1
|
Fung BL, Esin JJ, Visick KL. Vibrio fischeri: a model for host-associated biofilm formation. J Bacteriol 2024; 206:e0037023. [PMID: 38270381 PMCID: PMC10882983 DOI: 10.1128/jb.00370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Multicellular communities of adherent bacteria known as biofilms are often detrimental in the context of a human host, making it important to study their formation and dispersal, especially in animal models. One such model is the symbiosis between the squid Euprymna scolopes and the bacterium Vibrio fischeri. Juvenile squid hatch aposymbiotically and selectively acquire their symbiont from natural seawater containing diverse environmental microbes. Successful pairing is facilitated by ciliary movements that direct bacteria to quiet zones on the surface of the squid's symbiotic light organ where V. fischeri forms a small aggregate or biofilm. Subsequently, the bacteria disperse from that aggregate to enter the organ, ultimately reaching and colonizing deep crypt spaces. Although transient, aggregate formation is critical for optimal colonization and is tightly controlled. In vitro studies have identified a variety of polysaccharides and proteins that comprise the extracellular matrix. Some of the most well-characterized matrix factors include the symbiosis polysaccharide (SYP), cellulose polysaccharide, and LapV adhesin. In this review, we discuss these components, their regulation, and other less understood V. fischeri biofilm contributors. We also highlight what is currently known about dispersal from these aggregates and host cues that may promote it. Finally, we briefly describe discoveries gleaned from the study of other V. fischeri isolates. By unraveling the complexities involved in V. fischeri's control over matrix components, we may begin to understand how the host environment triggers transient biofilm formation and dispersal to promote this unique symbiotic relationship.
Collapse
Affiliation(s)
- Brittany L Fung
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Jeremy J Esin
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
2
|
Flemming HC, van Hullebusch ED, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. The biofilm matrix: multitasking in a shared space. Nat Rev Microbiol 2023; 21:70-86. [PMID: 36127518 DOI: 10.1038/s41579-022-00791-0] [Citation(s) in RCA: 300] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/20/2023]
Abstract
The biofilm matrix can be considered to be a shared space for the encased microbial cells, comprising a wide variety of extracellular polymeric substances (EPS), such as polysaccharides, proteins, amyloids, lipids and extracellular DNA (eDNA), as well as membrane vesicles and humic-like microbially derived refractory substances. EPS are dynamic in space and time and their components interact in complex ways, fulfilling various functions: to stabilize the matrix, acquire nutrients, retain and protect eDNA or exoenzymes, or offer sorption sites for ions and hydrophobic substances. The retention of exoenzymes effectively renders the biofilm matrix an external digestion system influencing the global turnover of biopolymers, considering the ubiquitous relevance of biofilms. Physico-chemical and biological interactions and environmental conditions enable biofilm systems to morph into films, microcolonies and macrocolonies, films, ridges, ripples, columns, pellicles, bubbles, mushrooms and suspended aggregates - in response to the very diverse conditions confronting a particular biofilm community. Assembly and dynamics of the matrix are mostly coordinated by secondary messengers, signalling molecules or small RNAs, in both medically relevant and environmental biofilms. Fully deciphering how bacteria provide structure to the matrix, and thus facilitate and benefit from extracellular reactions, remains the challenge for future biofilm research.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, USA.,Department of Orthopaedics, The Ohio State University, Columbus, OH, USA
| | - Jost Wingender
- University of Duisburg-Essen, Biofilm Centre, Department of Aquatic Microbiology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Kwon YH, Banskota S, Wang H, Rossi L, Grondin JA, Syed SA, Yousefi Y, Schertzer JD, Morrison KM, Wade MG, Holloway AC, Surette MG, Steinberg GR, Khan WI. Chronic exposure to synthetic food colorant Allura Red AC promotes susceptibility to experimental colitis via intestinal serotonin in mice. Nat Commun 2022; 13:7617. [PMID: 36539404 PMCID: PMC9768151 DOI: 10.1038/s41467-022-35309-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Chemicals in food are widely used leading to significant human exposure. Allura Red AC (AR) is a highly common synthetic colorant; however, little is known about its impact on colitis. Here, we show chronic exposure of AR at a dose found in commonly consumed dietary products exacerbates experimental models of colitis in mice. While intermittent exposure is more akin to a typical human exposure, intermittent exposure to AR in mice for 12 weeks, does not influence susceptibility to colitis. However, exposure to AR during early life primes mice to heightened susceptibility to colitis. In addition, chronic exposure to AR induces mild colitis, which is associated with elevated colonic serotonin (5-hydroxytryptamine; 5-HT) levels and impairment of the epithelial barrier function via myosin light chain kinase (MLCK). Importantly, chronic exposure to AR does not influence colitis susceptibility in mice lacking tryptophan hydroxylase 1 (TPH1), the rate limiting enzyme for 5-HT biosynthesis. Cecal transfer of the perturbed gut microbiota by AR exposure worsens colitis severity in the recipient germ-free (GF) mice. Furthermore, chronic AR exposure elevates colonic 5-HT levels in naïve GF mice. Though it remains unknown whether AR has similar effects in humans, our study reveals that chronic long-term exposure to a common synthetic colorant promotes experimental colitis via colonic 5-HT in gut microbiota-dependent and -independent pathway in mice.
