1
|
Anderson LN, Hoyt CT, Zucker JD, McNaughton AD, Teuton JR, Karis K, Arokium-Christian NN, Warley JT, Stromberg ZR, Gyori BM, Kumar N. Computational tools and data integration to accelerate vaccine development: challenges, opportunities, and future directions. Front Immunol 2025; 16:1502484. [PMID: 40124369 PMCID: PMC11925797 DOI: 10.3389/fimmu.2025.1502484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/23/2025] [Indexed: 03/25/2025] Open
Abstract
The development of effective vaccines is crucial for combating current and emerging pathogens. Despite significant advances in the field of vaccine development there remain numerous challenges including the lack of standardized data reporting and curation practices, making it difficult to determine correlates of protection from experimental and clinical studies. Significant gaps in data and knowledge integration can hinder vaccine development which relies on a comprehensive understanding of the interplay between pathogens and the host immune system. In this review, we explore the current landscape of vaccine development, highlighting the computational challenges, limitations, and opportunities associated with integrating diverse data types for leveraging artificial intelligence (AI) and machine learning (ML) techniques in vaccine design. We discuss the role of natural language processing, semantic integration, and causal inference in extracting valuable insights from published literature and unstructured data sources, as well as the computational modeling of immune responses. Furthermore, we highlight specific challenges associated with uncertainty quantification in vaccine development and emphasize the importance of establishing standardized data formats and ontologies to facilitate the integration and analysis of heterogeneous data. Through data harmonization and integration, the development of safe and effective vaccines can be accelerated to improve public health outcomes. Looking to the future, we highlight the need for collaborative efforts among researchers, data scientists, and public health experts to realize the full potential of AI-assisted vaccine design and streamline the vaccine development process.
Collapse
Affiliation(s)
| | - Charles Tapley Hoyt
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | - Jeremy D. Zucker
- Pacific Northwest National Laboratory (DOE), Richland, WA, United States
| | | | - Jeremy R. Teuton
- Pacific Northwest National Laboratory (DOE), Richland, WA, United States
| | - Klas Karis
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
| | | | - Jackson T. Warley
- Pacific Northwest National Laboratory (DOE), Richland, WA, United States
| | | | - Benjamin M. Gyori
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Neeraj Kumar
- Pacific Northwest National Laboratory (DOE), Richland, WA, United States
| |
Collapse
|
2
|
Adriaensen W, Oostvogels S, Levy Y, Leigh B, Kavunga-Membo H, Watson-Jones D. Urgent considerations for booster vaccination strategies against Ebola virus disease. THE LANCET. INFECTIOUS DISEASES 2024; 24:e647-e653. [PMID: 38734010 DOI: 10.1016/s1473-3099(24)00210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 05/13/2024]
Abstract
With two endorsed and prophylactic vaccines against Zaire ebolavirus (referred to hereafter as EBOV), the number of individuals vaccinated against EBOV worldwide is estimated to range between 500 000 and 1 000 000 individuals, increasing with every renewed EBOV threat and vaccination campaign. Therefore, re-exposure of previously vaccinated health-care workers, and possibly community members, could become more frequent. In the absence of long-term data on vaccine efficacy and duration of protection, we urgently need to understand revaccination strategies that could maximise the level of protection. In this Personal View, we highlight the scarcity of available evidence to guide revaccination recommendations for the accumulating groups of previously vaccinated communities or front-line health-care workers that could be redeployed or re-exposed in the next EBOV outbreak(s). This evidence base is crucial to identify optimal target populations and the frequency of booster doses, and guide vaccine interchangeability (especially in settings with limited or unpredictable vaccine supplies), while preventing vaccine mistrust, equity concerns, and exclusion of vulnerable populations. We discuss five priority gaps (to whom, when, and how frequently, to provide booster doses; long-term correlates and thresholds of protection; the effect of vector-directed immunity and viral variant protection; comparative research in mix-and-match schedules; and implementation concerns) that should be urgently tackled to adapt the initial EBOV prophylactic vaccination strategies considering potential booster dose vaccinations.
Collapse
Affiliation(s)
- Wim Adriaensen
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
| | - Selien Oostvogels
- Clinical Immunology Unit, Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Yves Levy
- Vaccine Research Institute, INSERM U955, Université Paris-Est Créteil, Créteil, France
| | - Bailah Leigh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Hugo Kavunga-Membo
- Rodolphe Merieux Laboratory INRB-Goma, Goma, Democratic Republic of the Congo; University of Goma, Goma, Democratic Republic of the Congo
| | - Deborah Watson-Jones
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| |
Collapse
|
3
|
Wiedemann A, Lhomme E, Huchon M, Foucat E, Bérerd-Camara M, Guillaumat L, Yaradouno M, Tambalou J, Rodrigues C, Ribeiro A, Béavogui AH, Lacabaratz C, Thiébaut R, Richert L, Lévy Y. Long-term cellular immunity of vaccines for Zaire Ebola Virus Diseases. Nat Commun 2024; 15:7666. [PMID: 39227399 PMCID: PMC11372064 DOI: 10.1038/s41467-024-51453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Recent Ebola outbreaks underscore the importance of continuous prevention and disease control efforts. Authorized vaccines include Merck's Ervebo (rVSV-ZEBOV) and Johnson & Johnson's two-dose combination (Ad26.ZEBOV/MVA-BN-Filo). Here, in a five-year follow-up of the PREVAC randomized trial (NCT02876328), we report the results of the immunology ancillary study of the trial. The primary endpoint is to evaluate long-term memory T-cell responses induced by three vaccine regimens: Ad26-MVA, rVSV, and rVSV-booster. Polyfunctional EBOV-specific CD4+ T-cell responses increase after Ad26 priming and are further boosted by MVA, whereas minimal responses are observed in the rVSV groups, declining after one year. In-vitro expansion for eight days show sustained EBOV-specific T-cell responses for up to 60 months post-prime vaccination with both Ad26-MVA and rVSV, with no decline. Cytokine production analysis identify shared biomarkers between the Ad26-MVA and rVSV groups. In secondary endpoint, we observed an elevation of pro-inflammatory cytokines at Day 7 in the rVSV group. Finally, we establish a correlation between EBOV-specific T-cell responses and anti-EBOV IgG responses. Our findings can guide booster vaccination recommendations and help identify populations likely to benefit from revaccination.
