1
|
Cui S, Takeda-Kimura Y, Wakatake T, Luo J, Tobimatsu Y, Yoshida S. Striga hermonthica induces lignin deposition at the root tip to facilitate prehaustorium formation and obligate parasitism. PLANT COMMUNICATIONS 2025; 6:101294. [PMID: 40033692 DOI: 10.1016/j.xplc.2025.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/18/2024] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
Striga hermonthica, an obligate parasitic plant that causes severe agricultural damage, recognizes its hosts by sensing haustorium-inducing factors (HIFs). Perception of HIFs induces the rapid transformation of S. hermonthica radicles into prehaustoria, structures that enable host invasion and mature into haustoria. HIFs consist of various aromatic compounds, including quinones, lignin monomers, and flavonoids. However, the downstream molecular pathways that orchestrate these developmental events are largely unknown. Here, we report that S. hermonthica root-tip cells rapidly deposit lignin, a major cell wall component, in response to HIFs. In addition to enhancing lignin levels, HIFs strongly induce genes involved in lignin monomer biosynthesis and polymerization, including several respiratory burst oxidase homologs (RBOHs) and class III peroxidases. Disruption of lignin monomer biosynthesis compromises prehaustorium formation, whereas HIF-induced class III peroxidases facilitate the process by promoting lignification. Our study demonstrates that cell wall lignification is a converged cellular process downstream of various HIFs that guides root meristematic cells in prehaustorium development.
Collapse
Affiliation(s)
- Songkui Cui
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; State Key Laboratory of Plant Diversity and Prominent Crops, Beijing, China.
| | | | - Takanori Wakatake
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan
| | - Jun Luo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Satoko Yoshida
- Nara Institute of Science and Technology, Graduate School of Science and Technology, Ikoma, Nara, Japan.
| |
Collapse
|
2
|
Miller CN, Jarrell-Hurtado S, Haag MV, Sara Ye Y, Simenc M, Alvarez-Maldonado P, Behnami S, Zhang L, Swift J, Papikian A, Yu J, Colt K, Ecker JR, Michael TP, Law JA, Busch W. A single-nuclei transcriptome census of the Arabidopsis maturing root identifies that MYB67 controls phellem cell maturation. Dev Cell 2025; 60:1377-1391.e7. [PMID: 39793584 DOI: 10.1016/j.devcel.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025]
Abstract
The periderm provides a protective barrier in many seed plant species. The development of the suberized phellem, which forms the outermost layer of this important tissue, has become a trait of interest for enhancing both plant resilience to stresses and plant-mediated CO2 sequestration in soils. Despite its importance, very few genes driving phellem development are known. Employing single-nuclei sequencing, we have generated an expression census capturing the complete developmental progression of Arabidopsis root phellem cells, from their progenitor cell type, the pericycle, through to their maturation. With this, we identify a whole suite of genes underlying this process, including MYB67, which we show has a role in phellem cell maturation. Our expression census and functional discoveries represent a resource, expanding our comprehension of secondary growth in plants. These data can be used to fuel discoveries and engineering efforts relevant to plant resilience and climate change.
Collapse
Affiliation(s)
- Charlotte N Miller
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sean Jarrell-Hurtado
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Manisha V Haag
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Y Sara Ye
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mathew Simenc
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Paloma Alvarez-Maldonado
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sara Behnami
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ling Zhang
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph Swift
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ashot Papikian
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- Integrative Genomics and Bioinformatics Core, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julie A Law
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Chen Y, Wang C, Tian S, Yao L, Zhu N, Yang X, Bai Z, Liu L, Zhang Y, Sun H, Li C, Zhang K. Abscisic Acid and Ethylene Antagonistically Regulate Root Endodermal Suberization to Mitigate Nonuniform Salt Stress in Cotton. PLANT, CELL & ENVIRONMENT 2025; 48:3199-3216. [PMID: 39718122 DOI: 10.1111/pce.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024]
Abstract
The heterogeneity of soil salinity is a critical attribute of saline agricultural environments, particularly for the physiological adaptability of cotton (Gossypium hirsutum L.) plants. However, the mechanisms by which cotton plants acclimate to heterogenous salinity remain poorly understood. To investigate the responses of cotton seedlings to nonuniform salinity, a split-root system using germination paper was employed to replicate spatially variable salinity conditions within the root zone. The root endodermal barriers, consisting of the suberin lamellae and Casparian strip, were found to be enhanced in the roots on the saline side of this system relative to the nonsaline side, playing a crucial role in maintaining ion balance for cotton seedlings under heterogeneous salt environment. Ethylene levels were higher in roots on the nonsaline side, but significantly lower in roots on the saline side. Notably, abscisic acid (ABA) levels increased in roots on both sides. The delicate balance between ABA and ethylene can modify the root endodermal suberization, thereby regulating the adaptability of cotton seedlings to diverse salt environments.
Collapse
Affiliation(s)
- Yixin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Cong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Shijun Tian
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liying Yao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ningxin Zhu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiubo Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhiying Bai
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Liantao Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Yongjiang Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Hongchun Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Cundong Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Ke Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
4
|
Beckers A, Mamiya A, Furutani M, Bennett MJ, Fukaki H, Sawa S, Gantet P, Laplaze L, Guyomarc'h S. Multiple layers of regulators emerge in the network controlling lateral root organogenesis. TRENDS IN PLANT SCIENCE 2025; 30:499-514. [PMID: 39455398 DOI: 10.1016/j.tplants.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/11/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Lateral root (LR) formation is a postembryonic organogenesis process that is crucial for plant root system development and adaptation to heterogenous soil environments. Since the early 1990s, a wealth of experimental data on arabidopsis (Arabidopsis thaliana) has helped reveal the LR formation regulatory network, in which dynamic auxin distribution and transcriptional cascades direct root cells through their organogenesis pathway. Some parts of this network appear conserved across diverse plant species or distinct developmental contexts. Recently, our knowledge of this process dramatically expanded thanks to technical advances, from single cell profiling to whole-root system phenotyping. Interestingly, new players are now emerging in this network, such as fatty acids and reactive oxygen species (ROS), transforming our knowledge of this hidden half of plant biology.
Collapse
Affiliation(s)
- Antoine Beckers
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Akihito Mamiya
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Masahiko Furutani
- Department of Earth System Science, Faculty of Science, Fukuoka University, Fukuoka, Japan; Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| | - Malcolm J Bennett
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Shinichiro Sawa
- Institute of Industrial Nanomaterial (IINA), Kumamoto University, Kumamoto, Japan; International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan; International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, Kumamoto, Japan; Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Pascal Gantet
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Laurent Laplaze
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Soazig Guyomarc'h
- DIADE, Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France.
| |
Collapse
|
5
|
Rahmati Ishka M, Sussman H, Hu Y, Alqahtani MD, Craft E, Sicat R, Wang M, Yu L, Ait-Haddou R, Li B, Drakakaki G, Nelson ADL, Pineros M, Korte A, Jaremko Ł, Testerink C, Tester M, Julkowska MM. Natural variation in salt-induced changes in root:shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. eLife 2025; 13:RP98896. [PMID: 40153306 PMCID: PMC11952752 DOI: 10.7554/elife.98896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study's innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.
Collapse
Affiliation(s)
| | | | - Yunfei Hu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | - Ronell Sicat
- Visualization Core Lab, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Minmin Wang
- University of California, DavisDavisUnited States
| | - Li'ang Yu
- Boyce Thompson InstituteIthacaUnited States
| | - Rachid Ait-Haddou
- Department of Mathematics, King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
| | - Bo Li
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | | | - Arthur Korte
- Julius-von-Sachs-Institute and Center for Computational and Theoretical Biology, Julius Maximilian UniversityWuerzburgGermany
| | - Łukasz Jaremko
- King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | | | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdalena M Julkowska
- Boyce Thompson InstituteIthacaUnited States
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
6
|
Shang E, Tu Q, Yu Z, Ding Z. Cell wall dynamic changes and signaling during plant lateral root development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:632-648. [PMID: 39878232 DOI: 10.1111/jipb.13844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Lateral roots (LRs), are an important component of plant roots, playing a crucial role in anchoring the plant in the soil and facilitating the uptake of water and nutrients. As post-embryonic organs, LRs originate from the pericycle cells of the primary root, and their formation is characterized by precise regulation of cell division and complex intercellular interactions, both of which are closely tied to cell wall regulation. Considering the rapid advances in molecular techniques over the past three decades, we reframe the understanding of the dynamic change in cell wall during LR development by summarizing the factors that precipitate these changes and their effects, as well as the regulated signals involved. Additionally, we discuss current challenges in this field and propose potential solutions.
Collapse
Affiliation(s)
- Erlei Shang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Qiang Tu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
7
|
Feng Q, Luo Y, Liang M, Cao Y, Wang L, Liu C, Zhang X, Ren L, Wang Y, Wang D, Zhu Y, Zhang Y, Xiao B, Li N. Rhizobacteria protective hydrogel to promote plant growth and adaption to acidic soil. Nat Commun 2025; 16:1684. [PMID: 39956869 PMCID: PMC11830790 DOI: 10.1038/s41467-025-56988-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025] Open
Abstract
Endophytic plant growth promoting rhizobacteria (PGPRs) could replace chemical fertilizers in sustainable agriculture. Unfortunately, they are susceptible to harsh environmental conditions. Here, we proposed a polymeric hydrogel (PMH) consisting of carboxymethyl chitosan, sodium alginate, and calcium chloride for loading and protecting endophytic PGPR. This hydrogel can load endophytic PGPRs to not only boost its growth-promoting efficiency, but also help them adapt more effectively to environments. Using endophytic PGPR Ensifer C5 as model bacteria and Brasscia napus as host, we demonstrate that the PMH facilitate the colonization of endophytic PGPRs in the apical and lateral root primordia regions. Further analysis indicates that the PMH modulate suberin deposition of the endodermal cell layers and regulate the accumulation of auxin at the root tip. Meanwhile, PMH enhances the antioxidant capacity and disease resistance properties of plants by increasing the content of arachidonic acid metabolism intermediates in the plant. Importantly, the combination of PMH and endophytic PGPRs increases the yields of B. napus by approximately 30% in the field. Furthermore, PMH attenuates the loss of endophytic PGPR activity in the acidic environments. Overall, this microbial encapsulation strategy is a promising way to protect fragile endophytic microorganisms, providing attractive avenues in sustainable agriculture.
Collapse
Affiliation(s)
- Qirui Feng
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Luo
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Yazhouwan National Laboratory, Sanya, Hainan, 572025, China
| | - Mu Liang
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - LingShuang Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Can Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Xiaoyong Zhang
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Lanyang Ren
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yongfeng Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, 475004, China
| | - Daojie Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan, 475004, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Hanhong College, Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Hybrid Rapeseed Research Center of Shanxi Province, Yangling, Shanxi, 712100, China.
