regulating the tumor microenvironment, yet it often lacks effective strategies for leveraging synergistic enhancement effect. Engineered small extracellular vesicles (sEVs) are expected to address this challenge due to their notable advantages in drug delivery, extended circulation time, and intercellular information transmission. Herein, we prepare sEVs with pH and photothermal dual-responsiveness, which are encapsulated with hydrogels for a quadruple-efficient synergistic therapy. M1-phenotype macrophages-derived sEVs, which carry cytokines that inhibit tumor progression, were separately encapsulated with calcium phosphates (CaPs) and Au@Pt nanoparticles (Au@Pt NPs), endowing them with pH and photothermal dual-responsiveness. Subsequently, they were assembled into sEV-Au@Pt NPs/CaPs nanohybrids, and functionalized with mitochondria-targeting peptides. Within tumor cells, mitochondrial targeting enhances Ca2+ accumulation, resulting in mitochondrial homeostasis imbalance. The release of Pt2+ causes nuclear damage and exacerbates mitochondrial dysfunction. Furthermore, under laser irradiation, the sEV-Au@Pt NPs absorb light, generating hyperthermia that promotes the release of Ca2+ and Pt2+ from the hydrogel and cytokines from the sEVs, thereby achieving a quadruple-efficient synergistic therapy. The hydrogel effectively prolongs the retention time of nanohybrids, aiding in the prevention of tumor recurrence. These nanohybrids exhibit favorable mitochondrial targeting ability, with a Pearson's co-localization coefficient of 0.877. In experimental trials, tumor growth was significantly inhibited after only five treatments, with the tumor volume reduced to 0.16-fold that of the control group. This strategy presents a potential tailored platform for engineered sEVs in mitochondrial-targeted therapy and holds great promise for advancing organelle-targeted therapeutic strategies. STATEMENT OF SIGNIFICANCE: Engineering small extracellular vesicles (sEVs) can significantly enhance the synergistic effects of organelle-targeted therapy, thereby improving therapeutic efficacy and reducing side effects. However, their full development is still pending. In this study, we present a promising strategy that involves engineering sEVs with pH and photothermal dual-responsiveness through biomineralization and metallization, enabling quadruple synergistic tumor therapy. Our study demonstrates the remarkable synergistic effects of mitochondrial homeostasis imbalance caused by Ca2+ bursts and nuclear damage due to Pt2+ release. After five treatments, the tumor volume in the experimental group was reduced to 0.16-fold that of the control group. This strategy holds great promise for the design of engineered sEVs as organelle-targeted therapeutic systems.
Collapse
Affiliation(s)
- Qi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ruo-Fei Ma
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Si-Wen Chen
- Center for Molecular Science and Engineering, College of Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Ke Cao
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
7
|
Li Y, Xu Y, Su W, Xu J, Ye Z, Wang Z, Liu Q, Chen F. Exploring the immuno-nano nexus: A paradigm shift in tumor vaccines. Biomed Pharmacother 2025; 184:117897. [PMID: 39921945 DOI: 10.1016/j.biopha.2025.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tumor vaccines have become a crucial strategy in cancer immunotherapy. Challenges of traditional tumor vaccines include inadequate immune activation and low efficacy of antigen delivery. Nanoparticles, with their tunable properties and versatile functionalities, have redefined the landscape of tumor vaccine design. In this review, we outline the multifaceted roles of nanoparticles in tumor vaccines, ranging from their capacity as delivery vehicles to their function as immunomodulatory adjuvants capable of stimulating anti-tumor immunity. We discuss how this innovative approach significantly boosts antigen presentation by leveraging tailored nanoparticles that facilitate efficient uptake by antigen-presenting cells. These nanoparticles have been meticulously designed to overcome biological barriers, ensuring optimal delivery to lymph nodes and effective interaction with the immune system. Overall, this review highlights the transformative power of nanotechnology in redefining the principles of tumor vaccines. The intent is to inform more efficacious and precise cancer immunotherapies. The integration of these advanced nanotechnological strategies should unlock new frontiers in tumor vaccine development, enhancing their potential to elicit robust and durable anti-tumor immunity.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yike Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenwen Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jia Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zifei Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhuoyi Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
8
|
Lin Y, Lin P, Xu R, Chen X, Lu Y, Zheng J, Zheng Y, Zhou Z, Mai Z, Zhao X, Cui L. Nanovaccines empowering CD8 + T cells: a precision strategy to enhance cancer immunotherapy. Theranostics 2025; 15:3098-3121. [PMID: 40083941 PMCID: PMC11898294 DOI: 10.7150/thno.107856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/20/2025] [Indexed: 03/16/2025] Open
Abstract
Cancer immunotherapy leveraging nanovaccines represents a cutting-edge frontier in precision medicine, specifically designed to potentiate CD8+ T cell-based immunotherapy. This review thoroughly delineates the evolving landscape of cancer nanovaccine development, emphasizing their advantageous role in modulating the immunosuppressive tumor microenvironment (TME) to enhance CD8+ T cell efficacy. We critically analyze current innovations in nanovaccine design, focusing on their capacity to deliver tumor antigens and immunostimulatory adjuvants effectively. These nanovaccines are engineered to overcome the physical and immunological barriers of the TME, facilitating the robust activation and proliferation of CD8+ T cells. Challenges such as delivery efficacy, safety, and scalable manufacturing are discussed, alongside future prospects which include the potential of developing specific biomaterial approaches to provide durable antitumor immunity. This comprehensive analysis not only underscores the transformative potential of cancer nanovaccines in enhancing CD8+ T cell responses but also highlights the critical need for advanced solutions to overcome the complex interplay of factors that limit the efficacy of current immunotherapies.
Collapse
Affiliation(s)
- Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Pei Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Rongwei Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xu Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yucheng Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zihao Zhou
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Zizhao Mai
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
- School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA
| |
Collapse
|
9
|
Hou H, Liu X, Liu J, Wang Y. Carbohydrate polymer-based nanoparticles with cell membrane camouflage for cancer therapy: A review. Int J Biol Macromol 2025; 289:138620. [PMID: 39674458 DOI: 10.1016/j.ijbiomac.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Recent developments in biomimetic nanoparticles, specifically carbohydrate polymer-coated cell membrane nanoparticles, have demonstrated considerable promise in treating cancer. These systems improve drug delivery by imitating natural cell actions, enhancing biocompatibility, and decreasing immune clearance. Conventional drug delivery methods frequently face challenges with non-specific dispersal and immune detection, which can hinder their efficiency and safety. These biomimetic nanoparticles improve target specificity, retention times, and therapeutic efficiency by using biological components like chitosan, hyaluronic acid, and alginate. Chitosan-based nanoparticles, which come from polysaccharides found in nature, have self-assembly abilities that make them better drug carriers. Hyaluronic acid helps target tissues more effectively, especially in cancer environments where there are high levels of hyaluronic acid receptors. Alginate-based systems also enhance drug delivery by being biocompatible and degradable, making them ideal choices for advanced therapeutic uses. Moreover, these particles hold potential for overcoming resistance to multiple drugs and boosting the body's immune reaction to tumors through precise delivery and decreased side effects of chemotherapy drugs. This review delves into the possibilities of using carbohydrate polymer-functionalized nanoparticles and their impact on enhancing the efficacy of cancer treatment.
