1
|
Tengattini S, Bavaro T, Rinaldi F, Temporini C, Pollegioni L, Terreni M, Piubelli L. Novel tuberculosis vaccines based on TB10.4 and Ag85B: State-of-art and advocacy for good practices. Vaccine 2025; 53:126932. [PMID: 40031085 DOI: 10.1016/j.vaccine.2025.126932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Tuberculosis (TB) has plagued humanity in numerous devastating forms for centuries and remains a significant health challenge. Mycobacterium tuberculosis (Mtb), the bacterium responsible for TB, was the leading cause of death among infectious agents until the COVID-19 pandemic emerged. Immunization with the bacillus Calmette-Guérin (BCG) vaccine is one of the primary strategies to mitigate the risk of TB. Despite its widespread use, the current BCG vaccine has limited efficacy, particularly in adults. This review focuses on the rational design of vaccine candidates targeting the antigens TB10.4 and Ag85B. The review discusses the roles of TB10.4 and Ag85B in the virulence of Mtb and notes challenges in their production. Additionally, various protein conjugation strategies to enhance immunogenicity, including linking these antigens to glycans and adjuvants, are considered, as well as the most appropriate analytical methods for characterizing recombinant antigenic proteins and their conjugates. Finally, the associated challenges in developing a vaccine encompassing specific glycans and protein components were highlighted. We claim that using standardized procedures and detailed reporting in protein production and chemical modification can improve the reproducibility and rationalization of biological results. By adhering to these guidelines, the goal of developing an effective vaccine against TB will be best achieved.
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
2
|
Barazani O, Erdos T, Chowdhury R, Kaur G, Venketaraman V. New Advances in the Development and Design of Mycobacterium tuberculosis Vaccines: Construction and Validation of Multi-Epitope Vaccines for Tuberculosis Prevention. BIOLOGY 2025; 14:417. [PMID: 40282282 PMCID: PMC12024701 DOI: 10.3390/biology14040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025]
Abstract
Mycobacterium tuberculosis (Mtb) vaccines are designed to prevent infection, prevent reactivation of latent infection, and/or provide adjuvant therapy to standard TB treatment for active Mtb. Emerging vaccine technologies include reverse vaccinology, DNA and RNA vaccines, subunit vaccines, and multi-epitope vaccines. Currently, many different types of vaccine candidates are in clinical trials, though, to date, BCG remains the only approved Mtb vaccine. Mtb has a complex genome with numerous antigens, but not all are equally effective in eliciting immunity, so a critical challenge is the selection of antigens and epitopes that are most likely to induce a long-term, broad-spectrum protective immune response. Multi-epitope vaccines (MEVs) represent a new event horizon in vaccine development. Bioinformatic computer modeling is being used to maximize efficacy and minimalize adverse effects. Although no multi-epitope vaccines have proceeded to in vivo clinical trials, three candidate MEVs have made it through in silico tests. Multi-epitope vaccine candidate PP13138R, containing 13 HTL epitopes, 13 CTL epitopes, and 8 B cell epitopes in addition to both TLR2 and TLR4 agonists, aims to elicit a broad immune response that could address both active and latent Mtb infection. Similarly, immunoinformatic data were used to design and validate another MEV candidate based on the biomarker PE_PGRS17 with four B cell, nine HTL, and six CTL linked epitopes, with a griselimycin sequence as the adjuvant. A third novel prophylactic and therapeutic MEV was developed that targets Ag85A, AG85B, ESAT-6, and CFP-10 proteins with 12 CTL, 25 HTL, and 21 LBL epitopes with a CpG adjuvant.
Collapse
Affiliation(s)
- Osnat Barazani
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (O.B.); (T.E.)
| | - Thomas Erdos
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (O.B.); (T.E.)
| | - Raafi Chowdhury
- Department of Biology, University of California, Riverside, CA 9252, USA;
| | - Gursimratpreet Kaur
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (O.B.); (T.E.)
| |
Collapse
|
3
|
Flores-Valdez MA. Intravenous vaccination with BCG against tuberculosis: Strengths and questions deserving further research. Vaccine 2025; 46:126666. [PMID: 39743457 DOI: 10.1016/j.vaccine.2024.126666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/20/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025]
Affiliation(s)
- Mario Alberto Flores-Valdez
- Centro de Investigación y Asistencia en Tecnología y diseño del Estado de Jalisco (CIATEJ), A.C., Biotecnología Médica y Farmacéutica, Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jalisco 44270, Mexico.