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, Zhejiang, 310012, China.
| |
Collapse
|
8
|
Kosma DK, Graça J, Molina I. Update on the structure and regulated biosynthesis of the apoplastic polymers cutin and suberin. PLANT PHYSIOLOGY 2025; 197:kiae653. [PMID: 39657911 DOI: 10.1093/plphys/kiae653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The plant lipid polymers cutin and suberin play a critical role in many aspects of plant growth, development, and physiology. The mechanisms of cutin and suberin biosynthesis are relatively well understood thanks to just over 2 decades of work with primarily Arabidopsis (Arabidopsis thaliana) mutants. Recent advances in our understanding of cutin and suberin structure have arisen through the application of novel chemistries targeted at quantitative comprehension of intermolecular linkages, isolating intact suberins and cutins, and the application of advanced analytical techniques. The advent of high-throughput transcription factor binding assays and next-generation sequencing has facilitated the discovery of numerous cutin and suberin-regulating transcription factors and their gene promoter targets. Herein we provide an overview of aspects of cutin and suberin structure, biosynthesis, and transcriptional regulation of their synthesis highlighting recent developments in our understanding of these facets of cutin and suberin biology. We further identify outstanding questions in these respective areas and provide perspectives on how to advance the field to address these questions.
Collapse
Affiliation(s)
- Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89501, USA
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89501, USA
| | - José Graça
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, ON, Canada P6A 2G4
| |
Collapse
|
9
|
Hačkuličová D, Labancová E, Vivodová Z, Danchenko M, Holeková K, Bajus M, Kučerová D, Baráth P, Kollárová K. Modification of peroxidase activity and proteome in maize exposed to cadmium in the presence of galactoglucomannan oligosaccharides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117732. [PMID: 39823677 DOI: 10.1016/j.ecoenv.2025.117732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/12/2025] [Indexed: 01/19/2025]
Abstract
We tested the effects of galactoglucomannan oligosaccharides (GGMOs) and/or cadmium (Cd) on peroxidase activity and the proteome in maize (Zea mays L.) roots and leaves. Our previous work confirmed that GGMOs ameliorate the symptoms of Cd stress in seedlings. Here, the plants were hydroponically cultivated for 7 days, and the protein content and peroxidase activity were estimated in intracellular, neutral cell wall, and acidic cell wall protein fractions. The peroxidase activity varied between the plant organs as well as among the fractions and treatments. The GGMOs in the presence of Cd did not significantly influence content of peroxidases but modulated their activity, which implies posttranslational regulation. The changes in the content of various proteins (e.g., related to the defence reactions, cell wall structure/metabolism, and activation of plant hormones) caused by GGMOs and Cd indicate possible protective mechanisms that improve the vitality of maize seedlings exposed to metal stress. GGMOs partially reverted Cd-induced protein disbalance, which was a reoccurring phenomenon of mitigation in leaves.
Collapse
Affiliation(s)
- Diana Hačkuličová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Eva Labancová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Zuzana Vivodová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Maksym Danchenko
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Kristína Holeková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Marko Bajus
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Danica Kučerová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Peter Baráth
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia
| | - Karin Kollárová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 845 38, Slovakia.
| |
Collapse
|
10
|
Ao Y, Wu Q, Zheng J, Zhang C, Zhao Y, Xu R, Xue K, Dai C, Yang M. Building the physiological barrier: Suberin plasticity in response to environmental stimuli. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112300. [PMID: 39442632 DOI: 10.1016/j.plantsci.2024.112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
In response to environmental changes, plant roots undergo two major differentiations: the formation of the Casparian strip and the suberin lamella, both of them are widely recognized as an apoplastic diffusion barrier for nutrient and water exchange between the soil and the root vascular bundle. Suberin is a complex biopolyester composed of glycerol esters and phenolic compounds deposited in the cell walls of specific tissues such as endodermis, exodermis, periderm, seed coat and other marginal tissues. Recently, significant progress has been made due to the development of biochemical and genetic techniques. In this review, we not only summarize the aspect of suberin biosynthesis, transport and polymerization, but also elucidate the molecular mechanisms regarding its regulatory network, as well as its adaptive role in abiotic or biotic stress. This will provide important theoretical references for improving crop growth by modifying their adaptive root suberin structure when exposed to environmental changes.
Collapse
Affiliation(s)
- Yan Ao
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Qi Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jiqing Zheng
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Chi Zhang
- Shanghai Lixin University of Accounting and Finance, Shanghai 200032, China
| | - Yu Zhao
- Suzhou Chien-Shiung Institute of Technology, Suzhou 215411, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kaili Xue
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Changbo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Miaoyan Yang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Chen X, Liu K, Luo T, Zhang B, Yu J, Ma D, Sun X, Zheng H, Xin B, Xia J. Four MYB transcription factors regulate suberization and nonlocalized lignification at the root endodermis in rice. THE PLANT CELL 2024; 37:koae278. [PMID: 39405464 DOI: 10.1093/plcell/koae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/09/2024] [Indexed: 12/24/2024]
Abstract
In response to variable environments, rice (Oryza sativa) roots have developed lignified and suberized diffusion barriers at the endodermis to permit selective nutrient uptake for optimal growth. Here, we demonstrate that endodermal suberization and nonlocalized lignification are redundantly regulated by 4 MYB transcription factors: OsMYB39a, OsMYB41, OsMYB92a, and OsMYB92b. These transcription factors function downstream of the OsMYB36a/b/c, CASPARIAN STRIP INTEGRITY FACTOR (OsCIF)-SCHENGEN3 (OsSGN3), and stress-inducible signaling pathways in rice. Knockout of all 4 MYB genes resulted in the complete absence of endodermal suberin lamellae (SL) and almost no lignin deposition between the Casparian strip and the cortex-facing lignified band at cell corners under all conditions examined. In contrast, endodermis-specific overexpression of any of these MYB genes was sufficient to induce strong endodermal suberization and nonlocalized lignification near the root tip. Furthermore, OsMYB92a-overexpressing lines showed an altered ionomic profile and enhanced salinity tolerance. Transcriptome analysis identified 152 downstream genes regulated by OsMYB39a/41/92a/92b, including the key SL formation gene OsCYP86A1 and other genes involved in endodermal lignification and suberization under normal and stress conditions. Our results provide important insights into the molecular mechanisms underlying suberization and nonlocalized lignification at the root endodermis and their physiological significance in ion homeostasis and acclimation to environmental stress.
Collapse
Affiliation(s)
- Xingxiang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Kui Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Tingting Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinyu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dan Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoqian Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Huawei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Boning Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
12
|
Gao YQ, Su Y, Chao DY. Exploring the function of plant root diffusion barriers in sealing and shielding for environmental adaptation. NATURE PLANTS 2024; 10:1865-1874. [PMID: 39638869 DOI: 10.1038/s41477-024-01842-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
Plant roots serve as the primary interface between the plant and the soil, encountering numerous challenges ranging from water balance to nutrient uptake. One of the central mechanisms enabling plants to thrive in diverse ecosystems is the building of apoplastic diffusion barriers. These barriers control the flow of solutes into and out of the roots, maintaining water and nutrient homeostasis. In this Review, we summarize recent advances in understanding the establishment, function and ecological significance of root apoplastic diffusion barriers. We highlight the plasticity of apoplastic diffusion barriers under various abiotic stresses such as drought, salinity and nutrient deficiency. We also propose new frontiers by discussing the current bottlenecks in the study of plant apoplastic diffusion barriers.
Collapse
Affiliation(s)
- Yi-Qun Gao
- School of Biosciences, University of Nottingham, Sutton Bonington, UK
| | - Yu Su
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
13
|
Qin C, Li R, Tan Z, Zhang J, Sun Y, Han J, Deng X, Wang F, Yang Q, Wang J, Lin J. Research Progress and Hotspots Analysis of Apoplastic Barriers in the Roots of Plants Based on Bibliometrics from 2003 to 2023. PLANTS (BASEL, SWITZERLAND) 2024; 13:3285. [PMID: 39683081 DOI: 10.3390/plants13233285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/10/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
The apoplastic barriers, composed of Casparian strip (CS) and suberin lamellae (SL), are integral to the regulation of water and plant nutrient uptake in plants, as well as their resilience to abiotic stresses. This study systematically examines the research developments and emerging trends in this field from 2003 to 2023, utilizing bibliometric tools such as Web of Science, CiteSpace, and VOSviewer to analyze a dataset of 642 publications. This paper reviews the cooperation of different countries, institutions, and scholars in apoplastic barriers research based on cooperative network analysis. In the field, China has the highest number of publications, the University of Bolton has the highest number of publications, and Niko Geldner is the author with the maximum number of publications. Notably, 27 publications were identified as highly cited, with their research primarily focusing on (1) genes, proteins, enzymes, and hormones regulating the formation of apoplastic barriers; (2) the influence of adversity stress on apoplastic barriers; (3) the chemical components of apoplastic barriers; (4) the evaluations of research progress on apoplastic barriers. Combined with the keyword co-occurrence network diagram, it is proposed that future research directions in this field should be as follows: (1) physiological functions of apoplastic barriers in plant root; (2) differences in the formation of apoplastic barriers with different root systems; (3) methods to promote apoplastic barriers formation; and (4) application of molecular biology techniques. The present study provides a further understanding of the trends in apoplastic barriers, and the data analyzed can be used as a guide for future research directions.
Collapse
Affiliation(s)
- Chongyuan Qin
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Ruoqi Li
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Zhuoran Tan
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Jingnan Zhang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Yuyang Sun
- Social Science & Public Policy, School of Global Affairs, King's College London, London WC2R 2LS, UK
| | - Jinji Han
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Xiaoxia Deng
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Fei Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Qingjie Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Jinghong Wang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| | - Jixiang Lin
- College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
14
|
Liu C, Bai Z, Luo Y, Zhang Y, Wang Y, Liu H, Luo M, Huang X, Chen A, Ma L, Chen C, Yuan J, Xu Y, Zhu Y, Mu J, An R, Yang C, Chen H, Chen J, Li Z, Li X, Dong Y, Zhao J, Shen X, Jiang L, Feng X, Yu P, Wang D, Chen X, Li N. Multiomics dissection of Brassica napus L. lateral roots and endophytes interactions under phosphorus starvation. Nat Commun 2024; 15:9732. [PMID: 39523413 PMCID: PMC11551189 DOI: 10.1038/s41467-024-54112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Many plants associate with endophytic microbes that improve root phosphorus (P) uptake. Understanding the interactions between roots and endophytes can enable efforts to improve P utilization. Here, we characterize the interactions between lateral roots of endophytes in a core collection of 50 rapeseed (Brassica napus L.) genotypes with differing sensitivities to low P conditions. With the correlation analysis result between bacterial abundance and plant physiological indices of rapeseeds, and inoculation experiments on plates and soil, we identify one Flavobacterium strain (C2) that significantly alleviates the P deficiency phenotype of rapeseeds. The underlying mechanisms are explored by performing the weighted gene coexpression network analysis (WGCNA), and conducting genome-wide association studies (GWAS) using Flavobacterium abundance as a quantitative trait. Under P-limited conditions, C2 regulates fatty acid and lipid metabolic pathways. For example, C2 improves metabolism of linoleic acid, which mediates root suberin biosynthesis, and enhances P uptake efficiency. In addition, C2 suppresses root jasmonic acid biosynthesis, which depends on α-linolenic acid metabolism, improving C2 colonization and activating P uptake. This study demonstrates that adjusting the endophyte composition can modulate P uptake in B. napus plants, providing a basis for developing agricultural microbial agents.