Collapse
Affiliation(s)
- Haijia Hou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuejian Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Liu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yudong Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
Zhai Y, Zhang W, Wang J, Kong Y, Rong R, Lang T, Zheng C, Wang Y, Yu Y, Zhu HH, Cai Y, Zhang P, Li Y. Interleukin 15-Presenting Nanovesicles with Doxorubicin-Loaded Ferritin Cores for Cancer Immunochemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409194. [PMID: 39625860 PMCID: PMC11789581 DOI: 10.1002/advs.202409194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/13/2024] [Indexed: 01/30/2025]
Abstract
Interleukin 15 (IL15) is crucial for fostering the survival and proliferation of nature killer (NK) cells and cytotoxic T lymphocytes (CTLs), playing a pivotal role in tumor control. However, IL15 supplementary therapy encounters challenges such as systemic inflammation and non-specific stimulation of cancer cells. Herein, a nanovesicle termed DoxFILN, comprising a membrane presenting IL15/IL15 receptor α complexes (IL15c) and a core of doxorubicin-loaded ferritin (Dox-Fn) are reported. The DoxFILN significantly enhances the densities and activities of intratumoral CTLs and NK cells. Mechanistically, DoxFILN undergoes deshelling in the acidic tumor microenvironment, releasing Dox-Fn and membrane-bound IL15c. Dox-Fn selectively target transferrin receptors on cancerous cells, facilitating intracellular Dox release and inducing immunogenic cell death. Concurrently, membrane-bound IL15c recognizes and activates IL15 receptor β/γc heterodimers, leading to a remarkable increase in the proliferation and activation of CTLs (16-fold and 28-fold) and NK cells (37-fold and 50-fold). The IL15-displaying nanovesicle introduced here holds promise as a potential platform for immunochemotherapy in the treatment of cancer.
Collapse
Affiliation(s)
- Yihui Zhai
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wen Zhang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- China State Institute of Pharmaceutical IndustryShanghai201203China
| | - Jinming Wang
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med‐X Stem Cell Research CenterDepartment of UrologyRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Kong
- Yantai Institute of Materia MedicaShandong264000China
| | - Rong Rong
- Yantai Institute of Materia MedicaShandong264000China
| | - Tianqun Lang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chao Zheng
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- China State Institute of Pharmaceutical IndustryShanghai201203China
| | - Yanke Wang
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai201210China
| | - Yang Yu
- National Facility for Protein Science in ShanghaiZhangjiang LabShanghai201210China
| | - Helen He Zhu
- State Key Laboratory of Oncogenes and Related GenesRenji‐Med‐X Stem Cell Research CenterDepartment of UrologyRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
| | - Ying Cai
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine & Advanced PreparationsYantai Institute of Materia MedicaShandong264000China
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and DevicesShanghaiTech UniversityShanghai201210China
- Shanghai Clinical Research and Trial CenterShanghai201203China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of Sciences501 Haike RoadShanghai201203China
- University of Chinese Academy of SciencesBeijing100049China
- Yantai Key Laboratory of Nanomedicine & Advanced PreparationsYantai Institute of Materia MedicaShandong264000China
| |
Collapse
|
11
|
Lin W, Shen C, Li M, Ma S, Liu C, Huang J, Ren Z, Yang Y, Zhao M, Xie Q, Guo S, Wang W, Wang K, Ma Q, Jiang Y, Zheng J, Liao Y. Programmable Macrophage Vesicle Based Bionic Self-Adjuvanting Vaccine for Immunization against Monkeypox Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408608. [PMID: 39513669 PMCID: PMC11714231 DOI: 10.1002/advs.202408608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/01/2024] [Indexed: 11/15/2024]
Abstract
The emergence of monkeypox has become a global health threat after the COVID-19 pandemic. Due to the lack of available specifically treatment against MPV, developing an available vaccine is thus the most prospective and urgent strategy. Herein, a programmable macrophage vesicle based bionic self-adjuvanting vaccine (AM@AEvs-PB) is first developed for defending against monkeypox virus (MPV). Based on MPV-related antigen-stimulated macrophage-derived vesicles, the nanovaccine is constructed by loading the mature virion (MV)-related intracellular protein (A29L/M1R) and simultaneously modifying with the enveloped virion (EV) antigen (B6R), enabling them to effectively promote antigen presentation and enhance adaptive immune through self-adjuvant strategy. Owing to the synergistic properties of bionic vaccine coloaded MV and EV protein in defensing MPV, the activation ratio of antigen-presenting cells is nearly four times than that of single antigen in the same dose, resulting in stronger immunity in host. Notably, intramuscular injection uptake of AM@AEvs-PB demonstrated vigorous immune-protective effects in the mouse challenge attempt, offering a promising strategy for pre-clinical monkeypox vaccine development.
Collapse
Affiliation(s)
- Weiqiang Lin
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004P. R. China
- Institute for Engineering MedicineKunming Medical UniversityKunming650500P. R. China
| | - Chenguang Shen
- BSL‐3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhou510515P. R. China
| | - Mengjun Li
- BSL‐3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhou510515P. R. China
| | - Shengchao Ma
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004P. R. China
| | - Chenxin Liu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515P. R. China
| | - Jialin Huang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital, Southern Medical UniversityGuangzhou510091P. R. China
| | - Zuning Ren
- BSL‐3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhou510515P. R. China
| | - Yuechao Yang
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital, Southern Medical UniversityGuangzhou510091P. R. China
| | - Minghai Zhao
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital, Southern Medical UniversityGuangzhou510091P. R. China
| | - Qiulin Xie
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital, Southern Medical UniversityGuangzhou510091P. R. China
| | - Shuang Guo
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004P. R. China
| | - Wei Wang
- BSL‐3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public HealthSouthern Medical UniversityGuangzhou510515P. R. China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
| | - Qiang Ma
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhou510515P. R. China
| | - Yideng Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004P. R. China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology Hospital, Southern Medical UniversityGuangzhou510091P. R. China
| | - Yuhui Liao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Key Laboratory of Vascular Injury and Repair ResearchNingxia Medical UniversityYinchuan750004P. R. China
- Institute for Engineering MedicineKunming Medical UniversityKunming650500P. R. China
| |
Collapse
|
12
|
Mallick S, Duttaroy AK, Bose B. A Snapshot of Cytokine Dynamics: A Fine Balance Between Health and Disease. J Cell Biochem 2025; 126:e30680. [PMID: 39668456 DOI: 10.1002/jcb.30680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
Health and disease are intricately intertwined and often determined by the delicate balance of biological processes. Cytokines, a family of small signalling molecules, are pivotal in maintaining this balance, ensuring the body's immune system functions optimally. In a healthy condition, cytokines act as potent mediators of immune responses. They orchestrate the activities of immune cells, coordinating their proliferation, differentiation, and migration. This intricate role of cytokine signalling enables the body to effectively combat infections, repair damaged tissues, and regulate inflammation. However, the delicate equilibrium of cytokine production is susceptible to disruption. Excessive or abnormal cytokine levels can lead to a cascade of pathological conditions, including autoimmune diseases, chronic inflammation, infections, allergies, and even cancer. Interestingly, from the bunch of cytokines, few cytokines play an essential role in maintaining the balance between normal physiological status and diseases. In this review, we have appraised key cytokines' potential role and feedback loops in augmenting the imbalances in the body's biological functions, presenting a critical link between inflammation and disease pathology. Moreover, we have also highlighted the significance of cytokines and their molecular interplay, particularly in the recent viral pandemic COVID-19 disease. Hence, understandings regarding the interplay between viral infection and cytokine responses are essential and fascinating for developing effective therapeutic strategies.
