1
|
Sang X, Zhen F, Li H, Zhang Z, Wang Y, Qu B, Sun Y. Effect of cellulase-assisted cold isostatic pressure extraction on the characteristics and functional properties of polyphenol extracts from camellia sinensis seeds. Int J Biol Macromol 2024; 282:137384. [PMID: 39521203 DOI: 10.1016/j.ijbiomac.2024.137384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
In this experiment, polyphenolic substances were extracted from Camellia sinensis seeds (CSS) using a synergistic treatment of cold isostatic pressure (CIP) and cellulase. The effects of pressure, treatment time, and cellulase addition on the experiment were investigated. And the optimal extraction conditions were established by single factor experiment and Box-benhken experiments: the pressure applied by CIP was 408.649 MPa, the treatment time was 10.995 min, and the cellulase addition was 4.098 %. The polyphenols in the extract were characterized and quantified using LC-MS/MS. By comparing the different treatments, it was found that the synergistic treatment of CIP and cellulase resulted in a higher extraction yield. FTIR, XRD and SEM mapping showed that CIP synergistic pretreatment with cellulase was able to disrupt the microstructure of the plant and promote the influx of the active ingredients into solution. Finally, the activity of the extracts was detected by using in vitro antioxidant experiments and RAW264.7 cellular anti-inflammatory experiments, which indicated that CIP and cellulase synergistically treated polyphenol extracts had high antioxidant and anti-inflammatory capacity. This experiment provides a new pretreatment method for extracting active substances from CSS.
Collapse
Affiliation(s)
- Xueting Sang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Feng Zhen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| | - Hongru Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyun Zhang
- College of Animal Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yuxin Wang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Bin Qu
- College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China
| |
Collapse
|
2
|
Golubova D, Tansley C, Su H, Patron NJ. Engineering Nicotiana benthamiana as a platform for natural product biosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102611. [PMID: 39098308 DOI: 10.1016/j.pbi.2024.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Nicotiana benthamiana is a model plant, widely used for research. The susceptibility of young plants to Agrobacterium tumefaciens has been utilised for transient gene expression, enabling the production of recombinant proteins at laboratory and commercial scales. More recently, this technique has been used for the rapid prototyping of synthetic genetic circuits and for the elucidation and reconstruction of metabolic pathways. In the last few years, many complex metabolic pathways have been successfully reconstructed in this species. In addition, the availability of improved genomic resources and efficient gene editing tools have enabled the application of sophisticated metabolic engineering approaches to increase the purity and yield of target compounds. In this review, we discuss recent advances in the use of N. benthamiana for understanding and engineering plant metabolism, as well as efforts to improve the utility of this species as a production chassis for natural products.
Collapse
Affiliation(s)
- D Golubova
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - C Tansley
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - H Su
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - N J Patron
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK; Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| |
Collapse
|
3
|
Kallam K, Moreno‐Giménez E, Mateos‐Fernández R, Tansley C, Gianoglio S, Orzaez D, Patron N. Tunable control of insect pheromone biosynthesis in Nicotiana benthamiana. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1440-1453. [PMID: 37032497 PMCID: PMC10281601 DOI: 10.1111/pbi.14048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Previous work has demonstrated that plants can be used as production platforms for molecules used in health, medicine, and agriculture. Production has been exemplified in both stable transgenic plants and using transient expression strategies. In particular, species of Nicotiana have been engineered to produce a range of useful molecules, including insect sex pheromones, which are valued for species-specific control of agricultural pests. To date, most studies have relied on strong constitutive expression of all pathway genes. However, work in microbes has demonstrated that yields can be improved by controlling and balancing gene expression. Synthetic regulatory elements that provide control over the timing and levels of gene expression are therefore useful for maximizing yields from heterologous biosynthetic pathways. In this study, we demonstrate the use of pathway engineering and synthetic genetic elements for controlling the timing and levels of production of Lepidopteran sex pheromones in Nicotiana benthamiana. We demonstrate that copper can be used as a low-cost molecule for tightly regulated inducible expression. Further, we show how construct architecture influences relative gene expression and, consequently, product yields in multigene constructs. We compare a number of synthetic orthogonal regulatory elements and demonstrate maximal yields from constructs in which expression is mediated by dCas9-based synthetic transcriptional activators. The approaches demonstrated here provide new insights into the heterologous reconstruction of metabolic pathways in plants.