Collapse
Affiliation(s)
- Can Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Zhen Bai
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Yu Luo
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Yongfeng Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hexin Liu
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Meng Luo
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xiaofang Huang
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Anle Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Lige Ma
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China
| | - Chen Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Jinwei Yuan
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Xu
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, 712100, China
| | - Cuiling Yang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Hao Chen
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China
| | - Jiajie Chen
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Zaifang Li
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Xiaodan Li
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Yachen Dong
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Jianhua Zhao
- Shanghai Majorbio Research Institute, Shanghai, 201203, PR China
| | - Xingxing Shen
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Lixi Jiang
- Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Xianzhong Feng
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China
| | - Peng Yu
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany.
- Plant Genetics, School of Life Sciences, Technical University of Munich, Freising, D-85354, Germany.
| | - Daojie Wang
- College of Agriculture, State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, 475004, Henan, China.
| | - Xinping Chen
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
| | - Nannan Li
- College of Resources and Environment, and Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China.
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, 400715, China.
- Research Center for Intelligent Computing Platforms, Zhejiang Lab, Hangzhou, 310012, China.
- Yazhouwan National Laboratory, Sanya, 572025, China.
| |
Collapse
|
15
|
Zhang B, Xu Y, Zhang L, Yu S, Zhu Y, Liu C, Wang P, Shi Y, Li L, Liu H. Root endodermal suberization induced by nitrate stress regulate apoplastic pathway rather than nitrate uptake in tobacco (Nicotiana tabacum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109166. [PMID: 39366201 DOI: 10.1016/j.plaphy.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Nitrogen levels and distribution in the rhizosphere strongly regulate the root architecture. Nitrate is an essential nutrient and an important signaling molecule for plant growth and development. Hydroponic experiments were conducted to investigate the differences in endodermal suberization in tobacco (Nicotiana tabacum L.) roots at three nitrate levels. Nitrogen accumulation was detected in the roots, shoots, and xylem sap. Nitrate influx on the root surface was also measured using the non-invasive self-referencing microsensor technique (SRMT). RNA-Seq analysis was performed to identify the genes related to endodermal suberization, nitrate transport, and endogenous abscisic acid (ABA) biosynthesis. The results showed that root length, root-shoot ratio, nitrate influx on the root surface, and NiA and NRT2.4 genes were regulated to maintain the nitrogen nutrient supply in tobacco under low nitrate conditions. Low nitrate levels enhanced root endodermal suberization and hence reduced the apoplastic transport pathway, and genes from the KCS, FAR, PAS2, and CYP86 families were upregulated. The results of exogenous fluridone, an ABA biosynthesis inhibitor, indicated that suberization of the tobacco root endodermis had no relevance to radial nitrate transport and accumulation. However, ABA enhances suberization, relating to ABA biosynthesis genes in the CCD family and degradation gene ABA8ox1.
Collapse
Affiliation(s)
- Biao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunxiang Xu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liwen Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yingying Zhu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chunju Liu
- Shandong Weifang Tobacco Co., Ltd., Weifang 261061, China
| | - Peng Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yi Shi
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lianzhen Li
- School of Environment Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haiwei Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
16
|
Kaplan Y, Wang Y, Manasherova E, Cohen H, Ginzberg I. Metabolic and gene-expression analyses reveal developmental dynamics of cutin deposition in pomegranate fruit grown under different environmental conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108991. [PMID: 39106765 DOI: 10.1016/j.plaphy.2024.108991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
The chemical and transcriptional changes in the cuticle of pomegranate (Punica granatum L.) fruit grown under different environmental conditions were studied. We collected fruit from three orchards located in different regions in Israel, each with a distinct microclimate. Fruit were collected at six phenological stages, and cutin monomers in the fruit cuticle were profiled by gas chromatography-mass spectrometry (GC-MS), along with qPCR transcript-expression analyses of selected cutin-related genes. While fruit phenotypes were comparable along development in all three orchards, principal component analyses of cutin monomer profiles suggested clear separation between cuticle samples of young green fruit to those of maturing fruit. Moreover, total cutin contents in green fruit were lower in the orchard characterized by a hot and dry climate compared to orchards with moderate temperatures. The variances detected in total cutin contents between orchards corresponded well with the expression patterns of BODYGUARD, a key biosynthetic gene operating in the cutin biosynthetic pathway. Based on our extraction protocols, we found that the cutin polyester that builds the pomegranate fruit cuticle accumulates some levels of gallic acid-the precursor of punicalagin, a well-known potent antioxidant metabolite in pomegranate fruit. The gallic acid was also one of the predominant metabolites contributing to the variability between developmental stages and orchards, and its accumulation levels were opposite to the expression patterns of the UGT73AL1 gene which glycosylates gallic acid to synthesize punicalagin. To the best of our knowledge, this is the first detailed composition of the cutin polyester that forms the pomegranate fruit cuticle.
Collapse
Affiliation(s)
- Yulia Kaplan
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Yuying Wang
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Ekaterina Manasherova
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Hagai Cohen
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| | - Idit Ginzberg
- Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Institute, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
17
|
Hu L, Lv X, Zhang Y, Du W, Fan S, Kong L. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Int J Mol Sci 2024; 25:10430. [PMID: 39408761 PMCID: PMC11476764 DOI: 10.3390/ijms251910430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Wheat is the most widely grown crop in the world; its production is severely disrupted by increasing water deficit. Plant roots play a crucial role in the uptake of water and perception and transduction of water deficit signals. In the past decade, the mechanisms of drought tolerance have been frequently reported; however, the transcriptome and metabolome regulatory network of root responses to water stress has not been fully understood in wheat. In this study, the global transcriptomic and metabolomics profiles were employed to investigate the mechanisms of roots responding to water stresses using the drought-tolerant (DT) and drought-susceptible (DS) wheat genotypes. The results showed that compared with the control group, wheat roots exposed to polyethylene glycol (PEG) had 25941 differentially expressed genes (DEGs) and more upregulated genes were found in DT (8610) than DS (7141). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the DEGs of the drought-tolerant genotype were preferably enriched in the flavonoid biosynthetic process, anthocyanin biosynthesis and suberin biosynthesis. The integrated analysis of the transcriptome and metabolome showed that in DT, the KEGG pathways, including flavonoid biosynthesis and arginine and proline metabolism, were shared by differentially accumulated metabolites (DAMs) and DEGs at 6 h after treatment (HAT) and pathways including alanine, aspartate, glutamate metabolism and carbon metabolism were shared at 48 HAT, while in DS, the KEGG pathways shared by DAMs and DEGs only included arginine and proline metabolism at 6 HAT and the biosynthesis of amino acids at 48 HAT. Our results suggest that the drought-tolerant genotype may relieve the drought stress by producing more ROS scavengers, osmoprotectants, energy and larger roots. Interestingly, hormone signaling plays an important role in promoting the development of larger roots and a higher capability to absorb and transport water in drought-tolerant genotypes.
Collapse
Affiliation(s)
- Ling Hu
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China;
| | - Xuemei Lv
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wanying Du
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
18
|
Yin J, Zhu T, Li X, Yin X, Xu J, Xu G. Polystyrene nanoplastics induce cell type-dependent secondary wall reinforcement in rice (Oryza sativa) roots and reduce root hydraulic conductivity. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135309. [PMID: 39053057 DOI: 10.1016/j.jhazmat.2024.135309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Nanoplastics (NPs) have been demonstrated the ability to penetrate plant roots and cause stress. However, the extent of NPs penetration into various root tissues and the corresponding plant defense mechanisms remain unclear. This study examined the penetration and accumulation patterns of polystyrene nanoplastics (PS-NPs) in different cell types within rice roots, and explored how the roots quickly modify their cell wall structure in response. The findings showed that fully developed sclerenchyma cells in rice roots effectively prevented the invasion of PS-NPs. Meanwhile, PS-NPs triggered the accumulation of lignin and suberin in specific cells such as the exodermis, sclerenchyma, and xylem vessels. PS-NPs at a concentration of 50 mg L-1 increased cell wall thickness by 18.6 %, 21.1 %, and 22.4 % in epidermis, exodermis, and sclerenchyma cells, respectively, and decreased root hydraulic conductivity by 14.8 %. qPCR analysis revealed that PS-NPs influenced the cell wall synthesis pathway, promoting the deposition of lignin and suberin monomers on the secondary wall through the up-regulation of genes such as OsLAC and OsABCG. These results demonstrate that PS-NPs can induce cell type-specific strengthening of secondary walls and barrier formation in rice roots, suggesting the potential role of plant secondary wall development in mitigating NPs contamination risks in crops.
Collapse
Affiliation(s)
- Jingjing Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Tongshan Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan 250100, PR China
| | - Xiaozun Li
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Xiao Yin
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Jiandi Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China
| | - Guoxin Xu
- Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan 250100, PR China.
| |
Collapse
|
19
|
Zhang H, Rundle C, Winter N, Miricescu A, Mooney BC, Bachmair A, Graciet E, Theodoulou FL. BIG enhances Arg/N-degron pathway-mediated protein degradation to regulate Arabidopsis hypoxia responses and suberin deposition. THE PLANT CELL 2024; 36:3177-3200. [PMID: 38608155 PMCID: PMC11371152 DOI: 10.1093/plcell/koae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024]
Abstract
BIG/DARK OVEREXPRESSION OF CAB1/TRANSPORT INHIBITOR RESPONSE3 is a 0.5 MDa protein associated with multiple functions in Arabidopsis (Arabidopsis thaliana) signaling and development. However, the biochemical functions of BIG are unknown. We investigated a role for BIG in the Arg/N-degron pathways, in which substrate protein fate is influenced by the N-terminal residue. We crossed a big loss-of-function allele to 2 N-degron pathway E3 ligase mutants, proteolysis6 (prt6) and prt1, and examined the stability of protein substrates. Stability of model substrates was enhanced in prt6-1 big-2 and prt1-1 big-2 relative to the respective single mutants, and the abundance of the PRT6 physiological substrates, HYPOXIA-RESPONSIVE ERF2 (HRE2) and VERNALIZATION2 (VRN2), was similarly increased in prt6 big double mutants. Hypoxia marker expression was enhanced in prt6 big double mutants; this constitutive response required arginyl transferase activity and RAP-type Group VII ethylene response factor (ERFVII) transcription factors. Transcriptomic analysis of roots not only demonstrated increased expression of multiple hypoxia-responsive genes in the double mutant relative to prt6, but also revealed other roles for PRT6 and BIG, including regulation of suberin deposition through both ERFVII-dependent and independent mechanisms, respectively. Our results show that BIG acts together with PRT6 to regulate the hypoxia-response and broader processes in Arabidopsis.