Collapse
Affiliation(s)
- Sumit Mallick
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|
13
|
Cao Y, Yan W, Yi W, Yin Q, Li Y. Bioengineered therapeutic systems for improving antitumor immunity. Natl Sci Rev 2025; 12:nwae404. [PMID: 40114728 PMCID: PMC11925021 DOI: 10.1093/nsr/nwae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 11/08/2024] [Indexed: 03/22/2025] Open
Abstract
Immunotherapy, a monumental advancement in antitumor therapy, still yields limited clinical benefits owing to its unguaranteed efficacy and safety. Therapeutic systems derived from cellular, bacterial and viral sources possess inherent properties that are conducive to antitumor immunotherapy. However, crude biomimetic systems have restricted functionality and may produce undesired toxicity. With advances in biotechnology, various toolkits are available to add or subtract certain properties of living organisms to create flexible therapeutic platforms. This review elaborates on the creation of bioengineered systems, via gene editing, synthetic biology and surface engineering, to enhance immunotherapy. The modifying strategies of the systems are discussed, including equipment for navigation and recognition systems to improve therapeutic precision, the introduction of controllable components to control the duration and intensity of treatment, the addition of immunomodulatory components to amplify immune activation, and the removal of toxicity factors to ensure biosafety. Finally, we summarize the advantages of bioengineered immunotherapeutic systems and possible directions for their clinical translation.
Collapse
Affiliation(s)
- Ying Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenzhe Yi
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China
| |
Collapse
|
14
|
Luo T, Fan Z, Zeng A, Wang A, Pan Y, Xu Y, Chen H, Chen W, Nie D, Lin J, Huang A, Gong M, Huang Y, Ding Y, Zhu X, Rao L, Wang J. Biomimetic Targeted Co-Delivery System Engineered from Genomic Insights for Precision Treatment of Osteosarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410427. [PMID: 39555699 PMCID: PMC11727257 DOI: 10.1002/advs.202410427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Indexed: 11/19/2024]
Abstract
The high heterogeneity and severe side effects of chemotherapy are major factors contributing to the failure of osteosarcoma treatment. Herein, a comprehensive genomic analysis is conducted, and identified two prominent characteristics of osteosarcoma: significant cyclin-dependent kinases 4 (CDK4) amplification and homologous recombination repair deficiency. Based on these findings, a co-delivery system loaded with CDK4/6 inhibitors and poly ADP-ribose polymerase (PARP) inhibitors is designed. By employing metal-organic frameworks (MOFs) as carriers, issue of drug insolubility is effectively addressed, while also enabling controlled release in response to the tumor microenvironment. To enhance targeting capability and biocompatibility, the MOFs are further coated with a bio-membrane targeting B7H3. This targeted biomimetic co-delivery system possesses several key features: 1) it can precisely target osteosarcoma with high B7H3 expression; 2) the combination of CDK4/6 inhibitors and PARP inhibitors exhibits synergistic effects, significantly impairing tumor's DNA repair capacity; and 3) the system has the potential for combination with photodynamic therapy, amplifying DNA repair defects to maximize tumor cell eradication. Furthermore, it is observed that this co-delivery system can activate immune microenvironment, increasing CD8+ T cell infiltration and converting osteosarcoma from an immune-cold to an immune-hot tumor. In summary, the co-delivery system is an effective therapeutic strategy and holds promise as a novel approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Tianqi Luo
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Zhijin Fan
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
| | - Anyu Zeng
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Anqi Wang
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yuanwei Pan
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Yanyang Xu
- Department of Joint SurgeryGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510060China
| | - Hongmin Chen
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Weiqing Chen
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dingmeng Nie
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Jiaming Lin
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Anfei Huang
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Ming Gong
- Department of Pediatric OrthopaedicsGuangzhou Women and Children's Medical CenterGuangdong Provincial Clinical Research Center for Child HealthGuangzhou Medical UniversityGuangzhou510630China
| | - Yufeng Huang
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yun Ding
- Department of Breast OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaojun Zhu
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Lang Rao
- Institute of Chemical BiologyShenzhen Bay LaboratoryShenzhen518132China
| | - Jin Wang
- Department of Musculoskeletal OncologyState Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
15
|
Wang W, Zou C, Liu X, He L, Cao Z, Zhu M, Wu Y, Liu X, Ma J, Wang Y, Zhang Y, Zhang K, Wang S, Zhang W, Liu W, Lin W, Zhang Y, Guo Q, Li M, Gu J. Biomimetic Dendritic Cell-Based Nanovaccines for Reprogramming the Immune Microenvironment to Boost Tumor Immunotherapy. ACS NANO 2024; 18:34063-34076. [PMID: 39625243 DOI: 10.1021/acsnano.4c09653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Although dendritic cell (DC)-mediated immunotherapies are effective options for immunotherapy, traditional DC vaccines are hampered by a variety of drawbacks such as insufficient antigen delivery, weak lymph node homing, and the risk of living cell transfusion. To address the above-mentioned issues, we developed a personalized DC-mimicking nanovaccine (HybridDC) that enhances antigen presentation and elicits effective antitumor immunity. The biomimetic nanovaccine contains cell membranes derived from genetically engineered DCs, and several cellular components are simultaneously anchored onto these membranes, including CC-chemokine receptor 7 (CCR7), tumor-associated antigenic (TAA) peptide/tumor-derived exosome (TEX), and relevant costimulatory molecules. Compared with previous vaccines, the HybridDC vaccine showed an increased ability to target lymphoid tissues and reshape the immune landscape in the tumor milieu. HybridDC demonstrated significant therapeutic and prophylactic efficacy in poorly immunogenic, orthotopic models of glioma. Furthermore, the HybridDC vaccine potentiates the therapeutic efficacy of immune checkpoint blockade (ICB) therapy, providing a potential combination strategy to maximize the efficacy of ICB. Specifically, HybridDC can induce long-term protective immunity in memory T cells. Overall, the HybridDC vaccine is a promising platform for personalized cancer vaccines and may offer a combinational modality to improve current immunotherapy.
