1
|
Liu S, Liu B, Tan Y, Zhou H, Yang J, Ren P, Yu H, Geng C, Wang R, Yan X, Huang L. BAR11, a Ferritin Protein From Saccharothrix yanglingensis Enhances Disease Resistance in Malus domestica by Disrupting Iron Homoeostasis. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230310 DOI: 10.1111/pce.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
Previously, we identified BAR11, an uncharacterized protein from the biocontrol actinomycete Saccharothrix yanglingensis Hhs.015, as an elicitor of plant immunity. BAR11 pretreatment significantly suppressed Valsa mali infection in apple (Malus domestica); however, its molecular function remained unclear, as did the mechanisms governing the response of the apples to BAR11 treatment. Here, we demonstrate that BAR11 functions as a ferritin, defined by a conserved four-helical bundle structure, and enhances oxidative stress tolerance in actinomycetes. Confocal microscopy revealed that BAR11 was secreted and delivered into apple cells, where it sequestered labile ferrous iron (Fe2+) and inhibited iron uptake. Notably, BAR11 treatment and iron deficiency induced nearly identical transcriptional reprogramming of iron homoeostasis-related genes in apple roots and similar resistance phenotypes, suggesting that BAR11 triggers a low iron-mimicry state, which potentiates apple immunity. Transcriptomic analysis further supported that BAR11 disrupted the expression of iron homoeostasis-related genes while activating that of defence-related ones. Moreover, the apple WRKY family transcription factor MdWRKY40 responded robustly to BAR11 and low-iron treatments and positively modulated BAR11-induced resistance against V. mali. Our findings reveal a paradigm wherein actinomycete ferritins act as cross-kingdom immune elicitors by disrupting iron homoeostasis in apple, providing a mechanistic foundation for iron-targeted biocontrol strategies.
Collapse
Affiliation(s)
- Shang Liu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Boya Liu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Yuqin Tan
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Hanqi Zhou
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Jinhui Yang
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Peng Ren
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Hongjia Yu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Chang Geng
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Ruolin Wang
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Xia Yan
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Zhong J, Situ J, He C, He J, Kong G, Li H, Jiang Z, Li M. A virulent milRNA of Fusarium oxysporum f. sp. cubense impairs plant resistance by targeting banana AP2 transcription factor coding gene MaPTI6L. HORTICULTURE RESEARCH 2025; 12:uhae361. [PMID: 40070402 PMCID: PMC11894533 DOI: 10.1093/hr/uhae361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/20/2024] [Indexed: 03/14/2025]
Abstract
Fungi produce microRNA-like RNAs (milRNAs) with functional importance in various biological processes. Our previous research identified a new milRNA Foc-milR87 from Fusarium oxysporum f. sp. cubense, which contributes to fungal virulence by targeting the pathogen glycosyl hydrolase encoding gene. However, the potential roles of fungal milRNAs in interactions with hosts are not well understood. This study demonstrated that Foc-milR87 specifically suppressed the expression of MaPTI6L, a pathogenesis-related gene that encodes a transcriptional activator in the banana (Musa acuminata Cavendish group cv. 'Baxi Jiao') genome, by targeting the 3'untranslated region (UTR) of MaPTI6L. Transient overexpression of MaPTI6L activated plant defense responses that depend on its nuclear localization, yet co-expression with Foc-milR87 attenuated these responses. MaPTI6L enhanced plant resistance by promoting transcription of the salicylic acid signaling pathway marker gene MaEDS1. Sequence analysis of the MaPTI6L gene in 19 banana varieties, particularly those resistant to Fusarium wilt, uncovered single nucleotide polymorphisms (SNPs) at Foc-milR87 target sites. Experimental validation showed that these SNPs significantly reduce the microRNA's ability to suppress target gene expression. Our findings reveal that Foc-milR87 plays an important role in impairing plant resistance by targeting MaPTI6L mRNA and reducing MaEDS1 transcription during the early infection stage, suggesting the 3'UTR of MaPTI6L as a promising target for genome editing in generation of disease-resistant banana cultivars.