Collapse
Affiliation(s)
- Kalyani Kallam
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| | | | | | - Connor Tansley
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| | - Silvia Gianoglio
- Institute for Plant Molecular and Cell Biology (IBMCP), UPV‐CSICValenciaSpain
| | - Diego Orzaez
- Institute for Plant Molecular and Cell Biology (IBMCP), UPV‐CSICValenciaSpain
| | - Nicola Patron
- Engineering BiologyEarlham Institute, Norwich Research ParkNorwich, NorfolkUK
| |
Collapse
|
4
|
Wakade G, Lin S, Saha P, Kumari U, Daniell H. Abatement of microfibre pollution and detoxification of textile dye - Indigo by engineered plant enzymes. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:302-316. [PMID: 36208023 PMCID: PMC9884014 DOI: 10.1111/pbi.13942] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Microfibres (diameter <5 mm) and textile dyes released from textile industries are ubiquitous, cause environmental pollution, and harm aquatic flora, fauna, animals and human life. Therefore, enzymatic abatement of microfibre pollution and textile dye detoxification is essential. Microbial enzymes for such application present major challenges of scale and affordability to clean up large scale pollution. Therefore, enzymes required for the biodegradation of microfibres and indigo dye were expressed in transplastomic tobacco plants through chloroplast genetic engineering. Integration of laccase and lignin peroxidase genes into the tobacco chloroplast genomes and homoplasmy was confirmed by Southern blots. Decolorization (up to 86%) of samples containing indigo dye (100 mg/L) was obtained using cp-laccase (0.5% plant enzyme powder). Significant (8-fold) reduction in commercial microbial cellulase cocktail was achieved in pretreated cotton fibre hydrolysis by supplementing cost effective cellulases (endoglucanases, ß-glucosidases) and accessory enzymes (swollenin, xylanase, lipase) and ligninases (laccase lignin peroxidase) expressed in chloroplasts. Microfibre hydrolysis using cocktail of Cp-cellulases and Cp-accessory enzymes along with minimal dose (0.25% and 0.5%) of commercial cellulase blend (Ctec2) showed 88%-89% of sugar release from pretreated cotton and microfibres. Cp-ligninases, Cp-cellulases and Cp-accessory enzymes were stable in freeze dried leaves up to 15 and 36 months respectively at room temperature, when protected from light. Use of plant powder for decolorization or hydrolysis eliminated the need for preservatives, purification or concentration or cold chain. Evidently, abatement of microfibre pollution and textile dye detoxification using Cp-enzymes is a novel and cost-effective approach to prevent their environmental pollution.
Collapse
Affiliation(s)
- Geetanjali Wakade
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shina Lin
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Prasenjit Saha
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Uma Kumari
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Yang Y, Chaffin TA, Ahkami AH, Blumwald E, Stewart CN. Plant synthetic biology innovations for biofuels and bioproducts. Trends Biotechnol 2022; 40:1454-1468. [PMID: 36241578 DOI: 10.1016/j.tibtech.2022.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/21/2023]
Abstract
Plant-based biosynthesis of fuels, chemicals, and materials promotes environmental sustainability, which includes decreases in greenhouse gas emissions, water pollution, and loss of biodiversity. Advances in plant synthetic biology (synbio) should improve precision and efficacy of genetic engineering for sustainability. Applicable synbio innovations include genome editing, gene circuit design, synthetic promoter development, gene stacking technologies, and the design of environmental sensors. Moreover, recent advancements in developing spatially resolved and single-cell omics contribute to the discovery and characterization of cell-type-specific mechanisms and spatiotemporal gene regulations in distinct plant tissues for the expression of cell- and tissue-specific genes, resulting in improved bioproduction. This review highlights recent plant synbio progress and new single-cell molecular profiling towards sustainable biofuel and biomaterial production.
