1
|
Li P, Wu H, Guo S, Wang S, Zhang M, Liu M, Ma W, Zhao J, Tan C, Cui C, Ge X, Li Z. Development of Brassica rapa-nigra monosomic alien addition lines: cytology, genetics, and morphology. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:118. [PMID: 40366382 DOI: 10.1007/s00122-025-04899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025]
Abstract
KEY MESSAGE Brassica rapa-nigra monosomic alien addition lines (MAALs) were developed and compared with B. oleracea-nigra MAALs containing the same B-genome chromosomes. The diploid Brassica nigra (black mustard) is the donor of the B-genome for two allotetraploids: B. juncea (AABB) and B. carinata (BBCC). To dissect the B-genome of B. nigra within the A-genome background of B. rapa, the progenies of resynthesized B. juncea, successively pollinated by the parental B. rapa, were screened using cytological methods and molecular markers. Seven out of eight B. rapa-nigra MAALs (2n = 21, AA + 1B1-8) were obtained, except for the AA-B6 MAAL. The additional chromosome appeared as one univalent in 86.76% of pollen mother cells and formed one trivalent with two A-genome chromosomes in 13.24% of cells. Different alien B-genome chromosomes were transmitted to progeny at varying rates, with higher transmission rates via female gametes (averaging 13.59%) than via male gametes (7.31%). These MAALs exhibited significant phenotypic variations which were either of parental origins or novel traits, and chromosomal locations of some traits from B. nigra or genetic interactions were realized from the joint results of B. rapa-nigra and B. oleracea-nigra MAALs with the same additional B-subgenome chromosomes. Comparison analyses of these two sets of MAALs provided new insights into the genetic interplay of the B-genome with A- and C-genomes in these two allotetraploids.
Collapse
Affiliation(s)
- Pengfei Li
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-Di Herbs, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Haiyan Wu
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-Di Herbs, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Shizhen Guo
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shunlin Wang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-Di Herbs, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Mimi Zhang
- Resource Institute for Chinese and Ethnic Materia Medica, Guizhou Key Laboratory for Germplasm Innovation and Resource-Efficient Utilization of Dao-Di Herbs, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, People's Republic of China
| | - Mengyang Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, People's Republic of China
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Horticulture, Hebei Agricultural University, Baoding, 071001, People's Republic of China.
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, People's Republic of China
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, People's Republic of China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| |
Collapse
|
2
|
Bousios A, Kakutani T, Henderson IR. Centrophilic Retrotransposons of Plant Genomes. ANNUAL REVIEW OF PLANT BIOLOGY 2025; 76:579-604. [PMID: 39952673 DOI: 10.1146/annurev-arplant-083123-082220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The centromeres of eukaryotic chromosomes are required to load CENH3/CENP-A variant nucleosomes and the kinetochore complex, which connects to spindle microtubules during cell division. Despite their conserved function, plant centromeres show rapid sequence evolution within and between species and a range of monocentric, holocentric, and polymetacentric architectures, which vary in kinetochore numbers and spacing. Plant centromeres are commonly composed of tandem satellite repeat arrays, which are invaded by specific families of centrophilic retrotransposons, whereas in some species the entire centromere is composed of such retrotransposons. We review the diversity of plant centrophilic retrotransposons and their mechanisms of integration, together with how epigenetic information and small RNAs control their proliferation. We discuss models for rapid centromere sequence evolution and speculate on the roles that centrophilic retrotransposons may play in centromere dynamics. We focus on plants but draw comparisons with animal and fungal centromeric transposons to highlight conserved and divergent themes across the eukaryotes.
Collapse
Affiliation(s)
| | - Tetsuji Kakutani
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
3
|
Liu Y, Weng Z, Liu Y, Tian M, Yang Y, Pan N, Zhang M, Zhao H, Du H, Yin N, Qu C, Wan H. Identification of the Cinnamyl Alcohol Dehydrogenase Gene Family in Brassica U-Triangle Species and Its Potential Roles in Response to Abiotic Stress and Regulation of Seed Coat Color in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2025; 14:1184. [PMID: 40284071 PMCID: PMC12030436 DOI: 10.3390/plants14081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
Cinnamyl alcohol dehydrogenase (CAD) is essential for lignin precursor synthesis and responses to various abiotic stresses in plants. However, the functions of CAD in Brassica species, especially in Brassica napus, remain poorly characterized. In the present study, we identified a total of 90 CAD genes across the Brassica U-triangle species, including B. rapa, B. nigra, B. oleracea, B. juncea, B. napus, and B. carinata. Comprehensive analyses of phylogenetic relationships, sequence identity, conserved motifs, gene structure, chromosomal distribution, collinearity, and cis-acting elements were performed. Based on phylogenetic analysis, these genes were categorized into four groups, designated as groups I to IV. Most of the CAD genes were implicated in mediating responses to abiotic stresses and phytohormones. Notably, members in group III, containing the bona fide CAD genes, were directly involved in lignin synthesis. Furthermore, the expression profiles of BnaCAD genes exhibited differential responses to drought, osmotic, and ABA treatments. The expression levels of the BnaCAD4a, BnaCAD4b, BnaCAD5b, and BnaCAD5d genes were detected and found to be significantly lower in yellow-seeded B. napus compared to the black-seeded ones. This study provides a comprehensive characterization of CAD genes in Brassica U-triangle species and partially validates their functions in B. napus, thereby contributing to a better understanding of their roles. The insights gained are expected to facilitate the breeding of yellow-seeded B. napus cultivars with enhanced stress tolerance and desirable agronomic traits.
Collapse
Affiliation(s)
- Yiwei Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ziwuyun Weng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yuanyuan Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengjiao Tian
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yaping Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nian Pan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengzhen Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huafang Wan
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (Y.L.); (Z.W.); (Y.L.); (M.T.); (Y.Y.); (N.P.); (M.Z.); (H.Z.); (H.D.); (N.Y.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
4
|
Xiao Y, Wang J. Understanding the Regulation Activities of Transposons in Driving the Variation and Evolution of Polyploid Plant Genome. PLANTS (BASEL, SWITZERLAND) 2025; 14:1160. [PMID: 40284048 PMCID: PMC12030055 DOI: 10.3390/plants14081160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Transposon is the main component of the eukaryotic genome, and more and more plant genome data show that transposons are diverse in regulating genome structure, variation, function and evolution, with different transposition mechanisms in the genome. Hybridization and polyploidy play an important role in promoting plant speciation and evolution, and recent studies have shown that polyploidy is usually accompanied by the expansion of transposons, which affect the genome size and structure of polyploid plants. Transposons can insert into genes and intergenic regions, resulting in great differences in the overall genome structure of closely related plant species, and it can also capture gene segments in the genome to increase the copy number of genes. In addition, transposons influence the epigenetic modification state of the genome and regulate the expression of the gene, while plant phenotype, biological and abiotic stress response are also regulated by transposons. Overall, transposons play an important role in the plant genome, especially polyploid plant genome, adaptation and evolution.
Collapse
Affiliation(s)
- Yafang Xiao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| |
Collapse
|
5
|
Bargunam S, Roy R, Shetty D, H AS, V S S, Babu VS. Melatonin-governed growth and metabolome divergence: Circadian and stress responses in key plant species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109635. [PMID: 39952162 DOI: 10.1016/j.plaphy.2025.109635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/15/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Melatonin, a versatile biomolecule, profoundly influences plant growth and resilience through its intricate regulation of metabolic pathways, circadian rhythms, and cellular processes. The current study elucidates melatonin's concentration-dependent biphasic effects on growth dynamics in Arabidopsis thaliana and Brassica nigra. While 50 μM melatonin optimized biomass accumulation and root elongation, higher concentrations (100 μM) elicited stress responses, underscoring its dual role as a growth promoter and stress modulator. Melatonin extended photosynthetic efficiency by modulating chlorophyll and carotenoid synthesis diurnally, offering protection against photodamage. Divergent responses between the two species, driven by species-specific metabolic reprogramming, were evident in pigment biosynthesis and antioxidant pathways. B. nigra displayed robust activation of flavonoid and phenylpropanoid pathways, cytokinin signaling, and enhanced oxidative defenses, contrasting with A. thaliana, where melatonin suppressed pigment precursors and antioxidant activation. Metabolomic analysis revealed melatonin's orchestration of hormonal crosstalk, involving auxins, gibberellins, and jasmonates, to fine-tune growth and stress adaptation. Stomatal dynamics and cell wall fortification in B. nigra highlighted melatonin's role in optimizing water-use efficiency and structural resilience under abiotic stress. Cytogenetic studies confirmed melatonin's role in safeguarding genomic integrity, regulating chromatin remodeling, and promoting DNA repair mechanisms, with B. nigra demonstrating adaptive genomic strategies under stress. Moreover, melatonin influenced critical metabolic pathways, including polyamine biosynthesis, sulfur metabolism, and nucleotide regulation, emphasizing its multifaceted impact on cellular homeostasis. These findings position melatonin as a cornerstone molecule in plant biotechnology, with potential applications in enhancing crop resilience and productivity under fluctuating environmental conditions.
Collapse
Affiliation(s)
- Soundaryaa Bargunam
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Riyan Roy
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Devika Shetty
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Amisha S H
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shukla V S
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vidhu Sankar Babu
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
6
|
Yan H, Han J, Jin S, Han Z, Si Z, Yan S, Xuan L, Yu G, Guan X, Fang L, Wang K, Zhang T. Post-polyploidization centromere evolution in cotton. Nat Genet 2025; 57:1021-1030. [PMID: 40033059 DOI: 10.1038/s41588-025-02115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Upland cotton (Gossypium hirsutum) accounts for more than 90% of the world's cotton production and, as an allotetraploid, is a model plant for polyploid crop domestication. In the present study, we reported a complete telomere-to-telomere (T2T) genome assembly of Upland cotton accession Texas Marker-1 (T2T-TM-1), which has a total size of 2,299.6 Mb, and annotated 79,642 genes. Based on T2T-TM-1, interspecific centromere divergence was detected between the A- and D-subgenomes and their corresponding diploid progenitors. Centromere-associated repetitive sequences (CRCs) were found to be enriched for Gypsy-like retroelements. Centromere size expansion, repositioning and structure variations occurred post-polyploidization. It is interesting that CRC homologs were transferred from the diploid D-genome progenitor to the D-subgenome, invaded the A-subgenome and then underwent post-tetraploidization proliferation. This suggests an evolutionary advantage for the CRCs of the D-genome progenitor, presents a D-genome-adopted inheritance of centromere repeats after polyploidization and shapes the dynamic centromeric landscape during polyploidization in polyploid species.
Collapse
Affiliation(s)
- Hu Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
7
|
Chen D, Wang C, Liu Y, Shen W, Cuimu Q, Zhang D, Zhu B, Chen L, Tan C. Systematic identification of R2R3-MYB S6 subfamily genes in Brassicaceae and its role in anthocyanin biosynthesis in Brassica crops. BMC PLANT BIOLOGY 2025; 25:290. [PMID: 40045187 PMCID: PMC11883967 DOI: 10.1186/s12870-025-06296-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025]
Abstract
The Brassicaceae family includes Arabidopsis thaliana, various vegetables and oil crops. The R2R3-MYB genes of the S6 subfamily are crucial for regulating anthocyanin biosynthesis, however, their systematic identification in Brassicaceae plants is still incomplete. Here, we systematically identified homologous genes of R2R3-MYB transcription factors from the S6 subfamily across 31 Brassicaceae species. A total of 92 homologous genes were identified, with species representation ranging from 0 to 10 genes per species. Phylogenetic analysis classified these homologous genes into six distinct groups. Notably, approximately 70% of the homologous genes were found within the G6 group, indicating a high degree of evolutionary conservation. Furthermore, a phylogenetic analysis was conducted on 35 homologous genes obtained from six species within the U's triangle Brassica plants. The findings provided evidence of significant conservation among orthologous genes across species and demonstrated strong collinearity on subgenomic chromosomes, with notable tandem duplications observed on chromosomes A7 and C6. Subsequently, we predicted the cis-acting elements of these 35 homologous genes, and analyzed their structures, conserved motifs, and characteristic conserved domains, confirming the significant similarities between orthologous genes. Additionally, we employed white and purple flower rapeseed specimens to conduct qRT-PCR validation of the key genes and transcriptional regulators associated with the anthocyanin synthesis pathway. The results revealed significant differential expression of BnaPAP2.A7.b in purple flowers, alongside the differential expression of BnaPAP2.C6.d. Ultimately, based on previous research and the findings of this study, we propose a transcriptional regulatory framework to govern anthocyanin accumulation in distinct tissues or organs of B. napus. Our findings offer a novel perspective on the functional diversification of R2R3-MYB transcription factors within the S6 subfamily homologous genes, while also shedding light on the regulatory network governing anthocyanin biosynthesis in Brassicaceae species.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Chenchen Wang
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Wenjie Shen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Qiushi Cuimu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Dawei Zhang
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, School of Life and Health Science, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Bo Zhu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China
| | - Lunlin Chen
- Nanchang Branch of National Center of Oilcrops Improvement, Jiangxi Province Key Laboratory of Oil Crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Chen Tan
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Zhang M, Tian M, Weng Z, Yang Y, Pan N, Shen S, Zhao H, Du H, Qu C, Yin N. Genome-Wide Identification Analysis of the 4-Coumarate: Coa Ligase (4CL) Gene Family in Brassica U's Triangle Species and Its Potential Role in the Accumulation of Flavonoids in Brassica napus L. PLANTS (BASEL, SWITZERLAND) 2025; 14:714. [PMID: 40094609 PMCID: PMC11902127 DOI: 10.3390/plants14050714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
4-Coumarate: CoA ligase (4CL) is a key branch point enzyme at the end of the phenylpropanoid metabolic pathway. It regulates the synthesis of various metabolites and participates in plant growth and development by catalyzing the formation of CoA ester compounds. However, 4CL family members have not been identified and analyzed among U's triangle species in Brassica. In this study, 53 4CL genes were identified in Brassica U's triangle species and divided into 4 groups (group I, II, III and IV) according to phylogenetic relationship. Based on phylogenetics, gene structure, conserved motifs, chromosome localization and collinearity analysis, 4CLs were relatively conserved in the evolution of Brassica U's triangle species. The promoter region contains a large number of cis-acting elements, implying the functional diversity of 4CLs. Further combining transcriptome data and reverse transcription quantitative PCR (RT-qPCR), we found that Bna4CLs have tissue specificity and can not only respond to exogenous phytohormone changes but also regulate the flavonoid biosynthetic pathway in the yellow- and black-seeded B. napus. Our results complement the lack of research on the 4CL gene family in Brassica, clarify the sequence characteristics and functional diversity of these genes and lay a foundation for further exploration of 4CL genes in response to abiotic stress and regulation of seed coat flavonoid accumulation.