Collapse
Affiliation(s)
- Aurélie Wiedemann
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomedicale (IMRB), Team Lévy, Créteil, France
| | - Edouard Lhomme
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- Univ. Bordeaux, INSERM, Institut Bergonié, CHU de Bordeaux, CIC-EC 1401, Euclid/F-CRIN clinical trials platform, Bordeaux, France
- Univ. Bordeaux, Inserm, Population Health Research Center, UMR 1219, INRIA SISTM, Bordeaux, France
| | - Mélanie Huchon
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- Univ. Bordeaux, Inserm, Population Health Research Center, UMR 1219, INRIA SISTM, Bordeaux, France
| | - Emile Foucat
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomedicale (IMRB), Team Lévy, Créteil, France
| | | | - Lydia Guillaumat
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomedicale (IMRB), Team Lévy, Créteil, France
| | | | | | - Cécile Rodrigues
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomedicale (IMRB), Team Lévy, Créteil, France
| | - Alexandre Ribeiro
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomedicale (IMRB), Team Lévy, Créteil, France
| | - Abdoul Habib Béavogui
- Centre National de Formation et de Recherche en Santé Rurale (CNFRSR), Maferinyah, Guinea
| | - Christine Lacabaratz
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- INSERM U955, Institut Mondor de Recherche Biomedicale (IMRB), Team Lévy, Créteil, France
| | - Rodolphe Thiébaut
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- Univ. Bordeaux, INSERM, Institut Bergonié, CHU de Bordeaux, CIC-EC 1401, Euclid/F-CRIN clinical trials platform, Bordeaux, France
- Univ. Bordeaux, Inserm, Population Health Research Center, UMR 1219, INRIA SISTM, Bordeaux, France
| | - Laura Richert
- Vaccine Research Institute, Université Paris-Est, Créteil, France
- Univ. Bordeaux, INSERM, Institut Bergonié, CHU de Bordeaux, CIC-EC 1401, Euclid/F-CRIN clinical trials platform, Bordeaux, France
- Univ. Bordeaux, Inserm, Population Health Research Center, UMR 1219, INRIA SISTM, Bordeaux, France
| | - Yves Lévy
- Vaccine Research Institute, Université Paris-Est, Créteil, France.
- INSERM U955, Institut Mondor de Recherche Biomedicale (IMRB), Team Lévy, Créteil, France.
- Assistance Publique-Hôpitaux de Paris, Groupe Henri-Mondor Albert-Chenevier, Service Immunologie Clinique, Créteil, France.
| |
Collapse
|
4
|
Martinot AJ, Cox F, Abbink P, Hecht JL, Bronson R, Borducchi EN, Rinaldi WJ, Ferguson MJ, De La Barrera RA, Zahn R, van der Fits L, Barouch DH. Ad26.M.Env ZIKV vaccine protects pregnant rhesus macaques and fetuses against Zika virus infection. NPJ Vaccines 2024; 9:157. [PMID: 39198466 PMCID: PMC11358461 DOI: 10.1038/s41541-024-00927-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
At the start of the Zika virus (ZIKV) epidemic in 2015, ZIKV spread across South and Central America, and reached parts of the southern United States placing pregnant women at risk for fetal microcephaly, fetal loss, and other adverse pregnancy outcomes associated with congenital ZIKA syndrome (CZS). For this reason, testing of a safe and efficacious ZIKV vaccine remains a global health priority. Here we report that a single immunization with Ad26.M.Env ZIKV vaccine, when administered prior to conception, fully protects pregnant rhesus macaques from ZIKV viral RNA in blood and tissues with no adverse effects in dams and fetuses. Furthermore, vaccination prevents ZIKV distribution to fetal tissues including the brain. ZIKV associated neuropathology was absent in offspring of Ad26.M.Env vaccinated dams, although pathology was limited in fetuses from non-immunized, challenged dams. Vaccine efficacy is associated with induction of ZIKV neutralizing antibodies in pregnant rhesus macaques. These data suggest the feasibility of vaccine prevention of CZS in humans.