Collapse
Affiliation(s)
- Yongil Yang
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Timothy Alexander Chaffin
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Charles Neal Stewart
- Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA; Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
6
|
Huckauf J, Brandt BP, Dezar C, Nausch H, Hauerwaas A, Weisenfeld U, Elshiewy O, Rua M, Hugenholtz J, Wesseler J, Cingiz K, Broer I. Sustainable Production of the Cyanophycin Biopolymer in Tobacco in the Greenhouse and Field. Front Bioeng Biotechnol 2022; 10:896863. [PMID: 35769105 PMCID: PMC9234492 DOI: 10.3389/fbioe.2022.896863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The production of biodegradable polymers as coproducts of other commercially relevant plant components can be a sustainable strategy to decrease the carbon footprint and increase the commercial value of a plant. The biodegradable polymer cyanophycin granular polypeptide (CGP) was expressed in the leaves of a commercial tobacco variety, whose seeds can serve as a source for biofuel and feed. In T0 generation in the greenhouse, up to 11% of the leaf dry weight corresponded to the CGP. In T1 generation, the maximum content decreased to approximately 4% dw, both in the greenhouse and first field trial. In the field, a maximum harvest of 4 g CGP/plant could be obtained. Independent of the CGP content, most transgenic plants exhibited a slight yield penalty in the leaf biomass, especially under stress conditions in greenhouse and field trials. After the harvest, the leaves were either Sun dried or ensiled. The resulting material was used to evaluate the extraction of CGP compared to that in the laboratory protocol. The farm-level analysis indicates that the extraction of CGP from tobacco plants can provide alternative income opportunities for tobacco farmers. The CGP yield/ha indicates that the CGP production in plants can be economically feasible depending on the cultivation and extraction costs. Moreover, we analyzed the consumer acceptance of potential applications associated with GM tobacco in four European countries (Germany, Finland, Italy and the Netherlands) and found unexpectedly high acceptance.
Collapse
Affiliation(s)
- Jana Huckauf
- Agrobiotechnology, University of Rostock, Rostock, Germany
| | | | | | - Henrik Nausch
- Agrobiotechnology, University of Rostock, Rostock, Germany
| | - Antoniya Hauerwaas
- Institute of Management and Organisation (IMO), Leuphana University Lüneburg, Lüneburg, Germany
| | - Ursula Weisenfeld
- Institute of Management and Organisation (IMO), Leuphana University Lüneburg, Lüneburg, Germany
| | - Ossama Elshiewy
- Institute of Management and Organisation (IMO), Leuphana University Lüneburg, Lüneburg, Germany
| | | | | | - Justus Wesseler
- Agricultural Economics and Rural Policy, Wageningen University, Wageningen, Netherlands
| | - Kutay Cingiz
- Agricultural Economics and Rural Policy, Wageningen University, Wageningen, Netherlands
| | - Inge Broer
- Agrobiotechnology, University of Rostock, Rostock, Germany
- *Correspondence: Inge Broer,
| |
Collapse
|
7
|
Buyel JF, Stöger E, Bortesi L. Targeted genome editing of plants and plant cells for biomanufacturing. Transgenic Res 2021; 30:401-426. [PMID: 33646510 PMCID: PMC8316201 DOI: 10.1007/s11248-021-00236-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Plants have provided humans with useful products since antiquity, but in the last 30 years they have also been developed as production platforms for small molecules and recombinant proteins. This initially niche area has blossomed with the growth of the global bioeconomy, and now includes chemical building blocks, polymers and renewable energy. All these applications can be described as "plant molecular farming" (PMF). Despite its potential to increase the sustainability of biologics manufacturing, PMF has yet to be embraced broadly by industry. This reflects a combination of regulatory uncertainty, limited information on process cost structures, and the absence of trained staff and suitable manufacturing capacity. However, the limited adaptation of plants and plant cells to the requirements of industry-scale manufacturing is an equally important hurdle. For example, the targeted genetic manipulation of yeast has been common practice since the 1980s, whereas reliable site-directed mutagenesis in most plants has only become available with the advent of CRISPR/Cas9 and similar genome editing technologies since around 2010. Here we summarize the applications of new genetic engineering technologies to improve plants as biomanufacturing platforms. We start by identifying current bottlenecks in manufacturing, then illustrate the progress that has already been made and discuss the potential for improvement at the molecular, cellular and organism levels. We discuss the effects of metabolic optimization, adaptation of the endomembrane system, modified glycosylation profiles, programmable growth and senescence, protease inactivation, and the expression of enzymes that promote biodegradation. We outline strategies to achieve these modifications by targeted gene modification, considering case-by-case examples of individual improvements and the combined modifications needed to generate a new general-purpose "chassis" for PMF.