Collapse
Affiliation(s)
- Jiaqi Zhong
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Junjian Situ
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Chengcheng He
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Jiahui He
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
| | - Guanghui Kong
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Huaping Li
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Zide Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| | - Minhui Li
- College of Plant Protection, South China Agricultural University, Guangzhou, GD 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, GD 510642, China
| |
Collapse
|
3
|
Qian H, Xiao Z, Cheng L, Geng R, Ma Y, Bi Y, Liang W, Yang A. A Novel Secreted Protein of Fusarium oxysporum Promotes Infection by Inhibiting PR-5 Protein in Plant. PLANT, CELL & ENVIRONMENT 2025; 48:1021-1036. [PMID: 39400398 DOI: 10.1111/pce.15200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Fusarium oxysporum, an important soilborne fungal pathogen that causes serious Fusarium wilt disease, secretes diverse effectors during the infection. In this study, we identified a novel secreted cysteine-rich protein, FolSCP1, which contains unknown protein functional domain. Here, we characterized FolSCP1 as a secreted virulence factor that promotes the pathogen infection of host plants by inhibiting diverse plant defence responses. FolSCP1 interacted with the pathogenesis-related 5 (PR-5) protein SlPR5, a positive regulator of tomato plant immunity against multiple tomato pathogens, and effectively attenuated the antifungal activity of the tomato PR-5 protein. FoSCP1, a homologue of FolSCP1, was secreted by a F. oxysporum isolate from infected tobacco and targeted the tobacco PR-5 protein NtPR5 to suppress plant defence for further infection. In summary, our study revealed a fungal virulence strategy in which F. oxysporum secrete effectors that interfere with plant immunity by binding to the PR-5 protein of the host plant and inhibiting its biological activity, thereby promoting fungal infection.
Collapse
Affiliation(s)
- Hengwei Qian
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhiliang Xiao
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lirui Cheng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Ruimei Geng
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yan Ma
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yanxiao Bi
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxing Liang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Aiguo Yang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
4
|
Munzert KS, Engelsdorf T. Plant cell wall structure and dynamics in plant-pathogen interactions and pathogen defence. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:228-242. [PMID: 39470457 DOI: 10.1093/jxb/erae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
Plant cell walls delimit cells from their environment and provide mechanical stability to withstand internal turgor pressure as well as external influences. Environmental factors can be beneficial or harmful for plants and vary substantially depending on prevailing combinations of climate conditions and stress exposure. Consequently, the physicochemical properties of plant cell walls need to be adaptive, and their functional integrity needs to be monitored by the plant. One major threat to plants is posed by phytopathogens, which employ a diversity of infection strategies and lifestyles to colonize host tissues. During these interactions, the plant cell wall represents a barrier that impedes the colonization of host tissues and pathogen spread. In a competition for maintenance and breakdown, plant cell walls can be rapidly and efficiently remodelled by enzymatic activities of plant and pathogen origin, heavily influencing the outcome of plant-pathogen interactions. We review the role of locally and systemically induced cell wall remodelling and the importance of tissue-dependent cell wall properties for the interaction with pathogens. Furthermore, we discuss the importance of cell wall-dependent signalling for defence response induction and the influence of abiotic factors on cell wall integrity and cell wall-associated pathogen resistance mechanisms.
