1
|
Blasco-Roset A, Quesada-López T, Mestres-Arenas A, Villarroya J, Godoy-Nieto FJ, Cereijo R, Rupérez C, Neess D, Færgeman NJ, Giralt M, Planavila A, Villarroya F. Acyl CoA-binding protein in brown adipose tissue acts as a negative regulator of adaptive thermogenesis. Mol Metab 2025; 96:102153. [PMID: 40220929 PMCID: PMC12050000 DOI: 10.1016/j.molmet.2025.102153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025] Open
Abstract
OBJECTIVE Defective activity of brown adipose tissue (BAT) is linked to obesity and cardiometabolic diseases. While much is known regarding the biological signals that trigger BAT thermogenesis, relatively little is known about the repressors that may impair BAT function in physiological and pathological settings. Acyl CoA-binding protein (ACBP; also known as diazepam binding inhibitor, DBI) has intracellular functions related to lipid metabolism and can be secreted to act as a circulating regulatory factor that affects multiple organs. Our objective was to determine the role of ACBP in BAT function. METHODS Experimental models based on the targeted inactivation of the Acbp gene in brown adipocytes, both in vitro and in vivo, as well as brown adipocytes treated with recombinant ACBP, were developed and analyzed for transcriptomic and metabolic changes. RESULTS ACBP expression and release in BAT are suppressed by noradrenergic cAMP-dependent signals that stimulate thermogenesis. This regulation occurs through gene expression modulation and autophagy-related processes. Mice with targeted ablation of Acbp in brown adipocytes exhibit enhanced BAT thermogenic activity and protection against high-fat diet-induced obesity and glucose intolerance; this is associated with BAT transcriptome changes, including upregulation of BAT thermogenesis-related genes. Treatment of brown adipocytes with exogenous ACBP suppresses oxidative activity, lipolysis, and thermogenesis-related gene expression. ACBP treatment inhibits the noradrenergic-induced phosphorylation of p38 MAP-kinase and CREB, which are major intracellular mediators of brown adipocyte thermogenesis. CONCLUSIONS The ACBP system acts as a crucial auto regulatory repressor of BAT thermogenesis that responds reciprocally to the noradrenergic induction of BAT activity.
Collapse
Affiliation(s)
- Albert Blasco-Roset
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Tania Quesada-López
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain; Institut d'Investigació Biomèdica Sant Pau (IIB-SANT PAU), Barcelona, Spain; Department of Infectious Diseases, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - Alberto Mestres-Arenas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Joan Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Francisco J Godoy-Nieto
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Rubén Cereijo
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Celia Rupérez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain
| | - Ditte Neess
- Department of Biochemistry and Molecular Biology, University of South Denmark, DK-5230, Odense, Denmark
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of South Denmark, DK-5230, Odense, Denmark
| | - Marta Giralt
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Anna Planavila
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain
| | - Francesc Villarroya
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain; Institut de Recerca de Sant Joan de Déu, 08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Smirnov A, Makarenko M, Yunusova A. Transgene Mapping in Animals: What to Choose? Int J Mol Sci 2025; 26:4705. [PMID: 40429848 PMCID: PMC12111812 DOI: 10.3390/ijms26104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/09/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
The phenomenal progress in biotechnology and genomics is both inspiring and overwhelming-a classic curse of choice, particularly when it comes to selecting methods for mapping transgene DNA integration sites. Transgene localization remains a crucial task for the validation of transgenic mouse or other animal models generated by pronuclear microinjection. Due to the inherently random nature of DNA integration, reliable characterization of the insertion site is essential. Over the years, a vast number of mapping methods have been developed, and new approaches continue to emerge, making the choice of the most suitable technique increasingly complex. Factors such as cost, required reagents, and the nature of the generated data require careful consideration. In this review, we provide a structured overview of current transgene mapping techniques, which we have broadly classified into three categories: classic PCR-based methods (such as inverse PCR and TAIL-PCR), next-generation sequencing with target enrichment, and long-read sequencing platforms (PacBio and Oxford Nanopore). To aid in decision-making, we include a comparative table summarizing approximate costs for the methods. While each approach has its own advantages and limitations, we highlight our top four recommended methods, which we believe offer the best balance of cost-effectiveness, reliability, and simplicity for identifying transgene integration sites.