Collapse
Affiliation(s)
- Mengzhen Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Mengjiao Tian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Ziwuyun Weng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Yaping Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nian Pan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; (M.Z.); (M.T.); (Z.W.); (Y.Y.); (N.P.); (S.S.); (H.Z.); (H.D.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China
| |
Collapse
|
9
|
Todd C, Jin L, McQuillan I. SV-JIM, detailed pairwise structural variant calling using long-reads and genome assemblies. Methods 2025; 234:305-313. [PMID: 39826659 DOI: 10.1016/j.ymeth.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
This paper proposes a detailed process for SV calling that permits a data-driven assessment of multiple SV callers that uses both genome assemblies and long-reads. The process is implemented as a software pipeline named Structural Variant - Jaccard Index Measure, or SVJIM, using the Snakemake [20] workflow management system. Like most state-of-the-art SV callers, SV-JIM detects the presence of variations between pairs of genomes, but it streamlines the numerous SV calling stages into a single process for user convenience and evaluates the multiple SV sets produced using the Jaccard index measure to identify those with the highest consistency among the included SV callers. SV-JIM then produces aggregated SV results based on how many callers supported the reported SVs. For validation, SV-JIM was assessed through three case studies on the Homo sapiens genome and two plant genomes - Brassica nigra and Arabidopsis thaliana. Executing SV-JIM identified a significant amount of inter-caller variance which varied by tens of thousands of results on the larger Brassica nigra and Homo sapiens genomes. Further, aggregating the SV sets helped simplify better retention of the less frequently occurring SV types by requiring a level of minimum support rather than from a specific SV caller combination. Finally, these case studies identified a potential for inflated precision reporting that can occur during evaluation. SV-JIM is available publicly under MIT license at https://github.com/USask-BINFO/SV-JIM.
Collapse
Affiliation(s)
- Clarence Todd
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Lingling Jin
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Ian McQuillan
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
10
|
Yan X, Yu R, Wang J, Jiao Y. Ancestral genome reconstruction and the evolution of chromosomal rearrangements in Triticeae. J Genet Genomics 2025:S1673-8527(24)00370-9. [PMID: 39746604 DOI: 10.1016/j.jgg.2024.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Chromosomal rearrangements (CRs) often cause phenotypic variations. Although several major rearrangements have been identified in Triticeae, a comprehensive study of the order, timing, and breakpoints of CRs has not been conducted. Here, we reconstruct high-quality ancestral genomes for the most recent common ancestor (MRCA) of the Triticeae, and the MRCA of the wheat lineage (Triticum and Aegilops). The protogenes of MRCA of the Triticeae and the wheat lineage are 22,894 and 29,060, respectively, which were arranged in their ancestral order. By partitioning modern Triticeae chromosomes into sets of syntenic regions and linking each to the corresponding protochromosomes, we revisit the rye chromosome structural evolution and propose alternative evolutionary routes. The previously identified 4L/5L reciprocal translocation in rye and Triticum urartu are found to have occurred independently and are unlikely the result of chromosomal introgression following distant hybridization. We also clarify that the 4AL/7BS translocation in tetraploid wheat was a bidirectional rather than unidirectional translocation event. Lastly, we identify several breakpoints in protochromosomes that independently reoccur following Triticeae evolution, representing potential CR hotspots. This study demonstrates that these reconstructed ancestral genomes can serve as special comparative references and facilitate a better understanding of the evolution of structural rearrangements in Triticeae.
Collapse
Affiliation(s)
- Xueqing Yan
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runxian Yu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinpeng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences and Center for Genomics and Computational Biology, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuannian Jiao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Zu F, Li X, Chen W, Wang J, Luo Y, Mehmood S, Fan C, Li J, Dong Y, Zhou Y, Li G. Application of an Anchor Mapping of Alien Chromosome (AMAC) Fragment Localization Method in the Identification of Radish Chromosome Segments in the Progeny of Rape-Radish Interspecific Hybrids. Int J Mol Sci 2024; 25:13687. [PMID: 39769448 PMCID: PMC11728025 DOI: 10.3390/ijms252413687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Rape (Brassica napus) is an important oilseed crop widely cultivated worldwide. Due to its relatively short evolutionary and domestication history, its intra-species genetic diversity is limited. Radish (Raphanus sativus), belonging to a different genus but the same family as B. nupus, possesses an abundance of excellent gene resources. It is commonly used for B. nupus germplasm improvement and genetic basis expansion, making it one of the most important close relatives for distant hybridization. In the present study, a novel method for detecting alien chromosome fragments, called Anchor Mapping of Alien Chromosome (AMAC) was used to identify radish chromosome segments in the progeny of rape-radish interspecific hybrids. Based on the AMAC method, 126,861 pairs of IP (Intron Polymorphism) and 76,764 pairs of SSR (Simple Sequence Repeat) primers were developed using the radish Rs1.0 reference genome. A total of 44,176 markers (23,816 pairs of IP and 20,360 pairs of SSR markers) were predicted to be radish genome specific-single-locus (SSL) markers through electronic PCR analysis among four R. sativus, one B. napus, one B. rapa, one B. juncea, and one B. juncea reference genome. Among them, 626 randomly synthesized SSL markers (478 SSL IP markers and 148 SSL SSR markers) were used to amplify the genome of 24 radish samples (R. sativus), 18 rape (B. napus), 2 Chinese cabbage (B. rapa), 2 kale (B. oleracea), and 2 mustard (B. juncea) samples, respectively. Then, 333 SSL markers of the radish genome were identified, which only amplified in the radish genome and not in any Brassica species genome, including 192 IP markers and 141 SSR markers. Furthermore, these validated SSL markers were used to identify alien chromosome fragments in Ogura-CMS restorer line 16C, Ogura-CMS sterile line 81A, and their hybrid-Yunyouza15. In 16C, one marker, Rs1.0025823_intron_3, had an amplification product designated as anchor marker for the alien chromosome fragment of 16C. Afterwards, four novel radish genome-specific IP markers were found to be flanking the anchor marker, and it was determined that the alien chromosome segment in 16C originated from the region 8.4807-11.7798 Mb on radish chromosome R9, and it was approximately 3.2991 Mb in size. These results demonstrate that the AMAC method developed in this study is efficient, convenient, and cost-effective for identifying excellent alien chromosome fragments/genes in distant hybrid progeny, and it can be applied to the molecular marker-assisted breeding and hybrid identification of radish and Brassica crop species.
Collapse
Affiliation(s)
- Feng Zu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (C.F.)
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China; (W.C.); (J.W.); (Y.L.); (S.M.); (J.L.); (Y.D.)
| | - Xia Li
- Biotechnology and Genetic Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China;
| | - Wei Chen
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China; (W.C.); (J.W.); (Y.L.); (S.M.); (J.L.); (Y.D.)
| | - Jingqiao Wang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China; (W.C.); (J.W.); (Y.L.); (S.M.); (J.L.); (Y.D.)
| | - Yanqing Luo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China; (W.C.); (J.W.); (Y.L.); (S.M.); (J.L.); (Y.D.)
| | - Sultan Mehmood
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China; (W.C.); (J.W.); (Y.L.); (S.M.); (J.L.); (Y.D.)
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (C.F.)
| | - Jinfeng Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China; (W.C.); (J.W.); (Y.L.); (S.M.); (J.L.); (Y.D.)
| | - Yunsong Dong
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China; (W.C.); (J.W.); (Y.L.); (S.M.); (J.L.); (Y.D.)
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (F.Z.); (C.F.)
| | - Genze Li
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650225, China; (W.C.); (J.W.); (Y.L.); (S.M.); (J.L.); (Y.D.)
| |
Collapse
|
12
|
Zhao Y, Chen S, Qin M, Shui K, Li R, Yang B, Liu J, Chen Z. Genome-Wide Identification of FCS-Like Zinc Finger (FLZ) Family Genes in Three Brassica Plant Species and Functional Characterization of BolFLZs in Chinese Kale Under Abiotic Stresses. Int J Mol Sci 2024; 25:12907. [PMID: 39684617 DOI: 10.3390/ijms252312907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
FCS-like zinc finger (FLZ) proteins are plant-specific regulatory proteins, which contain a highly conserved FLZ domain, and they play critical roles in plant growth and stress responses. Although the FLZ family has been systematically characterized in certain plants, it remains underexplored in Brassica species, which are vital sources of vegetables, edible oils, and condiments for human consumption and are highly sensitive to various abiotic stresses. Following the whole-genome triplication events (WGT) in Brassica, elucidating how the FLZ genes have expanded, differentiated, and responded to abiotic stresses is valuable for uncovering the genetic basis and functionality of these genes. In this study, we identified a total of 113 FLZ genes from three diploid Brassica species and classified them into four groups on the basis of their amino acid sequences. Additionally, we identified 109 collinear gene pairs across these Brassica species, which are dispersed among different chromosomes, suggesting that whole-genome duplication (WGD) has significantly contributed to the expansion of the FLZ family. Subcellular localization revealed that six representative BolFLZ proteins are located in the nucleus and cytoplasm. Yeast two-hybrid assays revealed that 13 selected BolFLZs interact with BolSnRK1α1 and BolSnRK1α2, confirming the conservation of the SnRK1α-FLZ module in Brassica species. Expression profile analysis revealed differential expression patterns of BolFLZ across various tissues. Notably, the expression levels of seven BolFLZ genes out of the fifteen genes analyzed changed significantly following treatment with various abiotic stressors, indicating that the BolFLZ genes play distinct physiological roles and respond uniquely to abiotic stresses in Brassica species. Together, our results provide a comprehensive overview of the FLZ gene family in Brassica species and insights into their potential applications for enhancing stress tolerance and growth in Chinese kale.