Collapse
Affiliation(s)
- Yun Han Kwon
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Suhrid Banskota
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Huaqing Wang
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Laura Rossi
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada
| | - Jensine A. Grondin
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Saad A. Syed
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Yeganeh Yousefi
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| | - Jonathan D. Schertzer
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Katherine M. Morrison
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Pediatrics, McMaster University, Hamilton, ON Canada
| | - Michael G. Wade
- grid.57544.370000 0001 2110 2143Environmental Health, Science and Research Bureau, Health Canada, Ottawa, ON Canada
| | - Alison C. Holloway
- grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON Canada
| | - Michael G. Surette
- grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada
| | - Gregory R. Steinberg
- grid.25073.330000 0004 1936 8227Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Department of Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Center for Metabolism, Obesity, and Diabetes Research, McMaster University, Hamilton, ON Canada
| | - Waliul I. Khan
- grid.25073.330000 0004 1936 8227Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON Canada ,grid.25073.330000 0004 1936 8227Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON Canada
| |
Collapse
|
4
|
Ampatzoglou A, Gruszecka-Kosowska A, Torres-Sánchez A, López-Moreno A, Cerk K, Ortiz P, Monteoliva-Sánchez M, Aguilera M. Incorporating the Gut Microbiome in the Risk Assessment of Xenobiotics and Identifying Beneficial Components for One Health. Front Microbiol 2022; 13:872583. [PMID: 35602014 PMCID: PMC9116292 DOI: 10.3389/fmicb.2022.872583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Three areas of relevance to the gut microbiome in the context of One Health were explored; the incorporation of the microbiome in food safety risk assessment of xenobiotics; the identification and application of beneficial microbial components to various areas under One Health, and; specifically, in the context of antimicrobial resistance. Although challenging, focusing on the microbiota resilience, function and active components is critical for advancing the incorporation of microbiome data in the risk assessment of xenobiotics. Moreover, the human microbiota may be a promising source of beneficial components, with the potential to metabolize xenobiotics. These may have possible applications in several areas, e.g., in animals or plants for detoxification or in the environment for biodegradation. This approach would be of particular interest for antimicrobials, with the potential to ameliorate antimicrobial resistance development. Finally, the concept of resistance to xenobiotics in the context of the gut microbiome may deserve further investigation.