Collapse
Affiliation(s)
- J F Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
- Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - E Stöger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - L Bortesi
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
8
|
Daniell H, Jin S, Zhu X, Gitzendanner MA, Soltis DE, Soltis PS. Green giant-a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:430-447. [PMID: 33484606 PMCID: PMC7955891 DOI: 10.1111/pbi.13556] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 05/04/2023]
Abstract
Free-living cyanobacteria were entrapped by eukaryotic cells ~2 billion years ago, ultimately giving rise to chloroplasts. After a century of debate, the presence of chloroplast DNA was demonstrated in the 1960s. The first chloroplast genomes were sequenced in the 1980s, followed by ~100 vegetable, fruit, cereal, beverage, oil and starch/sugar crop chloroplast genomes in the past three decades. Foreign genes were expressed in isolated chloroplasts or intact plant cells in the late 1980s and stably integrated into chloroplast genomes, with typically maternal inheritance shown in the 1990s. Since then, chloroplast genomes conferred the highest reported levels of tolerance or resistance to biotic or abiotic stress. Although launching products with agronomic traits in important crops using this concept has been elusive, commercial products developed include enzymes used in everyday life from processing fruit juice, to enhancing water absorption of cotton fibre or removal of stains as laundry detergents and in dye removal in the textile industry. Plastid genome sequences have revealed the framework of green plant phylogeny as well as the intricate history of plastid genome transfer events to other eukaryotes. Discordant historical signals among plastid genes suggest possible variable constraints across the plastome and further understanding and mitigation of these constraints may yield new opportunities for bioengineering. In this review, we trace the evolutionary history of chloroplasts, status of autonomy and recent advances in products developed for everyday use or those advanced to the clinic, including treatment of COVID-19 patients and SARS-CoV-2 vaccine.
Collapse
Affiliation(s)
- Henry Daniell
- Department of Basic and Translational SciencesSchool of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Xin‐Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant SciencesChinese Academy of SciencesShanghaiChina
| | | | - Douglas E. Soltis
- Florida Museum of Natural History and Department of BiologyUniversity of FloridaGainesvilleFLUSA
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
9
|
Schmidt JA, Richter LV, Condoluci LA, Ahner BA. Mitigation of deleterious phenotypes in chloroplast-engineered plants accumulating high levels of foreign proteins. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:42. [PMID: 33568217 PMCID: PMC7877051 DOI: 10.1186/s13068-021-01893-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/28/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND The global demand for functional proteins is extensive, diverse, and constantly increasing. Medicine, agriculture, and industrial manufacturing all rely on high-quality proteins as major active components or process additives. Historically, these demands have been met by microbial bioreactors that are expensive to operate and maintain, prone to contamination, and relatively inflexible to changing market demands. Well-established crop cultivation techniques coupled with new advancements in genetic engineering may offer a cheaper and more versatile protein production platform. Chloroplast-engineered plants, like tobacco, have the potential to produce large quantities of high-value proteins, but often result in engineered plants with mutant phenotypes. This technology needs to be fine-tuned for commercial applications to maximize target protein yield while maintaining robust plant growth. RESULTS Here, we show that a previously developed Nicotiana tabacum line, TetC-cel6A, can produce an industrial cellulase at levels of up to 28% of total soluble protein (TSP) with a slight dwarf phenotype but no loss in biomass. In seedlings, the dwarf phenotype is recovered by exogenous application of gibberellic acid. We also demonstrate that accumulating foreign protein represents an added burden to the plants' metabolism that can make them more sensitive to limiting growth conditions such as low nitrogen. The biomass of nitrogen-limited TetC-cel6A plants was found to be as much as 40% lower than wildtype (WT) tobacco, although heterologous cellulase production was not greatly reduced compared to well-fertilized TetC-cel6A plants. Furthermore, cultivation at elevated carbon dioxide (1600 ppm CO2) restored biomass accumulation in TetC-cel6A plants to that of WT, while also increasing total heterologous protein yield (mg Cel6A plant-1) by 50-70%. CONCLUSIONS The work reported here demonstrates that well-fertilized tobacco plants have a substantial degree of flexibility in protein metabolism and can accommodate considerable levels of some recombinant proteins without exhibiting deleterious mutant phenotypes. Furthermore, we show that the alterations to protein expression triggered by growth at elevated CO2 can help rebalance endogenous protein expression and/or increase foreign protein production in chloroplast-engineered tobacco.