| |
Collapse
|
4
|
Farroni C, Altera AMG, Salmi A, Vanini V, Cuzzi G, Lindestam Arlehamn CS, Sette A, Delogu G, Palucci I, Sbarra S, Aiello A, Picchianti-Diamanti A, Gualano G, Palmieri F, Goletti D, Petruccioli E. Specific immune response to M. tuberculosis and ability to in vitro control mycobacterial replication are not impaired in subjects with immune-mediated inflammatory disease and tuberculosis infection. Front Immunol 2025; 15:1484143. [PMID: 39872515 PMCID: PMC11770028 DOI: 10.3389/fimmu.2024.1484143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Background Subjects with immune-mediated inflammatory diseases (IMID), such as rheumatoid arthritis, with tuberculosis infection (TBI), have a high probability of progressing to tuberculosis disease (TB). We aim to characterize the impact of IMID on the immune response to M. tuberculosis (Mtb) in patients with TBI and TB disease. Methods We enrolled TBI and TB patients with and without IMID. Peripheral blood mononuclear cells (PBMCs) were stimulated with Mtb-derived epitopes (MTB300). By flow-cytometry, we identified the Mtb-specific CD4+ T cells as cytokine-producing T cells or as CD25+ CD134+ CD4+ T cells. Memory and activation status of Mtb-specific T cells were assessed by evaluating: CD153, HLA-DR, CD45RA, CD27. Mycobacterial growth inhibition assay (MGIA) was used to evaluate the ability of PBMCs to inhibit mycobacteria growth. A long-term stimulation assay was used to detect a memory response. Results The IMID status and therapy did not affect the magnitude of response to Mtb-antigen stimulation and the number of responders. TBI-IMID showed a cytokine profile like TBI and TB patients. The Mtb response of TBI-IMID patients was characterized by an effector memory and central memory phenotype as in TBI and TB groups. This memory phenotype allowed the increased IFN-γ production after 6 days of MTB300-stimulation. HLA-DR expression on Mtb-specific T cells was associated with TB, whereas CD153 was associated with TBI status. Finally, the TBI-IMID had an MGIA response like TBI and TB patients. Conclusion IMID condition does not affect key aspects of the immune response to Mtb, such as the cytokine response, memory and activation profile, and the ability to contain the mycobacteria replication. The immunological characterization of the fragile population of TBI-IMID patients is fundamental to understanding the correlation between protection and disease.
Collapse
Affiliation(s)
- Chiara Farroni
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
- Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | | | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Diagnostic Labororatory Unit, Mater Olbia Hospital, Olbia, Italy
| | - Ivana Palucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Settimia Sbarra
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Picchianti-Diamanti
- Department of Clinical and Molecular Medicine, “Sapienza” University, S. Andrea University Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Elisa Petruccioli
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| |
Collapse
|
5
|
Korompis M, De Voss CJ, Li S, Richard A, Almujri SS, Ateere A, Frank G, Lemoine C, McShane H, Stylianou E. Strong immune responses and robust protection following a novel protein in adjuvant tuberculosis vaccine candidate. Sci Rep 2025; 15:1886. [PMID: 39805855 PMCID: PMC11729893 DOI: 10.1038/s41598-024-84667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/25/2024] [Indexed: 01/16/2025] Open
Abstract
BCG remains the only licensed vaccine for tuberculosis (TB), but its efficacy wanes over time. Subunit vaccines, aim to improve BCG immunity and protection, by inducing responses to a few mycobacterial antigens delivered with a specific platform. Since the platform shapes the immune response induced, selecting the right platform has been challenging due to the lack of immune correlates of protection. Recently, the protein-adjuvated subunit vaccine. M72/AS01E, demonstrated 49.7% efficacy in preventing active TB in latently infected adults, indicating that protective immunity through subunit vaccines is possible. In this study we evaluated the immunogenicity and efficacy of the promising mycobacterial antigen PPE15, formulated with five adjuvants developed by the Vaccine Formulation Institute. While all adjuvants were immunogenic, PPE15 with LMQ protected vaccinated mice against an in vivo Mycobacterium tuberculosis challenge, both as a standalone vaccine and as a boost to BCG. Vaccinated mice had enriched lung parenchymal antigen-specific CD4 + CXCR3 + KLRG1- T cells previously associated with TB protection. Heterologous vaccination strategies were also explored by combining intranasal ChAdOx1.PPE15 viral vector, with intramuscular PPE15-LMQ resulting in improved protection compared to individual vaccines. These findings support the progression of this vaccine candidate to the next stages of development.