Collapse
Affiliation(s)
- Antonis Ampatzoglou
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Agnieszka Gruszecka-Kosowska
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- Department of Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and Technology, Kraków, Poland
| | - Alfonso Torres-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Ana López-Moreno
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- IBS: Instituto de Investigación Biosanitaria ibs., Granada, Spain
| | - Klara Cerk
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Pilar Ortiz
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Mercedes Monteoliva-Sánchez
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain
- Centre of Biomedical Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain
- IBS: Instituto de Investigación Biosanitaria ibs., Granada, Spain
| |
Collapse
|
5
|
Liang Y, Ma A, Zhuang G. Construction of Environmental Synthetic Microbial Consortia: Based on Engineering and Ecological Principles. Front Microbiol 2022; 13:829717. [PMID: 35283862 PMCID: PMC8905317 DOI: 10.3389/fmicb.2022.829717] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/31/2022] [Indexed: 01/30/2023] Open
Abstract
In synthetic biology, engineering principles are applied to system design. The development of synthetic microbial consortia represents the intersection of synthetic biology and microbiology. Synthetic community systems are constructed by co-cultivating two or more microorganisms under certain environmental conditions, with broad applications in many fields including ecological restoration and ecological theory. Synthetic microbial consortia tend to have high biological processing efficiencies, because the division of labor reduces the metabolic burden of individual members. In this review, we focus on the environmental applications of synthetic microbial consortia. Although there are many strategies for the construction of synthetic microbial consortia, we mainly introduce the most widely used construction principles based on cross-feeding. Additionally, we propose methods for constructing synthetic microbial consortia based on traits and spatial structure from the perspective of ecology to provide a basis for future work.
Collapse
Affiliation(s)
- Yu Liang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Controlled spatial organization of bacterial growth reveals key role of cell filamentation preceding Xylella fastidiosa biofilm formation. NPJ Biofilms Microbiomes 2021; 7:86. [PMID: 34876576 PMCID: PMC8651647 DOI: 10.1038/s41522-021-00258-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
The morphological plasticity of bacteria to form filamentous cells commonly represents an adaptive strategy induced by stresses. In contrast, for diverse human and plant pathogens, filamentous cells have been recently observed during biofilm formation, but their functions and triggering mechanisms remain unclear. To experimentally identify the underlying function and hypothesized cell communication triggers of such cell morphogenesis, spatially controlled cell patterning is pivotal. Here, we demonstrate highly selective cell adhesion of the biofilm-forming phytopathogen Xylella fastidiosa to gold-patterned SiO2 substrates with well-defined geometries and dimensions. The consequent control of both cell density and distances between cell clusters demonstrated that filamentous cell formation depends on cell cluster density, and their ability to interconnect neighboring cell clusters is distance-dependent. This process allows the creation of large interconnected cell clusters that form the structural framework for macroscale biofilms. The addition of diffusible signaling molecules from supernatant extracts provides evidence that cell filamentation is induced by quorum sensing. These findings and our innovative platform could facilitate therapeutic developments targeting biofilm formation mechanisms of X. fastidiosa and other pathogens.
Collapse
|
7
|
Røder HL, Trivedi U, Russel J, Kragh KN, Herschend J, Thalsø-Madsen I, Tolker-Nielsen T, Bjarnsholt T, Burmølle M, Madsen JS. Biofilms can act as plasmid reserves in the absence of plasmid specific selection. NPJ Biofilms Microbiomes 2021; 7:78. [PMID: 34620879 PMCID: PMC8497521 DOI: 10.1038/s41522-021-00249-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023] Open
Abstract
Plasmids facilitate rapid bacterial adaptation by shuttling a wide variety of beneficial traits across microbial communities. However, under non-selective conditions, maintaining a plasmid can be costly to the host cell. Nonetheless, plasmids are ubiquitous in nature where bacteria adopt their dominant mode of life - biofilms. Here, we demonstrate that biofilms can act as spatiotemporal reserves for plasmids, allowing them to persist even under non-selective conditions. However, under these conditions, spatial stratification of plasmid-carrying cells may promote the dispersal of cells without plasmids, and biofilms may thus act as plasmid sinks.