Collapse
Affiliation(s)
- Weizhong Wang
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Cheng Zou
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiao Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Lei He
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Zhengcong Cao
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Maorong Zhu
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yuxin Wu
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaolin Liu
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jiying Ma
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yaoliang Wang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yile Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Kuo Zhang
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Shuning Wang
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wangqian Zhang
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Liu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Lin
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yingqi Zhang
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Meng Li
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jintao Gu
- Biotechnology Center, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
16
|
He Y, Zhang S, She Y, Liu Z, Zhu Y, Cheng Q, Ji X. Innovative utilization of cell membrane-coated nanoparticles in precision cancer therapy. EXPLORATION (BEIJING, CHINA) 2024; 4:20230164. [PMID: 39713200 PMCID: PMC11655310 DOI: 10.1002/exp.20230164] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/03/2024] [Indexed: 12/24/2024]
Abstract
Cell membrane-coated nanoparticles (CMNPs) have recently emerged as a promising platform for cancer therapy. By encapsulating therapeutic agents within a cell membrane-derived coating, these nanoparticles combine the advantages of synthetic nanoparticles and natural cell membranes. This review provides a comprehensive overview of the recent advancements in utilizing CMNPs as effective drug delivery vehicles for cancer therapy. The synthesis and fabrication methods of CMNPs are comprehensively discussed. Various techniques, such as extrusion, sonication, and self-assembly, are employed to coat synthetic nanoparticles with cell membranes derived from different cell types. The cell membrane coating enables biocompatibility, reducing the risk of an immune response and enhancing the stability of the nanoparticles in the bloodstream. Moreover, functionalization strategies for CMNPs, primarily chemical modification, genetic engineering, and external stimuli, are highlighted. The presence of specific cell surface markers on the coated membrane allows targeted drug delivery to cancer cells and maximizes therapeutic efficacy. Preclinical studies utilizing CMNPs for cancer therapy demonstrated the successful delivery of various therapeutic agents, such as chemotherapeutic drugs, nucleic acids, and immunotherapeutic agents, using CMNPs. Furthermore, the article explores the future directions and challenges of this technology while offering insights into its clinical potential.
Collapse
Affiliation(s)
- Yiling He
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Shuquan Zhang
- Department of OrthopedicsIntegrated Chinese and Western Medicine HospitalTianjin UniversityTianjinChina
- Department of OrthopedicsTianjin Nankai HospitalTianjinChina
- Department of OrthopedicsTianjin Hospital of Integrated Chinese and Western MedicineTianjinChina
| | - Yaoguang She
- Department of General SurgeryFirst Medical CenterChinese People's Liberation Army (PLA) General HospitalBeijingChina
| | - Zhaoshan Liu
- Laboratory of Immune Cell BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Yalan Zhu
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Qinzhen Cheng
- Department of PharmacyJinhua Municipal Central HospitalJinhuaZhejiangChina
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational MedicineMedical CollegeTianjin UniversityTianjinChina
| |
Collapse
|
17
|
Ma J, Yang H, Tian X, Meng F, Zhai X, Li A, Li C, Wang M, Wang G, Lu C, Bai J. Matrix metalloproteinase 2-responsive dual-drug-loaded self-assembling peptides suppress tumor growth and enhance breast cancer therapy. Bioeng Transl Med 2024; 9:e10702. [PMID: 39545088 PMCID: PMC11558207 DOI: 10.1002/btm2.10702] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/07/2024] [Accepted: 07/04/2024] [Indexed: 11/17/2024] Open
Abstract
Conventional chemotherapeutic agents are limited by their lack of targeting and penetration and their short retention time, and chemotherapy might induce an immune suppressive environment. Peptide self-assembly can result in a specific morphology, and the resulting morphological changes are stimuli responsive to the external environment, which is important for drug permeation and retention of encapsulated chemotherapeutic agents. In this study, a polypeptide (Pep1) containing the peptide sequences PLGLAG and RGD that is responsive to matrix metalloproteinase 2 (MMP-2) was successfully developed. Pep1 underwent a morphological transformation from a spherical structure to aggregates with a high aspect ratio in response to MMP-2 induction. This drug delivery system (DI/Pep1) can transport doxorubicin (DOX) and indomethacin (IND) simultaneously to target tumor cells for subsequent drug release while extending drug retention within tumor cells, which increases immunogenic cell death and facilitates the immunotherapeutic effect of CD4+ T cells. Ultimately, DI/Pep1 attenuated tumor-associated inflammation, enhanced the body's immune response, and inhibited breast cancer growth by combining the actions of DOX and IND. Our research offers an approach to hopefully enhance the effectiveness of cancer treatment.
Collapse
Affiliation(s)
- Jihong Ma
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Haiyan Yang
- Emergency DepartmentYantaishan HospitalYantaiChina
| | - Xue Tian
- School of Basic Medical SciencesShandong Second Medical UniversityWeifangChina
| | - Fanhu Meng
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Xiaoqing Zhai
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Aimei Li
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Chuntao Li
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Min Wang
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Guohui Wang
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Chunbo Lu
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| | - Jingkun Bai
- School of Bioscience and TechnologyShandong Second Medical UniversityWeifangChina
| |
Collapse
|
18
|
Qiao K, Pan Y, Zhang S, Shi G, Yang J, Zhang Z, Wang K, Chen X, Ning S. Cold Exposure Therapy Sensitizes Nanodrug-Mediated Radioimmunotherapy of Breast Cancer. ACS NANO 2024; 18:29689-29703. [PMID: 39401104 DOI: 10.1021/acsnano.4c09021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Cold exposure (CE) therapy can quickly induce tumor starvation by brown adipose tissue (BAT) thermogenesis. Exploring the combined antitumor mechanism of CE and traditional therapies (such as radiotherapy (RT)) is exciting and promising. In this study, we investigated the effect of CE in combination with nitric oxide (NO) gas therapy on sensitizing tumors to RT and promoting tumor radio-immunotherapy. We first constructed a liposome (SL) loaded with the NO prodrug S-nitroso-N-acetylpenicillamine (SNAP). When SL is injected, the glutathione (GSH) within the tumor region promotes the release of NO from SNAP. Subsequently, the superoxide anion produced by RT reacts with NO to generate peroxynitrite (ONOO-), which has strong oxidative properties and induces cell death. Meanwhile, the mice were exposed to a CE environment of 4 °C. CE-mediated BAT thermogenesis induced tumor starvation, which led to a decrease in ATP and GSH content within the tumor as well as an improvement in the hypoxic microenvironment and a decrease in myeloid-derived suppressor cells. All of the above have promoted the effectiveness of RT and activated the systemic antitumor immunity. In the bilateral tumor experiment, treatment of the primary tumor inhibited the growth of the distant tumor and promoted the infiltration of CD8+ T cells into the tumor. These findings reveal that the synergy of CE, NO gas therapy, and RT could confer high effective anticancer effects, providing possibilities in personalized cancer treatment.