Collapse
Affiliation(s)
- Kristina S Munzert
- Molecular Plant Physiology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| | - Timo Engelsdorf
- Molecular Plant Physiology, Department of Biology, Philipps-Universität Marburg, D-35043 Marburg, Germany
| |
Collapse
|
5
|
Ma X, Zhang Z, Deng R, Liu N, Jiang H, Kang Z, Liu J. Secreted Xylanase PstXyn1 Contributes to Stripe Rust Infection Possibly by Overcoming Cell Wall Barrier and Suppressing Defense Responses in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:380-392. [PMID: 39725864 DOI: 10.1021/acs.jafc.4c10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Puccinia striiformis f. sp. tritici (Pst) secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection. However, the functions and molecular mechanisms of the CWDEs from Pst remain unclear. In this study, we identified a secreted xylanase, named PstXyn1, with the GH10 domain. PstXyn1 was significantly up-regulated at the early infection stage of Pst. The signal peptide of PstXyn1 was confirmed to be functional. The purified PstXyn1 showed detectable xylanase activity. In addition, we found that PstXyn1-silenced wheat plants exhibited broad-spectrum resistance against multiple Pst pathotypes. Colloidal gold labeling and transcriptome sequencing analyses revealed that PstXyn1 contributed to xylan degradation in host cell walls and suppressed the expression of defense-related genes. Conclusively, our results indicate that PstXyn1 is secreted as an important virulence factor to overcome host cell wall barriers and compromise immune responses for fungal invasion, providing potential targets for improving wheat resistance to stripe rust.
Collapse
Affiliation(s)
- Xiaoxuan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaowei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ruoqiong Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nian Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Jiang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Liu C, Tan X, Wang J, Sun Y, Xu Q, Han C, Wang Q. Upgrading of the genetic engineering toolkit accelerated the discovery process of the virulence effect of PsGH7d on Phytophthora sojae invasion. PHYSIOLOGIA PLANTARUM 2025; 177:e70083. [PMID: 39936449 DOI: 10.1111/ppl.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025]
Abstract
The genus of Phytophthora includes numerous phytopathogens that have devastating impacts on agricultural production. However, the limited availability of selection markers for numerous pathogenicity pathogens of the genus Phytophthora genetic transformation hinders further research on their pathogenic functional genes. Here we report a gene of NAT I, which serves as a novel selection marker for the Phytophthora sojae transformation. Additionally, we developed a new genetic manipulation toolkit based on vectors containing NAT I, which facilitates gene editing in P. sojae. With the toolkit, the gene PsGH7d of P. sojae, which encodes a glycosyl hydrolase, was edited consecutively via the CRISPR/Cas9 system to obtain gene knockout and enzymatic active site mutation strains. The pathogenicity analysis of these transformants revealed that PsGH7d is a virulence factor dependent on its bifunctional glucanase-xylanase activities. This study develops an updated toolkit for the genus Phytophthora genetic transformation and provides initial insights into the virulence of the bifunctional enzyme PsGH7d.
Collapse
Affiliation(s)
- Changqing Liu
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
- College of Agronomy, Shandong Agricultural University, Taian, China
| | - Xinwei Tan
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Jiayu Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Yujing Sun
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Qian Xu
- College of Agronomy, Shandong Agricultural University, Taian, China
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, China
| | - Chao Han
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Qunqing Wang
- Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Taian, China
- National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Taian, China
| |
Collapse
|
7
|
Zhao R, Suo X, Meng X, Wang Y, Dai P, Hu T, Cao K, Wang S, Li B. Global Analysis of microRNA-like RNAs Reveals Differential Regulation of Pathogenicity and Development in Fusarium oxysporum HS2 Causing Apple Replant Disease. J Fungi (Basel) 2024; 10:883. [PMID: 39728379 DOI: 10.3390/jof10120883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024] Open
Abstract
This study investigated the expression profiles of microRNA-like RNAs (milRNAs) in Fusarium oxysporum HS2 (FoHS2), a key pathogen causing Apple replant disease (ARD), across spore to mycelium formation stages. Using small RNA sequencing (sRNA-seq) and bioinformatics, we identified and analyzed milRNAs, revealing their targeting of 2364 mRNAs involved in 20 functional categories, including metabolic and cellular processes, based on gene ontology (GO) analysis. An analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that these mRNAs are related to carbohydrate and amino acid metabolism pathways. Notably, the highest number of differentially or specifically expressed milRNAs (DEmilRNAs/SEmilRNAs) was found during the spore stage, with FoHS2-milR19 targeting genes encoding histone acetyltransferases, methyltransferases, and cell wall-degrading enzymes (CWDEs), which are crucial for growth, development, and pathogenicity. We validated the reliability of our sRNA-seq data and the expression of target genes using stem-loop RT-PCR and qRT-PCR. Our results highlight the stage-specific expression of milRNAs in FoHS2, particularly in the spore stage, suggesting a key role in regulating host life activities and providing a theoretical basis for developing RNA-based pesticides to control ARD.