Collapse
Affiliation(s)
- Jennifer A Schmidt
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| | - Lubna V Richter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Lisa A Condoluci
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Beth A Ahner
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
10
|
Benedetti M, Barera S, Longoni P, Guardini Z, Herrero Garcia N, Bolzonella D, Lopez‐Arredondo D, Herrera‐Estrella L, Goldschmidt‐Clermont M, Bassi R, Dall’Osto L. A microalgal-based preparation with synergistic cellulolytic and detoxifying action towards chemical-treated lignocellulose. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:124-137. [PMID: 32649019 PMCID: PMC7769238 DOI: 10.1111/pbi.13447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 05/28/2023]
Abstract
High-temperature bioconversion of lignocellulose into fermentable sugars has drawn attention for efficient production of renewable chemicals and biofuels, because competing microbial activities are inhibited at elevated temperatures and thermostable cell wall degrading enzymes are superior to mesophilic enzymes. Here, we report on the development of a platform to produce four different thermostable cell wall degrading enzymes in the chloroplast of Chlamydomonas reinhardtii. The enzyme blend was composed of the cellobiohydrolase CBM3GH5 from C. saccharolyticus, the β-glucosidase celB from P. furiosus, the endoglucanase B and the endoxylanase XynA from T. neapolitana. In addition, transplastomic microalgae were engineered for the expression of phosphite dehydrogenase D from Pseudomonas stutzeri, allowing for growth in non-axenic media by selective phosphite nutrition. The cellulolytic blend composed of the glycoside hydrolase (GH) domain GH12/GH5/GH1 allowed the conversion of alkaline-treated lignocellulose into glucose with efficiencies ranging from 14% to 17% upon 48h of reaction and an enzyme loading of 0.05% (w/w). Hydrolysates from treated cellulosic materials with extracts of transgenic microalgae boosted both the biogas production by methanogenic bacteria and the mixotrophic growth of the oleaginous microalga Chlorella vulgaris. Notably, microalgal treatment suppressed the detrimental effect of inhibitory by-products released from the alkaline treatment of biomass, thus allowing for efficient assimilation of lignocellulose-derived sugars by C. vulgaris under mixotrophic growth.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
- Present address:
Dipartimento MESVAUniversità dell'AquilaCoppitoAQItaly
| | - Simone Barera
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Paolo Longoni
- Faculty of ScienceInstitute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Zeno Guardini
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | | | | | - Damar Lopez‐Arredondo
- StelaGenomics MexicoS de RL de CVIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Laboratorio Nacional de Genómica para la BiodiversidadCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalIrapuato, GuanajuatoMexico
- Institute of Genomics for Crop Abiotic Stress ToleranceTexas Tech UniversityLubbockTXUSA
| | | | - Roberto Bassi
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| | - Luca Dall’Osto
- Dipartimento di BiotecnologieUniversità di VeronaVeronaItaly
| |
Collapse
|
11
|
Lin MT, Stone WD, Chaudhari V, Hanson MR. Small subunits can determine enzyme kinetics of tobacco Rubisco expressed in Escherichia coli. NATURE PLANTS 2020; 6:1289-1299. [PMID: 32929197 DOI: 10.1038/s41477-020-00761-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/28/2020] [Indexed: 05/19/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) catalyses the first step in carbon fixation and is a strategic target for improving photosynthetic efficiency. In plants, Rubisco is composed of eight large and eight small subunits, and its biogenesis requires multiple chaperones. Here, we optimized a system to produce tobacco Rubisco in Escherichia coli by coexpressing chaperones in autoinduction medium. We successfully assembled tobacco Rubisco in E. coli with each small subunit that is normally encoded by the nuclear genome. Even though each enzyme carries only a single type of small subunit in E. coli, the enzymes exhibit carboxylation kinetics that are very similar to the carboxylation kinetics of the native Rubisco. Tobacco Rubisco assembled with a recently discovered trichome small subunit has a higher catalytic rate and a lower CO2 affinity compared with Rubisco complexes that are assembled with other small subunits. Our E. coli expression system will enable the analysis of features of both subunits of Rubisco that affect its kinetic properties.