Collapse
Affiliation(s)
- Amanda J Martinot
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Departments of Infectious Disease and Global Health and Comparative Pathobiology, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | - Freek Cox
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jonathan L Hecht
- Division of Anatomic Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Roland Zahn
- Janssen Vaccines & Prevention, Leiden, the Netherlands
| | | | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Johnson DM, Juelich T, Zhang L, Smith JK, Kalveram BK, Perez D, Smith J, Grimes MR, Garron T, Torres M, Massey S, Brasel T, Beasley DWC, Freiberg AN, Comer JE. Comparison of Routes of Administration, Frequency, and Duration of Favipiravir Treatment in Mouse and Guinea Pig Models of Ebola Virus Disease. Viruses 2024; 16:1101. [PMID: 39066263 PMCID: PMC11281331 DOI: 10.3390/v16071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Favipiravir is a ribonucleoside analogue that has been explored as a therapeutic for the treatment of Ebola Virus Disease (EVD). Promising data from rodent models has informed nonhuman primate trials, as well as evaluation in patients during the 2013-2016 West African EVD outbreak of favipiravir treatment. However, mixed results from these studies hindered regulatory approval of favipiravir for the indication of EVD. This study examined the influence of route of administration, duration of treatment, and treatment schedule of favipiravir in immune competent mouse and guinea pig models using rodent-adapted Zaire ebolavirus (EBOV). A dose of 300 mg/kg/day of favipiravir with an 8-day treatment was found to be fully effective at preventing lethal EVD-like disease in BALB/c mice regardless of route of administration (oral, intraperitoneal, or subcutaneous) or whether it was provided as a once-daily dose or a twice-daily split dose. Preclinical data generated in guinea pigs demonstrates that an 8-day treatment of 300 mg/kg/day of favipiravir reduces mortality following EBOV challenge regardless of route of treatment or duration of treatments for 8, 11, or 15 days. This work supports the future translational development of favipiravir as an EVD therapeutic.
Collapse
Affiliation(s)
- Dylan M. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Department of Biotechnology & Bioengineering, Sandia National Laboratories, Livermore, CA 945501, USA
| | - Terry Juelich
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - Lihong Zhang
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - Jennifer K. Smith
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - Birte K. Kalveram
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - David Perez
- Office of Biosafety, Texas A&M University, College Station, TX 77843, USA
| | - Jeanon Smith
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| | - Michael R. Grimes
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist, Houston, TX 77030, USA;
| | - Tania Garron
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Shane Massey
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| | - Trevor Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| | - David W. C. Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| | - Alex N. Freiberg
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (T.J.)
| | - Jason E. Comer
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Office of Regulated Nonclinical Studies, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA (S.M.)
| |
Collapse
|
6
|
Larivière Y, Matuvanga TZ, Osang'ir BI, Milolo S, Meta R, Kimbulu P, Robinson C, Katwere M, McLean C, Lemey G, Matangila J, Maketa V, Mitashi P, Van Geertruyden JP, Van Damme P, Muhindo-Mavoko H. Ad26.ZEBOV, MVA-BN-Filo Ebola virus disease vaccine regimen plus Ad26.ZEBOV booster at 1 year versus 2 years in health-care and front-line workers in the Democratic Republic of the Congo: secondary and exploratory outcomes of an open-label, randomised, phase 2 trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:746-759. [PMID: 38552653 DOI: 10.1016/s1473-3099(24)00058-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Health-care providers and front-line workers are at risk of contracting Ebola virus disease during an Ebola virus outbreak and consequently of becoming drivers of the disease. We aimed to assess the long-term immunogenicity of the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen and the safety of and immune memory response to an Ad26.ZEBOV booster vaccination at 1 year or 2 years after the first dose in this at-risk population. METHODS This open-label, single-centre, randomised, phase 2 trial was conducted at one study site within a hospital in Boende, Democratic Republic of the Congo. Adult health-care providers and front-line workers, excluding those with a known history of Ebola virus disease, were vaccinated with a two-dose heterologous regimen administered at a 56-day interval via a 0·5 mL intramuscular injection in the deltoid muscle, comprising Ad26.ZEBOV as the first dose and MVA-BN-Filo as the second dose. After the initial vaccination on day 1, participants were randomly assigned (1:1) via randomisation envelopes, opened in a sequential order, to receive an Ad26.ZEBOV booster vaccination at 1 year (group 1) or 2 years (group 2) after the first dose. We present the secondary and exploratory objectives of the trial-results of the primary objective have been published elsewhere. We measured immunogenicity at six timepoints per group as geometric mean concentrations (GMCs) of Ebola virus glycoprotein-specific IgG binding antibodies, using the Filovirus Animal Non-Clinical Group ELISA. We assessed serious adverse events occurring up to 6 months after the last dose and local and systemic solicited and unsolicited adverse events reported for 7 days after the booster vaccination. Antibody responses were analysed per protocol, serious adverse events per full analysis set (FAS), and adverse events for all boosted FAS participants. This trial is registered as completed on ClinicalTrials.gov (NCT04186000). FINDINGS Between Dec 18, 2019, and Feb 8, 2020, 699 health-care providers and front-line workers were enrolled and 698 were randomly assigned (350 to group 1 and 348 to group 2 [FAS]); 534 (77%) participants were male and 164 (23%) were female. 319 in group 1 and 317 in group 2 received the booster. 29 (8%) in group 1 and 26 (7%) in group 2 did not complete the study, mostly due to loss to follow-up or moving out of the study area. In both groups, injection-site pain or tenderness (87 [27%] of 319 group 1 participants vs 90 [28%] of 317 group 2 participants) and headache (91 [29%] vs 93 [29%]) were the most common solicited adverse events related to the investigational product. One participant (in group 2) had a related serious adverse event after booster vaccination (fever of ≥40·0°C). Before booster vaccination, Ebola virus glycoprotein-specific IgG binding antibody GMCs were 279·9 ELISA units (EU) per mL (95% CI 250·6-312·7) in 314 group 1 participants (1 year after first dose) and 274·6 EU/mL (242·1-311·5) in 310 group 2 participants (2 years after first dose). These values were 5·2 times higher in group 1 and 4·9 times higher in group 2 than before vaccination on day 1. 7 days after booster vaccination, these values increased to 10 781·6 EU/mL (9354·4-12 426·4) for group 1 and 10 746·9 EU/mL (9208·7-12 542·0) for group 2, which were approximately 39 times higher than before booster vaccination in both groups. 1 year after booster vaccination in 299 group 1 participants, a GMC that was 7·6-times higher than before booster vaccination was still observed (2133·1 EU/mL [1827·7-2489·7]). INTERPRETATION Overall, the vaccine regimen and booster dose were well tolerated. A similar and robust humoral immune response was observed for participants boosted 1 year and 2 years after the first dose, supporting the use of the regimen and flexibility of booster dose administration for prophylactic vaccination in at-risk populations. FUNDING Innovative Medicines Initiative 2 Joint Undertaking and Coalition for Epidemic Preparedness Innovations.