Collapse
Affiliation(s)
- Ruxin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Xiangmin Suo
- Shijiazhuang Institute of Fruit, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Xianglong Meng
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Pengbo Dai
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Keqiang Cao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
| | - Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071000, China
- Institute of Agricultural Information and Economics, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
8
|
Sun G, Xia Y, Li K, Zhu Q, Ding F, Gu H, Zhang Z, Li X, Mi X, Chen J, Yao R, Zhang S, Ouyang H, Chen X, Liu T, Jiang H, Zhao Y, Qiu M, Ye W, Duan K, Ma Z, Dong S, Yin H, Wang Y, Wang Y. Dual activation of soybean resistance against Phytophthora sojae by pectin lyase and degraded pectin oligosaccharides. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2746-2760. [PMID: 39549112 DOI: 10.1007/s11427-024-2724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 11/18/2024]
Abstract
Phytophthora pathogens secrete numerous apoplastic effectors to manipulate host immunity. Herein, we identified a polysaccharide lyase 1 protein, PsPL1, which acts as an essential virulence factor of P. sojae infection in soybean. However, the overexpression of PsPL1 in P. sojae reduced infection and triggered enhanced immune responses in soybean. PsPL1 exhibited pectin lyase activity and degraded plant pectin to generate pectin oligosaccharides (POSs) with a polymerization degree of 3-14, exhibiting different levels of acetylation and methylation modifications. PsPL1 and the degraded pectin products triggered immune responses in soybean and different Solanaceous plants. The PsPL1-triggered immune responses required RSPL1, a membrane-localized leucine-rich repeat receptor-like protein, which is essential for Phytophthora resistance. Conversely, the PsPL1-degraded product-triggered immune responses depended on the membrane-localized lysin motif receptor-like kinase CERK1. This study reveals that the pectin lyase exhibits a dual immunogenic role during P. sojae infection, which activates plant resistance through different immune receptors and provides novel insights into the function of pectin lyase in host-pathogen interactions.
Collapse
Affiliation(s)
- Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
- Suzhou Academy of Agricultural Sciences, Suzhou, 234000, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qinsheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Feifei Ding
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinrui Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuan Mi
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruoting Yao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Sicong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Tengfei Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibin Jiang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Yao Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
- Suzhou Academy of Agricultural Sciences, Suzhou, 234000, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaixuan Duan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
9
|
Hong T, Wang S, Luo Z, Ren Q, Wu D, Wang L, Bao Y, Yao W, Zhang M, Hu Q. Fusarium sacchari CFEM Proteins Suppress Host Immunity and Differentially Contribute to Virulence. Int J Mol Sci 2024; 25:12805. [PMID: 39684515 DOI: 10.3390/ijms252312805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
The pathogen Fusarium sacchari is responsible for the devastating pokkah boeng disease, which causes significant economic losses in sugarcane production. However, the mechanisms by which it affects plant immunity remain largely unknown. Common in Fungal Extracellular Membrane (CFEM) domain proteins have been implicated in fungal growth, infection processes, and pathogenicity. In this study, we identified three FsCFEM proteins (Fs08184, Fs10706, and Fs13617) that mediate the broad-spectrum suppression of the immune responses induced by typical effectors. A further analysis demonstrated that Fs08184, Fs10706, and Fs13617 suppressed host immunity through two potential iron-binding sites conserved in CFEM family members, characterized by Asp and Phe residues in Fs08184, Fs10706, and Fs13617. Additionally, the Asp and Phe residues within the iron-chelating site were necessary for the iron acquisition of F. sacchari and contributed to creating low-free-iron conditions at the interface of plant and pathogen interactions. It appeared that F. sacchari might employ Asp-Phe-type CFEM members to influence host iron homeostasis to suppress host immunity and to facilitate its successful colonization.