Collapse
Affiliation(s)
- Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - You Pan
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Shiyuan Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Guangfu Shi
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Jinglin Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Zhenlin Zhang
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shipeng Ning
- Department of Breast Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530000, China
| |
Collapse
|
19
|
Kahraman T, Akpinar GG, Yildirim M, Larssen P, Bayyurt-Kocabas B, Yagci FC, Gursel A, Horuluoglu BH, Yazar V, Ayanoglu IC, Yildirim TC, Evcili I, Yilmaz IC, Eldh M, Gabrielsson S, Guler U, Salih B, Gursel M, Gursel I. Enhancing preventive and therapeutic cancer vaccine efficacy through biotherapeutic ligand-associated extracellular vesicles. J Control Release 2024; 376:618-631. [PMID: 39419449 DOI: 10.1016/j.jconrel.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Extracellular vesicles (EVs), secreted by almost all living cells, have gained significant attention for their role in intercellular communication and their potential as versatile carriers for biotherapeutics. However, the clinical translation of EV-based therapies faces significant challenges, primarily due to the lack of efficient methods for loading biotherapeutic agents into EVs. This study introduces a simple, reproducible strategy for the simultaneous incorporation of various biotherapeutics within EVs. The process is gentle and preserves the essential physicochemical and biological characteristics of EVs, thereby protecting labile ligands from premature degradation and elimination. The binding and uptake efficiency of EVs by target cells reached approximately 97 % within 24 h of incubation. Administration of EVs loaded with oligodeoxynucleotides (ODN) resulted in a 4-fold increase in IFNγ+ CD4+ T cells and a 5-fold increase in IFNγ+ CD8+ T cells in the spleens and lymph nodes. Additionally, the co-administration of EVs with ODN and ovalbumin (OVA) induced elevated Th1-biased antibody responses and antigen-specific cytotoxic T-cell responses, providing long-lasting complete protection in 60 % of mice against T-cell thymoma challenge. Furthermore, EVs associated with three different ligands (OVA, CpG-ODN, and α-GalCer) effectively regressed established murine melanoma and significantly improved survival rates in mice. This study presents a powerful and promising approach to overcoming the limitations of EV-based cancer vaccines, advancing the development of effective cancer immunotherapies. SUMMARY: Immunization with EVs that are co-associated with antigen and biotherapeutic cargo through a lyophilization-based technique elicits potent anti-cancer immunity.
Collapse
Affiliation(s)
- Tamer Kahraman
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorvacs Vaccine, Drug, Biologic Products and Biotechnology Research and Development Company, 06800 Ankara, Turkey
| | - Gozde Gucluler Akpinar
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 64 Stockholm, Sweden
| | - Muzaffer Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Pia Larssen
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 64 Stockholm, Sweden
| | - Banu Bayyurt-Kocabas
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Dept of Biological Sciences, METU, 06800 Ankara, Turkey
| | - Fuat C Yagci
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorvacs Vaccine, Drug, Biologic Products and Biotechnology Research and Development Company, 06800 Ankara, Turkey
| | - Arda Gursel
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey
| | - Begum Han Horuluoglu
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey
| | - Volkan Yazar
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey
| | | | - Tugce Canavar Yildirim
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Irem Evcili
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ismail C Yilmaz
- Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Dept of Biological Sciences, METU, 06800 Ankara, Turkey
| | - Maria Eldh
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 64 Stockholm, Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, SE-171 64 Stockholm, Sweden
| | - Ulku Guler
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Bekir Salih
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Mayda Gursel
- Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey; Dept of Biological Sciences, METU, 06800 Ankara, Turkey
| | - Ihsan Gursel
- Department of Molecular Biology and Genetics, Bilkent University, 06800, Bilkent, Ankara, Turkey; Thorlab, Therapeutic Oligonucleotide Research Laboratory, Izmir Biomedicine and Genome Center, Izmir, Turkey.
| |
Collapse
|
20
|
Zhang Y, Xing Y, Zhou H, Ma E, Xu W, Zhang X, Jiang C, Ye S, Deng Y, Wang H, Li J, Zheng S. NIR-activated Janus nanomotors with promoted tumor permeability for synergistic photo-immunotherapy. Acta Biomater 2024:S1742-7061(24)00632-9. [PMID: 39490462 DOI: 10.1016/j.actbio.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Nanoparticle-based photo-immunotherapy has become an attractive strategy to eliminate tumors and activate host immune responses. However, the therapeutic efficacy is heavily restricted by low tumoral penetration and immunosuppressive tumor microenvironment (TME). Herein, near infrared laser (NIR)-propelled Janus nanomotors were presented for deep tumoral penetration, photothermal tumor ablation and photothermal-triggered augmented immunotherapy. The Janus nanomotors (AuNR/PMO@CPG JNMs) were constructed with gold nanorods (AuNR) and periodic mesoporous organo-silica nanospheres (PMO), followed by loading of immune adjuvant (CPG ODNs). Under NIR irradiation, the nanomotors exhibited superior photothermal effect, which produced active motion with a speed of 19.3 µm/s for deep tumor penetration and accumulation in vivo. Moreover, the good photothermal heating also benefited effective photothermal ablation to trigger immunogenic cell death (ICD). Subsequently, the ICD effect promoted the release of tumor-associated antigens (TAAs) and damage associated molecular patterns (DAMPs), and further generated abundant tumor vaccines in situ for reprograming the immunosuppressive TME in combination with CPG ODNs to inhibit tumor growth. As a result, a notable in vivo synergistic therapeutic effect was realized on CT26-bearing mice by combining photothermal therapy-induced ICD with modulation of immunosuppressive TME. Thus, we believe that the synthesized nanomotors can provide a new inspect to boost photothermal therapy-induced ICD in tumor immunotherapy. STATEMENT OF SIGNIFICANCE: Nanoparticle-based synergistic photo-immunotherapy has become a popular strategy to eliminate tumors and activate host immune responses. However, the therapeutic efficacy is heavily restricted by low tumoral penetration and immunosuppressive tumor microenvironment (TME). In this work, near infrared laser (NIR)-propelled Janus nanomotors were presented for deep tumoral penetration, photothermal tumor ablation and photothermal-triggered augmented immunotherapy. Under NIR irradiation, the nanomotors exhibited a superior photothermal effect, which produced active motion for deep tumor penetration and accumulation in vivo. Moreover, good photothermal heating also facilitated effective photothermal ablation to trigger immunogenic cell death (ICD), which promoted the release of tumor-associated antigens and damage-associated molecular patterns (DAMPs), and further generated abundant tumor vaccines in situ for reprograming the immunosuppressive TME to inhibit tumor growth.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yujuan Xing
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hong Zhou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Enhui Ma
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, China
| | - Wenbei Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xinran Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Canran Jiang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shuo Ye
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yanjia Deng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hong Wang
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Jingjing Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| | - Shaohui Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China.