Collapse
Affiliation(s)
- Ynke Larivière
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium; Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk, Belgium.
| | - Trésor Zola Matuvanga
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium; Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk, Belgium; Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Bernard Isekah Osang'ir
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium; Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk, Belgium
| | - Solange Milolo
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Rachel Meta
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Primo Kimbulu
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | | | | | - Gwen Lemey
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium; Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk, Belgium
| | - Junior Matangila
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Vivi Maketa
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Patrick Mitashi
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jean-Pierre Van Geertruyden
- Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk, Belgium
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | - Hypolite Muhindo-Mavoko
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
7
|
Ake JA, Paolino K, Hutter JN, Cicatelli SB, Eller LA, Eller MA, Costanzo MC, Paquin-Proulx D, Robb ML, Tran CL, Anova L, Jagodzinski LL, Ward LA, Kilgore N, Rusnak J, Bounds C, Badorrek CS, Hooper JW, Kwilas SA, Ilsbroux I, Anumendem DN, Gaddah A, Shukarev G, Bockstal V, Luhn K, Douoguih M, Robinson C. Safety and Immunogenicity of an Accelerated Ebola Vaccination Schedule in People with and without Human Immunodeficiency Virus: A Randomized Clinical Trial. Vaccines (Basel) 2024; 12:497. [PMID: 38793748 PMCID: PMC11125575 DOI: 10.3390/vaccines12050497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The safety and immunogenicity of the two-dose Ebola vaccine regimen MVA-BN-Filo, Ad26.ZEBOV, 14 days apart, was evaluated in people without HIV (PWOH) and living with HIV (PLWH). In this observer-blind, placebo-controlled, phase 2 trial, healthy adults were randomized (4:1) to receive MVA-BN-Filo (dose 1) and Ad26.ZEBOV (dose 2), or two doses of saline/placebo, administered intramuscularly 14 days apart. The primary endpoints were safety (adverse events (AEs)) and immunogenicity (Ebola virus (EBOV) glycoprotein-specific binding antibody responses). Among 75 participants (n = 50 PWOH; n = 25 PLWH), 37% were female, the mean age was 44 years, and 56% were Black/African American. AEs were generally mild/moderate, with no vaccine-related serious AEs. At 21 days post-dose 2, EBOV glycoprotein-specific binding antibody responder rates were 100% among PWOH and 95% among PLWH; geometric mean antibody concentrations were 6286 EU/mL (n = 36) and 2005 EU/mL (n = 19), respectively. A total of 45 neutralizing and other functional antibody responses were frequently observed. Ebola-specific CD4+ and CD8+ T-cell responses were polyfunctional and durable to at least 12 months post-dose 2. The regimen was well tolerated and generated robust, durable immune responses in PWOH and PLWH. Findings support continued evaluation of accelerated vaccine schedules for rapid deployment in populations at immediate risk. Trial registration: NCT02598388 (submitted 14 November 2015).
Collapse
Affiliation(s)
- Julie A. Ake
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Kristopher Paolino
- Clinical Trials Center, Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jack N. Hutter
- Clinical Trials Center, Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - Leigh Anne Eller
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Michael A. Eller
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Margaret C. Costanzo
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Merlin L. Robb
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Chi L. Tran
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lalaine Anova
- U.S. Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Linda L. Jagodzinski
- Diagnostics and Countermeasures Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Lucy A. Ward
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Nicole Kilgore
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Janice Rusnak
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Callie Bounds
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Christopher S. Badorrek
- Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical, U.S. Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense, Fort Detrick, MD 21702, USA
| | - Jay W. Hooper
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Steven A. Kwilas
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Ine Ilsbroux
- Janssen Research & Development, 2340 Beerse, Belgium
| | | | | | - Georgi Shukarev
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| | - Viki Bockstal
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| | - Kerstin Luhn
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| | - Macaya Douoguih
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| | - Cynthia Robinson
- Janssen Vaccines & Prevention B.V., 2333 Leiden, The Netherlands
| |
Collapse
|
8
|
Larivière Y, Garcia-Fogeda I, Zola Matuvanga T, Isekah Osang'ir B, Milolo S, Meta R, Kimbulu P, Robinson C, Katwere M, McLean C, Hens N, Matangila J, Maketa V, Mitashi P, Muhindo-Mavoko H, Van geertruyden JP, Van Damme P. Safety and Immunogenicity of the Heterologous 2-Dose Ad26.ZEBOV, MVA-BN-Filo Vaccine Regimen in Health Care Providers and Frontliners of the Democratic Republic of the Congo. J Infect Dis 2024; 229:1068-1076. [PMID: 37673423 PMCID: PMC11011182 DOI: 10.1093/infdis/jiad350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND In response to recent Ebola epidemics, vaccine development against the Zaire ebolavirus (EBOV) has been fast-tracked in the past decade. Health care providers and frontliners working in Ebola-endemic areas are at high risk of contracting and spreading the virus. METHODS This study assessed the safety and immunogenicity of the 2-dose heterologous Ad26.ZEBOV, MVA-BN-Filo vaccine regimen (administered at a 56-day interval) among 699 health care providers and frontliners taking part in a phase 2, monocentric, randomized vaccine trial in Boende, the Democratic Republic of Congo. The first participant was enrolled and vaccinated on 18 December 2019. Serious adverse events were collected up to 6 months after the last received dose. The EBOV glycoprotein FANG ELISA (Filovirus Animal Nonclinical Group enzyme-linked immunosorbent assay) was used to measure the immunoglobulin G-binding antibody response to the EBOV glycoprotein. RESULTS The vaccine regimen was well tolerated with no vaccine-related serious adverse events reported. Twenty-one days after the second dose, an EBOV glycoprotein-specific binding antibody response was observed in 95.2% of participants. CONCLUSIONS The 2-dose vaccine regimen was well tolerated and led to a high antibody response among fully vaccinated health care providers and frontliners in Boende.