Collapse
Affiliation(s)
- Yuwan Zhao
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai Macao Biotechnology Joint Laboratory, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Shunquan Chen
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen 518071, China
| | - Mao Qin
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen 518071, China
| | - Kejuan Shui
- Technical Center of Gongbei Customs, Zhuhai 519087, China
| | - Riqing Li
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen 518071, China
| | - Baoli Yang
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen 518071, China
| | - Jin Liu
- Shenzhen Inspection and Testing Center of Agricultural Product Quality and Safety, Shenzhen 518071, China
| | - Zhufeng Chen
- Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai Macao Biotechnology Joint Laboratory, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
13
|
Hoang NV, Walden N, Caracciolo L, Luoni SB, Retta M, Li R, Wolters FC, Woldu T, Becker FFM, Verbaarschot P, Harbinson J, Driever SM, Struik PC, van Amerongen H, de Ridder D, Aarts MGM, Schranz ME. Expanding the Triangle of U: Comparative analysis of the Hirschfeldia incana genome provides insights into chromosomal evolution, phylogenomics and high photosynthesis-related traits. ANNALS OF BOTANY 2024:mcae179. [PMID: 39446469 DOI: 10.1093/aob/mcae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND AIMS The Brassiceae tribe encompasses many economically important crops and exhibits high intraspecific and interspecific phenotypic variation. After a shared whole-genome triplication (WGT) event (Br-α, ~15.9 million years ago), differential lineage diversification and genomic changes contributed to an array of divergence in morphology, biochemistry, and physiology underlying photosynthesis-related traits. Here, the C3 species Hirschfeldia incana is studied as it displays high photosynthetic rates under high-light conditions. Our aim was to elucidate the evolution that gave rise to the genome of H. incana and its high-photosynthesis traits. METHODS We reconstructed a chromosome-level genome assembly for H. incana (Nijmegen, v2.0) using nanopore and chromosome conformation capture (Hi-C) technologies, with 409Mb in size and an N50 of 52Mb (a 10× improvement over the previously published scaffold-level v1.0 assembly). The updated assembly and annotation was subsequently employed to investigate the WGT history of H. incana in a comparative phylogenomic framework from the Brassiceae ancestral genomic blocks and related diploidized crops. KEY RESULTS Hirschfeldia incana (x=7) shares extensive genome collinearity with Raphanus sativus (x=9). These two species share some commonalities with Brassica rapa and B. oleracea (A genome, x=10 and C genome, x=9, respectively) and other similarities with B. nigra (B genome, x=8). Phylogenetic analysis revealed that H. incana and R. sativus form a monophyletic clade in between the Brassica A/C and B genomes. We postulate that H. incana and R. sativus genomes are results of hybridization or introgression of the Brassica A/C and B genome types. Our results might explain the discrepancy observed in published studies regarding phylogenetic placement of H. incana and R. sativus in relation to the "Triangle of U" species. Expression analysis of WGT retained gene copies revealed sub-genome expression divergence, likely due to neo- or sub-functionalization. Finally, we highlighted genes associated with physio-biochemical-anatomical adaptive changes observed in H. incana which likely facilitate its high-photosynthesis traits under high light. CONCLUSIONS The improved H. incana genome assembly, annotation and results presented in this work will be a valuable resource for future research to unravel the genetic basis of its ability to maintain a high photosynthetic efficiency in high-light conditions and thereby improve photosynthesis for enhanced agricultural production.
Collapse
Affiliation(s)
- Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nora Walden
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sofia Bengoa Luoni
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges Retta
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Run Li
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Felicia C Wolters
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tina Woldu
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
14
|
Garassino F, Bengoa Luoni S, Cumerlato T, Reyes Marquez F, Harbinson J, Aarts MGM, Nijveen H, Smit S. Cross-species transcriptomics reveals differential regulation of essential photosynthesis genes in Hirschfeldia incana. G3 (BETHESDA, MD.) 2024; 14:jkae175. [PMID: 39115294 PMCID: PMC11457080 DOI: 10.1093/g3journal/jkae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/06/2024] [Indexed: 10/08/2024]
Abstract
Photosynthesis is the only yield-related trait not yet substantially improved by plant breeding. Previously, we have established H. incana as the model plant for high photosynthetic light-use efficiency (LUE). Now we aim to unravel the genetic basis of this trait in H. incana, potentially contributing to the improvement of photosynthetic LUE in other species. Here, we compare its transcriptomic response to high light with that of Arabidopsis thaliana, Brassica rapa, and Brassica nigra, 3 fellow Brassicaceae members with lower photosynthetic LUE. We built a high-light, high-uniformity growing environment, in which the plants developed normally without signs of stress. We compared gene expression in contrasting light conditions across species, utilizing a panproteome to identify orthologous proteins. In-depth analysis of 3 key photosynthetic pathways showed a general trend of lower gene expression under high-light conditions for all 4 species. However, several photosynthesis-related genes in H. incana break this trend. We observed cases of constitutive higher expression (like antenna protein LHCB8), treatment-dependent differential expression (as for PSBE), and cumulative higher expression through simultaneous expression of multiple gene copies (like LHCA6). Thus, H. incana shows differential regulation of essential photosynthesis genes, with the light-harvesting complex as the first point of deviation. The effect of these expression differences on protein abundance and turnover, and ultimately the high photosynthetic LUE phenotype is relevant for further investigation. Furthermore, this transcriptomic resource of plants fully grown under, rather than briefly exposed to, a very high irradiance, will support the development of highly efficient photosynthesis in crops.
Collapse
Affiliation(s)
- Francesco Garassino
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Sofia Bengoa Luoni
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Tommaso Cumerlato
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Francisca Reyes Marquez
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Stippeneng 4, Wageningen 6708 WE, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Harm Nijveen
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| | - Sandra Smit
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen 6708 PB, The Netherlands
| |
Collapse
|
15
|
Huang G, Bao Z, Feng L, Zhai J, Wendel JF, Cao X, Zhu Y. A telomere-to-telomere cotton genome assembly reveals centromere evolution and a Mutator transposon-linked module regulating embryo development. Nat Genet 2024; 56:1953-1963. [PMID: 39147922 DOI: 10.1038/s41588-024-01877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
Assembly of complete genomes can reveal functional genetic elements missing from draft sequences. Here we present the near-complete telomere-to-telomere and contiguous genome of the cotton species Gossypium raimondii. Our assembly identified gaps and misoriented or misassembled regions in previous assemblies and produced 13 centromeres, with 25 chromosomal ends having telomeres. In contrast to satellite-rich Arabidopsis and rice centromeres, cotton centromeres lack phased CENH3 nucleosome positioning patterns and probably evolved by invasion from long terminal repeat retrotransposons. In-depth expression profiling of transposable elements revealed a previously unannotated DNA transposon (MuTC01) that interacts with miR2947 to produce trans-acting small interfering RNAs (siRNAs), one of which targets the newly evolved LEC2 (LEC2b) to produce phased siRNAs. Systematic genome editing experiments revealed that this tripartite module, miR2947-MuTC01-LEC2b, controls the morphogenesis of complex folded embryos characteristic of Gossypium and its close relatives in the cotton tribe. Our study reveals a trans-acting siRNA-based tripartite regulatory pathway for embryo development in higher plants.
Collapse
Affiliation(s)
- Gai Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Zhigui Bao
- Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Li Feng
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yuxian Zhu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China.
- Institute for Advanced Studies, Wuhan University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Wang T, van Dijk ADJ, Zhao R, Bonnema G, Wang X. Contribution of homoeologous exchange to domestication of polyploid Brassica. Genome Biol 2024; 25:231. [PMID: 39192349 DOI: 10.1186/s13059-024-03370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Polyploidy is widely recognized as a significant evolutionary force in the plant kingdom, contributing to the diversification of plants. One of the notable features of allopolyploidy is the occurrence of homoeologous exchange (HE) events between the subgenomes, causing changes in genomic composition, gene expression, and phenotypic variations. However, the role of HE in plant adaptation and domestication remains unclear. RESULTS Here we analyze the whole-genome resequencing data from Brassica napus accessions representing the different morphotypes and ecotypes, to investigate the role of HE in domestication. Our findings demonstrate frequent occurrence of HEs in Brassica napus, with substantial HE patterns shared across populations, indicating their potential role in promoting crop domestication. HE events are asymmetric, with the A genome more frequently replacing C genome segments. These events show a preference for specific genomic regions and vary among populations. We also identify candidate genes in HE regions specific to certain populations, which likely contribute to flowering-time diversification across diverse morphotypes and ecotypes. In addition, we assemble a new genome of a swede accession, confirming the HE signals on the genome and their potential involvement in root tuber development. By analyzing HE in another allopolyploid species, Brassica juncea, we characterize a potential broader role of HE in allopolyploid crop domestication. CONCLUSIONS Our results provide novel insights into the domestication of polyploid Brassica species and highlight homoeologous exchange as a crucial mechanism for generating variations that are selected for crop improvement in polyploid species.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Ranze Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Zhou Y, Ye H, Liu E, Tian J, Song L, Ren Z, Wang M, Sun Z, Tang L, Ren Z, Li J, Nie Q, Wang A, Wang K. The complexity of structural variations in Brassica rapa revealed by assembly of two complete T2T genomes. Sci Bull (Beijing) 2024; 69:2346-2351. [PMID: 38548570 DOI: 10.1016/j.scib.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 08/06/2024]
Affiliation(s)
- Yifan Zhou
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hanzhe Ye
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Enwei Liu
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jingjing Tian
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liping Song
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430045, China
| | - Zhiyong Ren
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Man Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenghui Sun
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liguang Tang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430045, China
| | - Zhongyue Ren
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jinquan Li
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Qijun Nie
- Institute of Economic Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Aihua Wang
- Wuhan Vegetable Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan 430045, China.
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, Hubei Hongshan Laboratory, College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; RNA Institute, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
18
|
Qian F, Zuo D, Xue Y, Guan W, Ullah N, Zhu J, Cai G, Zhu B, Wu X. Comprehensive genome-wide identification of Snf2 gene family and their expression profile under salt stress in six Brassica species of U's triangle model. PLANTA 2024; 260:49. [PMID: 38985323 DOI: 10.1007/s00425-024-04473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
MAIN CONCLUSION We comprehensively identified and analyzed the Snf2 gene family. Some Snf2 genes were involved in responding to salt stress based on the RNA-seq and qRT-PCR analysis. Sucrose nonfermenting 2 (Snf2) proteins are core components of chromatin remodeling complexes that not only alter DNA accessibility using the energy of ATP hydrolysis, but also play a critical regulatory role in growth, development, and stress response in eukaryotes. However, the comparative study of Snf2 gene family in the six Brassica species in U's triangle model remains unclear. Here, a total of 405 Snf2 genes were identified, comprising 53, 50, and 46 in the diploid progenitors: Brassica rapa (AA, 2n = 20), Brassica nigra (BB, 2n = 16), and Brassica oleracea (CC, 2n = 18), and 93, 91, and 72 in the allotetraploid: Brassica juncea (AABB, 2n = 36), Brassica napus (AACC, 2n = 38), and Brassica carinata (BBCC, 2n = 34), respectively. These genes were classified into six clades and further divided into 18 subfamilies based on their conserved motifs and domains. Intriguingly, these genes showed highly conserved chromosomal distributions and gene structures, indicating that few dynamic changes occurred during the polyploidization. The duplication modes of the six Brassica species were diverse, and the expansion of most Snf2 in Brassica occurred primarily through dispersed duplication (DSD) events. Additionally, the majority of Snf2 genes were under purifying selection during polyploidization, and some Snf2 genes were associated with various abiotic stresses. Both RNA-seq and qRT-PCR analysis showed that the expression of BnaSnf2 genes was significantly induced under salt stress, implying their involvement in salt tolerance response in Brassica species. The results provide a comprehensive understanding of the Snf2 genes in U's triangle model species, which will facilitate further functional analysis of the Snf2 genes in Brassica plants.
Collapse
Affiliation(s)
- Fang Qian
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China
| | - Yujun Xue
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Wenjie Guan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Naseeb Ullah
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Jiarong Zhu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Guangqin Cai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, People's Republic of China.
| | - Xiaoming Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, People's Republic of China.
| |
Collapse
|
19
|
Liu J, Zhou SZ, Liu YL, Zhao BY, Yu D, Zhong MC, Jiang XD, Cui WH, Zhao JX, Qiu J, Liu LM, Guo ZH, Li HT, Tan DY, Hu JY, Li DZ. Genomes of Meniocus linifolius and Tetracme quadricornis reveal the ancestral karyotype and genomic features of core Brassicaceae. PLANT COMMUNICATIONS 2024; 5:100878. [PMID: 38475995 PMCID: PMC11287156 DOI: 10.1016/j.xplc.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 03/03/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Brassicaceae represents an important plant family from both a scientific and economic perspective. However, genomic features related to the early diversification of this family have not been fully characterized, especially upon the uplift of the Tibetan Plateau, which was followed by increasing aridity in the Asian interior, intensifying monsoons in Eastern Asia, and significantly fluctuating daily temperatures. Here, we reveal the genomic architecture that accompanied early Brassicaceae diversification by analyzing two high-quality chromosome-level genomes for Meniocus linifolius (Arabodae; clade D) and Tetracme quadricornis (Hesperodae; clade E), together with genomes representing all major Brassicaceae clades and the basal Aethionemeae. We reconstructed an ancestral core Brassicaceae karyotype (CBK) containing 9 pseudochromosomes with 65 conserved syntenic genomic blocks and identified 9702 conserved genes in Brassicaceae. We detected pervasive conflicting phylogenomic signals accompanied by widespread ancient hybridization events, which correlate well with the early divergence of core Brassicaceae. We identified a successive Brassicaceae-specific expansion of the class I TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) gene family, which encodes enzymes with essential regulatory roles in flowering time and embryo development. The TPS1s were mainly randomly amplified, followed by expression divergence. Our results provide fresh insights into historical genomic features coupled with Brassicaceae evolution and offer a potential model for broad-scale studies of adaptive radiation under an ever-changing environment.