Collapse
Affiliation(s)
- Myat T Lin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - William D Stone
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, USA
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Hefferon K, Cantero-Tubilla B, Badar U, Wilson DW. Plant-Based Cellulase Assay Systems as Alternatives for Synthetic Substrates. Appl Biochem Biotechnol 2020; 192:1318-1330. [PMID: 32734581 DOI: 10.1007/s12010-020-03395-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/16/2020] [Indexed: 11/25/2022]
Abstract
Dissociative enzymes such as cellulases are greatly desired for a variety of applications in the food, fuel, and fiber industries. Cellulases and other cell wall-degrading enzymes are currently being engineered with improved traits for application in the breakdown of lignocellulosic biomass. Biochemical assays using these "designer" enzymes have traditionally been carried out using synthetic substrates such as crystalline bacterial microcellulose (BMCC). However, the use of synthetic substrates may not reflect the actual action of these cellulases on real plant biomass. We examined the potential of suspension cell walls from several plant species as possible alternatives for synthetic cellulose substrates. Suspension cells grow synchronously; hence, their cell walls are more uniform than those derived from mature plants. This work will help to establish a new assay system that is more genuine than using synthetic substrates. In addition to this, we have demonstrated that it is feasible to produce cellulases inexpensively and at high concentrations and activities in plants using a recombinant plant virus expression system. Our long-term goals are to use this system to develop tailored cocktails of cellulases that have been engineered to function optimally for specific tasks (i.e., the conversion of biomass into biofuel or the enhancement of nutrients available in livestock feed). The broad impact would be to provide a facile and economic system for generating industrial enzymes that offer green solutions to valorize biomass in industrialized communities and specifically in developing countries.
Collapse
Affiliation(s)
- Kathleen Hefferon
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA.
| | - Borja Cantero-Tubilla
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Uzma Badar
- Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - David W Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14850, USA
| |
Collapse
|
13
|
Okuzaki A, Tsuda M, Konagaya KI, Tabei Y. A novel strategy for promoting homoplasmic plastid transformant production using the barnase-barstar system. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:223-232. [PMID: 32821230 PMCID: PMC7434676 DOI: 10.5511/plantbiotechnology.20.0503a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Plastid transformants form biofactories that are able to produce extra proteins in plastids when they are in a homoplasmic state. To date, plastid transformation has been reported in about twenty plant species; however, the production of homoplasmic plastid transformants is not always successful or easy. Heteroplasmic plants that contain wild-type plastids produce fewer target proteins and do not always successfully transfer transgenes to progeny. In order to promote the generation of homoplasmic plants, we developed a novel system using barnase-barster to eliminate wild-type plastids from heteroplasmic cells systematically. In this system, a chemically inducible cytotoxic barnase under a plastid transit signal was introduced into nuclear DNA and barster, which inhibits barnase, was integrated into plastid DNA with the primary selection markers aminoglycoside 3'-adenylyltransferase (aadA) and green fluorescence protein (GFP) gene. As expected, the expression of the plastid barnase was lethal to cells as seen in leaf segments, but barster expression in plastids rescued them. We then investigated the regeneration frequency of homoplasmic shoots from heteroplasmic leaf segments with or without barnase expression. The regeneration frequency of homoplasmic-like shoots expressing barnase-barster system was higher than that of shoots not expressing this. We expect that the application of this novel strategy for transformation of plastids will be supportive to generate homoplasmic plastid transformants in other plant species.