Collapse
Affiliation(s)
- Ynke Larivière
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk
- Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk
| | - Irene Garcia-Fogeda
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Trésor Zola Matuvanga
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk
- Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Bernard Isekah Osang'ir
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk
- Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk
| | - Solange Milolo
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Rachel Meta
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Primo Kimbulu
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | | | | | - Niel Hens
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
- Data Science Institute, Interuniversity Institute for Biostatistics and statistical Bioinformatics, UHasselt, Diepenbeek, Belgium
| | - Junior Matangila
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Vivi Maketa
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Patrick Mitashi
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Hypolite Muhindo-Mavoko
- Tropical Medicine Department, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jean-Pierre Van geertruyden
- Global Health Institute, Department of Family Medicine and Population Health, University of Antwerp, Wilrijk
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Wilrijk
| |
Collapse
|
9
|
Berry N, Mee ET, Almond N, Rose NJ. The Impact and Effects of Host Immunogenetics on Infectious Disease Studies Using Non-Human Primates in Biomedical Research. Microorganisms 2024; 12:155. [PMID: 38257982 PMCID: PMC10818626 DOI: 10.3390/microorganisms12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding infectious disease pathogenesis and evaluating novel candidate treatment interventions for human use frequently requires prior or parallel analysis in animal model systems. While rodent species are frequently applied in such studies, there are situations where non-human primate (NHP) species are advantageous or required. These include studies of animals that are anatomically more akin to humans, where there is a need to interrogate the complexity of more advanced biological systems or simply reflect susceptibility to a specific infectious agent. The contribution of different arms of the immune response may be addressed in a variety of NHP species or subspecies in specific physiological compartments. Such studies provide insights into immune repertoires not always possible from human studies. However, genetic variation in outbred NHP models may confound, or significantly impact the outcome of a particular study. Thus, host factors need to be considered when undertaking such studies. Considerable knowledge of the impact of host immunogenetics on infection dynamics was elucidated from HIV/SIV research. NHP models are now important for studies of emerging infections. They have contributed to delineating the pathogenesis of SARS-CoV-2/COVID-19, which identified differences in outcomes attributable to the selected NHP host. Moreover, their use was crucial in evaluating the immunogenicity and efficacy of vaccines against COVID-19 and establishing putative correlates of vaccine protection. More broadly, neglected or highly pathogenic emerging or re-emergent viruses may be studied in selected NHPs. These studies characterise protective immune responses following infection or the administration of candidate immunogens which may be central to the accelerated licensing of new vaccines. Here, we review selected aspects of host immunogenetics, specifically MHC background and TRIM5 polymorphism as exemplars of adaptive and innate immunity, in commonly used Old and New World host species. Understanding this variation within and between NHP species will ensure that this valuable laboratory source is used most effectively to combat established and emerging virus infections and improve human health worldwide.
Collapse
Affiliation(s)
- Neil Berry
- Research & Development—Science, Research and Innovation, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire EN6 3QG, UK; (E.T.M.); (N.A.); (N.J.R.)
| | | | | | | |
Collapse
|
10
|
Dobbs KR, Lobb A, Dent AE. Ebola virus disease in children: epidemiology, pathogenesis, management, and prevention. Pediatr Res 2024; 95:488-495. [PMID: 37903937 DOI: 10.1038/s41390-023-02873-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/01/2023]
Abstract
Ebola disease is a severe disease with extremely high case-fatality rates ranging from 28-100%. Observations made during the 2013-2016 West African epidemic improved our understanding of the clinical course of Ebola disease and accelerated the study of therapeutic and preventative strategies. The epidemic also highlighted the unique challenges associated with providing optimal care for children during Ebola disease outbreaks. In this review, we outline current understanding of Ebola disease epidemiology, pathogenesis, management, and prevention, highlighting data pertinent to the care of children. IMPACT: In this review, we summarize recent advancements in our understanding of Ebola disease epidemiology, clinical presentation, and therapeutic and preventative strategies. We highlight recent data pertinent to the care of children and pregnant women and identify research gaps for this important emerging viral infection in children.