Collapse
Affiliation(s)
- Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Zhao Zhou
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Long Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Bin-Yan Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongmei Yu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Qiu
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Liang-Min Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Hong-Tao Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Dun-Yan Tan
- College of Life Sciences, Xinjiang Agricultural University, Ürümqi 830052, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
20
|
Paritosh K, Rajarammohan S, Yadava SK, Sharma S, Verma R, Mathur S, Mukhopadhyay A, Gupta V, Pradhan AK, Kaur J, Pental D. A chromosome-scale assembly of Brassica carinata (BBCC) accession HC20 containing resistance to multiple pathogens and an early generation assessment of introgressions into B. juncea (AABB). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:762-782. [PMID: 38722594 DOI: 10.1111/tpj.16794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 07/16/2024]
Abstract
Brassica carinata (BBCC) commonly referred to as Ethiopian mustard is a natural allotetraploid containing the genomes of Brassica nigra (BB) and Brassica oleracea (CC). It is an oilseed crop endemic to the northeastern regions of Africa. Although it is under limited cultivation, B. carinata is valuable as it is resistant/highly tolerant to most of the pathogens affecting widely cultivated Brassica species of the U's triangle. We report a chromosome-scale genome assembly of B. carinata accession HC20 using long-read Oxford Nanopore sequencing and Bionano optical maps. The assembly has a scaffold N50 of ~39.8 Mb and covers ~1.11 Gb of the genome. We compared the long-read genome assemblies of the U's triangle species and found extensive gene collinearity between the diploids and allopolyploids with no evidence of major gene losses. Therefore, B. juncea (AABB), B. napus (AACC), and B. carinata can be regarded as strict allopolyploids. We cataloged the nucleotide-binding and leucine-rich repeat immune receptor (NLR) repertoire of B. carinata and, identified 465 NLRs, and compared these with the NLRs in the other Brassica species. We investigated the extent and nature of early-generation genomic interactions between the constituent genomes of B. carinata and B. juncea in interspecific crosses between the two species. Besides the expected recombination between the constituent B genomes, extensive homoeologous exchanges were observed between the A and C genomes. Interspecific crosses, therefore, can be used for transferring disease resistance from B. carinata to B. juncea and broadening the genetic base of the two allotetraploid species.
Collapse
Affiliation(s)
- Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | | | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Sarita Sharma
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Rashmi Verma
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Shikha Mathur
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Arundhati Mukhopadhyay
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Akshay K Pradhan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| | - Jagreet Kaur
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, 110021, India
| |
Collapse
|
21
|
Wu Q, Mao S, Huang H, Liu J, Chen X, Hou L, Tian Y, Zhang J, Wang J, Wang Y, Huang K. Chromosome-scale reference genome of broccoli ( Brassica oleracea var. italica Plenck) provides insights into glucosinolate biosynthesis. HORTICULTURE RESEARCH 2024; 11:uhae063. [PMID: 38720933 PMCID: PMC11077082 DOI: 10.1093/hr/uhae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/19/2024] [Indexed: 05/12/2024]
Abstract
Broccoli (Brassica oleracea var. italica Plenck) is an important vegetable crop, as it is rich in health-beneficial glucosinolates (GSLs). However, the genetic basis of the GSL diversity in Brassicaceae remains unclear. Here we report a chromosome-level genome assembly of broccoli generated using PacBio HiFi reads and Hi-C technology. The final genome assembly is 613.79 Mb in size, with a contig N50 of 14.70 Mb. The GSL profile and content analysis of different B. oleracea varieties, combined with a phylogenetic tree analysis, sequence alignment, and the construction of a 3D model of the methylthioalkylmalate synthase 1 (MAM1) protein, revealed that the gene copy number and amino acid sequence variation both contributed to the diversity of GSL biosynthesis in B. oleracea. The overexpression of BoMAM1 (BolI0108790) in broccoli resulted in high accumulation and a high ratio of C4-GSLs, demonstrating that BoMAM1 is the key enzyme in C4-GSL biosynthesis. These results provide valuable insights for future genetic studies and nutritive component applications of Brassica crops.
Collapse
Affiliation(s)
- Qiuyun Wu
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Shuxiang Mao
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Huiping Huang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Juan Liu
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Xuan Chen
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Linghui Hou
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Yuxiao Tian
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Jiahui Zhang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Disease and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Junwei Wang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| | - Yunsheng Wang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Disease and Insect Pests, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Ke Huang
- College of Horticulture, Hunan Agricultural University, Changsha, Hunan, 410128, China
- Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, Changsha, Hunan, 410128, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, Hunan, 410128, China
| |
Collapse
|
22
|
Zhang ZB, Xiong T, Wang XJ, Chen YR, Wang JL, Guo CL, Ye ZY. Lineage-specific gene duplication and expansion of DUF1216 gene family in Brassicaceae. PLoS One 2024; 19:e0302292. [PMID: 38626181 PMCID: PMC11020792 DOI: 10.1371/journal.pone.0302292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/01/2024] [Indexed: 04/18/2024] Open
Abstract
Proteins containing domain of unknown function (DUF) are prevalent in eukaryotic genome. The DUF1216 proteins possess a conserved DUF1216 domain resembling to the mediator protein of Arabidopsis RNA polymerase II transcriptional subunit-like protein. The DUF1216 family are specifically existed in Brassicaceae, however, no comprehensive evolutionary analysis of DUF1216 genes have been performed. We performed a first comprehensive genome-wide analysis of DUF1216 proteins in Brassicaceae. Totally 284 DUF1216 genes were identified in 27 Brassicaceae species and classified into four subfamilies on the basis of phylogenetic analysis. The analysis of gene structure and conserved motifs revealed that DUF1216 genes within the same subfamily exhibited similar intron/exon patterns and motif composition. The majority members of DUF1216 genes contain a signal peptide in the N-terminal, and the ninth position of the signal peptide in most DUF1216 is cysteine. Synteny analysis revealed that segmental duplication is a major mechanism for expanding of DUF1216 genes in Brassica oleracea, Brassica juncea, Brassica napus, Lepidium meyneii, and Brassica carinata, while in Arabidopsis thaliana and Capsella rubella, tandem duplication plays a major role in the expansion of the DUF1216 gene family. The analysis of Ka/Ks (non-synonymous substitution rate/synonymous substitution rate) ratios for DUF1216 paralogous indicated that most of gene pairs underwent purifying selection. DUF1216 genes displayed a specifically high expression in reproductive tissues in most Brassicaceae species, while its expression in Brassica juncea was specifically high in root. Our studies offered new insights into the phylogenetic relationships, gene structures and expressional patterns of DUF1216 members in Brassicaceae, which provides a foundation for future functional analysis.
Collapse
Affiliation(s)
- Zai-Bao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Xiao-Jia Wang
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Yu-Rui Chen
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Jing-Lei Wang
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Cong-Li Guo
- College of International Education, Xinyang Normal University, Xinyang, Henan, China
| | - Zi-Yi Ye
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
23
|
McEvoy SL, Grady PGS, Pauloski N, O'Neill RJ, Wegrzyn JL. Profiling genome-wide methylation in two maples: Fine-scale approaches to detection with nanopore technology. Evol Appl 2024; 17:e13669. [PMID: 38633133 PMCID: PMC11022628 DOI: 10.1111/eva.13669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
DNA methylation is critical to the regulation of transposable elements and gene expression and can play an important role in the adaptation of stress response mechanisms in plants. Traditional methods of methylation quantification rely on bisulfite conversion that can compromise accuracy. Recent advances in long-read sequencing technologies allow for methylation detection in real time. The associated algorithms that interpret these modifications have evolved from strictly statistical approaches to Hidden Markov Models and, recently, deep learning approaches. Much of the existing software focuses on methylation in the CG context, but methylation in other contexts is important to quantify, as it is extensively leveraged in plants. Here, we present methylation profiles for two maple species across the full range of 5mC sequence contexts using Oxford Nanopore Technologies (ONT) long-reads. Hybrid and reference-guided assemblies were generated for two new Acer accessions: Acer negundo (box elder; 65x ONT and 111X Illumina) and Acer saccharum (sugar maple; 93x ONT and 148X Illumina). The ONT reads generated for these assemblies were re-basecalled, and methylation detection was conducted in a custom pipeline with the published Acer references (PacBio assemblies) and hybrid assemblies reported herein to generate four epigenomes. Examination of the transposable element landscape revealed the dominance of LTR Copia elements and patterns of methylation associated with different classes of TEs. Methylation distributions were examined at high resolution across gene and repeat density and described within the broader angiosperm context, and more narrowly in the context of gene family dynamics and candidate nutrient stress genes.
Collapse
Affiliation(s)
- Susan L. McEvoy
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland
| | - Patrick G. S. Grady
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Nicole Pauloski
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Rachel J. O'Neill
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| | - Jill L. Wegrzyn
- Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems GenomicsUniversity of ConnecticutStorrsConnecticutUSA
| |
Collapse
|
24
|
Bassetti N, Caarls L, Bouwmeester K, Verbaarschot P, van Eijden E, Zwaan BJ, Bonnema G, Schranz ME, Fatouros NE. A butterfly egg-killing hypersensitive response in Brassica nigra is controlled by a single locus, PEK, containing a cluster of TIR-NBS-LRR receptor genes. PLANT, CELL & ENVIRONMENT 2024; 47:1009-1022. [PMID: 37961842 DOI: 10.1111/pce.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.
Collapse
Affiliation(s)
- Niccolò Bassetti
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lotte Caarls
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Ewan van Eijden
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
25
|
Qian F, Zuo D, Zeng T, Gu L, Wang H, Du X, Zhu B, Ou J. Identification, Evolutionary Dynamics, and Gene Expression Patterns of the ACP Gene Family in Responding to Salt Stress in Brassica Genus. PLANTS (BASEL, SWITZERLAND) 2024; 13:950. [PMID: 38611479 PMCID: PMC11013218 DOI: 10.3390/plants13070950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this study, we conducted a comprehensive analysis and identified a total of 120 ACP genes across six species in the Brassica genus. Among these, there were 27, 26, and 30 ACP genes in the allotetraploid B. napus, B. juncea, and B. carinata, respectively, and 14, 13, and 10 ACP genes in the diploid B. rapa, B. oleracea, and B. nigra, respectively. These ACP genes were further classified into six subclades, each containing conserved motifs and domains. Interestingly, the majority of ACP genes exhibited high conservation among the six species, suggesting that the genome evolution and polyploidization processes had relatively minor effects on the ACP gene family. The duplication modes of the six Brassica species were diverse, and the expansion of most ACPs in Brassica occurred primarily through dispersed duplication (DSD) events. Furthermore, most of the ACP genes were under purifying selection during the process of evolution. Subcellular localization experiments demonstrated that ACP genes in Brassica species are localized in chloroplasts and mitochondria. Cis-acting element analysis revealed that most of the ACP genes were associated with various abiotic stresses. Additionally, RNA-seq data revealed differential expression levels of BnaACP genes across various tissues in B. napus, with particularly high expression in seeds and buds. qRT-PCR analysis further indicated that BnaACP genes play a significant role in salt stress tolerance. These findings provide a comprehensive understanding of ACP genes in Brassica plants and will facilitate further functional analysis of these genes.
Collapse
Affiliation(s)
- Fang Qian
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Dan Zuo
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Lei Gu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Hongcheng Wang
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Xuye Du
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Bin Zhu
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China; (F.Q.); (D.Z.); (T.Z.); (L.G.); (X.D.); (B.Z.)
| | - Jing Ou
- College of Forestry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
26
|
Naish M, Henderson IR. The structure, function, and evolution of plant centromeres. Genome Res 2024; 34:161-178. [PMID: 38485193 PMCID: PMC10984392 DOI: 10.1101/gr.278409.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Centromeres are essential regions of eukaryotic chromosomes responsible for the formation of kinetochore complexes, which connect to spindle microtubules during cell division. Notably, although centromeres maintain a conserved function in chromosome segregation, the underlying DNA sequences are diverse both within and between species and are predominantly repetitive in nature. The repeat content of centromeres includes high-copy tandem repeats (satellites), and/or specific families of transposons. The functional region of the centromere is defined by loading of a specific histone 3 variant (CENH3), which nucleates the kinetochore and shows dynamic regulation. In many plants, the centromeres are composed of satellite repeat arrays that are densely DNA methylated and invaded by centrophilic retrotransposons. In some cases, the retrotransposons become the sites of CENH3 loading. We review the structure of plant centromeres, including monocentric, holocentric, and metapolycentric architectures, which vary in the number and distribution of kinetochore attachment sites along chromosomes. We discuss how variation in CENH3 loading can drive genome elimination during early cell divisions of plant embryogenesis. We review how epigenetic state may influence centromere identity and discuss evolutionary models that seek to explain the paradoxically rapid change of centromere sequences observed across species, including the potential roles of recombination. We outline putative modes of selection that could act within the centromeres, as well as the role of repeats in driving cycles of centromere evolution. Although our primary focus is on plant genomes, we draw comparisons with animal and fungal centromeres to derive a eukaryote-wide perspective of centromere structure and function.