Collapse
Affiliation(s)
- Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Chelsea Rundle
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Nikola Winter
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | - Brian C Mooney
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
20
|
Ma Y, Flückiger I, Nicolet J, Pang J, Dickinson JB, De Bellis D, Emonet A, Fujita S, Geldner N. Comparisons of two receptor-MAPK pathways in a single cell-type reveal mechanisms of signalling specificity. NATURE PLANTS 2024; 10:1343-1362. [PMID: 39256564 PMCID: PMC11410668 DOI: 10.1038/s41477-024-01768-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/19/2024] [Indexed: 09/12/2024]
Abstract
Cells harbour numerous receptor pathways to respond to diverse stimuli, yet often share common downstream signalling components. Mitogen-activated protein kinase (MPK) cascades are an example of such common hubs in eukaryotes. How such common hubs faithfully transduce distinct signals within the same cell-type is insufficiently understood, yet of fundamental importance for signal integration and processing in plants. We engineered a unique genetic background allowing direct comparisons of a developmental and an immunity pathway in one cell-type, the Arabidopsis root endodermis. We demonstrate that the two pathways maintain distinct functional and transcriptional outputs despite common MPK activity patterns. Nevertheless, activation of different MPK kinases and MPK classes led to distinct functional readouts, matching observed pathway-specific readouts. On the basis of our comprehensive analysis of core MPK signalling elements, we propose that combinatorial activation within the MPK cascade determines the differential regulation of an endodermal master transcription factor, MYB36, that drives pathway-specific gene activation.
Collapse
Affiliation(s)
- Yan Ma
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland.
- Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria.
| | - Isabelle Flückiger
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Jade Nicolet
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Jia Pang
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Joe B Dickinson
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
- Department of Fundamental Microbiology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
| | - Aurélia Emonet
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
- Max Planck Institute for Plant Breeding Research, Cologne, North Rhine-Westphalia, Germany
| | - Satoshi Fujita
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville Tolosane, France
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
21
|
Dölfors F, Ilbäck J, Bejai S, Fogelqvist J, Dixelius C. Nitrate transporter protein NPF5.12 and major latex-like protein MLP6 are important defense factors against Verticillium longisporum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4148-4164. [PMID: 38666306 PMCID: PMC11233413 DOI: 10.1093/jxb/erae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Plant defense responses to the soil-borne fungus Verticillium longisporum causing stem stripe disease on oilseed rape (Brassica napus) are poorly understood. In this study, a population of recombinant inbred lines (RILs) using the Arabidopsis accessions Sei-0 and Can-0 was established. Composite interval mapping, transcriptome data, and T-DNA mutant screening identified the NITRATE/PEPTIDE TRANSPORTER FAMILY 5.12 (AtNPF5.12) gene as being associated with disease susceptibility in Can-0. Co-immunoprecipitation revealed interaction between AtNPF5.12 and the MAJOR LATEX PROTEIN family member AtMLP6, and fluorescence microscopy confirmed this interaction in the plasma membrane and endoplasmic reticulum. CRISPR/Cas9 technology was applied to mutate the NPF5.12 and MLP6 genes in B. napus. Elevated fungal growth in the npf5.12 mlp6 double mutant of both oilseed rape and Arabidopsis demonstrated the importance of these genes in defense against V. longisporum. Colonization of this fungus depends also on available nitrates in the host root. Accordingly, the negative effect of nitrate depletion on fungal growth was less pronounced in Atnpf5.12 plants with impaired nitrate transport. In addition, suberin staining revealed involvement of the NPF5.12 and MLP6 genes in suberin barrier formation. Together, these results demonstrate a dependency on multiple plant factors that leads to successful V. longisporum root infection.
Collapse
Affiliation(s)
- Fredrik Dölfors
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Jonas Ilbäck
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Sarosh Bejai
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Johan Fogelqvist
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Christina Dixelius
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| |
Collapse
|
22
|
Prohaska A, Rey-Serra P, Petit J, Petit A, Perrotte J, Rothan C, Denoyes B. Exploration of a European-centered strawberry diversity panel provides markers and candidate genes for the control of fruit quality traits. HORTICULTURE RESEARCH 2024; 11:uhae137. [PMID: 38988619 PMCID: PMC11233882 DOI: 10.1093/hr/uhae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Fruit quality traits are major breeding targets in cultivated strawberry (Fragaria × ananassa). Taking into account the requirements of both growers and consumers when selecting high-quality cultivars is a real challenge. Here, we used a diversity panel enriched with unique European accessions and the 50 K FanaSNP array to highlight the evolution of strawberry diversity over the past 160 years, investigate the molecular basis of 12 major fruit quality traits by genome-wide association studies (GWAS), and provide genetic markers for breeding. Results show that considerable improvements of key breeding targets including fruit weight, firmness, composition, and appearance occurred simultaneously in European and American cultivars. Despite the high genetic diversity of our panel, we observed a drop in nucleotide diversity in certain chromosomal regions, revealing the impact of selection. GWAS identified 71 associations with 11 quality traits and, while validating known associations (firmness, sugar), highlighted the predominance of new quantitative trait locus (QTL), demonstrating the value of using untapped genetic resources. Three of the six selective sweeps detected are related to glossiness or skin resistance, two little-studied traits important for fruit attractiveness and, potentially, postharvest shelf life. Moreover, major QTL for firmness, glossiness, skin resistance, and susceptibility to bruising are found within a low diversity region of chromosome 3D. Stringent search for candidate genes underlying QTL uncovered strong candidates for fruit color, firmness, sugar and acid composition, glossiness, and skin resistance. Overall, our study provides a potential avenue for extending shelf life without compromising flavor and color as well as the genetic markers needed to achieve this goal.
Collapse
Affiliation(s)
- Alexandre Prohaska
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | - Pol Rey-Serra
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| | - Johann Petit
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| | - Aurélie Petit
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | - Justine Perrotte
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | | | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| |
Collapse
|
23
|
Armendariz I, López de Heredia U, Soler M, Puigdemont A, Ruiz MM, Jové P, Soto Á, Serra O, Figueras M. Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation. BMC PLANT BIOLOGY 2024; 24:488. [PMID: 38825683 PMCID: PMC11145776 DOI: 10.1186/s12870-024-05192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND The periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the first periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Cork oak and holm oak distribution ranges overlap to a great extent, and they often share stands, where they can hybridize and produce offspring showing a rhytidome-type bark. RESULTS Here we use the outer bark of cork oak, holm oak, and their natural hybrids to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. We also include a unique natural hybrid individual corresponding to a backcross with cork oak that, interestingly, shows a cork-type bark. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that abiotic stress and cell death are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks. CONCLUSION Transcriptome results, in agreement with anatomical and chemical analyses, show that rhytidome and cork-type barks are active in periderm development, and suberin and lignin deposition. Development and cell wall-related DEGs suggest that cell division and expansion are upregulated in cork-type barks whereas cell differentiation is enhanced in rhytidome-type barks.
Collapse
Affiliation(s)
- Iker Armendariz
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Unai López de Heredia
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Marçal Soler
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Adrià Puigdemont
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Maria Mercè Ruiz
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Patricia Jové
- Institut Català del Suro. Carrer Miquel Vincke i Meyer 13, Palafrugell, 17200, Spain
| | - Álvaro Soto
- Departamento de Sistemas y Recursos Naturales. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, José Antonio Novais 10, Madrid, 28040, Spain
| | - Olga Serra
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain
| | - Mercè Figueras
- Laboratori del suro, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Carrer Maria Aurèlia Campmany 40, Girona, 17003, Spain.
| |
Collapse
|
24
|
Cao S, Zhao X, Li Z, Yu R, Li Y, Zhou X, Yan W, Chen D, He C. Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification. PLANT DIVERSITY 2024; 46:372-385. [PMID: 38798726 PMCID: PMC11119547 DOI: 10.1016/j.pld.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/29/2024]
Abstract
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors (TFs) in intricate regulatory networks in a cell-type specific manner. Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings. This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets, addressing batch effects and conserving biological variance. This integration spans a broad spectrum of tissues, including both below- and above-ground parts. Utilizing a rigorous approach for cell type annotation, we identified 47 distinct cell types or states, largely expanding our current view of plant cell compositions. We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression. Taken together, our study not only offers extensive plant cell atlas exploration that serves as a valuable resource, but also provides molecular insights into gene-regulatory programs that varies from different cell types.
Collapse
Affiliation(s)
- Shanni Cao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhuojin Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yuqi Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
25
|
Vestenaa MW, Husted S, Minutello F, Persson DP. Endodermal suberin restricts root leakage of cesium: a suitable tracer for potassium. PHYSIOLOGIA PLANTARUM 2024; 176:e14393. [PMID: 38923555 DOI: 10.1111/ppl.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
An urgent challenge within crop production is to maintain productivity in a world plagued by climate change and its associated plant stresses, such as heat, drought and salinity. A key factor in this endeavor is to understand the dynamics of root suberization, and its role in plant-water relations and nutrient transport. This study focuses on the hypothesis that endodermal suberin, acts as a physical barrier preventing radial potassium (K) movement out of the vascular tissues during translocation. Previous attempts to experimentally support this idea have produced inconsistent results. We developed a Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) method, allowing us to visualize the distribution of mineral elements and track K movement. Cesium (Cs), dosed in optimized concentrations, was found to be an ideal tracer for K, due to its low background and similar chemical/biological properties. In suberin mutants of Arabidopsis thaliana, we observed a positive correlation between suberin levels and K translocation efficiency, indicating that suberin enhances the plant's ability to retain K within the vascular tissues during translocation from root to shoot. In barley (Hordeum vulgare), fully suberized seminal roots maintained higher K concentrations in the stele compared to younger, less suberized root zones. This suggests that suberization increases with root maturity, enhancing the barrier against K leakage. In nodal roots, suberin was scattered towards the phloem in mature root zones. Despite this incomplete suberization, nodal roots still restrict outward K movement, demonstrating that even partial suberin barriers can significantly reduce K loss. Our findings provide evidence that suberin is a barrier to K leakage during root-to-shoot translocation. This understanding is crucial to maintain crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Morten Winther Vestenaa
- Department of Plant and Environmental Sciences, Faculty of SCIENCE, University of Copenhagen
| | - Søren Husted
- Department of Plant and Environmental Sciences, Faculty of SCIENCE, University of Copenhagen
| | - Francesco Minutello
- Department of Plant and Environmental Sciences, Faculty of SCIENCE, University of Copenhagen
| | | |
Collapse
|
26
|
Grünhofer P, Heimerich I, Pohl S, Oertel M, Meng H, Zi L, Lucignano K, Bokhari SNH, Guo Y, Li R, Lin J, Fladung M, Kreszies T, Stöcker T, Schoof H, Schreiber L. Suberin deficiency and its effect on the transport physiology of young poplar roots. THE NEW PHYTOLOGIST 2024; 242:137-153. [PMID: 38366280 DOI: 10.1111/nph.19588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The precise functions of suberized apoplastic barriers in root water and nutrient transport physiology have not fully been elucidated. While lots of research has been performed with mutants of Arabidopsis, little to no data are available for mutants of agricultural crop or tree species. By employing a combined set of physiological, histochemical, analytical, and transport physiological methods as well as RNA-sequencing, this study investigated the implications of remarkable CRISPR/Cas9-induced suberization defects in young roots of the economically important gray poplar. While barely affecting overall plant development, contrary to literature-based expectations significant root suberin reductions of up to 80-95% in four independent mutants were shown to not evidently affect the root hydraulic conductivity during non-stress conditions. In addition, subliminal iron deficiency symptoms and increased translocation of a photosynthesis inhibitor as well as NaCl highlight the involvement of suberin in nutrient transport physiology. The multifaceted nature of the root hydraulic conductivity does not allow drawing simplified conclusions such as that the suberin amount must always be correlated with the water transport properties of roots. However, the decreased masking of plasma membrane surface area could facilitate the uptake but also leakage of beneficial and harmful solutes.