Collapse
Affiliation(s)
- Katherine R Dobbs
- Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- UH Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | - Alyssa Lobb
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Arlene E Dent
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
11
|
Guttieres D, Diepvens C, Decouttere C, Vandaele N. Modeling Supply and Demand Dynamics of Vaccines against Epidemic-Prone Pathogens: Case Study of Ebola Virus Disease. Vaccines (Basel) 2023; 12:24. [PMID: 38250837 PMCID: PMC10819028 DOI: 10.3390/vaccines12010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Health emergencies caused by epidemic-prone pathogens (EPPs) have increased exponentially in recent decades. Although vaccines have proven beneficial, they are unavailable for many pathogens. Furthermore, achieving timely and equitable access to vaccines against EPPs is not trivial. It requires decision-makers to capture numerous interrelated factors across temporal and spatial scales, with significant uncertainties, variability, delays, and feedback loops that give rise to dynamic and unexpected behavior. Therefore, despite progress in filling R&D gaps, the path to licensure and the long-term viability of vaccines against EPPs continues to be unclear. This paper presents a quantitative system dynamics modeling framework to evaluate the long-term sustainability of vaccine supply under different vaccination strategies. Data from both literature and 50 expert interviews are used to model the supply and demand of a prototypical Ebolavirus Zaire (EBOV) vaccine. Specifically, the case study evaluates dynamics associated with proactive vaccination ahead of an outbreak of similar magnitude as the 2018-2020 epidemic in North Kivu, Democratic Republic of the Congo. The scenarios presented demonstrate how uncertainties (e.g., duration of vaccine-induced protection) and design criteria (e.g., priority geographies and groups, target coverage, frequency of boosters) lead to important tradeoffs across policy aims, public health outcomes, and feasibility (e.g., technical, operational, financial). With sufficient context and data, the framework provides a foundation to apply the model to a broad range of additional geographies and priority pathogens. Furthermore, the ability to identify leverage points for long-term preparedness offers directions for further research.
Collapse
Affiliation(s)
- Donovan Guttieres
- Access-to-Medicines Research Centre, Faculty of Economics & Business, KU Leuven, 3000 Leuven, Belgium; (C.D.); (C.D.); (N.V.)
| | | | | | | |
Collapse
|
12
|
Man-Lik Choi E, Abu-Baker Mustapher G, Omosa-Manyonyi G, Foster J, Anywaine Z, Musila Mutua M, Ayieko P, Vudriko T, Ann Mwangi I, Njie Y, Ayoub K, Mundia Muriuki M, Kasonia K, Edward Connor N, Florence N, Manno D, Katwere M, McLean C, Gaddah A, Luhn K, Lowe B, Greenwood B, Robinson C, Anzala O, Kaleebu P, Watson-Jones D. Safety and immunogenicity of an Ad26.ZEBOV booster vaccine in Human Immunodeficiency Virus positive (HIV+) adults previously vaccinated with the Ad26.ZEBOV, MVA-BN-Filo vaccine regimen against Ebola: A single-arm, open-label Phase II clinical trial in Kenya and Uganda. Vaccine 2023; 41:7573-7580. [PMID: 37981473 DOI: 10.1016/j.vaccine.2023.10.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/17/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND People living with HIV constitute an important part of the population in regions at risk of Ebola virus disease outbreaks. The two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen induces strong immune responses in HIV-positive (HIV+) adults but the durability of this response is unknown. It is also unclear whether this regimen can establish immune memory to enable an anamnestic response upon re-exposure to antigen. METHODS This paper describes an open-label, phase 2 trial, conducted in Kenya and Uganda, of Ad26.ZEBOV booster vaccination in HIV+ participants who had previously received the Ad26.ZEBOV, MVA-BN-Filo primary regimen. HIV+ adults with well-controlled infection and on highly active antiretroviral therapy were enrolled, vaccinated with booster, and followed for 28 days. The primary objectives were to assess Ad26.ZEBOV booster safety and antibody responses against the Ebola virus glycoprotein using the Filovirus Animal Non-Clinical Group ELISA. RESULTS The Ad26.ZEBOV booster was well-tolerated in HIV+ adults with mostly mild to moderate symptoms. No major safety concerns or serious adverse events were reported. Four and a half years after the primary regimen, 24/26 (92 %) participants were still classified as responders, with a pre-booster antibody geometric mean concentration (GMC) of 726 ELISA units (EU)/mL (95 %CI 447-1179). Seven days after the booster, the GMC increased 54-fold to 38,965 EU/mL (95 %CI 23532-64522). Twenty-one days after the booster, the GMC increased 176-fold to 127,959 EU/mL (95 %CI 93872-174422). The responder rate at both post-booster time points was 100 %. CONCLUSIONS The Ad26.ZEBOV booster is safe and highly immunogenic in HIV+ adults with well-controlled infection. The Ad26.ZEBOV, MVA-BN-Filo regimen can generate long-term immune memory persisting for at least 4·5 years, resulting in a robust anamnestic response. TRIAL REGISTRATION Pan African Clinical Trial Registry (PACTR202102747294430). CLINICALTRIALS gov (NCT05064956).
Collapse
Affiliation(s)
| | | | | | - Julie Foster
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | | | - Philip Ayieko
- London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | | | - Irene Ann Mwangi
- KAVI - Institute of Clinical Research, University of Nairobi, Nairobi, Kenya.
| | - Yusupha Njie
- London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Kakande Ayoub
- MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda.
| | | | - Kambale Kasonia
- London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | | | - Nambaziira Florence
- London School of Hygiene & Tropical Medicine, London, United Kingdom; MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda; Uganda Virus Research Institute, Entebbe, Uganda.
| | - Daniela Manno
- London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | | | - Chelsea McLean
- Janssen Vaccines and Prevention, Leiden, The Netherlands.
| | | | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, The Netherlands.
| | - Brett Lowe
- London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | - Brian Greenwood
- London School of Hygiene & Tropical Medicine, London, United Kingdom.
| | | | - Omu Anzala
- KAVI - Institute of Clinical Research, University of Nairobi, Nairobi, Kenya.