Collapse
Affiliation(s)
- Tianshu Hong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Shichao Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Zhiyuan Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qianqian Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Deng Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Lulu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Yixue Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| |
Collapse
|
10
|
Wang L, Wu D, Hong T, Ren Q, Wang S, Bao Y, Yao W, Zhang M, Hu Q. Fusarium sacchari Effector FsMEP1 Contributes to Virulence by Disturbing Localization of Thiamine Thiazole Synthase ScTHI2 from Sugarcane. Int J Mol Sci 2024; 25:12075. [PMID: 39596144 PMCID: PMC11593444 DOI: 10.3390/ijms252212075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Fusarium sacchari is a significant pathogenic fungus that causes sugarcane Pokkah Boeng. Proteins secreted by pathogenic fungi can be delivered into hosts to suppress plant immunity and establish infection. However, there is still much to be discovered regarding F. sacchari's secreted effectors in overcoming plant immunity. In this paper, we characterize a novel effector called FsMEP1, which is essential for the virulence of F. sacchari. FsMEP1 contains a conserved zinc-binding motif sequence, HEXXH, and is highly expressed during host infection. Using the Agrobacterium tumefaciens-mediated transient expression system, it was confirmed that FsMEP1 could suppress Bcl-2-associated X protein (BAX)-triggered cell death, callose deposition, and ROS explosion in Nicotiana benthamiana. Furthermore, the deletion of FsMEP1 demonstrated its requirement for contributing to the pathogenicity of F. sacchari in sugarcane. Further analysis revealed that FsMEP1 could interact with the sugarcane thiamine thiazole synthase ScTHI2 and disrupt its normal localization, thereby inhibiting the synthesis of thiamine and the defense responses mediated by ScTHI2. Based on these findings, we propose that ScTHI2 represents a potential molecular target for improving sugarcane resistance to Pokkah Boeng disease.
Collapse
Affiliation(s)
- Lulu Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Deng Wu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Tianshu Hong
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qianqian Ren
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Shichao Wang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Yixue Bao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Wei Yao
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Qin Hu
- Guangxi Key Laboratory of Sugarcane Biology, Nanning 530004, China; (L.W.); (Q.R.); (W.Y.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China
- College of Agronomy, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
He Z, Yin Q, Lv Z, Peng S, Huang Y, Chen L, Luo Y, Zhang Q, He N. A conserved extracellular effector protein Ssh1296 from Scleromitrula shiraiana triggers cell death and regulates plant immunity. Int J Biol Macromol 2024; 282:136947. [PMID: 39490848 DOI: 10.1016/j.ijbiomac.2024.136947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/26/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The plant apoplast is a key battleground in the initial stages of interaction between the plant and pathogen. Despite its importance, few apoplastic effectors have been characterized to date. Here, we identified Ssh1296, a conserved apoplastic effector from Scleromitrula shiraiana. Ssh1296 and its homologous proteins, prevalent among fungi and oomycetes, possess the ability to induce cell death and enhance resistance against pathogens in Nicotiana benthamiana. Fragments containing conserved motifs 1-3 elicit more pronounced cell death responses than the full-length Ssh1296 protein. Furthermore, cysteine residues at positions C38, C52, C84, and C89 are essential for inducing sufficient cell death. The cell death response mediated by Ssh1296 depends on the RECEPTOR-LIKE PROTEIN REQUIRED FOR CSP22 RESPONSIVENESS (NbCSPR/RE02), SUPPRESSOR OF BIR1-1 (SOBIR1), and BRI1-ASSOCIATED KINASE-1 (BAK1). Constitutive expression of Ssh1296 and its homologous protein in Arabidopsis thaliana activates plant immunity but concurrently inhibits growth and development. These findings suggest that Ssh1296 and its homologous proteins can be recognized by plants as pathogen-associated molecular patterns (PAMPs). In conclusion, Ssh1296 holds promise as a potential inducer of plant immunity.