Collapse
Affiliation(s)
- Paul Grünhofer
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Ines Heimerich
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Svenja Pohl
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Marlene Oertel
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Hongjun Meng
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Lin Zi
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Kevin Lucignano
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Syed Nadeem Hussain Bokhari
- Department Plant Biophysics and Biochemistry, Institute of Plant Molecular Biology, Czech Academy of Sciences, Biology Centre, Branišovská 31/1160, CZ-37005, České Budějovice, Czech Republic
| | - Yayu Guo
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, Sieker Landstraße 2, 22927, Grosshansdorf, Germany
| | - Tino Kreszies
- Department of Crop Sciences, Plant Nutrition and Crop Physiology, University of Göttingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Tyll Stöcker
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
| | - Heiko Schoof
- Department of Crop Bioinformatics, Institute of Crop Science and Resource Conservation, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
| | - Lukas Schreiber
- Department of Ecophysiology, Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| |
Collapse
|
27
|
Ye Q, Zhang L, Li Q, Ji Y, Zhou Y, Wu Z, Hu Y, Ma Y, Wang J, Zhang C. Genome and GWAS analysis identified genes significantly related to phenotypic state of Rhododendron bark. HORTICULTURE RESEARCH 2024; 11:uhae008. [PMID: 38487544 PMCID: PMC10939351 DOI: 10.1093/hr/uhae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 01/01/2024] [Indexed: 03/17/2024]
Abstract
As an important horticultural plant, Rhododendron is often used in urban greening and landscape design. However, factors such as the high rate of genetic recombination, frequent outcrossing in the wild, weak linkage disequilibrium, and the susceptibility of gene expression to environmental factors limit further exploration of functional genes related to important horticultural traits, and make the breeding of new varieties require a longer time. Therefore, we choose bark as the target trait which is not easily affected by environmental factors, but also has ornamental properties. Genome-wide association study (GWAS) of Rhododendron delavayi (30 samples), R. irroratum (30 samples) and their F1 generation R. agastum (200 samples) was conducted on the roughness of bark phenotypes. Finally, we obtained 2416.31 Gbp of clean data and identified 5 328 800 high-quality SNPs. According to the P-value and the degree of linkage disequilibrium of SNPs, we further identified 4 out of 11 candidate genes that affect bark roughness. The results of gene differential expression analysis further indicated that the expression levels of Rhdel02G0243600 and Rhdel08G0220700 in different bark phenotypes were significantly different. Our study identified functional genes that influence important horticultural traits of Rhododendron, and illustrated the powerful utility and great potential of GWAS in understanding and exploiting wild germplasm genetic resources of Rhododendron.
Collapse
Affiliation(s)
- Qiannan Ye
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Yunnan Academy of Agricultural Sciences Kunming 650000, China
| | - Qing Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaliang Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | - Yanli Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
| | - Zhenzhen Wu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Hu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Yunnan Academy of Agricultural Sciences Kunming 650000, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory for Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- Haiyan Engineering & Technology Center, Zhejiang Institute of Advanced Technology, Jiaxing 314022, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
28
|
Ragland CJ, Shih KY, Dinneny JR. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nat Commun 2024; 15:1370. [PMID: 38355570 PMCID: PMC10866969 DOI: 10.1038/s41467-024-45272-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.
Collapse
Affiliation(s)
- Carin J Ragland
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Y Shih
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
29
|
Zhang X, Gao H, Liu Y, Zhao H, Lü S. Function identification of Arabidopsis GPAT4 and GPAT8 in the biosynthesis of suberin and cuticular wax. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111933. [PMID: 38036221 DOI: 10.1016/j.plantsci.2023.111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 12/02/2023]
Abstract
Surface lipids in plants include cutin, cuticular wax and suberin. sn-Glycerol-3-phosphate acyltransferases (GPATs) facilitate the acylation of sn-glycerol-3-phosphate (G3P) utilizing a fatty acyl group from acyl-coenzyme A (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) as substrates for the biosynthesis of plant extracellular lipids such as suberin and cutin. Here we found that Arabidopsis GPAT4 and GPAT8 are specifically expressed in endodermis cells of roots where suberin was accumulated. GPAT4 mutation significantly decreased the amounts of the C16 and C18 ω-oxidized suberin monomers, whereas the mutation of GPAT8 had little effect on the suberin production, and the functions of both were not redundant. Root suberin phenotype analysis of gpat4-1 and gpat6-1 single or double mutant revealed that GPAT4 and GPAT6 play redundant functions. Interestingly, the gpat4-1 gpat8-1 double mutant displayed a glossy stem phenotype since fewer wax crystals were accumulated. This phenotype was not shown in either parent. Further study showed that the amounts of most wax components were significantly decreased. Taken together, our findings revealed that GPAT4 has an additive effect with GPAT6 in the root suberin biosynthesis, and plays a redundant role in wax production with GPAT8.
Collapse
Affiliation(s)
- Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huani Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yi Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
30
|
Zhang B, Xin B, Sun X, Chao D, Zheng H, Peng L, Chen X, Zhang L, Yu J, Ma D, Xia J. Small peptide signaling via OsCIF1/2 mediates Casparian strip formation at the root endodermal and nonendodermal cell layers in rice. THE PLANT CELL 2024; 36:383-403. [PMID: 37847118 PMCID: PMC10827571 DOI: 10.1093/plcell/koad269] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/15/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
The Casparian strip (CS) is a ring-like lignin structure deposited between endodermal cells that forms an apoplastic barrier to control the selective uptake of nutrients in vascular plants. However, the molecular mechanism of CS formation in rice (Oryza sativa), which possesses one CS each in the endodermis and exodermis, is relatively unknown. Here, we functionally characterized CS INTEGRITY FACTOR1 (OsCIF1a, OsCIF1b), OsCIF2, and SCHENGEN3 (OsSGN3a, OsSGN3b) in rice. OsCIF1s and OsCIF2 were mainly expressed in the stele, while OsSGN3s localized around the CS at the endodermis. Knockout of all three OsCIFs or both OsSGN3s resulted in a discontinuous CS and a dramatic reduction in compensatory (less localized) lignification and suberization at the endodermis. By contrast, ectopic overexpression of OsCIF1 or OsCIF2 induced CS formation as well as overlignification and oversuberization at single or double cortical cell layers adjacent to the endodermis. Ectopic co-overexpression of OsCIF1 and SHORTROOT1 (OsSHR1) induced the formation of more CS-like structures at multiple cortical cell layers. Transcriptome analysis identified 112 downstream genes modulated by the OsCIF1/2-OsSGN3 signaling pathway, which is involved in CS formation and activation of the compensatory machinery in native endodermis and nonnative endodermis-like cell layers. Our results provide important insights into the molecular mechanism of CIF-mediated CS formation at the root endodermal and nonendodermal cell layers.
Collapse
Affiliation(s)
- Baolei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Boning Xin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaoqian Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dong Chao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Huawei Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingxiang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinyu Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Dan Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
31
|
Maniero RA, Picco C, Hartmann A, Engelberger F, Gradogna A, Scholz-Starke J, Melzer M, Künze G, Carpaneto A, von Wirén N, Giehl RFH. Ferric reduction by a CYBDOM protein counteracts increased iron availability in root meristems induced by phosphorus deficiency. Nat Commun 2024; 15:422. [PMID: 38212310 PMCID: PMC10784544 DOI: 10.1038/s41467-023-43912-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 11/23/2023] [Indexed: 01/13/2024] Open
Abstract
To mobilize sparingly available phosphorus (P) in the rhizosphere, many plant species secrete malate to release P sorbed onto (hydr)oxides of aluminum and iron (Fe). In the presence of Fe, malate can provoke Fe over-accumulation in the root apoplast, triggering a series of events that inhibit root growth. Here, we identified HYPERSENSITIVE TO LOW P1 (HYP1), a CYBDOM protein constituted of a DOMON and a cytochrome b561 domain, as critical to maintain cell elongation and meristem integrity under low P. We demonstrate that HYP1 mediates ascorbate-dependent trans-plasma membrane electron transport and can reduce ferric and cupric substrates in Xenopus laevis oocytes and in planta. HYP1 expression is up-regulated in response to P deficiency in the proximal zone of the root apical meristem. Disruption of HYP1 leads to increased Fe and callose accumulation in the root meristem and causes significant transcriptional changes in roots. We further demonstrate that HYP1 activity overcomes malate-induced Fe accumulation, thereby preventing Fe-dependent root growth arrest in response to low P. Collectively, our results uncover an ascorbate-dependent metalloreductase that is critical to protect root meristems of P-deficient plants from increased Fe availability and provide insights into the physiological function of the yet poorly characterized but ubiquitous CYBDOM proteins.
Collapse
Affiliation(s)
- Rodolfo A Maniero
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Cristiana Picco
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149, Genoa, Italy
| | - Anja Hartmann
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Felipe Engelberger
- Institute for Drug Discovery, Leipzig University, SAC 04103, Leipzig, Germany
| | - Antonella Gradogna
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149, Genoa, Italy
| | - Joachim Scholz-Starke
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149, Genoa, Italy
| | - Michael Melzer
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Georg Künze
- Institute for Drug Discovery, Leipzig University, SAC 04103, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Leipzig University, 04107, Leipzig, Germany
| | - Armando Carpaneto
- Institute of Biophysics, National Research Council, Via De Marini 16, 16149, Genoa, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Viale Benedetto XV 5, 16132, Genoa, Italy
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics & Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466, Seeland, Germany.
| |
Collapse
|
32
|
Cantó-Pastor A, Kajala K, Shaar-Moshe L, Manzano C, Timilsena P, De Bellis D, Gray S, Holbein J, Yang H, Mohammad S, Nirmal N, Suresh K, Ursache R, Mason GA, Gouran M, West DA, Borowsky AT, Shackel KA, Sinha N, Bailey-Serres J, Geldner N, Li S, Franke RB, Brady SM. A suberized exodermis is required for tomato drought tolerance. NATURE PLANTS 2024; 10:118-130. [PMID: 38168610 PMCID: PMC10808073 DOI: 10.1038/s41477-023-01567-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
Plant roots integrate environmental signals with development using exquisite spatiotemporal control. This is apparent in the deposition of suberin, an apoplastic diffusion barrier, which regulates flow of water, solutes and gases, and is environmentally plastic. Suberin is considered a hallmark of endodermal differentiation but is absent in the tomato endodermis. Instead, suberin is present in the exodermis, a cell type that is absent in the model organism Arabidopsis thaliana. Here we demonstrate that the suberin regulatory network has the same parts driving suberin production in the tomato exodermis and the Arabidopsis endodermis. Despite this co-option of network components, the network has undergone rewiring to drive distinct spatial expression and with distinct contributions of specific genes. Functional genetic analyses of the tomato MYB92 transcription factor and ASFT enzyme demonstrate the importance of exodermal suberin for a plant water-deficit response and that the exodermal barrier serves an equivalent function to that of the endodermis and can act in its place.