Collapse
Affiliation(s)
- Ayako Okuzaki
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Mai Tsuda
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Ken-ichi Konagaya
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yutaka Tabei
- National Institute of Agricultural Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| |
Collapse
|
14
|
Giovannoni M, Gramegna G, Benedetti M, Mattei B. Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Front Bioeng Biotechnol 2020; 8:356. [PMID: 32411686 PMCID: PMC7200985 DOI: 10.3389/fbioe.2020.00356] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022] Open
Abstract
Cell Wall Degrading Enzymes (CWDEs) are a heterogeneous group of enzymes including glycosyl-hydrolases, oxidoreductases, lyases, and esterases. Microbes with degrading activities toward plant cell wall polysaccharides are the most relevant source of CWDEs for industrial applications. These organisms secrete a wide array of CWDEs in amounts strictly necessary for their own sustenance, nonetheless the production of CWDEs from wild type microbes can be increased at large-scale by using optimized fermentation strategies. In the last decades, advances in genetic engineering allowed the expression of recombinant CWDEs also in lab-domesticated organisms such as E. coli, yeasts and plants, dramatically increasing the available options for the large-scale production of CWDEs. The optimization of a CWDE-producing biofactory is a hard challenge that biotechnologists tackle by testing different expression strategies and expression-hosts. Although both the yield and production costs are critical factors to produce biomolecules at industrial scale, these parameters are often disregarded in basic research. This review presents the main characteristics and industrial applications of CWDEs directed toward the cell wall of plants, bacteria, fungi and microalgae. Different biofactories for CWDE expression are compared in order to highlight strengths and weaknesses of each production system and how these aspects impact the final enzyme cost and, consequently, the economic feasibility of using CWDEs for industrial applications.
Collapse
Affiliation(s)
- Moira Giovannoni
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Gramegna
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Benedetta Mattei
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
15
|
Diamos AG, Pardhe MD, Sun H, Hunter JGL, Mor T, Meador L, Kilbourne J, Chen Q, Mason HS. Codelivery of improved immune complex and virus-like particle vaccines containing Zika virus envelope domain III synergistically enhances immunogenicity. Vaccine 2020; 38:3455-3463. [PMID: 32173095 PMCID: PMC7102565 DOI: 10.1016/j.vaccine.2020.02.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/04/2020] [Accepted: 02/29/2020] [Indexed: 12/29/2022]
Abstract
Zika virus (ZIKV) reemergence poses a significant health threat especially due to its risks to fetal development, necessitating safe and effective vaccines that can protect pregnant women. Zika envelope domain III (ZE3) has been identified as a safe and effective vaccine candidate, however it is poorly immunogenic. We previously showed that plant-made recombinant immune complex (RIC) vaccines are a robust platform to improve the immunogenicity of weak antigens. In this study, we altered the antigen fusion site on the RIC platform to accommodate N-terminal fusion to the IgG heavy chain (N-RIC), and thus a wider range of antigens, with a resulting 40% improvement in RIC expression over the normal C-terminal fusion (C-RIC). Both types of RICs containing ZE3 were efficiently assembled in plants and purified to >95% homogeneity with a simple one-step purification. Both ZE3 RICs strongly bound complement receptor C1q and elicited strong ZE3-specific antibody titers that correlated with ZIKV neutralization. When either N-RIC or C-RIC was codelivered with plant-produced hepatitis B core (HBc) virus-like particles (VLP) displaying ZE3, the combination elicited 5-fold greater antibody titers (>1,000,000) and more strongly neutralized ZIKV than either RICs or VLPs alone, after only two doses without adjuvant. These findings demonstrate that antigens that require a free N-terminus for optimal antigen display can now be used with the RIC system, and that plant-made RICs and VLPs are highly effective vaccines targeting ZE3. Thus, the RIC platform can be more generally applied to a wider variety of antigens.
Collapse
Affiliation(s)
- Andrew G Diamos
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Mary D Pardhe
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Haiyan Sun
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Joseph G L Hunter
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Tsafrir Mor
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Lydia Meador
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Jacquelyn Kilbourne
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Qiang Chen
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States
| | - Hugh S Mason
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, and The School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, United States.