Collapse
Affiliation(s)
- Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Russel
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Nørskov Kragh
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Jakob Herschend
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ida Thalsø-Madsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Su J, Duan X, Qiu Y, Zhou L, Zhang H, Gao M, Liu Y, Zou Z, Qiu J, Chen C. Pregnancy exposure of titanium dioxide nanoparticles causes intestinal dysbiosis and neurobehavioral impairments that are not significant postnatally but emerge in adulthood of offspring. J Nanobiotechnology 2021; 19:234. [PMID: 34362405 PMCID: PMC8349049 DOI: 10.1186/s12951-021-00967-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pregnancy exposure to titanium dioxide nanoparticles (TiO2NPs) is a vital consideration due to their inadvertent ingestion from environmental contamination. The potential health effects of TiO2NPs on the neurodevelopmental process should be seriously concerned in health risk assessment, especially for the pregnant women who are susceptible to the neurodevelopmental toxicity of nano-sized particles. However, the available evidence of neurodevelopmental toxicity of TiO2NPs remains very limited. METHODS In the present study, the pregnant mice were intragastric administered with 150 mg/kg TiO2NPs from gestational day (GD) 8 to 21, the maternal behaviors and neurodevelopment-related indicators in offspring were all assessed at different time points after delivery. The gut microbial community in both dams and their offspring were detected by using 16S ribosomal RNA (rRNA) gene sequencing. The gut-brain axis related indicators were also determined in the offspring. RESULTS The results clearly demonstrated that exposure to TiO2NPs did not affect the maternal behaviors of pregnant mice, or cause the deficits on the developmental milestones and perturbations in the early postnatal development of offspring. Intriguingly, our data revealed that pregnancy exposure of TiO2NPs did not affect locomotor function, learning and memory ability and anxiety-like behavior in offspring at postnatal day (PD) 21, but resulted in obvious impairments on these neurobehaviors at PD49. Similar phenomena were obtained in the composition of gut microbial community, intestinal and brain pathological damage in offspring in adulthood. Moreover, the intestinal dysbiosis induced by TiO2NPs might be highly associated with the delayed appearance of neurobehavioral impairments in offspring, possibly occurring through disruption of gut-brain axis. CONCLUSIONS This is the first report elucidated that pregnancy exposure to TiO2NPs caused delayed appearance of neurobehavioral impairments in offspring when they reached adulthood, although these perturbations did not happen at early life after delivery. These findings will provide valuable insights about neurodevelopmental toxicity of TiO2NPs, and call for comprehensive health risk assessment of TiO2NPs on the susceptible population, such as pregnant women.
Collapse
Affiliation(s)
- Junhao Su
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yu Qiu
- Department of Neurology, The Affiliated University-Town Hospital of Chongqing Medical University, Chongqing, 401331, People's Republic of China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Min Gao
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yijun Liu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Chengzhi Chen
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
9
|
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol 2021; 19:654-665. [PMID: 34089008 DOI: 10.1038/s41579-021-00557-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
As our understanding of the human microbiome progresses, so does the need for natural experimental animal models that promote a mechanistic understanding of beneficial microorganism-host interactions. Years of research into the exclusive symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri have permitted a detailed understanding of those bacterial genes underlying signal exchange and rhythmic activities that result in a persistent, beneficial association, as well as glimpses into the evolution of symbiotic competence. Migrating from the ambient seawater to regions deep inside the light-emitting organ of the squid, V. fischeri experiences, recognizes and adjusts to the changing environmental conditions. Here, we review key advances over the past 15 years that are deepening our understanding of these events.
Collapse
|
10
|
Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY. Superhydrophobic Nanocoatings as Intervention against Biofilm-Associated Bacterial Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1046. [PMID: 33921904 PMCID: PMC8073257 DOI: 10.3390/nano11041046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Biofilm formation represents a significant cause of concern as it has been associated with increased morbidity and mortality, thereby imposing a huge burden on public healthcare system throughout the world. As biofilms are usually resistant to various conventional antimicrobial interventions, they may result in severe and persistent infections, which necessitates the development of novel therapeutic strategies to combat biofilm-based infections. Physicochemical modification of the biomaterials utilized in medical devices to mitigate initial microbial attachment has been proposed as a promising strategy in combating polymicrobial infections, as the adhesion of microorganisms is typically the first step for the formation of biofilms. For instance, superhydrophobic surfaces have been shown to possess substantial anti-biofilm properties attributed to the presence of nanostructures. In this article, we provide an insight into the mechanisms underlying biofilm formation and their composition, as well as the applications of nanomaterials as superhydrophobic nanocoatings for the development of novel anti-biofilm therapies.