| |
Collapse
|
21
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
22
|
Xu Z, Zhou H, Li T, Yi Q, Thakur A, Zhang K, Ma X, Qin JJ, Yan Y. Application of biomimetic nanovaccines in cancer immunotherapy: A useful strategy to help combat immunotherapy resistance. Drug Resist Updat 2024; 75:101098. [PMID: 38833804 DOI: 10.1016/j.drup.2024.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Breakthroughs in actual clinical applications have begun through vaccine-based cancer immunotherapy, which uses the body's immune system, both humoral and cellular, to attack malignant cells and fight diseases. However, conventional vaccine approaches still face multiple challenges eliciting effective antigen-specific immune responses, resulting in immunotherapy resistance. In recent years, biomimetic nanovaccines have emerged as a promising alternative to conventional vaccine approaches by incorporating the natural structure of various biological entities, such as cells, viruses, and bacteria. Biomimetic nanovaccines offer the benefit of targeted antigen-presenting cell (APC) delivery, improved antigen/adjuvant loading, and biocompatibility, thereby improving the sensitivity of immunotherapy. This review presents a comprehensive overview of several kinds of biomimetic nanovaccines in anticancer immune response, including cell membrane-coated nanovaccines, self-assembling protein-based nanovaccines, extracellular vesicle-based nanovaccines, natural ligand-modified nanovaccines, artificial antigen-presenting cells-based nanovaccines and liposome-based nanovaccines. We also discuss the perspectives and challenges associated with the clinical translation of emerging biomimetic nanovaccine platforms for sensitizing cancer cells to immunotherapy.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Haiyan Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
23
|
Chheda D, Shete S, Tanisha T, Devrao Bahadure S, Sampathi S, Junnuthula V, Dyawanapelly S. Multifaceted therapeutic applications of biomimetic nanovaccines. Drug Discov Today 2024; 29:103991. [PMID: 38663578 DOI: 10.1016/j.drudis.2024.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
The development of vaccines has had a crucial role in preventing and controlling infectious diseases on a global scale. Innovative formulations of biomimetic vaccines inspired by natural defense mechanisms combine long-term antigen stability, immunogenicity, and targeted delivery with sustained release. Types of biomimetic nanoparticle (NP) include bacterial outer membrane vesicles (OMVs), cell membrane-decorated NPs, liposomes, and exosomes. These approaches have shown potential for cancer immunotherapy, and in antibacterial and antiviral applications. Despite current challenges, nanovaccines have immense potential to transform disease prevention and treatment, promising therapeutic approaches for the future. In this review, we highlight recent advances in biomimetic vaccine design, mechanisms of action, and clinical applications, emphasizing their role in personalized medicine, targeted drug delivery, and immunomodulation.
Collapse
Affiliation(s)
- Dev Chheda
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Sukhen Shete
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India
| | - Tanisha Tanisha
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Sumedh Devrao Bahadure
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sunitha Sampathi
- Department of Pharmacy, School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India.
| | | | - Sathish Dyawanapelly
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, India.
| |
Collapse
|
24
|
Fan Z, Wu S, Deng H, Li G, Huang L, Liu H. Light-Triggered Nanozymes Remodel the Tumor Hypoxic and Immunosuppressive Microenvironment for Ferroptosis-Enhanced Antitumor Immunity. ACS NANO 2024; 18:12261-12275. [PMID: 38683132 DOI: 10.1021/acsnano.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Cancer immunotherapy holds significant promise for addressing diverse malignancies. Nevertheless, its efficacy remains constrained by the intricate tumor immunosuppressive microenvironment. Herein, a light-triggered nanozyme Fe-TCPP-R848-PEG (Fe-MOF-RP) was designed for remodeling the immunosuppressive microenvironment. The Fe-TCPP-MOFs were utilized not only as a core catalysis component against tumor destruction but also as a biocompatible delivery vector of an immunologic agonist, improving its long circulation and tumor enrichment. Concurrently, it catalyzes the decomposition of H2O2 within the tumor, yielding oxygen to augment photodynamic therapy. The induced ferroptosis, in synergy with photodynamic therapy, prompts the liberation of tumor-associated antigens from tumor cells inducing immunogenic cell death. Phototriggered on-demand release of R848 agonists stimulated the maturation of dendritic cells and reverted the tumor-promoting M2 phenotypes into adoptive M1 macrophages, which further reshaped the tumor immunosuppressive microenvironment. Notably, the nanozyme effectively restrains well-established tumors, such as B16F10 melanoma. Moreover, it demonstrates a distal tumor-inhibiting effect upon in situ light treatment. What is more, in a lung metastasis model, it elicits robust immune memory, conferring enduring protection against tumor rechallenge. Our study presents a straightforward and broadly applicable strategy for crafting nanozymes with the potential to effectively thwart cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Zhijin Fan
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Sicheng Wu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Huaping Deng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guanlin Li
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Linghong Huang
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| | - Hongxing Liu
- Guangdong Provincial Key Laboratory of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou Institute of Urology, Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
25
|
Liu Q, Li S. Exosomal circRNAs: Novel biomarkers and therapeutic targets for urinary tumors. Cancer Lett 2024; 588:216759. [PMID: 38417667 DOI: 10.1016/j.canlet.2024.216759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Exosomal circRNAs have emerged as promising biomarkers and therapeutic targets for urinary tumors. In this review, we explored the intricate role of exosomal circRNAs in urological cancers, focusing on their biological functions, dysregulation in tumors, and potential clinical applications. The review delves into the mechanisms by which exosomal circRNAs contribute to tumor progression and highlights their diagnostic and therapeutic implications. By synthesizing current research findings, we present a compelling case for the significance of exosomal circRNAs in the context of urinary tumors. Furthermore, the review discusses the challenges and opportunities associated with utilizing exosomal circRNAs as diagnostic tools and targeted therapeutic agents. There is a need for further research to elucidate the specific mechanisms of exosomal circRNA secretion and delivery, as well as to enhance the detection methods for clinical translational applications. Overall, this comprehensive review underscores the pivotal role of exosomal circRNAs in urinary tumors and underscores their potential as valuable biomarkers and therapeutic tools in the management of urological cancers.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, 110042, China; The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning Province, 110042, China.