Collapse
Affiliation(s)
- Matthew Naish
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
27
|
Kan S, Liao X, Lan L, Kong J, Wang J, Nie L, Zou J, An H, Wu Z. Cytonuclear Interactions and Subgenome Dominance Shape the Evolution of Organelle-Targeted Genes in the Brassica Triangle of U. Mol Biol Evol 2024; 41:msae043. [PMID: 38391484 PMCID: PMC10919925 DOI: 10.1093/molbev/msae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/24/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
The interaction and coevolution between nuclear and cytoplasmic genomes are one of the fundamental hallmarks of eukaryotic genome evolution and, 2 billion yr later, are still major contributors to the formation of new species. Although many studies have investigated the role of cytonuclear interactions following allopolyploidization, the relative magnitude of the effect of subgenome dominance versus cytonuclear interaction on genome evolution remains unclear. The Brassica triangle of U features 3 diploid species that together have formed 3 separate allotetraploid species on similar evolutionary timescales, providing an ideal system for understanding the contribution of the cytoplasmic donor to hybrid polyploid. Here, we investigated the evolutionary pattern of organelle-targeted genes in Brassica carinata (BBCC) and 2 varieties of Brassica juncea (AABB) at the whole-genome level, with particular focus on cytonuclear enzyme complexes. We found partial evidence that plastid-targeted genes experience selection to match plastid genomes, but no obvious corresponding signal in mitochondria-targeted genes from these 2 separately formed allopolyploids. Interestingly, selection acting on plastid genomes always reduced the retention rate of plastid-targeted genes encoded by the B subgenome, regardless of whether the Brassica nigra (BB) subgenome was contributed by the paternal or maternal progenitor. More broadly, this study illustrates the distinct selective pressures experienced by plastid- and mitochondria-targeted genes, despite a shared pattern of inheritance and natural history. Our study also highlights an important role for subgenome dominance in allopolyploid genome evolution, even in genes whose function depends on separately inherited molecules.
Collapse
Affiliation(s)
- Shenglong Kan
- Marine College, Shandong University, Weihai 264209, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lan Lan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, 6150 Western Australia, Australia
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong An
- Bioinformatics and Analytics Core, University of Missouri, Columbia, MO, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
28
|
Zhang F, Wang Y, Lin Y, Wang H, Wu Y, Ren W, Wang L, Yang Y, Zheng P, Wang S, Yue J, Liu Y. Haplotype-resolved genome assembly provides insights into evolutionary history of the Actinidia arguta tetraploid. MOLECULAR HORTICULTURE 2024; 4:4. [PMID: 38317251 PMCID: PMC10845759 DOI: 10.1186/s43897-024-00083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/23/2024] [Indexed: 02/07/2024]
Abstract
Actinidia arguta, known as hardy kiwifruit, is a widely cultivated species with distinct botanical characteristics such as small and smooth-fruited, rich in beneficial nutrients, rapid softening and tolerant to extremely low temperatures. It contains the most diverse ploidy types, including diploid, tetraploid, hexaploid, octoploid, and decaploid. Here we report a haplotype-resolved tetraploid genome (A. arguta cv. 'Longcheng No.2') containing four haplotypes, each with 40,859, 41,377, 39,833 and 39,222 protein-coding genes. We described the phased genome structure, synteny, and evolutionary analyses to identify and date possible WGD events. Ks calculations for both allelic and paralogous genes pairs throughout the assembled haplotypic individuals showed its tetraploidization is estimated to have formed ~ 1.03 Mya following Ad-α event occurred ~ 18.7 Mya. Detailed annotations of NBS-LRRs or CBFs highlight the importance of genetic variations coming about after polyploidization in underpinning ability of immune responses or environmental adaptability. WGCNA analysis of postharvest quality indicators in combination with transcriptome revealed several transcription factors were involved in regulating ripening kiwi berry texture. Taking together, the assembly of an A. arguta tetraploid genome provides valuable resources in deciphering complex genome structure and facilitating functional genomics studies and genetic improvement for kiwifruit and other crops.
Collapse
Affiliation(s)
- Feng Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yingzhen Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- School of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, 323000, China
| | - Yunzhi Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Hongtao Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Wu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wangmei Ren
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lihuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Yang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Pengpeng Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Songhu Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Junyang Yue
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
29
|
Kim J, Jang H, Huh SM, Cho A, Yim B, Jeong SH, Kim H, Yu HJ, Mun JH. Effect of structural variation in the promoter region of RsMYB1.1 on the skin color of radish taproot. FRONTIERS IN PLANT SCIENCE 2024; 14:1327009. [PMID: 38264015 PMCID: PMC10804855 DOI: 10.3389/fpls.2023.1327009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Accumulation of anthocyanins in the taproot of radish is an agronomic trait beneficial for human health. Several genetic loci are related to a red skin or flesh color of radish, however, the functional divergence of candidate genes between non-red and red radishes has not been investigated. Here, we report that a novel genetic locus on the R2 chromosome, where RsMYB1.1 is located, is associated with the red color of the skin of radish taproot. A genome-wide association study (GWAS) of 66 non-red-skinned (nR) and 34 red-skinned (R) radish accessions identified three nonsynonymous single nucleotide polymorphisms (SNPs) in the third exon of RsMYB1.1. Although the genotypes of SNP loci differed between the nR and R radishes, no functional difference in the RsMYB1.1 proteins of nR and R radishes in their physical interaction with RsTT8 was detected by yeast-two hybrid assay or in anthocyanin accumulation in tobacco and radish leaves coexpressing RsMYB1.1 and RsTT8. By contrast, insertion- or deletion-based GWAS revealed that one large AT-rich low-complexity sequence of 1.3-2 kb was inserted in the promoter region of RsMYB1.1 in the nR radishes (RsMYB1.1nR), whereas the R radishes had no such insertion; this represents a presence/absence variation (PAV). This insertion sequence (RsIS) was radish specific and distributed among the nine chromosomes of Raphanus genomes. Despite the extremely low transcription level of RsMYB1.1nR in the nR radishes, the inactive RsMYB1.1nR promoter could be functionally restored by deletion of the RsIS. The results of a transient expression assay using radish root sections suggested that the RsIS negatively regulates the expression of RsMYB1.1nR, resulting in the downregulation of anthocyanin biosynthesis genes, including RsCHS, RsDFR, and RsANS, in the nR radishes. This work provides the first evidence of the involvement of PAV in an agronomic trait of radish.
Collapse
Affiliation(s)
- Jiin Kim
- Department of Life Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Hoyeol Jang
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Sun Mi Huh
- Department of Life Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Ara Cho
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
- Division of Forest Biodiversity, Korea National Arboretum, Pocheon, Republic of Korea
| | - Bomi Yim
- Department of Life Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seung-Hoon Jeong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Haneul Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| | - Hee-Ju Yu
- Department of Life Sciences, Institute of Convergence Science & Technology, The Catholic University of Korea, Bucheon, Republic of Korea
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, Republic of Korea
| |
Collapse
|
30
|
Liu Q, Ye L, Li M, Wang Z, Xiong G, Ye Y, Tu T, Schwarzacher T, Heslop-Harrison JSP. Genome-wide expansion and reorganization during grass evolution: from 30 Mb chromosomes in rice and Brachypodium to 550 Mb in Avena. BMC PLANT BIOLOGY 2023; 23:627. [PMID: 38062402 PMCID: PMC10704644 DOI: 10.1186/s12870-023-04644-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND The BOP (Bambusoideae, Oryzoideae, and Pooideae) clade of the Poaceae has a common ancestor, with similarities to the genomes of rice, Oryza sativa (2n = 24; genome size 389 Mb) and Brachypodium, Brachypodium distachyon (2n = 10; 271 Mb). We exploit chromosome-scale genome assemblies to show the nature of genomic expansion, structural variation, and chromosomal rearrangements from rice and Brachypodium, to diploids in the tribe Aveneae (e.g., Avena longiglumis, 2n = 2x = 14; 3,961 Mb assembled to 3,850 Mb in chromosomes). RESULTS Most of the Avena chromosome arms show relatively uniform expansion over the 10-fold to 15-fold genome-size increase. Apart from non-coding sequence diversification and accumulation around the centromeres, blocks of genes are not interspersed with blocks of repeats, even in subterminal regions. As in the tribe Triticeae, blocks of conserved synteny are seen between the analyzed species with chromosome fusion, fission, and nesting (insertion) events showing deep evolutionary conservation of chromosome structure during genomic expansion. Unexpectedly, the terminal gene-rich chromosomal segments (representing about 50 Mb) show translocations between chromosomes during speciation, with homogenization of genome-specific repetitive elements within the tribe Aveneae. Newly-formed intergenomic translocations of similar extent are found in the hexaploid A. sativa. CONCLUSIONS The study provides insight into evolutionary mechanisms and speciation in the BOP clade, which is valuable for measurement of biodiversity, development of a clade-wide pangenome, and exploitation of genomic diversity through breeding programs in Poaceae.
Collapse
Affiliation(s)
- Qing Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Lyuhan Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzhi Li
- Bio&Data Biotechnologies Co. Ltd, Guangzhou, 510663, China
| | - Ziwei Wang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, 512005, China
| | - Gui Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yushi Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Center for Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Trude Schwarzacher
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK
| | - John Seymour Pat Heslop-Harrison
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Department of Genetics and Genome Biology, Institute for Environmental Futures, University of Leicester, Leicester, LE1 7RH, UK.
| |
Collapse
|
31
|
Karim MM, Yu F. Identification of QTLs for resistance to 10 pathotypes of Plasmodiophora brassicae in Brassica oleracea cultivar ECD11 through genotyping-by-sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:249. [PMID: 37982891 PMCID: PMC10661809 DOI: 10.1007/s00122-023-04483-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 10/09/2023] [Indexed: 11/21/2023]
Abstract
KEY MESSAGE Two major quantitative trait loci (QTLs) and five minor QTLs for 10 pathotypes were identified on chromosomes C01, C03, C04 and C08 through genotyping-by-sequencing from Brassica oleracea. Clubroot caused by Plasmodiophora brassicae is an important disease in brassica crops. Managing clubroot disease of canola on the Canadian prairie is challenging due to the continuous emergence of new pathotypes. Brassica oleracea is considered a major source of quantitative resistance to clubroot. Genotyping-by-sequencing (GBS) was performed in the parental lines; T010000DH3 (susceptible), ECD11 (resistant) and 124 BC1 plants. A total of 4769 high-quality polymorphic SNP loci were obtained and distributed on 9 chromosomes of B. oleracea. Evaluation of 124 BC1S1 lines for resistance to 10 pathotypes: 3A, 2B, 5C, 3D, 5G, 3H, 8J, 5K, 5L and 3O of P. brassicae, was carried out. Seven QTLs, 5 originating from ECD11 and 2 from T010000DH3, were detected. One major QTL designated as Rcr_C03-1 on C03 contributed 16.0-65.6% of phenotypic variation explained (PVE) for 8 pathotypes: 2B, 5C, 5G, 3H, 8J, 5K, 5L and 3O. Another major QTL designated as Rcr_C08-1 on C08 contributed 8.3 and 23.5% PVE for resistance to 8J and 5K, respectively. Five minor QTLs designated as Rcr_C01-1, Rcr_C03-2, Rcr_C03-3, Rcr_C04-1 and Rcr_C08-2 were detected on chromosomes C01, C03, C04 and C08 that contributed 8.3-23.5% PVE for 5 pathotypes each of 3A, 2B, 3D, 8J and 5K. There were 1, 10 and 4 genes encoding TIR-NBS-LRR/CC-NBS-LRR class disease resistance proteins in the Rcr_C01-1, Rcr_C03-1 and Rcr_C08-1 flanking regions. The syntenic regions of the two major QTLs Rcr_C03-1 and Rcr_C08-1 in the B. rapa genome 'Chiifu' were searched.