Collapse
Affiliation(s)
- Yinghan Chan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Xun Hui Wu
- School of Postgraduate Studies, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Buong Woei Chieng
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (B.W.C.); (N.A.I.)
| | - Nor Azowa Ibrahim
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia; (B.W.C.); (N.A.I.)
| | - Yoon Yee Then
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
11
|
Bergua JF, Álvarez-Diduk R, Hu L, Hassan AHA, Merkoçi A. Improved Aliivibrio fischeri based-toxicity assay: Graphene-oxide as a sensitivity booster with a mobile-phone application. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124434. [PMID: 33307446 DOI: 10.1016/j.jhazmat.2020.124434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Recently, many bioluminescence-based applications have arisen in several fields, such as biosensing, bioimaging, molecular biology, and human health diagnosis. Among all bioluminescent organisms, Aliivibrio fischeri (A. fischeri) is a bioluminescent bacterium used to carry out water toxicity assays since the late 1970s. Since then, several commercial A. fischeri-based products have been launched to the market, as these bacteria are considered as a gold standard for water toxicity assessment worldwide. However, the aforementioned commercial products rely on expensive equipment, requiring several reagents and working steps, as well as high-trained personnel to perform the assays and analyze the output data. For these reasons, in this work, we have developed for the first time a mobile-phone-based sensing platform for water toxicity assessment in just 5 min using two widespread pesticides as model analytes. To accomplish this, we have established new methodologies to enhance the bioluminescent signal of A. fischeri based on the bacterial culture in a solid media and/or using graphene oxide. Finally, we have addressed the biocompatibility of graphene oxide to A. fischeri, boosting the sensitivity of the toxicity assays and the bacterial growth of the lyophilized bacterial cultures for more user-friendly storage.
Collapse
Affiliation(s)
- José Francisco Bergua
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ruslan Álvarez-Diduk
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Liming Hu
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Abdelrahim H A Hassan
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
12
|
Funari R, Ripa R, Söderström B, Skoglund U, Shen AQ. Detecting Gold Biomineralization by Delftia acidovorans Biofilms on a Quartz Crystal Microbalance. ACS Sens 2019; 4:3023-3033. [PMID: 31631654 DOI: 10.1021/acssensors.9b01580] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The extensive use of gold in sensing, diagnostics, and electronics has led to major concerns in solid waste management since gold and other heavy metals are nonbiodegradable and can easily accumulate in the environment. Moreover, gold ions are extremely reactive and potentially harmful for humans. Thus, there is an urgent need to develop reliable methodologies to detect and possibly neutralize ionic gold in aqueous solutions and industrial wastes. In this work, by using complementary measurement techniques such as quartz crystal microbalance (QCM), atomic force microscopy, crystal violet staining, and optical microscopy, we investigate a promising biologically induced gold biomineralization process accomplished by biofilms of bacterium Delftia acidovorans. When stressed by Au3+ ions, D. acidovorans is able to neutralize toxic soluble gold by excreting a nonribosomal peptide, which forms extracellular gold nanonuggets via complexation with metal ions. Specifically, QCM, a surface-sensitive transducer, is employed to quantify the production of these gold complexes directly on the D. acidovorans biofilm in real time. Detailed kinetics obtained by QCM captures the condition for maximized biomineralization yield and offers new insights underlying the biomineralization process. To the best of our knowledge, this is the first study providing an extensive characterization of the gold biomineralization process by a model bacterial biofilm. We also demonstrate QCM as a cheap, user-friendly sensing platform and alternative to standard analytical techniques for studies requiring high-resolution quantitative details, which offers promising opportunities in heavy-metal sensing, gold recovery, and industrial waste treatment.