| | - Pontiano Kaleebu
- London School of Hygiene & Tropical Medicine, London, United Kingdom; MRC/UVRI & LSHTM Uganda Research Unit, Entebbe, Uganda; Uganda Virus Research Institute, Entebbe, Uganda.
| | - Deborah Watson-Jones
- London School of Hygiene & Tropical Medicine, London, United Kingdom; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania.
| |
Collapse
|
13
|
Kovyrshina AV, Sizikova TE, Lebedev VN, Borisevich SV, Dolzhikova IV, Logunov DY, Gintsburg AL. [Vaccines to prevent Ebola virus disease: current challenges and perspectives]. Vopr Virusol 2023; 68:372-384. [PMID: 38156572 DOI: 10.36233/0507-4088-193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Indexed: 12/30/2023]
Abstract
RELEVANCE Ebola virus disease (EVD) is an acute infectious disease with an extremely high case fatality rate reaching up to 90%. EVD has become widely known since 2014-2016, when outbreak in West Africa occurred and led to epidemic, which caused travel-related cases on the territory of other continents. There are two vaccines against EVD, prequalified by WHO for emergency use, as well as a number of vaccines, approved by local regulators in certain countries. However, even with the availability of effective vaccines, the lack of data on immune correlates of protection and duration of protective immune response in humans and primates is limiting factor for effectively preventing the spread of EVD outbreaks. AIMS This review highlights experience of use of EVD vaccines during outbreaks in endemic areas, summarizes data on vaccine immunogenicity in clinical trials, and discusses perspectives for further development and use of effective EVD vaccines.
Collapse
Affiliation(s)
- A V Kovyrshina
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - T E Sizikova
- 48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
| | - V N Lebedev
- 48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
| | - S V Borisevich
- 48 Central Scientific Research Institute of the Ministry of Defence of the Russian Federation
| | - I V Dolzhikova
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - D Y Logunov
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| | - A L Gintsburg
- National Research Centre for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation
| |
Collapse
|
14
|
Choi EML, Lacarra B, Afolabi MO, Ale BM, Baiden F, Bétard C, Foster J, Hamzé B, Schwimmer C, Manno D, D'Ortenzio E, Ishola D, Keita CM, Keshinro B, Njie Y, van Dijck W, Gaddah A, Anumendem D, Lowe B, Vatrinet R, Lawal BJ, Otieno GT, Samai M, Deen GF, Swaray IB, Kamara AB, Kamara MM, Diagne MA, Kowuor D, McLean C, Leigh B, Beavogui AH, Leyssen M, Luhn K, Robinson C, Douoguih M, Greenwood B, Thiébaut R, Watson-Jones D. Safety and immunogenicity of the two-dose heterologous Ad26.ZEBOV and MVA-BN-Filo Ebola vaccine regimen in infants: a phase 2, randomised, double-blind, active-controlled trial in Guinea and Sierra Leone. Lancet Glob Health 2023; 11:e1743-e1752. [PMID: 37858585 DOI: 10.1016/s2214-109x(23)00410-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND This study assessed the safety and immunogenicity of the Ad26.ZEBOV and MVA-BN-Filo Ebola virus (EBOV) vaccine regimen in infants aged 4-11 months in Guinea and Sierra Leone. METHODS In this phase 2, randomised, double-blind, active-controlled trial, we randomly assigned healthy infants (1:1 in a sentinel cohort, 5:2 for the remaining infants via an interactive web response system) to receive Ad26.ZEBOV followed by MVA-BN-Filo (Ebola vaccine group) or two doses of meningococcal quadrivalent conjugate vaccine (control group) administered 56 days apart. Infants were recruited at two sites in west Africa: Conakry, Guinea, and Kambia, Sierra Leone. All infants received the meningococcal vaccine 8 months after being randomly assigned. The primary objective was safety. The secondary objective was immunogenicity, measured as EBOV glycoprotein-binding antibody concentration 21 days post-dose 2, using the Filovirus Animal Non-Clinical Group ELISA. This study is registered with ClinicalTrials.gov (NCT03929757) and the Pan African Clinical Trials Registry (PACTR201905827924069). FINDINGS From Aug 20 to Nov 29, 2019, 142 infants were screened and 108 were randomly assigned (Ebola vaccine n=75; control n=33). The most common solicited local adverse event was injection-site pain (Ebola vaccine 15 [20%] of 75; control four [12%] of 33). The most common solicited systemic adverse events with the Ebola vaccine were irritability (26 [35%] of 75), decreased appetite (18 [24%] of 75), pyrexia (16 [21%] of 75), and decreased activity (15 [20%] of 75). In the control group, ten (30%) of 33 had irritability, seven (21%) of 33 had decreased appetite, three (9%) of 33 had pyrexia, and five (15%) of 33 had decreased activity. The frequency of unsolicited adverse events was 83% (62 of 75 infants) in the Ebola vaccine group and 85% (28 of 33 infants) in the control group. No serious adverse events were vaccine-related. In the Ebola vaccine group, EBOV glycoprotein-binding antibody geometric mean concentrations (GMCs) at 21 days post-dose 2 were 27 700 ELISA units (EU)/mL (95% CI 20 477-37 470) in infants aged 4-8 months and 20 481 EU/mL (15 325-27 372) in infants aged 9-11 months. The responder rate was 100% (74 of 74 responded). In the control group, GMCs for both age groups were less than the lower limit of quantification and the responder rate was 3% (one of 33 responded). INTERPRETATION Ad26.ZEBOV and MVA-BN-Filo was well tolerated and induced strong humoral responses in infants younger than 1 year. There were no safety concerns related to vaccination. FUNDING Janssen Vaccines & Prevention and Innovative Medicines Initiative 2 Joint Undertaking. TRANSLATION For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Edward Man-Lik Choi
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK.