Collapse
Affiliation(s)
- Md Masud Karim
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | - Fengqun Yu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
32
|
Anand S, Lal M, Bhardwaj E, Shukla R, Pokhriyal E, Jain A, Sri T, Srivastava PS, Singh A, Das S. MIR159 regulates multiple aspects of stamen and carpel development and requires dissection and delimitation of differential downstream regulatory network for manipulating fertility traits. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1437-1456. [PMID: 38076769 PMCID: PMC10709278 DOI: 10.1007/s12298-023-01377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 12/17/2023]
Abstract
Unravelling genetic networks regulating developmental programs are key to devising and implementing genomics assisted trait modification strategies. It is crucial to understand the role of small RNAs, and the basis of their ability to modify traits. MIR159 has been previously reported to cause defects in anther development in Arabidopsis; however, the complete spectrum and basis of the defects remained unclear. The present study was therefore undertaken to comprehensively investigate the role of miR159 from Brassica juncea in modulating vegetative and reproductive traits. Owing to the polyploid nature of Brassica, paralogous and homeologous copies of MIR159A, MIR159B, and, MIR159C were identified and analysis of the precursor uncovered extensive structural and sequence variation. The MIR159 locus with mature miR159 with perfect target complimentarily with MYB65, was cloned from Brassica juncea var. Varuna for functional characterization by generating constitutively over-expressing lines in Arabidopsis thaliana Col-0. Apart from statistically significant difference in multiple vegetative traits, drastic differences were observed in stamen and pistil. Over-expression of miR159a led to shortening of filament length and loss of tetradynamous condition. Anthers were apiculate, with improper lobe formation, and unsynchronized cellular growth between connective tissue and another lobe development. Analysis revealed arrested meiosis/cytokinesis in microspores, and altered lignin deposition pattern in endothecial walls thus affecting anther dehiscence. In the gynoecium, flaccid, dry stigmatic papillae, and large embryo sac in the female gametophyte was observed. Over-expression of miR159a thus severely affected pollination and seed-set. Analysis of the transcriptome data revealed components of regulatory networks of anther and carpel developmental pathway, and lignin metabolism that are affected. Expression analysis allowed us to position the miR159a-MYB65 module in the genetic network of stamen development, involved in pollen-grain maturation; in GA-mediated regulation of stamen development, and in lignin metabolism. The study, on one hand indicates role of miR159a-MYB65 in regulating multiple aspects of reproductive organ development that can be manipulated for trait modification, but also raises several unaddressed questions such as relationship between miR159a and male-meiosis, miR159a and filament elongation for future investigations. Accession numbers: KC204951-KC204960. Project number PRJNA1035268. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01377-7.
Collapse
Affiliation(s)
- Saurabh Anand
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Mukund Lal
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Ekta Bhardwaj
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Richa Shukla
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Ekta Pokhriyal
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Aditi Jain
- Department of Botany, University of Delhi, Delhi, 110 007 India
| | - Tanu Sri
- TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi, 110 070 India
| | - P. S. Srivastava
- Department of Biotechnology, Jamia Hamdard, Hamdard Nagar, New Delhi, Delhi 110 062 India
| | - Anandita Singh
- TERI School of Advanced Studies, Plot No. 10, Institutional Area, Vasant Kunj, New Delhi, 110 070 India
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, 110 007 India
| |
Collapse
|
33
|
Liu Z, Fu Y, Wang H, Zhang Y, Han J, Wang Y, Shen S, Li C, Jiang M, Yang X, Song X. The high-quality sequencing of the Brassica rapa 'XiangQingCai' genome and exploration of genome evolution and genes related to volatile aroma. HORTICULTURE RESEARCH 2023; 10:uhad187. [PMID: 37899953 PMCID: PMC10611556 DOI: 10.1093/hr/uhad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/08/2023] [Indexed: 10/31/2023]
Abstract
'Vanilla' (XQC, brassica variety chinensis) is an important vegetable crop in the Brassica family, named for its strong volatile fragrance. In this study, we report the high-quality chromosome-level genome sequence of XQC. The assembled genome length was determined as 466.11 Mb, with an N50 scaffold of 46.20 Mb. A total of 59.50% repetitive sequences were detected in the XQC genome, including 47 570 genes. Among all examined Brassicaceae species, XQC had the closest relationship with B. rapa QGC ('QingGengCai') and B. rapa Pakchoi. Two whole-genome duplication (WGD) events and one recent whole-genome triplication (WGT) event occurred in the XQC genome in addition to an ancient WGT event. The recent WGT was observed to occur during 21.59-24.40 Mya (after evolution rate corrections). Our findings indicate that XQC experienced gene losses and chromosome rearrangements during the genome evolution of XQC. The results of the integrated genomic and transcriptomic analyses revealed critical genes involved in the terpenoid biosynthesis pathway and terpene synthase (TPS) family genes. In summary, we determined a chromosome-level genome of B. rapa XQC and identified the key candidate genes involved in volatile fragrance synthesis. This work can act as a basis for the comparative and functional genomic analysis and molecular breeding of B. rapa in the future.
Collapse
Affiliation(s)
- Zhaokun Liu
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yanhong Fu
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Huan Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu 215008, China
| | - Jianjun Han
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Yingying Wang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Shaoqin Shen
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Chunjin Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Mingmin Jiang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Xuemei Yang
- Suzhou Academy of Agricultural Sciences, Suzhou, Jiangsu 215155, China
| | - Xiaoming Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| |
Collapse
|
34
|
Wang T, van Dijk ADJ, Bucher J, Liang J, Wu J, Bonnema G, Wang X. Interploidy Introgression Shaped Adaptation during the Origin and Domestication History of Brassica napus. Mol Biol Evol 2023; 40:msad199. [PMID: 37707440 PMCID: PMC10504873 DOI: 10.1093/molbev/msad199] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
Polyploidy is recurrent across the tree of life and known as an evolutionary driving force in plant diversification and crop domestication. How polyploid plants adapt to various habitats has been a fundamental question that remained largely unanswered. Brassica napus is a major crop cultivated worldwide, resulting from allopolyploidy between unknown accessions of diploid B. rapa and B. oleracea. Here, we used whole-genome resequencing data of accessions representing the majority of morphotypes and ecotypes from the species B. rapa, B. oleracea, and B. napus to investigate the role of polyploidy during domestication. To do so, we first reconstructed the phylogenetic history of B. napus, which supported the hypothesis that the emergence of B. napus derived from the hybridization of European turnip of B. rapa and wild B. oleracea. These analyses also showed that morphotypes of swede and Siberian kale (used as vegetable and fodder) were domesticated before rapeseed (oil crop). We next observed that frequent interploidy introgressions from sympatric diploids were prominent throughout the domestication history of B. napus. Introgressed genomic regions were shown to increase the overall genetic diversity and tend to be localized in regions of high recombination. We detected numerous candidate adaptive introgressed regions and found evidence that some of the genes in these regions contributed to phenotypic diversification and adaptation of different morphotypes. Overall, our results shed light on the origin and domestication of B. napus and demonstrate interploidy introgression as an important mechanism that fuels rapid diversification in polyploid species.
Collapse
Affiliation(s)
- Tianpeng Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Aalt D J van Dijk
- Bioinformatics Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Johan Bucher
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guusje Bonnema
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
35
|
Katche E, Katche EI, Vasquez-Teuber P, Idris Z, Lo YT, Nugent D, Zou J, Batley J, Mason AS. Genome composition in Brassica interspecific hybrids affects chromosome inheritance and viability of progeny. Chromosome Res 2023; 31:22. [PMID: 37596507 PMCID: PMC10439240 DOI: 10.1007/s10577-023-09733-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/20/2023]
Abstract
Interspecific hybridization is widespread in nature and can result in the formation of new hybrid species as well as the transfer of traits between species. However, the fate of newly formed hybrid lineages is relatively understudied. We undertook pairwise crossing between multiple genotypes of three Brassica allotetraploid species Brassica juncea (2n = AABB), Brassica carinata (2n = BBCC), and Brassica napus (2n = AACC) to generate AABC, BBAC, and CCAB interspecific hybrids and investigated chromosome inheritance and fertility in these hybrids and their self-pollinated progeny. Surprisingly, despite the presence of a complete diploid genome in all hybrids, hybrid fertility was very low. AABC and BBAC first generation (F1) hybrids both averaged ~16% pollen viability compared to 3.5% in CCAB hybrids: most CCAB hybrid flowers were male-sterile. AABC and CCAB F1 hybrid plants averaged 5.5 and 0.5 seeds per plant, respectively, and BBAC F1 hybrids ~56 seeds/plant. In the second generation (S1), all confirmed self-pollinated progeny resulting from CCAB hybrids were sterile, producing no self-pollinated seeds. Three AABC S1 hybrids putatively resulting from unreduced gametes produced 3, 14, and 182 seeds each, while other AABC S1 hybrids averaged 1.5 seeds/plant (0-8). BBAC S1 hybrids averaged 44 seeds/plant (range 0-403). We also observed strong bias towards retention rather than loss of the haploid genomes, suggesting that the subgenomes in the Brassica allotetraploids are already highly interdependent, such that loss of one subgenome is detrimental to fertility and viability. Our results suggest that relationships between subgenomes determine hybridization outcomes in these species.
Collapse
Affiliation(s)
- Elvis Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Elizabeth Ihien Katche
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Paula Vasquez-Teuber
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez, 595, Chillán, Chile
| | - Zurianti Idris
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Yu-Tzu Lo
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - David Nugent
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, Perth, 6009, Australia
| | - Annaliese S Mason
- Plant Breeding Department, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, 4072, Australia.
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
36
|
Zeng P, Ge X, Li Z. Transcriptional Interactions of Single B-Subgenome Chromosome with C-Subgenome in B. oleracea-nigra Additional Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:2029. [PMID: 37653946 PMCID: PMC10220956 DOI: 10.3390/plants12102029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Serial monosomic alien addition lines (MAALs) provide an ideal system to elucidate the transcriptomic interactions between the alien chromosomes and recipient genome under aneuploidy. Herein, five available Brassica oleracea-nigra MAALs (CCB1, CCB4, CCB5, CCB6, CCB8), their derived B. oleracea plants (non-MAALs), and two parents were analyzed for their gene expressions by using high-throughput technology. Compared to parental B. oleracea, all MAALs showed various numbers of DEGs, but CCB8 gave much higher DEGs; the number of downregulated DEGs was slightly higher than the number of upregulated ones, except for in relation to CCB8. All derived B. oleracea plants also gave certain numbers of DEGs, despite these being much lower than in the respective MAALs. Compared to B. nigra, in all five MAALs more DEGs were downregulated than upregulated. Trans-effects were likely more prevailing than cis-effects, and these DEGs were predominantly associated with material transport by dysregulating the cellular component. Meanwhile, the orthologous genes on alien chromosomes could only play a feeble compensatory role for those gene pairs in C-subgenome, and different levels of the expressed genes had a greater tendency towards downregulation. These results revealed transcriptional aneuploidy response patterns between two genomes and suggested that cis- and trans-mechanisms synergistically regulated alien gene transcriptions after distant hybridization.
Collapse
Affiliation(s)
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (P.Z.); (Z.L.)
| | | |
Collapse
|
37
|
Zhang L, Liang J, Chen H, Zhang Z, Wu J, Wang X. A near-complete genome assembly of Brassica rapa provides new insights into the evolution of centromeres. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:1022-1032. [PMID: 36688739 PMCID: PMC10106856 DOI: 10.1111/pbi.14015] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 05/04/2023]
Abstract
Brassica rapa comprises many important cultivated vegetables and oil crops. However, Chiifu v3.0, the current B. rapa reference genome, still contains hundreds of gaps. Here, we presented a near-complete genome assembly of B. rapa Chiifu v4.0, which was 424.59 Mb with only two gaps, using Oxford Nanopore Technology (ONT) ultralong-read sequencing and Hi-C technologies. The new assembly contains 12 contigs, with a contig N50 of 38.26 Mb. Eight of the ten chromosomes were entirely reconstructed in a single contig from telomere to telomere. We found that the centromeres were mainly invaded by ALE and CRM long terminal repeats (LTRs). Moreover, there is a high divergence of centromere length and sequence among B. rapa genomes. We further found that centromeres are enriched for Copia invaded at 0.14 MYA on average, while pericentromeres are enriched for Gypsy LTRs invaded at 0.51 MYA on average. These results indicated the different invasion mechanisms of LTRs between the two structures. In addition, a novel repetitive sequence PCR630 was identified in the pericentromeres of B. rapa. Overall, the near-complete genome assembly, B. rapa Chiifu v4.0, offers valuable tools for genomic and genetic studies of Brassica species and provides new insights into the evolution of centromeres.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jianli Liang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Haixu Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Zhicheng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
38
|
Resistance strategies for defense against Albugo candida causing white rust disease. Microbiol Res 2023; 270:127317. [PMID: 36805163 DOI: 10.1016/j.micres.2023.127317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/12/2022] [Accepted: 02/01/2023] [Indexed: 02/11/2023]
Abstract
Albugo candida, the causal organism of white rust, is an oomycete obligate pathogen infecting crops of Brassicaceae family occurred on aerial part, including vegetable and oilseed crops at all growth stages. The disease expression is characterized by local infection appearing on the abaxial region developing white or creamy yellow blister (sori) on leaves and systemic infections cause hypertrophy and hyperplasia leading to stag-head of reproductive organ. To overcome this problem, several disease management strategies like fungicide treatments were used in the field and disease-resistant varieties have also been developed using conventional and molecular breeding. Due to high variability among A. candida isolates, there is no single approach available to understand the diverse spectrum of disease symptoms. In absence of resistance sources against pathogen, repetitive cultivation of genetically-similar varieties locally tends to attract oomycete pathogen causing heavy yield losses. In the present review, a deep insight into the underlying role of the non-host resistance (NHR) defence mechanism available in plants, and the strategies to exploit available gene pools from plant species that are non-host to A. candida could serve as novel sources of resistance. This work summaries the current knowledge pertaining to the resistance sources available in non-host germ plasm, the understanding of defence mechanisms and the advance strategies covers molecular, biochemical and nature-based solutions in protecting Brassica crops from white rust disease.