Collapse
|
13
|
Morales-García AL, Bailey RG, Jana S, Burgess JG. The role of polymers in cross-kingdom bioadhesion. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190192. [PMID: 31495316 DOI: 10.1098/rstb.2019.0192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The secretion of extracellular polymeric substances provides an evolutionary advantage found in many organisms that can adhere to surfaces and cover themselves in a protective matrix. This ability is found in prokaryotes, archaea and eukaryotes, all of which use functionally similar polysaccharides, proteins and nucleic acids to form extracellular matrices, mucus and bioadhesive substances. These macromolecules have been investigated from the perspective of polymer biophysics, and theories to help understand adhesion, viscosity and gelling have been developed. These properties can be measured experimentally using straightforward methods such as cell counting as well as more advanced techniques such as atomic force microscopy and rheometry. An integrated understanding of the properties and uses of adhesive macromolecules across kingdoms is also important and can provide the basis for a range of biotechnological and medical applications. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- A L Morales-García
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - R G Bailey
- School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - S Jana
- School of Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| | - J G Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK
| |
Collapse
|
14
|
Blakeman JT, Morales-García AL, Mukherjee J, Gori K, Hayward AS, Lant NJ, Geoghegan M. Extracellular DNA Provides Structural Integrity to a Micrococcus luteus Biofilm. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6468-6475. [PMID: 30995049 DOI: 10.1021/acs.langmuir.9b00297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Force spectroscopy was used to show that extracellular DNA (eDNA) has a pre-eminent structural role in a biofilm. The adhesive behavior of extracellular polymeric substances to poly(ethylene terephthalate), a model hydrophobic surface, was measured in response to their degradation by hydrolytic enzymes known for their biofilm dispersion potential: DNaseI, protease, cellulase, and mannanase. Only treatment with DNaseI significantly decreased the adhesive force of the model bacterium Micrococcus luteus with the surface, and furthermore this treatment almost completely eliminated any components of the biofilm maintaining the adhesion, establishing a key structural role for eDNA.
Collapse
Affiliation(s)
- Jamie T Blakeman
- Department of Physics and Astronomy , The University of Sheffield , Hounsfield Road , Sheffield S3 7RH , U.K
| | - Ana L Morales-García
- Department of Physics and Astronomy , The University of Sheffield , Hounsfield Road , Sheffield S3 7RH , U.K
- Procter and Gamble Newcastle Innovation Centre , Longbenton, Newcastle upon Tyne NE12 9TS , U.K
| | - Joy Mukherjee
- Department of Chemical and Biological Engineering , The University of Sheffield , Mappin Street , Sheffield S1 3JD , U.K
| | - Klaus Gori
- Novozymes A/S , Krogshøjvej 36 , Bagsværd 2880 , Denmark
| | - Adam S Hayward
- Procter and Gamble Newcastle Innovation Centre , Longbenton, Newcastle upon Tyne NE12 9TS , U.K
| | - Neil J Lant
- Procter and Gamble Newcastle Innovation Centre , Longbenton, Newcastle upon Tyne NE12 9TS , U.K
| | - Mark Geoghegan
- Department of Physics and Astronomy , The University of Sheffield , Hounsfield Road , Sheffield S3 7RH , U.K
| |
Collapse
|
15
|
Desmond P, Böni L, Fischer P, Morgenroth E, Derlon N. Stratification in the physical structure and cohesion of membrane biofilms — Implications for hydraulic resistance. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Bjarnsholt T, Buhlin K, Dufrêne YF, Gomelsky M, Moroni A, Ramstedt M, Rumbaugh KP, Schulte T, Sun L, Åkerlund B, Römling U. Biofilm formation - what we can learn from recent developments. J Intern Med 2018; 284:332-345. [PMID: 29856510 PMCID: PMC6927207 DOI: 10.1111/joim.12782] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although biofilms have been observed early in the history of microbial research, their impact has only recently been fully recognized. Biofilm infections, which contribute to up to 80% of human microbial infections, are associated with common human disorders, such as diabetes mellitus and poor dental hygiene, but also with medical implants. The associated chronic infections such as wound infections, dental caries and periodontitis significantly enhance morbidity, affect quality of life and can aid development of follow-up diseases such as cancer. Biofilm infections remain challenging to treat and antibiotic monotherapy is often insufficient, although some rediscovered traditional compounds have shown surprising efficiency. Innovative anti-biofilm strategies include application of anti-biofilm small molecules, intrinsic or external stimulation of production of reactive molecules, utilization of materials with antimicrobial properties and dispersion of biofilms by digestion of the extracellular matrix, also in combination with physical biofilm breakdown. Although basic principles of biofilm formation have been deciphered, the molecular understanding of the formation and structural organization of various types of biofilms has just begun to emerge. Basic studies of biofilm physiology have also resulted in an unexpected discovery of cyclic dinucleotide second messengers that are involved in interkingdom crosstalk via specific mammalian receptors. These findings even open up new venues for exploring novel anti-biofilm strategies.