| |
Collapse
|
16
|
Molecular farming - The slope of enlightenment. Biotechnol Adv 2020; 40:107519. [PMID: 31954848 DOI: 10.1016/j.biotechadv.2020.107519] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/20/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022]
Abstract
Molecular farming can be defined as the use of plants to produce recombinant protein products. The technology is now >30 years old. The early promise of molecular farming was based on three perceived advantages: the low costs of growing plants, the immense scalability of agricultural production, and the inherent safety of plants as hosts for the production of pharmaceuticals. This resulted in a glut of research publications in which diverse proteins were expressed in equally diverse plant-based systems, and numerous companies were founded hoping to commercialize the new technology. There was a moderate degree of success for companies producing non-pharmaceutical proteins, but in the pharmaceutical sector the anticipation raised by promising early research was soon met by the cold hard reality of industrial pragmatism. Plants did not have a track record of success in pharmaceutical protein manufacturing, lacked a regulatory framework, and did not perform as well as established industry platforms. Negative attitudes towards genetically modified plants added to the mix. By the early 2000s, major industry players started to lose interest and pharmaceutical molecular farming fell from a peak of expectation into a trough of disillusionment, just as predicted by the Gartner hype cycle. But many of the pioneers of molecular farming have refocused their activities and have worked to address the limitations that hampered the first generation of technologies. The field has now consolidated around a smaller number of better-characterized platforms and has started to develop standardized methods and best practices, mirroring the evolution of more mature industry sectors. Likewise, attention has turned from proof-of-principle studies to realistic techno-economic modeling to capture significant niche markets, replicating the success of the industrial molecular farming sector. Here we argue that these recent developments signify that pharmaceutical molecular farming is now climbing the slope of enlightenment and will soon emerge as a mature technology.
Collapse
|
17
|
Hefferon KL. The role of plant expression platforms in biopharmaceutical development: possibilities for the future. Expert Rev Vaccines 2019; 18:1301-1308. [PMID: 31829081 DOI: 10.1080/14760584.2019.1704264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Introduction: Plant-made vaccines have been in the pipeline for nearly thirty years. Generated stably in transgenic plants or transiently using virus expression systems, pharmaceuticals have been developed to address global pandemics as well as several emerging One Health Diseases.Areas covered: This review describes the generation of plant-made vaccines to address some of the world's most growing health concerns, including both infectious and non-communicable diseases, such as cancer. The review provides an overview of the research taking place in this field over the past three to five years. The PubMed database was searched under the topic of plant-made vaccine between the periods of 2014 and 2019.Expert opinion: While vaccines and other biologics have been shown to be cheap safe and efficacious, they have not yet entered the marketplace largely due to regulatory constraints. The lack of an appropriate regulatory structure to guide plant-made vaccines through to commercial development has stalled efforts to provide life-saving medicines to low- and middle-income families. In my opinion, it is paramount that regulatory hurdles are mitigated to address emerging infectious diseases such as Ebola and Zika in a timely manner.
Collapse
|
18
|
Fumagalli M, Gerace D, Faè M, Iadarola P, Leelavathi S, Reddy VS, Cella R. Molecular, biochemical, and proteomic analyses of transplastomic tobacco plants expressing an endoglucanase support chloroplast-based molecular farming for industrial scale production of enzymes. Appl Microbiol Biotechnol 2019; 103:9479-9491. [PMID: 31701198 DOI: 10.1007/s00253-019-10186-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 01/02/2023]
Abstract
The successful production of recombinant enzymes by tobacco transplastomic plants must maintain compatibility of the heterologous enzyme with chloroplast metabolism and its long-time enzyme stability. Based on previous reports, it has been taken for granted that following biolistic-transformation, homoplasticity could be obtained from the initially heteroplastic state following successive rounds of selection in the presence of the selection agent. However, several studies indicated that this procedure does not always ensure the complete elimination of unmodified wild-type plastomes. The present study demonstrates that CelK1 transplastomic plants, which were photosyntetically as active as untransformed ones, remain heteroplastomic even after repeated selection steps and that this state does not impair the relatively high-level production of the recombinant enzyme. In fact, even in the heteroplastomic state, the recombinant protein represented about 6% of the total soluble proteins (TSP). Moreover, our data also show that, while the recombinant endoglucanase undergoes phosphorylation, this post-translation modification does not have any significant impact on the enzymatic activity. Biomass storage might be required whenever the enzyme extraction process could not be performed immediately following the harvest of tobacco mature plants. In this respect, we have observed that enzyme activity in the detached leaves stored at 4 °C is maintained up to 20 weeks without significant loss of activity. These findings may have major implications in the future of chloroplast genetic engineering-based molecular farming to produce industrial enzymes in transplastomic plants.
Collapse
Affiliation(s)
- M Fumagalli
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - D Gerace
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - M Faè
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - P Iadarola
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - S Leelavathi
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - V S Reddy
- Plant Transformation Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rino Cella
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|