Collapse
|
39
|
Amas JC, Thomas WJW, Zhang Y, Edwards D, Batley J. Key Advances in the New Era of Genomics-Assisted Disease Resistance Improvement of Brassica Species. PHYTOPATHOLOGY 2023:PHYTO08220289FI. [PMID: 36324059 DOI: 10.1094/phyto-08-22-0289-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Disease resistance improvement remains a major focus in breeding programs as diseases continue to devastate Brassica production systems due to intensive cultivation and climate change. Genomics has paved the way to understand the complex genomes of Brassicas, which has been pivotal in the dissection of the genetic underpinnings of agronomic traits driving the development of superior cultivars. The new era of genomics-assisted disease resistance breeding has been marked by the development of high-quality genome references, accelerating the identification of disease resistance genes controlling both qualitative (major) gene and quantitative resistance. This facilitates the development of molecular markers for marker assisted selection and enables genome editing approaches for targeted gene manipulation to enhance the genetic value of disease resistance traits. This review summarizes the key advances in the development of genomic resources for Brassica species, focusing on improved genome references, based on long-read sequencing technologies and pangenome assemblies. This is further supported by the advances in pathogen genomics, which have resulted in the discovery of pathogenicity factors, complementing the mining of disease resistance genes in the host. Recognizing the co-evolutionary arms race between the host and pathogen, it is critical to identify novel resistance genes using crop wild relatives and synthetic cultivars or through genetic manipulation via genome-editing to sustain the development of superior cultivars. Integrating these key advances with new breeding techniques and improved phenotyping using advanced data analysis platforms will make disease resistance improvement in Brassica species more efficient and responsive to current and future demands.
Collapse
Affiliation(s)
- Junrey C Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - William J W Thomas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Yueqi Zhang
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| |
Collapse
|
40
|
Yadav BG, Aakanksha, Kumar R, Yadava SK, Kumar A, Ramchiary N. Understanding the Proteomes of Plant Development and Stress Responses in Brassica Crops. J Proteome Res 2023; 22:660-680. [PMID: 36786770 DOI: 10.1021/acs.jproteome.2c00684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Brassica crops have great economic value due to their rich nutritional content and are therefore grown worldwide as oilseeds, vegetables, and condiments. Deciphering the molecular mechanisms associated with the advantageous phenotype is the major objective of various Brassica improvement programs. As large technological advancements have been achieved in the past decade, the methods to understand molecular mechanisms underlying the traits of interest have also taken a sharp upturn in plant breeding practices. Proteomics has emerged as one of the preferred choices nowadays along with genomics and other molecular approaches, as proteins are the ultimate effector molecules responsible for phenotypic changes in living systems, and allow plants to resist variable environmental stresses. In the last two decades, rapid progress has been made in the field of proteomics research in Brassica crops, but a comprehensive review that collates the different studies is lacking. This review provides an inclusive summary of different proteomic studies undertaken in Brassica crops for cytoplasmic male sterility, oil content, and proteomics of floral organs and seeds, under different biotic and abiotic stresses including post-translational modifications of proteins. This comprehensive review will help in understanding the role of different proteins in controlling plant phenotypes, and provides information for initiating future studies on Brassica breeding and improvement programs.
Collapse
Affiliation(s)
- Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| |
Collapse
|
41
|
Chen D, Jin Q, Pan J, Liu Y, Tang Y, E Y, Xu L, Yang T, Qiu J, Chen X, Wang J, Gong D, Ge X, Li Z, Cui C. Fine mapping of genes controlling pigment accumulation in oilseed rape ( Brassica napus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:19. [PMID: 37313299 PMCID: PMC10248657 DOI: 10.1007/s11032-023-01365-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Purple/red appearance is one of the common phenotypic variations in leaves, stems, and siliques of oilseed rape (Brassica napus L.) but very rare in flowers. In this study, the causal genes for the purple/red traits in stems and flowers in two accessions of oilseed rape (DH_PR and DH_GC001, respectively) derived from the wide hybridization were fine mapped, and candidate genes were determined by methods combined with bulked segregant analysis (BSA) and RNA-seq analysis. Both traits of purple stem and red flowers were mapped to the locus as AtPAP2 homologous genes (BnaPAP2.C6a and BnaPAP2.A7b, respectively) belonging to the R2R3-MYB family. Sequence comparisons of full-length allelic genes revealed several InDels and SNPs in intron 1 as well as exons, and completely different promoter region of BnaPAP2.C6a and a 211 bp insertion was identified in the promoter region of BnaPAP2.A7b of DH_GC001. Our results not only contribute to a better understanding of anthocyanin inheritance in B. napus, but also provide a useful toolbox for future breeding of cultivars with purple/red traits through the combination of different functional alleles and homologs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01365-5.
Collapse
Affiliation(s)
- Daozong Chen
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000 China
| | - Qingdong Jin
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jianming Pan
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Yi Liu
- College of Life Sciences, Ganzhou Key Laboratory of Greenhouse Vegetable, Gannan Normal University, Ganzhou, 341000 China
| | - Yijia Tang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Yanrong E
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Linshan Xu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Taihua Yang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jie Qiu
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Xiaodi Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Deping Gong
- Jingzhou Academy of Agricultural Science, Jingzhou, 434007 China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People's Republic of China
| | - Cheng Cui
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
| |
Collapse
|
42
|
Chaudhary R, Koh CS, Perumal S, Jin L, Higgins EE, Kagale S, Smith MA, Sharpe AG, Parkin IAP. Sequencing of Camelina neglecta, a diploid progenitor of the hexaploid oilseed Camelina sativa. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:521-535. [PMID: 36398722 PMCID: PMC9946149 DOI: 10.1111/pbi.13968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Camelina neglecta is a diploid species from the genus Camelina, which includes the versatile oilseed Camelina sativa. These species are closely related to Arabidopsis thaliana and the economically important Brassica crop species, making this genus a useful platform to dissect traits of agronomic importance while providing a tool to study the evolution of polyploids. A highly contiguous chromosome-level genome sequence of C. neglecta with an N50 size of 29.1 Mb was generated utilizing Pacific Biosciences (PacBio, Menlo Park, CA) long-read sequencing followed by chromosome conformation phasing. Comparison of the genome with that of C. sativa shows remarkable coincidence with subgenome 1 of the hexaploid, with only one major chromosomal rearrangement separating the two. Synonymous substitution rate analysis of the predicted 34 061 genes suggested subgenome 1 of C. sativa directly descended from C. neglecta around 1.2 mya. Higher functional divergence of genes in the hexaploid as evidenced by the greater number of unique orthogroups, and differential composition of resistant gene analogs, might suggest an immediate adaptation strategy after genome merger. The absence of genome bias in gene fractionation among the subgenomes of C. sativa in comparison with C. neglecta, and the complete lack of fractionation of meiosis-specific genes attests to the neopolyploid status of C. sativa. The assembled genome will provide a tool to further study genome evolution processes in the Camelina genus and potentially allow for the identification and exploitation of novel variation for Camelina crop improvement.
Collapse
Affiliation(s)
- Raju Chaudhary
- Agriculture and Agri‐Food CanadaSaskatoonSKCanada
- Global Institute for Food SecuritySaskatoonSKCanada
| | - Chu Shin Koh
- Global Institute for Food SecuritySaskatoonSKCanada
| | | | - Lingling Jin
- Department of Computer ScienceUniversity of SaskatchewanSaskatoonSKCanada
| | | | | | | | | | | |
Collapse
|
43
|
Wang Y, Dong M, Wu Y, Zhang F, Ren W, Lin Y, Chen Q, Zhang S, Yue J, Liu Y. Telomere-to-telomere and haplotype-resolved genome of the kiwifruit Actinidia eriantha. MOLECULAR HORTICULTURE 2023; 3:4. [PMID: 37789444 PMCID: PMC10515003 DOI: 10.1186/s43897-023-00052-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/30/2023] [Indexed: 10/05/2023]
Abstract
Actinidia eriantha is a characteristic fruit tree featuring with great potential for its abundant vitamin C and strong disease resistance. It has been used in a wide range of breeding programs and functional genomics studies. Previously published genome assemblies of A. eriantha are quite fragmented and not highly contiguous. Using multiple sequencing strategies, we get the haplotype-resolved and gap-free genomes of an elite breeding line "Midao 31" (MD), termed MDHAPA and MDHAPB. The new assemblies anchored to 29 pseudochromosome pairs with a length of 619.3 Mb and 611.7 Mb, as well as resolved 27 and 28 gap-close chromosomes in a telomere-to-telomere (T2T) manner. Based on the haplotype-resolved genome, we found that most alleles experienced purifying selection and coordinately expressed. Owing to the high continuity of assemblies, we defined the centromeric regions of A. eriantha, and identified the major repeating monomer, which is designated as Ae-CEN153. This resource lays a solid foundation for further functional genomics study and horticultural traits improvement in kiwifruit.
Collapse
Affiliation(s)
- Yingzhen Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- School of Forestry Science and Technology, Lishui Vocational and Technical College, Lishui, 323000, China
| | - Minhui Dong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Wu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Feng Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wangmei Ren
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yunzhi Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China
| | - Qinyao Chen
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Sijia Zhang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Junyang Yue
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
44
|
Pan Q, Zeng P, Li Z. Unraveling Large and Polyploidy Genome of the Crucifer Orychophragmus violaceus in China, a Potential Oil Crop. PLANTS (BASEL, SWITZERLAND) 2023; 12:374. [PMID: 36679087 PMCID: PMC9864872 DOI: 10.3390/plants12020374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The genus Orychophragmus in the Brassicaceae family includes the types with 2n = 20, 22, 24, and 48. The species O. violaceus (L.) O. E. Schulz has 2n = 24 and is widely cultivated as an ornamental plant in China. This review summarizes the research progress of its genome structure and evolution in the context of cytogenetics and genome sequencing. This species has a large genome size of ~1 Gb and longer chromosomes than those of Brassica species, which is attributable to the burst of TE insertions. Even more, one tetraploidization event from about 600-800 million years ago is elucidated to occur during its genome evolution, which is consistent with the polyploidy nature of its genome revealed by the meiotic pairing patterns. Its chromosomes are still characterized by a larger size and deeper staining than those from Brassica species in their intergeneric hybrids, which is likely related to their inherent differences between genome structures and cytology. Its genome is dissected by the development of additional alien lines, and some traits are located on individual chromosomes. Due to the abundant dihydroxy fatty acids in its seed oil with superior lubricant properties and wide environmental adaptations, this plant promises to be utilized as one new oil crop in the future.