Collapse
Affiliation(s)
- T Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - K Buhlin
- Department of Dental Medicine, Division of Oral Facial Diagnostics and Surgery, Karolinska Institutet, Huddinge, Sweden
| | - Y F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - M Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - A Moroni
- Department of Biology and CNR-Istituto di Biofisica, Università degli Studi di Milano, Milano, Italy
| | - M Ramstedt
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - K P Rumbaugh
- Departments of Surgery & Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - T Schulte
- Department of Medicine Solna, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - L Sun
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B Åkerlund
- Department of Medicine Huddinge, Unit of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - U Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus. Sci Rep 2017; 7:9167. [PMID: 28831068 PMCID: PMC5567312 DOI: 10.1038/s41598-017-08816-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
Melanin is a dark brown ubiquitous photosynthetic pigment which have many varied and ever expanding applications in fabrication of radio-protective materials, food packaging, cosmetics and in medicine. In this study, melanin production in a Pseudomonas sp. which was isolated from the marine sponge Tetyrina citirna was optimized employing one-factor at a time experiments and characterized for chemical nature and stability. Following sonication nucleated nanomelanin (Nm) particles were formed and evaluated for antibacterial and antioxidant properties. Nanocomposite film was fabricated using combinations (% w/v) of polyhydroxy butyrate-nanomelanin (PHB:Nm) blended with 1% glycerol. The Nm was found to be spherical in shape with a diameter of 100-140 nm and showed strong antimicrobial activity against both Gram positive and Gram negative bacteria. The Nm-PHB nanocomposite film was homogeneous, smooth, without any cracks, and flexible. XRD and DSC data indicated that the film was crystalline in nature, and was thermostable up to 281.87 °C. This study represents the first report on the synthesis of Nm and fabrication of Nm-PHB nanocomposite film which show strong protective effect against multidrug resistant Staphyloccoccus aureus. Thus this Nm-PHB nanocomposite film may find utility as packaging material for food products by protecting the food products from oxidation and bacterial contamination.
Collapse
|
18
|
Bridier A, Piard JC, Pandin C, Labarthe S, Dubois-Brissonnet F, Briandet R. Spatial Organization Plasticity as an Adaptive Driver of Surface Microbial Communities. Front Microbiol 2017; 8:1364. [PMID: 28775718 PMCID: PMC5517491 DOI: 10.3389/fmicb.2017.01364] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/05/2017] [Indexed: 01/08/2023] Open
Abstract
Biofilms are dynamic habitats which constantly evolve in response to environmental fluctuations and thereby constitute remarkable survival strategies for microorganisms. The modulation of biofilm functional properties is largely governed by the active remodeling of their three-dimensional structure and involves an arsenal of microbial self-produced components and interconnected mechanisms. The production of matrix components, the spatial reorganization of ecological interactions, the generation of physiological heterogeneity, the regulation of motility, the production of actives enzymes are for instance some of the processes enabling such spatial organization plasticity. In this contribution, we discussed the foundations of architectural plasticity as an adaptive driver of biofilms through the review of the different microbial strategies involved. Moreover, the possibility to harness such characteristics to sculpt biofilm structure as an attractive approach to control their functional properties, whether beneficial or deleterious, is also discussed.
Collapse
Affiliation(s)
- Arnaud Bridier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSESFougères, France
| | - Jean-Christophe Piard
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Caroline Pandin
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| | - Simon Labarthe
- MaIAGE, INRA, Université Paris-SaclayJouy-en-Josas, France
| | | | - Romain Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France
| |
Collapse
|