Collapse
Affiliation(s)
- Alex Cantó-Pastor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Plant-Environment Signaling, Institute of Environmental Biology, Utrecht University, Utrecht, the Netherlands
| | - Lidor Shaar-Moshe
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, Institute of Evolution, University of Haifa, Haifa, Israel
| | - Concepción Manzano
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Prakash Timilsena
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
- Electron Microscopy Facility, University of Lausanne, Lausanne, Switzerland
| | - Sharon Gray
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Julia Holbein
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - He Yang
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Sana Mohammad
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Niba Nirmal
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Kiran Suresh
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Robertas Ursache
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - G Alex Mason
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Mona Gouran
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Donnelly A West
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Alexander T Borowsky
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Kenneth A Shackel
- Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Neelima Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Niko Geldner
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Song Li
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Rochus Benni Franke
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Duan L, Wang F, Shen H, Xie S, Chen X, Xie Q, Li R, Cao A, Li H. Identification, evolution, and expression of GDSL-type Esterase/Lipase (GELP) gene family in three cotton species: a bioinformatic analysis. BMC Genomics 2023; 24:795. [PMID: 38129780 PMCID: PMC10734139 DOI: 10.1186/s12864-023-09717-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.
Collapse
Affiliation(s)
- Lisheng Duan
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Aiping Cao
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
34
|
Chang E, Guo W, Chen J, Zhang J, Jia Z, Tschaplinski TJ, Yang X, Jiang Z, Liu J. Chromosome-level genome assembly of Quercus variabilis provides insights into the molecular mechanism of cork thickness. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111874. [PMID: 37742724 DOI: 10.1016/j.plantsci.2023.111874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
Quercus variabilis is a deciduous woody species with high ecological and economic value, and is a major source of cork in East Asia. Cork from thick softwood sheets have higher commercial value than those from thin sheets. It is extremely difficult to genetically improve Q. variabilis to produce high quality softwood due to the lack of genomic information. Here, we present a high-quality chromosomal genome assembly for Q. variabilis with length of 791,89 Mb and 54,606 predicted genes. Comparative analysis of protein sequences of Q. variabilis with 11 other species revealed that specific and expanded gene families were significantly enriched in the "fatty acid biosynthesis" pathway in Q. variabilis, which may contribute to the formation of its unique cork. Based on weighted correlation network analysis of time-course (i.e., five important developmental ages) gene expression data in thick-cork versus thin-cork genotypes of Q. variabilis, we identified one co-expression gene module associated with the thick-cork trait. Within this co-expression gene module, 10 hub genes were associated with suberin biosynthesis. Furthermore, we identified a total of 198 suberin biosynthesis-related new candidate genes that were up-regulated in trees with a thick cork layer relative to those with a thin cork layer. Also, we found that some genes related to cell expansion and cell division were highly expressed in trees with a thick cork layer. Collectively, our results revealed that two metabolic pathways (i.e., suberin biosynthesis, fatty acid biosynthesis), along with other genes involved in cell expansion, cell division, and transcriptional regulation, were associated with the thick-cork trait in Q. variabilis, providing insights into the molecular basis of cork development and knowledge for informing genetic improvement of cork thickness in Q. variabilis and closely related species.
Collapse
Affiliation(s)
- Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Wei Guo
- Taishan Academy of Forestry Sciences, Taian, Shandong 271000, China
| | - Jiahui Chen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA; The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Zeping Jiang
- Key Laboratory of Forest Ecology of National Forestry and Grassland Administration, Environment and Protection, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China.
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 10091, China.
| |
Collapse
|
35
|
Su Y, Feng T, Liu CB, Huang H, Wang YL, Fu X, Han ML, Zhang X, Huang X, Wu JC, Song T, Shen H, Yang X, Xu L, Lü S, Chao DY. The evolutionary innovation of root suberin lamellae contributed to the rise of seed plants. NATURE PLANTS 2023; 9:1968-1977. [PMID: 37932483 DOI: 10.1038/s41477-023-01555-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/27/2023] [Indexed: 11/08/2023]
Abstract
Seed plants overtook ferns to become the dominant plant group during the late Carboniferous, a period in which the climate became colder and dryer1,2. However, the specific innovations driving the success of seed plants are not clear. Here we report that the appearance of suberin lamellae (SL) contributed to the rise of seed plants. We show that the Casparian strip and SL vascular barriers evolved at different times, with the former originating in the most recent common ancestor (MRCA) of vascular plants and the latter in the MRCA of seed plants. Our results further suggest that most of the genes required for suberin formation arose through gene duplication in the MRCA of seed plants. We show that the appearance of the SL in the MRCA of seed plants enhanced drought tolerance through preventing water loss from the stele. We hypothesize that SL provide a decisive selective advantage over ferns in arid environments, resulting in the decline of ferns and the rise of gymnosperms. This study provides insights into the evolutionary success of seed plants and has implications for engineering drought-tolerant crops or fern varieties.
Collapse
Affiliation(s)
- Yu Su
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Feng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
- Biosystematics Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Chu-Bin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haodong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ya-Ling Wang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaojuan Fu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Mei-Ling Han
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuanhao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xing Huang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jia-Chen Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Song
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hui Shen
- Shanghai Chenshan Plant Science Research Center, Shanghai Chenshan Botanical Garden, Chinese Academy of Sciences, Shanghai, China
| | - Xianpeng Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China.
- Hubei Hongshan Laboratory, Wuhan, China.
| | - Dai-Yin Chao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Center for Plant Stress Biology, CAS Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
36
|
Chang LF, Fei J, Wang YS, Ma XY, Zhao Y, Cheng H. Comparative Analysis of Cd Uptake and Tolerance in Two Mangrove Species ( Avicennia marina and Rhizophora stylosa) with Distinct Apoplast Barriers. PLANTS (BASEL, SWITZERLAND) 2023; 12:3786. [PMID: 38005683 PMCID: PMC10674663 DOI: 10.3390/plants12223786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023]
Abstract
Mangrove plants demonstrate an impressive ability to tolerate environmental pollutants, but excessive levels of cadmium (Cd) can impede their growth. Few studies have focused on the effects of apoplast barriers on heavy metal tolerance in mangrove plants. To investigate the uptake and tolerance of Cd in mangrove plants, two distinct mangrove species, Avicennia marina and Rhizophora stylosa, are characterized by unique apoplast barriers. The results showed that both mangrove plants exhibited the highest concentration of Cd2+ in roots, followed by stems and leaves. The Cd2+ concentrations in all organs of R. stylosa consistently exhibited lower levels than those of A. marina. In addition, R. stylosa displayed a reduced concentration of apparent PTS and a smaller percentage of bypass flow when compared to A. marina. The root anatomical characteristics indicated that Cd treatment significantly enhanced endodermal suberization in both A. marina and R. stylosa roots, and R. stylosa exhibited a higher degree of suberization. The transcriptomic analysis of R. stylosa and A. marina roots under Cd stress revealed 23 candidate genes involved in suberin biosynthesis and 8 candidate genes associated with suberin regulation. This study has confirmed that suberized apoplastic barriers play a crucial role in preventing Cd from entering mangrove roots.
Collapse
Affiliation(s)
- Li-Fang Chang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Jiao Fei
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| | - You-Shao Wang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| | - Xiao-Yu Ma
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Yan Zhao
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
- College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161006, China
| | - Hao Cheng
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (L.-F.C.); (J.F.); (Y.-S.W.); (X.-Y.M.)
| |
Collapse
|
37
|
Rahmati Ishka M, Julkowska M. Tapping into the plasticity of plant architecture for increased stress resilience. F1000Res 2023; 12:1257. [PMID: 38434638 PMCID: PMC10905174 DOI: 10.12688/f1000research.140649.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 03/05/2024] Open
Abstract
Plant architecture develops post-embryonically and emerges from a dialogue between the developmental signals and environmental cues. Length and branching of the vegetative and reproductive tissues were the focus of improvement of plant performance from the early days of plant breeding. Current breeding priorities are changing, as we need to prioritize plant productivity under increasingly challenging environmental conditions. While it has been widely recognized that plant architecture changes in response to the environment, its contribution to plant productivity in the changing climate remains to be fully explored. This review will summarize prior discoveries of genetic control of plant architecture traits and their effect on plant performance under environmental stress. We review new tools in phenotyping that will guide future discoveries of genes contributing to plant architecture, its plasticity, and its contributions to stress resilience. Subsequently, we provide a perspective into how integrating the study of new species, modern phenotyping techniques, and modeling can lead to discovering new genetic targets underlying the plasticity of plant architecture and stress resilience. Altogether, this review provides a new perspective on the plasticity of plant architecture and how it can be harnessed for increased performance under environmental stress.
Collapse
|
38
|
Straube J, Suvarna S, Chen YH, Khanal BP, Knoche M, Debener T. Time course of changes in the transcriptome during russet induction in apple fruit. BMC PLANT BIOLOGY 2023; 23:457. [PMID: 37775771 PMCID: PMC10542230 DOI: 10.1186/s12870-023-04483-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Russeting is a major problem in many fruit crops. Russeting is caused by environmental factors such as wounding or moisture exposure of the fruit surface. Despite extensive research, the molecular sequence that triggers russet initiation remains unclear. Here, we present high-resolution transcriptomic data by controlled russet induction at very early stages of fruit development. During Phase I, a patch of the fruit surface is exposed to surface moisture. For Phase II, moisture exposure is terminated, and the formerly exposed surface remains dry. We targeted differentially expressed transcripts as soon as 24 h after russet induction. RESULTS During moisture exposure (Phase I) of 'Pinova' apple, transcripts associated with the cell cycle, cell wall, and cuticle synthesis (SHN3) decrease, while those related to abiotic stress increase. NAC35 and MYB17 were the earliest induced genes during Phase I. They are therefore linked to the initial processes of cuticle microcracking. After moisture removal (Phase II), the expression of genes related to meristematic activity increased (WOX4 within 24 h, MYB84 within 48 h). Genes related to lignin synthesis (MYB52) and suberin synthesis (MYB93, WRKY56) were upregulated within 3 d after moisture removal. WOX4 and AP2B3 are the earliest differentially expressed genes induced in Phase II. They are therefore linked to early events in periderm formation. The expression profiles were consistent between two different seasons and mirrored differences in russet susceptibility in a comparison of cultivars. Furthermore, expression profiles during Phase II of moisture induction were largely identical to those following wounding. CONCLUSIONS The combination of a unique controlled russet induction technique with high-resolution transcriptomic data allowed for the very first time to analyse the formation of cuticular microcracks and periderm in apple fruit immediately after the onset of triggering factors. This data provides valuable insights into the spatial-temporal dynamics of russeting, including the synthesis of cuticles, dedifferentiation of cells, and impregnation of cell walls with suberin and lignin.