Collapse
Affiliation(s)
- Alexander Smirnov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Maksim Makarenko
- Department of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius Federal Territory, Sochi 354340, Russia
| | - Anastasia Yunusova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
3
|
Sousa-Filho CPB, Petrovic N. No UCP1 in the kidney. Mol Metab 2025; 95:102127. [PMID: 40120980 PMCID: PMC11995138 DOI: 10.1016/j.molmet.2025.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/05/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVES Several recent studies have indicated the presence of UCP1 in the kidney, challenging the paradigm that UCP1 is only found in brown and beige adipocytes and broadening the (patho)physiological significance of UCP1. The kidney localization has been the direct result of immunohistochemical investigations and an inferred outcome from multiple lines of reporter mice. These findings require confirmation and further physiological characterization. METHODS We examined UCP1 expression in the kidney using immunohistochemistry and qPCR. Transversal sections through or near the kidney hilum, consistently including perirenal brown fat and adjacent kidney tissue, were analyzed with four UCP1 antibodies. RESULTS In addition to detecting UCP1 in perirenal adipose tissue, we observed distinct immunopositive structures in the kidney with our in-house UCP1-antibody, 'C10', in apparent agreement with earlier reports. To corroborate this, we tested the C10-antibody on kidney sections from UCP1-ablated mice but found equal reactivity in these UCP1-negative tissues. We then tested the widely used antibody ab10983, previously employed in kidney studies. Also here, the positive signal persisted in UCP1-ablated mice, clearly invalidating earlier findings. UCP1 qPCR studies also failed to detect UCP1 mRNA above background. Finally, two highly specific antibodies, E9Z2V and EPR20381, accurately detected UCP1 in perirenal adipose tissue but showed no signal in the kidney. CONCLUSIONS When appropriate controls are implemented, there is no evidence for the presence of UCP1 in the kidney. Consequently, this conclusion also implies that the results from UCP1 reporter mice, specifically regarding kidney expression of the UCP1 gene - though possibly applicable to other tissues - require reconfirmation before being accepted as evidence for the presence of UCP1 in non-adipose tissues.
Collapse
Affiliation(s)
| | - Natasa Petrovic
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
4
|
Moyer AJ, Barcus A, Capps MES, Chrabasz JA, Lalonde RL, Mosimann C, Thyme SB. Genetic context of transgene insertion can influence neurodevelopment in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640904. [PMID: 40093151 PMCID: PMC11908146 DOI: 10.1101/2025.02.28.640904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The Gal4/UAS system is used across model organisms to overexpress target genes in precise cell types and relies on generating transgenic Gal4 driver lines. In zebrafish, the Tg(elavl3:KalTA4) (HuC) Gal4 line drives robust expression in neurons. We observed an increased prevalence of swim bladder defects in Tg(elavl3:KalTA4) zebrafish larvae compared to wildtype siblings, which prompted us to investigate whether transgenic larvae display additional neurobehavioral phenotypes. Tg(elavl3:KalTA4) larvae showed alterations in brain activity, brain morphology, and behavior, including increased hindbrain size and reduced activity of the cerebellum. Bulk RNA-seq analysis revealed dysregulation of the transcriptome and suggested an increased ratio of neuronal progenitor cells compared to differentiated neurons. To understand whether these phenotypes derive from Gal4 toxicity or from positional effects related to transgenesis, we used economical low-pass whole genome sequencing to map the Tol2-mediated insertion site to chromosome eight. Reduced expression of the neighboring gene gadd45ga, a known cell cycle regulator, is consistent with increased proliferation and suggests a role for positional effects. Challenges with creating alternative pan-neuronal lines include the length of the elavl3 promoter (over 8 kb) and random insertion using traditional transgenesis methods. To facilitate the generation of alternative lines, we cloned five neuronal promoters (atp6v0cb, smaller elavl3, rtn1a, sncb, and stmn1b) ranging from 1.7 kb to 4.3 kb and created KalTA4 lines using Tol2 and the phiC31 integrase-based pIGLET system. Our study highlights the importance of using appropriate genetic controls and interrogating potential positional effects in new transgenic lines.
Collapse
Affiliation(s)
- Anna J Moyer
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alexia Barcus
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mary E S Capps
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jessica A Chrabasz
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Summer B Thyme
- Department of Biochemistry and Molecular Biotechnology, The University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|