Collapse
Affiliation(s)
- Ziwen He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qingqing Yin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Zhiyuan Lv
- Chongqing Key Laboratory of Germplasm Innovation and Utilization of Native Plants, Chongqing Landscape and Gardening Research Institute, Chongqing, China
| | - Shufang Peng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yuanyuan Huang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Li Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Qi Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, China.
| |
Collapse
|
12
|
Cai L, Xu X, Dong Y, Jin Y, Rashad YM, Ma D, Gu A. Roles of Three FgPel Genes in the Development and Pathogenicity Regulation of Fusarium graminearum. J Fungi (Basel) 2024; 10:666. [PMID: 39452618 PMCID: PMC11508199 DOI: 10.3390/jof10100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium head blight (FHB) is a devastating fungal disease caused by Fusarium graminearum. Pectin lyase, a pectinase, acts on the α-1,4-glycosidic linkage of galacturonic acid primarily by β-elimination. In this study, three pectin lyase genes (FgPel1, 2, 3) in F. graminearum were selected, and deletion mutants (ΔFgPel1, 2, 3) were constructed by homologous recombination for functional characterization. The gene deletions affected the morphology and growth rate of F. graminearum on pectin medium at various concentrations, with the growth rate of ΔFgPel1 being more significant. The growth of ΔFgPel1 colonies slowed at pH 4, with optimal growth at pH 6.5, whereas ΔFgPel2 and ΔFgPel3 exhibited greater inhibition at pH 8. Colony morphology and diameter of the deletion mutants showed no significant differences compared to the wild-type strain PH-1, and there was no effect on conidial production or germination rate. Pathogenicity assays demonstrated that gene deletion significantly reduced the ability of F. graminearum to infest corn silks and wheat ears, and that ΔFgPel2 showed a more pronounced reduction in pathogenicity on wheat spikes. In summary, the pectin lyase genes (FgPel1, 2, 3) are involved in pectin utilization and are influenced by external pH conditions, which attenuate the pathogenicity of F. graminearum without affecting its vegetative growth or asexual spore formation. These findings elucidate the roles of these genes and provide a basis for controlling FHB.
Collapse
Affiliation(s)
- Lu Cai
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (L.C.); (X.X.); (Y.D.); (Y.J.)
| | - Xiao Xu
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (L.C.); (X.X.); (Y.D.); (Y.J.)
- Jiangsu Academy of Agricultural Sciences, Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224000, China
| | - Ye Dong
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (L.C.); (X.X.); (Y.D.); (Y.J.)
| | - Yingying Jin
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (L.C.); (X.X.); (Y.D.); (Y.J.)
| | - Younes M. Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab 21934, Egypt;
| | - Dongfang Ma
- Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China; (L.C.); (X.X.); (Y.D.); (Y.J.)