Collapse
Affiliation(s)
- Jannis Straube
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Shreya Suvarna
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Yun-Hao Chen
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Bishnu P Khanal
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Moritz Knoche
- Institute of Horticultural Production Systems, Fruit Science Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany
| | - Thomas Debener
- Institute of Plant Genetics, Molecular Plant Breeding Section, Leibniz University Hannover, Herrenhäuser Straße 2, 30419, Hannover, Germany.
| |
Collapse
|
39
|
Liu L, Geng P, Jin X, Wei X, Xue J, Wei X, Zhang L, Liu M, Zhang L, Zong W, Mao L. Wounding induces suberin deposition, relevant gene expressions and changes of endogenous phytohormones in Chinese yam ( Dioscorea opposita) tubers. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:691-700. [PMID: 37437564 DOI: 10.1071/fp22280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Wounds on Chinese yam (Dioscorea opposita ) tubers can ocurr during harvest and handling, and rapid suberisation of the wound is required to prevent pathogenic infection and desiccation. However, little is known about the causal relationship among suberin deposition, relevant gene expressions and endogenous phytohormones levels in response to wounding. In this study, the effect of wounding on phytohormones levels and the expression profiles of specific genes involved in wound-induced suberisation were determined. Wounding rapidly increased the expression levels of genes, including PAL , C4H , 4CL , POD , KCSs , FARs , CYP86A1 , CYP86B1 , GPATs , ABCGs and GELPs , which likely involved in the biosynthesis, transport and polymerisation of suberin monomers, ultimately leading to suberin deposition. Wounding induced phenolics biosynthesis and being polymerised into suberin poly(phenolics) (SPP) in advance of suberin poly(aliphatics) (SPA) accumulation. Specifically, rapid expression of genes (e.g. PAL , C4H , 4CL , POD ) associated with the biosynthesis and polymerisation of phenolics, in consistent with SPP accumulation 3days after wounding, followed by the massive accumulation of SPA and relevant gene expressions (e.g. KCSs , FARs , CYP86A1 /B1 , GPATs , ABCGs , GELPs ). Additionally, wound-induced abscisic acid (ABA) and jasmonic acid (JA) consistently correlated with suberin deposition and relevant gene expressions indicating that they might play a central role in regulating wound suberisation in yam tubers.
Collapse
Affiliation(s)
- Linyao Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Ping Geng
- College of Energy and Power Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Xueyuan Jin
- College of Clinical Medicine, Hainan Vocational University of Science and Technology, Haikou, Hainan 571126, China
| | - Xiaopeng Wei
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Jing Xue
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Xiaobo Wei
- School of Food and Wine, Ningxia University, Ningxia Key Laboratory for Food Microbial-Applications Technology and Safety Control, Yinchuan, 750021, China
| | - Lihua Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Mengpei Liu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Liang Zhang
- Wencheng Institution of Modern Agriculture and Healthcare Industry, Wenzhou 325300, China
| | - Wei Zong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Zhejiang R&D Center of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
40
|
Naamala J, Subramanian S, Msimbira LA, Smith DL. Effect of NaCl stress on exoproteome profiles of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H. Front Microbiol 2023; 14:1206152. [PMID: 37700863 PMCID: PMC10493332 DOI: 10.3389/fmicb.2023.1206152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023] Open
Abstract
Salt stress can affect survival, multiplication and ability of plant growth promoting microorganisms to enhance plant growth. Changes in a microbe's proteome profile is one of the mechanisms employed by PGPM to enhance tolerance of salt stress. This study was focused on understanding changes in the exoproteome profile of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H when exposed to salt stress. The strains were cultured in 100 mL M13 (B. amyloliquefaciens) and 100 mL De man, Rogosa and Sharpe (MRS) (L. helveticus) media, supplemented with 200 and 0 mM NaCl (control), at pH 7.0. The strains were then incubated for 48 h (late exponential growth phase), at 120 rpm and 30 (B. amyloliquefaciens) and 37 (L. helveticus) °C. The microbial cultures were then centrifuged and filtered sterilized, to obtain cell free supernatants whose proteome profiles were studied using LC-MS/MS analysis and quantified using scaffold. Results of the study revealed that treatment with 200 mM NaCl negatively affected the quantity of identified proteins in comparison to the control, for both strains. There was upregulation and downregulation of some proteins, even up to 100%, which resulted in identification of proteins significantly unique between the control or 200 mM NaCl (p ≤ 0.05), for both microbial species. Proteins unique to 200 mM NaCl were mostly those involved in cell wall metabolism, substrate transport, oxidative stress tolerance, gene expression and DNA replication and repair. Some of the identified unique proteins have also been reported to enhance plant growth. In conclusion, based on the results of the work described here, PGPM alter their exoproteome profile when exposed to salt stress, potentially upregulating proteins that enhance their tolerance to this stress.
Collapse
Affiliation(s)
| | | | | | - Donald L. Smith
- Department of Plant Science, McGill University, Montreal, QC, Canada
| |
Collapse
|
41
|
Muro-Villanueva F, Pysh LD, Kim H, Bouse T, Ralph J, Luo Z, Cooper BR, Jannasch AS, Zhang Z, Gu C, Chapple C. Pinoresinol rescues developmental phenotypes of Arabidopsis phenylpropanoid mutants overexpressing FERULATE 5-HYDROXYLASE. Proc Natl Acad Sci U S A 2023; 120:e2216543120. [PMID: 37487096 PMCID: PMC10401026 DOI: 10.1073/pnas.2216543120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/12/2023] [Indexed: 07/26/2023] Open
Abstract
Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.
Collapse
Affiliation(s)
- Fabiola Muro-Villanueva
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | | | - Hoon Kim
- US Department of Energy’s Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI53726
| | - Tyler Bouse
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
| | - John Ralph
- US Department of Energy’s Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zhiwei Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN47907
| | - Amber S. Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN47907
| | - Zeyu Zhang
- Department of Statistics, Purdue University, West Lafayette, IN47907
| | - Chong Gu
- Department of Statistics, Purdue University, West Lafayette, IN47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
42
|
Tsai HH, Wang J, Geldner N, Zhou F. Spatiotemporal control of root immune responses during microbial colonization. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102369. [PMID: 37141807 DOI: 10.1016/j.pbi.2023.102369] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
The entire evolutionary trajectory of plants towards large and complex multi-cellular organisms has been accompanied by incessant interactions with omnipresent unicellular microbes. This led to the evolution of highly complex microbial communities, whose members display the entire spectrum of pathogenic to mutualistic behaviors. Plant roots are dynamic, fractally growing organs and even small Arabidopsis roots harbor millions of individual microbes of diverse taxa. It is evident that microbes at different positions on a root surface could experience fundamentally different environments, which, moreover, rapidly change over time. Differences in spatial scales between microbes and roots compares to humans and the cities they inhabit. Such considerations make it evident that mechanisms of root-microbe interactions can only be understood if analyzed at relevant spatial and temporal scales. This review attempts to provide an overview of the rapid recent progress that has been made in mapping and manipulating plant damage and immune responses at cellular resolution, as well as in visualizing bacterial communities and their transcriptional activities. We further discuss the impact that such approaches will have for a more predictive understanding of root-microbe interactions.
Collapse
Affiliation(s)
- Huei-Hsuan Tsai
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jiachang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Feng Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
43
|
Verbon EH, Liberman LM, Zhou J, Yin J, Pieterse CMJ, Benfey PN, Stringlis IA, de Jonge R. Cell-type-specific transcriptomics reveals that root hairs and endodermal barriers play important roles in beneficial plant-rhizobacterium interactions. MOLECULAR PLANT 2023; 16:1160-1177. [PMID: 37282370 PMCID: PMC10527033 DOI: 10.1016/j.molp.2023.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Growth- and health-promoting bacteria can boost crop productivity in a sustainable way. Pseudomonas simiae WCS417 is such a bacterium that efficiently colonizes roots, modifies the architecture of the root system to increase its size, and induces systemic resistance to make plants more resistant to pests and pathogens. Our previous work suggested that WCS417-induced phenotypes are controlled by root cell-type-specific mechanisms. However, it remains unclear how WCS417 affects these mechanisms. In this study, we transcriptionally profiled five Arabidopsis thaliana root cell types following WCS417 colonization. We found that the cortex and endodermis have the most differentially expressed genes, even though they are not in direct contact with this epiphytic bacterium. Many of these genes are associated with reduced cell wall biogenesis, and mutant analysis suggests that this downregulation facilitates WCS417-driven root architectural changes. Furthermore, we observed elevated expression of suberin biosynthesis genes and increased deposition of suberin in the endodermis of WCS417-colonized roots. Using an endodermal barrier mutant, we showed the importance of endodermal barrier integrity for optimal plant-beneficial bacterium association. Comparison of the transcriptome profiles in the two epidermal cell types that are in direct contact with WCS417-trichoblasts that form root hairs and atrichoblasts that do not-implies a difference in potential for defense gene activation. While both cell types respond to WCS417, trichoblasts displayed both higher basal and WCS417-dependent activation of defense-related genes compared with atrichoblasts. This suggests that root hairs may activate root immunity, a hypothesis that is supported by differential immune responses in root hair mutants. Taken together, these results highlight the strength of cell-type-specific transcriptional profiling to uncover "masked" biological mechanisms underlying beneficial plant-microbe associations.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Louisa M Liberman
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jiayu Zhou
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Jie Yin
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands
| | - Philip N Benfey
- Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands; Laboratory of Plant Pathology, Agricultural University of Athens, 75 Iera Odos str., 11855 Athens, Greece.
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, P.O. Box 800.56, 3508 TB Utrecht, the Netherlands.
| |
Collapse
|
44
|
Kandhol N, Pandey S, Singh VP, Herrera-Estrella L, Bucio JL, Tran LSP, Tripathi DK. Bacterial community and root endodermis: a complementary relationship. TRENDS IN PLANT SCIENCE 2023; 28:749-751. [PMID: 37080834 DOI: 10.1016/j.tplants.2023.03.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/02/2023] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
There are feedforward and feedback loops along the microbiota-root-shoot axis to maintain plant growth or defense under environmental stresses. Here, we highlight a reciprocal interaction between the endodermis and the plant-bacterial community, which stabilizes the diffusion barriers to maintain nutrient homeostasis under nutritional stress.
Collapse
Affiliation(s)
- Nidhi Kandhol
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Sangeeta Pandey
- Plant Microbe Interaction Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Irapuato 36821, México; Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX 79409, USA
| | - José López Bucio
- Laboratorio de Biología del Desarrollo Vegetal, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, 58030, Morelia, Michoacán, México
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, TX 79409, USA.
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Laboratory, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida 201313, India.
| |
Collapse
|
45
|
Chen A, Liu T, Deng Y, Xiao R, Zhang T, Wang Y, Yang Y, Lakshmanan P, Shi X, Zhang F, Chen X. Nitrate _dependent suberization regulates cadmium uptake and accumulation in maize. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162848. [PMID: 36931522 DOI: 10.1016/j.scitotenv.2023.162848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 03/09/2023] [Indexed: 05/13/2023]
Abstract
In this study, effect of nitrate-dependent suberization in maize root on cadmium (Cd) uptake and accumulation was investigated. Suberization in maize roots was significantly lower in plants grown with a high nitrate supply compared with low nitrate. This decrease was seen in the total amount of suberin, in which the aliphatic suberin amount was significantly decreased, whereas no difference in aromatic suberin content between different N-treatments. RNA-sequencing showed that suberin biosynthesis genes were upregulated in low nitrate treatment, which correlated well with the increased suberin content. Bioimaging and xylem sap analysis showed that reduced exodermal and endodermal suberization in roots of plants grown under high nitrate promoted radial Cd transport along the crown root. The enhanced suberization in crown roots of plants grown in low nitrate restricted the radial transport of Cd from epidermis to cortex via decreased accessibility to Cd related transporters at the plasmalemma. Also, under low nitrate supply, the Cd transport gene ZmNramp5 was upregulated in the crown root, which may enhance Cd uptake by root tip where exodermis and endodermis were not fully suberized. These results suggest that high nitrate supply enhances Cd uptake and radial transport in maize roots by reducing exodermal and endodermal suberization.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yan Deng
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ran Xiao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tong Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yuan Wang
- Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yuheng Yang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Prakash Lakshmanan
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Fusuo Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, China Agricultural University, Beijing 100193, China.