| |
Collapse
|
26
|
Li C, Wang L, Zhang K, Wang Z, Li Z, Li Z, Chen L. Overcoming neutrophil-induced immunosuppression in postoperative cancer therapy: Combined sialic acid-modified liposomes with scaffold-based vaccines. Asian J Pharm Sci 2024; 19:100906. [PMID: 38595333 PMCID: PMC11002593 DOI: 10.1016/j.ajps.2024.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/13/2024] [Accepted: 02/17/2024] [Indexed: 04/11/2024] Open
Abstract
Immunotherapy is a promising approach for preventing postoperative tumor recurrence and metastasis. However, inflammatory neutrophils, recruited to the postoperative tumor site, have been shown to exacerbate tumor regeneration and limit the efficacy of cancer vaccines. Consequently, addressing postoperative immunosuppression caused by neutrophils is crucial for improving treatment outcomes. This study presents a combined chemoimmunotherapeutic strategy that employs a biocompatible macroporous scaffold-based cancer vaccine (S-CV) and a sialic acid (SA)-modified, doxorubicin (DOX)-loaded liposomal platform (DOX@SAL). The S-CV contains whole tumor lysates as antigens and imiquimod (R837, Toll-like receptor 7 activator)-loaded PLGA nanoparticles as immune adjuvants for cancer, which enhance dendritic cell activation and cytotoxic T cell proliferation upon localized implantation. When administered intravenously, DOX@SAL specifically targets and delivers drugs to activated neutrophils in vivo, mitigating neutrophil infiltration and suppressing postoperative inflammatory responses. In vivo and vitro experiments have demonstrated that S-CV plus DOX@SAL, a combined chemo-immunotherapeutic strategy, has a remarkable potential to inhibit postoperative local tumor recurrence and distant tumor progression, with minimal systemic toxicity, providing a new concept for postoperative treatment of tumors.
Collapse
Affiliation(s)
- Cong Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lihong Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Kexin Zhang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zeyu Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zhihang Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Zehao Li
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| | - Lijiang Chen
- School of Pharmaceutical Science, Liaoning University, Shenyang 110036, China
| |
Collapse
|
27
|
Lee J, Hanley KL, Feng GS. The most impactful findings on liver cancer in 2023. Hepatol Commun 2024; 8:e0398. [PMID: 38466874 PMCID: PMC10932523 DOI: 10.1097/hc9.0000000000000398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 03/13/2024] Open
Affiliation(s)
- Jin Lee
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Kaisa L. Hanley
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
28
|
Fan Z, Jiang X, Sun T, Zeng F, Huang G, Liang C, Nie L. In vivo visualization of tumor-associated macrophages re-education by photoacoustic/fluorescence dual-modal imaging with a metal-organic frames-based caspase-1 nanoreporter. J Colloid Interface Sci 2024; 659:48-59. [PMID: 38157726 DOI: 10.1016/j.jcis.2023.12.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Tumor-associated macrophages (TAMs) are vital in the tumor microenvironment, contributing to immunosuppression and therapy tolerance. Despite their importance, the precise re-education of TAMs in vivo continues to present a formidable challenge. Moreover, the lack of real-time and efficient methods to comprehend the spatiotemporal kinetics of TAMs repolarization remains a significant hurdle, severely hampering the accurate assessment of treatment efficacy and prognosis. Herein, we designed a metal-organic frameworks (MOFs) based Caspase-1 nanoreporter (MCNR) that can deliver a TLR7/8 agonist to the TAMs and track time-sensitive Caspase-1 activity as a direct method to monitor the initiation of immune reprogramming. This nanosystem exhibits excellent TAMs targeting ability, enhanced tumor accumulation, and stimuli-responsive behavior. By inducing the reprogramming of TAMs, they were able to enhance T-cell infiltration in tumor tissue, resulting in inhibited tumor growth and improved survival in mice model. Moreover, MCNR also serves as an activatable photoacoustic and fluorescent dual-mode imaging agent through Caspase-1-mediated specific enzyme digestion. This feature enables non-invasive and real-time antitumor immune activation monitoring. Overall, our findings indicate that MCNR has the potential to be a valuable tool for tumor immune microenvironment remodeling and noninvasive quantitative detection and real-time monitoring of TAMs repolarization to immunotherapy in the early stage.
Collapse
Affiliation(s)
- Zhijin Fan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xiaoxiao Jiang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fanchu Zeng
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Guojia Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Changhong Liang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Liming Nie
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
29
|
Lin Q, Wang Y, Wang L, Fan Z. Engineered macrophage-derived cellular vesicles for NIR-II fluorescence imaging-guided precise cancer photo-immunotherapy. Colloids Surf B Biointerfaces 2024; 235:113770. [PMID: 38330689 DOI: 10.1016/j.colsurfb.2024.113770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Significant progress has been made in cancer immunotherapy; however, challenges such as interpatient variability, limited treatment response, and severe side effects persist. Although nanoimmunotherapy has emerged as a promising approach, the construction of precise and efficient nanosystems remain formidable challenges. Herein, a multifunctional nanoplatform was developed using macrophage-derived cellular vesicles (MCVs) for NIR-II imaging-guided precise cancer photo-immunotherapy. MCVs exhibited excellent tumor targeting and TAMs re-education effects, serving as both delivery carriers and therapeutic agents. Through amide bond, indocyanine green (ICG) was conjugated to the surface of MCVs, enabling in vivo tracking of MCVs distribution. Notably, ICG exhibited dual functionality as a NIR-II fluorescent agent and possessed photodynamic and photothermal effects, enabling the conversion of light energy into chemical or heat energy to eliminate tumor cells. This precision phototherapy triggered immunogenic cell death (ICD) of tumor, thereby activating the anti-tumor immune response. Additionally, MCVs loaded with R848, a toll-like receptor agonist, augmented the ICD-induced anti-tumor immunity. Animal experiments confirmed that MCVs-mediated photoimmunotherapy promoted T cell infiltration, inhibited tumor growth, and improved survival rates. In conclusion, we have developed a promising precision immunotherapy strategy capable of enhancing the immune response while mitigating off-target effects. These findings offer encouraging prospects for clinical translation.
Collapse
Affiliation(s)
- Quanshi Lin
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Jiaojiang District, Taizhou, Zhejiang 318000, China.