| | | | - Muhammed O Afolabi
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; EBOVAC-Salone Project, Kambia, Sierra Leone
| | - Boni Maxime Ale
- Clinical Investigation Center-Clinical Epidemiology, University of Bordeaux, Inserm, Institut Bergonié, EUCLID/F-CRIN CIC-EC1401, Bordeaux, France
| | - Frank Baiden
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; EBOVAC-Salone Project, Kambia, Sierra Leone
| | - Christine Bétard
- Clinical Investigation Center-Clinical Epidemiology, University of Bordeaux, Inserm, Institut Bergonié, EUCLID/F-CRIN CIC-EC1401, Bordeaux, France
| | - Julie Foster
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Christine Schwimmer
- Clinical Investigation Center-Clinical Epidemiology, University of Bordeaux, Inserm, Institut Bergonié, EUCLID/F-CRIN CIC-EC1401, Bordeaux, France; Department of Medical Information, Centre Hospitalier Universitaire (CHU) de Bordeaux, EUCLID/F-CRIN CIC-EC1401, Inserm, Institut Bergonié, Bordeaux, France
| | - Daniela Manno
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Eric D'Ortenzio
- ANRS, Maladies infectieuses émergentes, Inserm, Paris, France
| | - David Ishola
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; EBOVAC-Salone Project, Kambia, Sierra Leone
| | - Cheick Mohamed Keita
- Centre National de Formation et de Recherche en Santé Rurale de Mafèrinyah, Forécariah, Guinea
| | | | - Yusupha Njie
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; EBOVAC-Salone Project, Kambia, Sierra Leone
| | | | | | | | - Brett Lowe
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Bolarinde Joseph Lawal
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; EBOVAC-Salone Project, Kambia, Sierra Leone
| | - Godfrey T Otieno
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; EBOVAC-Salone Project, Kambia, Sierra Leone
| | - Mohamed Samai
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Gibrilla Fadlu Deen
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Ibrahim Bob Swaray
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Abu Bakarr Kamara
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Michael Morlai Kamara
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Mame Aminata Diagne
- Laboratoire de Sociologie, Anthropologie et Psychologie Sociale, Department of Sociology, Université Cheikh Anta Diop de Dakar, Dakar, Senegal
| | - Dickens Kowuor
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Bailah Leigh
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Abdoul Habib Beavogui
- Centre National de Formation et de Recherche en Santé Rurale de Mafèrinyah, Forécariah, Guinea
| | | | - Kerstin Luhn
- Janssen Vaccines & Prevention, Leiden, Netherlands
| | | | | | - Brian Greenwood
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Rodolphe Thiébaut
- Clinical Investigation Center-Clinical Epidemiology, University of Bordeaux, Inserm, Institut Bergonié, EUCLID/F-CRIN CIC-EC1401, Bordeaux, France; Department of Medical Information, Centre Hospitalier Universitaire (CHU) de Bordeaux, EUCLID/F-CRIN CIC-EC1401, Inserm, Institut Bergonié, Bordeaux, France
| | - Deborah Watson-Jones
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK; Mwanza Intervention Trials Unit, National Institute for Medical Research, Mwanza, Tanzania
| |
Collapse
|
15
|
McLean C, Dijkman K, Gaddah A, Keshinro B, Katwere M, Douoguih M, Robinson C, Solforosi L, Czapska-Casey D, Dekking L, Wollmann Y, Volkmann A, Pau MG, Callendret B, Sadoff J, Schuitemaker H, Zahn R, Luhn K, Hendriks J, Roozendaal R. Persistence of immunological memory as a potential correlate of long-term, vaccine-induced protection against Ebola virus disease in humans. Front Immunol 2023; 14:1215302. [PMID: 37727795 PMCID: PMC10505757 DOI: 10.3389/fimmu.2023.1215302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction In the absence of clinical efficacy data, vaccine protective effect can be extrapolated from animals to humans, using an immunological biomarker in humans that correlates with protection in animals, in a statistical approach called immunobridging. Such an immunobridging approach was previously used to infer the likely protective effect of the heterologous two-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine regimen. However, this immunobridging model does not provide information on how the persistence of the vaccine-induced immune response relates to durability of protection in humans. Methods and results In both humans and non-human primates, vaccine-induced circulating antibody levels appear to be very stable after an initial phase of contraction and are maintained for at least 3.8 years in humans (and at least 1.3 years in non-human primates). Immunological memory was also maintained over this period, as shown by the kinetics and magnitude of the anamnestic response following re-exposure to the Ebola virus glycoprotein antigen via booster vaccination with Ad26.ZEBOV in humans. In non-human primates, immunological memory was also formed as shown by an anamnestic response after high-dose, intramuscular injection with Ebola virus, but was not sufficient for protection against Ebola virus disease at later timepoints due to a decline in circulating antibodies and the fast kinetics of disease in the non-human primates model. Booster vaccination within three days of subsequent Ebola virus challenge in non-human primates resulted in protection from Ebola virus disease, i.e. before the anamnestic response was fully developed. Discussion Humans infected with Ebola virus may benefit from the anamnestic response to prevent disease progression, as the incubation time is longer and progression of Ebola virus disease is slower as compared to non-human primates. Therefore, the persistence of vaccine-induced immune memory could be considered as a potential correlate of long-term protection against Ebola virus disease in humans, without the need for a booster.
Collapse
Affiliation(s)
| | - Karin Dijkman
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jerry Sadoff
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | - Roland Zahn
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | | |
Collapse
|