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400715, China; Key Laboratory of Low-carbon Green Agriculture in Southwestern China, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
46
|
Vysotskaya L, Akhiyarova G, Seldimirova O, Nuzhnaya T, Galin I, Ivanov R, Kudoyarova G. Effect of ipt Gene Induction in Transgenic Tobacco Plants on Hydraulic Conductance, Formation of Apoplastic Barriers and Aquaporin Activity under Heat Shock. Int J Mol Sci 2023; 24:9860. [PMID: 37373010 DOI: 10.3390/ijms24129860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Cytokinins are known to keep stomata open, which supports gas exchange and correlates with increased photosynthesis. However, keeping the stomata open can be detrimental if the increased transpiration is not compensated for by water supply to the shoots. In this study, we traced the effect of ipt (isopentenyl transferase) gene induction, which increases the concentration of cytokinins in transgenic tobacco plants, on transpiration and hydraulic conductivity. Since water flow depends on the conductivity of the apoplast, the deposition of lignin and suberin in the apoplast was studied by staining with berberine. The effect of an increased concentration of cytokinins on the flow of water through aquaporins (AQPs) was revealed by inhibition of AQPs with HgCl2. It was shown that an elevated concentration of cytokinins in ipt-transgenic plants increases hydraulic conductivity by enhancing the activity of aquaporins and reducing the formation of apoplastic barriers. The simultaneous effect of cytokinins on both stomatal and hydraulic conductivity makes it possible to coordinate the evaporation of water from leaves and its flow from roots to leaves, thereby maintaining the water balance and leaf hydration.
Collapse
Affiliation(s)
- Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Guzel Akhiyarova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Tatiana Nuzhnaya
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Ruslan Ivanov
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences, Pr. Octyabrya 69, 450054 Ufa, Russia
| |
Collapse
|
47
|
Stael S, Sabljić I, Audenaert D, Andersson T, Tsiatsiani L, Kumpf RP, Vidal-Albalat A, Lindgren C, Vercammen D, Jacques S, Nguyen L, Njo M, Fernández-Fernández ÁD, Beunens T, Timmerman E, Gevaert K, Van Montagu M, Ståhlberg J, Bozhkov PV, Linusson A, Beeckman T, Van Breusegem F. Structure-function study of a Ca 2+-independent metacaspase involved in lateral root emergence. Proc Natl Acad Sci U S A 2023; 120:e2303480120. [PMID: 37216519 PMCID: PMC10235996 DOI: 10.1073/pnas.2303480120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Metacaspases are part of an evolutionarily broad family of multifunctional cysteine proteases, involved in disease and normal development. As the structure-function relationship of metacaspases remains poorly understood, we solved the X-ray crystal structure of an Arabidopsis thaliana type II metacaspase (AtMCA-IIf) belonging to a particular subgroup not requiring calcium ions for activation. To study metacaspase activity in plants, we developed an in vitro chemical screen to identify small molecule metacaspase inhibitors and found several hits with a minimal thioxodihydropyrimidine-dione structure, of which some are specific AtMCA-IIf inhibitors. We provide mechanistic insight into the basis of inhibition by the TDP-containing compounds through molecular docking onto the AtMCA-IIf crystal structure. Finally, a TDP-containing compound (TDP6) effectively hampered lateral root emergence in vivo, probably through inhibition of metacaspases specifically expressed in the endodermal cells overlying developing lateral root primordia. In the future, the small compound inhibitors and crystal structure of AtMCA-IIf can be used to study metacaspases in other species, such as important human pathogens, including those causing neglected diseases.
Collapse
Affiliation(s)
- Simon Stael
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007Uppsala, Sweden
| | - Igor Sabljić
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007Uppsala, Sweden
| | - Dominique Audenaert
- VIB Screening Core, VIB,9052Ghent, Belgium
- Centre for Bioassay Development and Screening, Ghent University,9000Ghent, Belgium
| | | | - Liana Tsiatsiani
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | | | | | | | - Dominique Vercammen
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Silke Jacques
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Long Nguyen
- VIB Screening Core, VIB,9052Ghent, Belgium
- Centre for Bioassay Development and Screening, Ghent University,9000Ghent, Belgium
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Álvaro D. Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Tine Beunens
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Evy Timmerman
- Department of Biomolecular Medicine, Ghent University,9052Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9052Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University,9052Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9052Ghent, Belgium
| | - Marc Van Montagu
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007Uppsala, Sweden
| | - Peter V. Bozhkov
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, 75007Uppsala, Sweden
| | - Anna Linusson
- Department of Chemistry, Umeå University,90187Umeå, Sweden
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University,9052Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052Ghent, Belgium
| |
Collapse
|
48
|
Akhtyamova Z, Martynenko E, Arkhipova T, Seldimirova O, Galin I, Belimov A, Vysotskaya L, Kudoyarova G. Influence of Plant Growth-Promoting Rhizobacteria on the Formation of Apoplastic Barriers and Uptake of Water and Potassium by Wheat Plants. Microorganisms 2023; 11:1227. [PMID: 37317202 DOI: 10.3390/microorganisms11051227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The formation of apoplastic barriers is important for controlling the uptake of water and ions by plants, thereby influencing plant growth. However, the effects of plant growth-promoting bacteria on the formation of apoplastic barriers, and the relationship between these effects and the ability of bacteria to influence the content of hormones in plants, have not been sufficiently studied. The content of cytokinins, auxins and potassium, characteristics of water relations, deposition of lignin and suberin and the formation of Casparian bands in the root endodermis of durum wheat (Triticum durum Desf.) plants were evaluated after the introduction of the cytokinin-producing bacterium Bacillus subtilis IB-22 or the auxin-producing bacterium Pseudomonas mandelii IB-Ki14 into their rhizosphere. The experiments were carried out in laboratory conditions in pots with agrochernozem at an optimal level of illumination and watering. Both strains increased shoot biomass, leaf area and chlorophyll content in leaves. Bacteria enhanced the formation of apoplastic barriers, which were most pronounced when plants were treated with P. mandelii IB-Ki14. At the same time, P. mandelii IB-Ki14 caused no decrease in the hydraulic conductivity, while inoculation with B. subtilis IB-22, increased hydraulic conductivity. Cell wall lignification reduced the potassium content in the roots, but did not affect its content in the shoots of plants inoculated with P. mandelii IB-Ki14. Inoculation with B. subtilis IB-22 did not change the potassium content in the roots, but increased it in the shoots.
Collapse
Affiliation(s)
- Zarina Akhtyamova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Elena Martynenko
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Tatiana Arkhipova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Oksana Seldimirova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Ilshat Galin
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Andrey Belimov
- Group of Culture of Beneficial Microorganisms, All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia
| | - Lidiya Vysotskaya
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
49
|
Barbosa ICR, De Bellis D, Flückiger I, Bellani E, Grangé-Guerment M, Hématy K, Geldner N. Directed growth and fusion of membrane-wall microdomains requires CASP-mediated inhibition and displacement of secretory foci. Nat Commun 2023; 14:1626. [PMID: 36959183 PMCID: PMC10036488 DOI: 10.1038/s41467-023-37265-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Casparian strips (CS) are aligned bands of lignin-impregnated cell walls, building an extracellular diffusion barrier in roots. Their structure profoundly differs from tight junctions (TJ), analogous structures in animals. Nonetheless, CS membrane domain (CSD) proteins 1-5 (CASP1-5) are homologues of occludins, TJ components. CASP-marked membranes display cell wall (matrix) adhesion and membrane protein exclusion. A full CASP knock-out now reveals CASPs are not needed for localized lignification, since correctly positioned lignin microdomains still form in the mutant. Ultra-structurally, however, these microdomains are disorganized, showing excessive cell wall growth, lack of exclusion zone and matrix adhesion, and impaired exocyst dynamics. Proximity-labelling identifies a Rab-GTPase subfamily, known exocyst activators, as potential CASP-interactors and demonstrate their localization and function at the CSD. We propose that CASP microdomains displace initial secretory foci by excluding vesicle tethering factors, thereby ensuring rapid fusion of microdomains into a membrane-cell wall band that seals the extracellular space.
Collapse
Affiliation(s)
- Inês Catarina Ramos Barbosa
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Damien De Bellis
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Isabelle Flückiger
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Etienne Bellani
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Mathieu Grangé-Guerment
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Kian Hématy
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
- Institut Jean-Pierre Bourgin, INRAe, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Niko Geldner
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
50
|
Xu X, Guerriero G, Domergue F, Beine-Golovchuk O, Cocco E, Berni R, Sergeant K, Hausman JF, Legay S. Characterization of MdMYB68, a suberin master regulator in russeted apples. FRONTIERS IN PLANT SCIENCE 2023; 14:1143961. [PMID: 37021306 PMCID: PMC10067606 DOI: 10.3389/fpls.2023.1143961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Apple russeting is mainly due to the accumulation of suberin in the cell wall in response to defects and damages in the cuticle layer. Over the last decades, massive efforts have been done to better understand the complex interplay between pathways involved in the suberization process in model plants. However, the regulation mechanisms which orchestrate this complex process are still under investigation. Our previous studies highlighted a number of transcription factor candidates from the Myeloblastosis (MYB) transcription factor family which might regulate suberization in russeted or suberized apple fruit skin. Among these, we identified MdMYB68, which was co-expressed with number of well-known key suberin biosynthesis genes. METHOD To validate the MdMYB68 function, we conducted an heterologous transient expression in Nicotiana benthamiana combined with whole gene expression profiling analysis (RNA-Seq), quantification of lipids and cell wall monosaccharides, and microscopy. RESULTS MdMYB68 overexpression is able to trigger the expression of the whole suberin biosynthesis pathway. The lipid content analysis confirmed that MdMYB68 regulates the deposition of suberin in cell walls. Furthermore, we also investigated the alteration of the non-lipid cell wall components and showed that MdMYB68 triggers a massive modification of hemicelluloses and pectins. These results were finally supported by the microscopy. DISCUSSION Once again, we demonstrated that the heterologous transient expression in N. benthamiana coupled with RNA-seq is a powerful and efficient tool to investigate the function of suberin related transcription factors. Here, we suggest MdMYB68 as a new regulator of the aliphatic and aromatic suberin deposition in apple fruit, and further describe, for the first time, rearrangements occurring in the carbohydrate cell wall matrix, preparing this suberin deposition.
Collapse
Affiliation(s)
- Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Frederic Domergue
- Université de Bordeaux, Centre National de la Recherche Scientifique (CNRS) – Unité Mixte de Recherche (UMR) 5200, Laboratoire de biogenèse Membranaire, Bâtiment A3 ‐ Institut Natitonal de la Recherche Agronomique (INRA) Bordeaux Aquitaine, Villenave d’Ornon, France
| | - Olga Beine-Golovchuk
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Emmanuelle Cocco
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Roberto Berni
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Esch-Sur-Alzette, Luxembourg
| |
Collapse
|