Collapse
Affiliation(s)
- Qi Pan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Pan Zeng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zaiyun Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
45
|
Song M, Zhang Y, Jia Q, Huang S, An R, Chen N, Zhu Y, Mu J, Hu S. Systematic analysis of MADS-box gene family in the U's triangle species and targeted mutagenesis of BnaAG homologs to explore its role in floral organ identity in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 13:1115513. [PMID: 36714735 PMCID: PMC9878456 DOI: 10.3389/fpls.2022.1115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
MADS-box transcription factors play an important role in regulating floral organ development and participate in environmental responses. To date, the MADS-box gene family has been widely identified in Brassica rapa (B. rapa), Brassica oleracea (B. oleracea), and Brassica napus (B. napus); however, there are no analogous reports in Brassica nigra (B. nigra), Brassica juncea (B. juncea), and Brassica carinata (B. carinata). In this study, a whole-genome survey of the MADS-box gene family was performed for the first time in the triangle of U species, and a total of 1430 MADS-box genes were identified. Based on the phylogenetic relationship and classification of MADS-box genes in Arabidopsis thaliana (A. thaliana), 1430 MADS-box genes were categorized as M-type subfamily (627 genes), further divided into Mα, Mβ, Mγ, and Mδ subclades, and MIKC-type subfamily (803 genes), further classified into 35 subclades. Gene structure and conserved protein motifs of MIKC-type MADS-box exhibit diversity and specificity among different subclades. Comparative analysis of gene duplication events and syngenic gene pairs among different species indicated that polyploidy is beneficial for MIKC-type gene expansion. Analysis of transcriptome data within diverse tissues and stresses in B. napus showed tissue-specific expression of MIKC-type genes and a broad response to various abiotic stresses, particularly dehydration stress. In addition, four representative floral organ mutants (wtl, feml, aglf-2, and aglf-1) in the T0 generation were generated by editing four AGAMOUS (BnaAG) homoeologs in B. napus that enriched the floral organ variant phenotype. In brief, this study provides useful information for investigating the function of MADS-box genes and contributes to revealing the regulatory mechanisms of floral organ development in the genetic improvement of new varieties.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Qingli Jia
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Nana Chen
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
46
|
Yin X, Yang D, Zhao Y, Yang X, Zhou Z, Sun X, Kong X, Li X, Wang G, Duan Y, Yang Y, Yang Y. Differences in pseudogene evolution contributed to the contrasting flavors of turnip and Chiifu, two Brassica rapa subspecies. PLANT COMMUNICATIONS 2023; 4:100427. [PMID: 36056558 PMCID: PMC9860189 DOI: 10.1016/j.xplc.2022.100427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 07/30/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Pseudogenes are important resources for investigation of genome evolution and genomic diversity because they are nonfunctional but have regulatory effects that influence plant adaptation and diversification. However, few systematic comparative analyses of pseudogenes in closely related species have been conducted. Here, we present a turnip (Brassica rapa ssp. rapa) genome sequence and characterize pseudogenes among diploid Brassica species/subspecies. The results revealed that the number of pseudogenes was greatest in Brassica oleracea (CC genome), followed by B. rapa (AA genome) and then Brassica nigra (BB genome), implying that pseudogene differences emerged after species differentiation. In Brassica AA genomes, pseudogenes were distributed asymmetrically on chromosomes because of numerous chromosomal insertions/rearrangements, which contributed to the diversity among subspecies. Pseudogene differences among subspecies were reflected in the flavor-related glucosinolate (GSL) pathway. Specifically, turnip had the highest content of pungent substances, probably because of expansion of the methylthioalkylmalate synthase-encoding gene family in turnips; these genes were converted into pseudogenes in B. rapa ssp. pekinensis (Chiifu). RNA interference-based silencing of the gene encoding 2-oxoglutarate-dependent dioxygenase 2, which is also associated with flavor and anticancer substances in the GSL pathway, resulted in increased abundance of anticancer compounds and decreased pungency of turnip and Chiifu. These findings revealed that pseudogene differences between turnip and Chiifu influenced the evolution of flavor-associated GSL metabolism-related genes, ultimately resulting in the different flavors of turnip and Chiifu.
Collapse
Affiliation(s)
- Xin Yin
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Danni Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youjie Zhao
- College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Xingyu Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Zhou
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xudong Sun
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangxiang Kong
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiong Li
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Guangyan Wang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yuanwen Duan
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqiang Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yongping Yang
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
47
|
Identification of NPF Family Genes in Brassica rapa Reveal Their Potential Functions in Pollen Development and Response to Low Nitrate Stress. Int J Mol Sci 2023; 24:ijms24010754. [PMID: 36614198 PMCID: PMC9821126 DOI: 10.3390/ijms24010754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/25/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Nitrate Transporter 1/Peptide Transporter Family (NPF) genes encode membrane transporters involved in the transport of diverse substrates. However, little is known about the diversity and functions of NPFs in Brassica rapa. In this study, 85 NPFs were identified in B. rapa (BrNPFs) which comprised eight subfamilies. Gene structure and conserved motif analysis suggested that BrNFPs were conserved throughout the genus. Stress and hormone-responsive cis-acting elements and transcription factor binding sites were identified in BrNPF promoters. Syntenic analysis suggested that tandem duplication contributed to the expansion of BrNPFs in B. rapa. Transcriptomic profiling analysis indicated that BrNPF2.6, BrNPF2.15, BrNPF7.6, and BrNPF8.9 were expressed in fertile floral buds, suggesting important roles in pollen development. Thirty-nine BrNPFs were responsive to low nitrate availability in shoots or roots. BrNPF2.10, BrNPF2.19, BrNPF2.3, BrNPF5.12, BrNPF5.16, BrNPF5.8, and BrNPF6.3 were only up-regulated in roots under low nitrate conditions, indicating that they play positive roles in nitrate absorption. Furthermore, many genes were identified in contrasting genotypes that responded to vernalization and clubroot disease. Our results increase understanding of BrNPFs as candidate genes for genetic improvement studies of B. rapa to promote low nitrate availability tolerance and for generating sterile male lines based on gene editing methods.
Collapse
|
48
|
Wei D, Li N, Zhang N, Liu F, Wu J, Zhao S, Shen J, Wang Z, Peng L, Fan Y, Mei J, Tang Q. Selective modes affect gene feature and function differentiation of tetraploid Brassica species in their evolution and domestication. FRONTIERS IN PLANT SCIENCE 2023; 14:1142147. [PMID: 37082337 PMCID: PMC10110867 DOI: 10.3389/fpls.2023.1142147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The genus Brassica contains a diverse group of important vegetables and oilseed crops. Genome sequencing has been completed for the six species (B. rapa, B. oleracea, B. nigra, B. carinata, B. napus, and B. juncea) in U's triangle model. The purpose of the study is to investigate whether positively and negatively selected genes (PSGs and NSGs) affect gene feature and function differentiation of Brassica tetraploids in their evolution and domestication. A total of 9,701 PSGs were found in the A, B and C subgenomes of the three tetraploids, of which, a higher number of PSGs were identified in the C subgenome as comparing to the A and B subgenomes. The PSGs of the three tetraploids had more tandem duplicated genes, higher single copy, lower multi-copy, shorter exon length and fewer exon number than the NSGs, suggesting that the selective modes affected the gene feature of Brassica tetraploids. The PSGs of all the three tetraploids enriched in a few common KEGG pathways relating to environmental adaption (such as Phenylpropanoid biosynthesis, Riboflavin metabolism, Isoflavonoid biosynthesis, Plant-pathogen interaction and Tropane, piperidine and pyridine alkaloid biosynthesis) and reproduction (Homologous recombination). Whereas, the NSGs of the three tetraploids significantly enriched in dozens of biologic processes and pathways without clear relationships with evolution. Moreover, the PSGs of B. carinata were found specifically enriched in lipid biosynthesis and metabolism which possibly contributed to the domestication of B. carinata as an oil crop. Our data suggest that selective modes affected the gene feature of Brassica tetraploids, and PSGs contributed in not only the evolution but also the domestication of Brassica tetraploids.
Collapse
Affiliation(s)
- Dayong Wei
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Nan Li
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Nan Zhang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Feng Liu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jie Wu
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Sa Zhao
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Jinjuan Shen
- Chongqing Yudongnan Academy of Agricultural Sciences, Mustard Tuber Research Center, Chongqing, China
| | - Zhimin Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Lisha Peng
- Chongqing Yudongnan Academy of Agricultural Sciences, Mustard Tuber Research Center, Chongqing, China
| | - Yonghong Fan
- Chongqing Yudongnan Academy of Agricultural Sciences, Mustard Tuber Research Center, Chongqing, China
| | - Jiaqin Mei
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- *Correspondence: Qinglin Tang, ; Jiaqin Mei,
| | - Qinglin Tang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
- *Correspondence: Qinglin Tang, ; Jiaqin Mei,
| |
Collapse
|
49
|
Garassino F, Wijfjes RY, Boesten R, Reyes Marquez F, Becker FFM, Clapero V, van den Hatert I, Holmer R, Schranz ME, Harbinson J, de Ridder D, Smit S, Aarts MGM. The genome sequence of Hirschfeldia incana, a new Brassicaceae model to improve photosynthetic light-use efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1298-1315. [PMID: 36239071 PMCID: PMC10100226 DOI: 10.1111/tpj.16005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis is a key process in sustaining plant and human life. Improving the photosynthetic capacity of agricultural crops is an attractive means to increase their yields. While the core mechanisms of photosynthesis are highly conserved in C3 plants, these mechanisms are very flexible, allowing considerable diversity in photosynthetic properties. Among this diversity is the maintenance of high photosynthetic light-use efficiency at high irradiance as identified in a small number of exceptional C3 species. Hirschfeldia incana, a member of the Brassicaceae family, is such an exceptional species, and because it is easy to grow, it is an excellent model for studying the genetic and physiological basis of this trait. Here, we present a reference genome of H. incana and confirm its high photosynthetic light-use efficiency. While H. incana has the highest photosynthetic rates found so far in the Brassicaceae, the light-saturated assimilation rates of closely related Brassica rapa and Brassica nigra are also high. The H. incana genome has extensively diversified from that of B. rapa and B. nigra through large chromosomal rearrangements, species-specific transposon activity, and differential retention of duplicated genes. Duplicated genes in H. incana, B. rapa, and B. nigra that are involved in photosynthesis and/or photoprotection show a positive correlation between copy number and gene expression, providing leads into the mechanisms underlying the high photosynthetic efficiency of these species. Our work demonstrates that the H. incana genome serves as a valuable resource for studying the evolution of high photosynthetic light-use efficiency and enhancing photosynthetic rates in crop species.
Collapse
Affiliation(s)
| | - Raúl Y. Wijfjes
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
- Present address:
Faculty of BiologyLudwig Maximilian University of MunichMunichGermany
| | - René Boesten
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| | | | - Frank F. M. Becker
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| | - Vittoria Clapero
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
- Present address:
Max Planck Institute for Molecular Plant PhysiologyGolmGermany
| | | | - Rens Holmer
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - M. Eric Schranz
- Biosystematics GroupWageningen University & ResearchWageningenNetherlands
| | - Jeremy Harbinson
- Laboratory of BiophysicsWageningen University & ResearchWageningenNetherlands
| | - Dick de Ridder
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - Sandra Smit
- Bioinformatics GroupWageningen University & ResearchWageningenNetherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
50
|
Yim WC, Swain ML, Ma D, An H, Bird KA, Curdie DD, Wang S, Ham HD, Luzuriaga-Neira A, Kirkwood JS, Hur M, Solomon JKQ, Harper JF, Kosma DK, Alvarez-Ponce D, Cushman JC, Edger PP, Mason AS, Pires JC, Tang H, Zhang X. The final piece of the Triangle of U: Evolution of the tetraploid Brassica carinata genome. THE PLANT CELL 2022; 34:4143-4172. [PMID: 35961044 PMCID: PMC9614464 DOI: 10.1093/plcell/koac249] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/24/2022] [Indexed: 05/05/2023]
Abstract
Ethiopian mustard (Brassica carinata) is an ancient crop with remarkable stress resilience and a desirable seed fatty acid profile for biofuel uses. Brassica carinata is one of six Brassica species that share three major genomes from three diploid species (AA, BB, and CC) that spontaneously hybridized in a pairwise manner to form three allotetraploid species (AABB, AACC, and BBCC). Of the genomes of these species, that of B. carinata is the least understood. Here, we report a chromosome scale 1.31-Gbp genome assembly with 156.9-fold sequencing coverage for B. carinata, completing the reference genomes comprising the classic Triangle of U, a classical theory of the evolutionary relationships among these six species. Our assembly provides insights into the hybridization event that led to the current B. carinata genome and the genomic features that gave rise to the superior agronomic traits of B. carinata. Notably, we identified an expansion of transcription factor networks and agronomically important gene families. Completion of the Triangle of U comparative genomics platform has allowed us to examine the dynamics of polyploid evolution and the role of subgenome dominance in the domestication and continuing agronomic improvement of B. carinata and other Brassica species.
Collapse
Affiliation(s)
| | | | - Dongna Ma
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong An
- Division of Biological Sciences, University of Missouri, Columbia, Missouri 65201, USA
| | - Kevin A Bird
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - David D Curdie
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Samuel Wang
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Hyun Don Ham
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - Jay S Kirkwood
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, Institute for Integrative Genome Biology, University of California, Riverside, California 92521, USA
| | - Juan K Q Solomon
- Department of Agriculture, Veterinary & Rangeland Sciences, University of Nevada, Reno, Nevada 89557, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | | | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA
| | - Annaliese S Mason
- Plant Breeding Department, INRES, The University of Bonn, Bonn 53115, Germany
| | - J Chris Pires
- Division of Biological Sciences, Bond Life Sciences Center, , University of Missouri, Columbia, Missouri 65211, USA
| | - Haibao Tang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|