| | - Linlin Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
30
|
Sun Z, Zhao H, Ma L, Shi Y, Ji M, Sun X, Ma D, Zhou W, Huang T, Zhang D. The quest for nanoparticle-powered vaccines in cancer immunotherapy. J Nanobiotechnology 2024; 22:61. [PMID: 38355548 PMCID: PMC10865557 DOI: 10.1186/s12951-024-02311-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Despite recent advancements in cancer treatment, this disease still poses a serious threat to public health. Vaccines play an important role in preventing illness by preparing the body's adaptive and innate immune responses to combat diseases. As our understanding of malignancies and their connection to the immune system improves, there has been a growing interest in priming the immune system to fight malignancies more effectively and comprehensively. One promising approach involves utilizing nanoparticle systems for antigen delivery, which has been shown to potentiate immune responses as vaccines and/or adjuvants. In this review, we comprehensively summarized the immunological mechanisms of cancer vaccines while focusing specifically on the recent applications of various types of nanoparticles in the field of cancer immunotherapy. By exploring these recent breakthroughs, we hope to identify significant challenges and obstacles in making nanoparticle-based vaccines and adjuvants feasible for clinical application. This review serves to assess recent breakthroughs in nanoparticle-based cancer vaccinations and shed light on their prospects and potential barriers. By doing so, we aim to inspire future immunotherapies for cancer that harness the potential of nanotechnology to deliver more effective and targeted treatments.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hui Zhao
- Department of Endodontics, East Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Li Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yanli Shi
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mei Ji
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaodong Sun
- Department of Endodontics, Gaoxin Branch of Jinan Stomatological Hospital, Jinan, 250000, Shandong, China
| | - Dan Ma
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Wei Zhou
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tao Huang
- Department of Biomedical Engineering, Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Dongsheng Zhang
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
31
|
Zhang Y, Zhong A, Min J, Tu H, Cao Y, Fu J, Li Y, Liu X, Yang Y, Wang J, Liu J, Wu M. Biomimetic Responsive Nanoconverters with Immune Checkpoint Blockade Plus Antiangiogenesis for Advanced Hepatocellular Carcinoma Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6894-6907. [PMID: 38306190 DOI: 10.1021/acsami.3c18140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The first-line treatment for advanced hepatocellular carcinoma (HCC) combines immune checkpoint inhibitors and antiangiogenesis agents to prolong patient survival. Nonetheless, this approach has several limitations, including stringent inclusion criteria and suboptimal response rates that stem from the severe off-tumor side effects and the unfavorable pharmacodynamics and pharmacokinetics of different drugs delivered systemically. Herein, we propose a single-agent smart nanomedicine-based approach that mimics the therapeutic schedule in a targeted and biocompatible manner to elicit robust antitumor immunity in advanced HCC. Our strategy employed pH-responsive carriers, poly(ethylene glycol)-poly(β-amino esters) amphiphilic block copolymer (PEG-PAEs), for delivering apatinib (an angiogenesis inhibitor), that were surface-coated with plasma membrane derived from engineered cells overexpressing PD-1 proteins (an immune checkpoint inhibitor to block PD-L1). In an advanced HCC mouse model with metastasis, these biomimetic responsive nanoconverters induced significant tumor regression (5/9), liver function recovery, and complete suppression of lung metastasis. Examination of the tumor microenvironment revealed an increased infiltration of immune effector cells (CD8+ and CD4+ T cells) and reduced immunosuppressive cells (myeloid-derived suppressor cells and T regulatory cells) in treated tumors. Importantly, our nanomedicine selectively accumulated in both small and large HCC occupying >50% of the liver volume to exert therapeutic effects with minimal systemic side effects. Overall, these findings highlight the potential of such multifunctional nanoconverters to effectively reshape the tumor microenvironment for advanced HCC treatment.
Collapse
Affiliation(s)
- Yuting Zhang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Aoxue Zhong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Juan Min
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Haibin Tu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yanbing Cao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Jinghao Fu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yonghao Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| | - Yong Yang
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, P. R. China
| | - Jianmin Wang
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, P. R. China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, P. R. China
| | - Jingfeng Liu
- Innovation Center for Cancer Research, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
- Fujian Key Laboratory of Advanced Technology for Cancer Screening and Early Diagnosis, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China
| |
Collapse
|
32
|
Gao P, Li X, Wei R, Pan W, Li N, Tang B. Glowing Octopus-Inspired Nanomachine: A Versatile Aptasensor for Efficient Capture, Imaging, Separation, and NIR-Triggered Release of Cancer Cells. Anal Chem 2024; 96:309-316. [PMID: 38108827 DOI: 10.1021/acs.analchem.3c04115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The separation and analysis of circulating tumor cells (CTCs) in liquid biopsy significantly facilitated clinical cancer diagnosis and personalized therapy. However, current methods face challenges in simultaneous efficient capturing, separation, and imaging of CTCs, and most of the devices cannot be reused/regenerated. We present here an innovative glowing octopus-inspired nanomachine (GOIN), capable of capturing, imaging, separating, and controlling the release of cancer cells from whole blood and normal cells. The GOIN comprises an aptamer-decorated magnetic fluorescent covalent organic framework (COF), which exhibits a strong affinity for nucleolin-overexpressed cancer cells through a multivalent binding effect. The captured cancer cells can be directly imaged using the intrinsic stable fluorescence of the COF layer in the GOIN. Employing magnet and NIR laser assistance enables easy separation and mild photothermal release of CTCs from the normal cells and the nanomachine without compromising cell viability. Moreover, the GOIN demonstrates a reusing capability, as the NIR-triggered CTC release is mild and nondestructive, allowing the GOIN to be reused at least three times.
Collapse
Affiliation(s)
- Peng Gao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Xiaoyu Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Ruyue Wei
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
33
|
Li Q, Lin L, Zhang C, Zhang H, Ma Y, Qian H, Chen XL, Wang X. The progression of inorganic nanoparticles and natural products for inflammatory bowel disease. J Nanobiotechnology 2024; 22:17. [PMID: 38172992 PMCID: PMC10763270 DOI: 10.1186/s12951-023-02246-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
There is a growing body of evidence indicating a close association between inflammatory bowel disease (IBD) and disrupted intestinal homeostasis. Excessive production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with an increase in M1 proinflammatory macrophage infiltration during the activation of intestinal inflammation, plays a pivotal role in disrupting intestinal homeostasis in IBD. The overabundance of ROS/RNS can cause intestinal tissue damage and the disruption of crucial gut proteins, which ultimately compromises the integrity of the intestinal barrier. The proliferation of M1 macrophages contributes to an exaggerated immune response, further compromising the intestinal immune barrier. Currently, intestinal nanomaterials have gained widespread attention in the context of IBD due to their notable characteristics, including the ability to specifically target regions of interest, clear excess ROS/RNS, and mimic biological enzymes. In this review, we initially elucidated the gut microenvironment in IBD. Subsequently, we delineate therapeutic strategies involving two distinct types of nanomedicine, namely inorganic nanoparticles and natural product nanomaterials. Finally, we present a comprehensive overview of the promising prospects associated with the application of nanomedicine in future clinical settings for the treatment of IBD (graphic abstract). Different classes of nanomedicine are used to treat IBD. This review primarily elucidates the current etiology of inflammatory bowel disease and explores two prominent nanomaterial-based therapeutic approaches. First, it aims to eliminate excessive reactive oxygen species and reactive nitrogen species. Second, they focus on modulating the polarization of inflammatory macrophages and reducing the proportion of pro-inflammatory macrophages. Additionally, this article delves into the treatment of inflammatory bowel disease using inorganic metal nanomaterials and natural product nanomaterials.
Collapse
Affiliation(s)
- Qingrong Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Cong Zhang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Hengguo Zhang
- Key Laboratory of Oral Diseases Research of Anhui Province, College and Hospital of Stomatology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yan Ma
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China
| | - Haisheng Qian
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China.
| | - Xianwen Wang
- Division of Gastroenterology, Division of Life Science and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.
| |
Collapse
|