| | - Aiguo Gu
- Jiangsu Product Quality Testing & Inspection Institute, Nanjing 210007, China;
| |
Collapse
|
13
|
He H, Xu T, Cao F, Xu Y, Dai T, Liu T. PcAvh87, a virulence essential RxLR effector of Phytophthora cinnamomi suppresses host defense and induces cell death in plant nucleus. Microbiol Res 2024; 286:127789. [PMID: 38870619 DOI: 10.1016/j.micres.2024.127789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Plants have developed intricate immune mechanisms to impede Phytophthora colonization. In response, Phytophthora secretes RxLR effector proteins that disrupt plant defense and promote infection. The specific molecular interactions through which Phytophthora RxLR effectors undermine plant immunity, however, remain inadequately defined. In this study, we delineate the role of the nuclear-localized RxLR effector PcAvh87, which is pivotal for the full virulence of Phytophthora cinnamomi. Gene expression analysis indicates that PcAvh87 expression is significantly upregulated during the initial infection stages, interacting with the immune responses triggered by the elicitin protein INF1 and pro-apoptotic protein BAX. Utilizing PEG/CaCl2-mediated protoplast transformation and CRISPR/Cas9-mediated gene editing, we generated PcAvh87 knockout mutants, which demonstrated compromised hyphal growth, sporangium development, and zoospore release, along with a marked reduction in pathogenicity. This underscores PcAvh87's crucial role as a virulence determinant. Notably, PcAvh87, conserved across the Phytophthora genus, was found to modulate the activity of plant immune protein 113, thereby attenuating plant immune responses. This implies that the PcAvh87-mediated regulatory mechanism could be a common strategy in Phytophthora species to manipulate plant immunity. Our findings highlight the multifaceted roles of PcAvh87 in promoting P. cinnamomi infection, including its involvement in sporangia production, mycelial growth, and the targeting of plant immune proteins to enhance pathogen virulence.
Collapse
Affiliation(s)
- Haibin He
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingyan Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Yue Xu
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Tingting Dai
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu, China.
| | - Tingli Liu
- School of Food Science, Nanjing Xiaozhuang University, 3601 Hongjin Avenue, Nanjing 211171, China.
| |
Collapse
|
14
|
Zhao Y, He Y, Chen X, Li N, Yang T, Hu T, Duan S, Luo X, Jiang L, Chen X, Tao X, Chen J. Different viral effectors hijack TCP17, a key transcription factor for host Auxin synthesis, to promote viral infection. PLoS Pathog 2024; 20:e1012510. [PMID: 39208401 PMCID: PMC11389919 DOI: 10.1371/journal.ppat.1012510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/11/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Auxin is an important class of plant hormones that play an important role in plant growth development, biotic stress response, and viruses often suppress host plant auxin levels to promote infection. However, previous research on auxin-mediated disease resistance has focused mainly on signaling pathway, and the molecular mechanisms of how pathogenic proteins manipulate the biosynthetic pathway of auxin remain poorly understood. TCP is a class of plant-specific transcription factors, of which TCP17 is a member that binds to the promoter of YUCCAs, a key rate-limiting enzyme for auxin synthesis, and promotes the expression of YUCCAs, which is involved in auxin synthesis in plants. In this study, we reported that Tomato spotted wilt virus (TSWV) infection suppressed the expression of YUCCAs through its interaction with TCP17. Further studies revealed that the NSs protein encoded by TSWV disrupts the dimerization of TCP17, thereby inhibit its transcriptional activation ability and reducing the auxin content in plants. Consequently, this interference inhibits the auxin response signal and promotes the TSWV infection. Transgenic plants overexpressing TCP17 exhibit resistance against TSWV infection, whereas plants knocking out TCP17 were more susceptible to TSWV infection. Additionally, proteins encoded by other RNA viruses (BSMV, RSV and TBSV) can also interact with TCP17 and interfere with its dimerization. Notably, overexpression of TCP17 enhanced resistance against BSMV. This suggests that TCP17 plays a crucial role in plant defense against different types of plant viruses that use viral proteins to target this key component of auxin synthesis and promote infection.
Collapse
Affiliation(s)
- Yanxiao Zhao
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yong He
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xinyue Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ninghong Li
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Tongqing Yang
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Tingting Hu
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shujing Duan
- School of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xuanjie Luo
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Lei Jiang
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Xiaoyang Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| | - Xiaorong Tao
- The Key Laboratory of Plant Immunity, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jing Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, China
- Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Li W, Li P, Deng Y, Zhang Z, Situ J, Huang J, Li M, Xi P, Jiang Z, Kong G. Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii. THE NEW PHYTOLOGIST 2024; 242:2682-2701. [PMID: 38622771 DOI: 10.1111/nph.19755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zijing Zhang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|