Collapse
Affiliation(s)
| | | | - Shuailin Li
- The Jenner Institute, University of Oxford, Oxford, UK
| | | | - Salem Salman Almujri
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Asir-Abha, Saudi Arabia
| | | | - Géraldine Frank
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Céline Lemoine
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228, Plan-les-Ouates, Switzerland
| | - Helen McShane
- The Jenner Institute, University of Oxford, Oxford, UK
| | | |
Collapse
|
6
|
Naqvi N, Ahuja Y, Zarin S, Alam A, Ali W, Shariq M, Hasnain SE, Ehtesham NZ. BCG's role in strengthening immune responses: Implications for tuberculosis and comorbid diseases. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105703. [PMID: 39667418 DOI: 10.1016/j.meegid.2024.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The BCG vaccine represents a significant milestone in the prevention of tuberculosis (TB), particularly in children. Researchers have been developing recombinant BCG (rBCG) variants that can trigger lasting memory responses, thereby enhancing protection against TB in adults. The breakdown of immune surveillance is a key link between TB and other communicable and non-communicable diseases. Notably, TB is more prevalent among people with comorbidities such as HIV, diabetes, cancer, influenza, COVID-19, and autoimmune disorders. rBCG formulations have the potential to address both TB and HIV co-pandemics. TB increases the risk of lung cancer and immunosuppression caused by cancer can reactivate latent TB infections. Moreover, BCG's efficacy extends to bladder cancer treatment and blood glucose regulation in patients with diabetes and TB. Additionally, BCG provides cross-protection against unrelated pathogens, emphasizing the importance of BCG-induced trained immunity in COVID-19 and other respiratory diseases. Furthermore, BCG reduced the severity of pulmonary TB-induced influenza virus infections. Recent studies have proposed innovations in BCG delivery, revaccination, and attenuation techniques. Disease-centered research has highlighted the immunomodulatory effects of BCG on TB, HIV, cancer, diabetes, COVID-19, and autoimmune diseases. The complex relationship between TB and comorbidities requires a nuanced re-evaluation to understand the shared attributes regulated by BCG. This review assessed the interconnected relationships influenced by BCG administration in TB and related disorders, recommending the expanded use of rBCG in healthcare. Collaboration among vaccine research stakeholders is vital to enhance BCG's efficacy against global health challenges.
Collapse
Affiliation(s)
- Nilofer Naqvi
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Sheeba Zarin
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Waseem Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Hyderabad Campus, Telangana 502329, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India..
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India.
| |
Collapse
|
7
|
Kalinich CC, Gonzalez FL, Osmaston A, Breban MI, Distefano I, Leon C, Sheen P, Zimic M, Coronel J, Tan G, Crudu V, Ciobanu N, Codreanu A, Solano W, Ráez J, Allicock OM, Chaguza C, Wyllie AL, Brandt M, Weinberger DM, Sobkowiak B, Cohen T, Grandjean L, Grubaugh ND, Redmond SN. Tiled Amplicon Sequencing Enables Culture-free Whole-Genome Sequencing of Pathogenic Bacteria From Clinical Specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629550. [PMID: 39763738 PMCID: PMC11702625 DOI: 10.1101/2024.12.19.629550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogen sequencing is an important tool for disease surveillance and demonstrated its high value during the COVID-19 pandemic. Viral sequencing during the pandemic allowed us to track disease spread, quickly identify new variants, and guide the development of vaccines. Tiled amplicon sequencing, in which a panel of primers is used for multiplex amplification of fragments across an entire genome, was the cornerstone of SARS-CoV-2 sequencing. The speed, reliability, and cost-effectiveness of this method led to its implementation in academic and public health laboratories across the world and adaptation to a broad range of viral pathogens. However, similar methods are not available for larger bacterial genomes, for which whole-genome sequencing typically requires in vitro culture. This increases costs, error rates and turnaround times. The need to culture poses particular problems for medically important bacteria such as Mycobacterium tuberculosis, which are slow to grow and challenging to culture. As a proof of concept, we developed two novel whole-genome amplicon panels for M. tuberculosis and Streptococcus pneumoniae. Applying our amplicon panels to clinical samples, we show the ability to classify pathogen subgroups and to reliably identify markers of drug resistance without culturing. Development of this work in clinical settings has the potential to dramatically reduce the time of diagnosis of drug resistance for multiple drugs in parallel, enabling earlier intervention for high priority pathogens.
Collapse
Affiliation(s)
- Chaney C Kalinich
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Freddy L Gonzalez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Alice Osmaston
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Mallery I Breban
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Isabel Distefano
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Candy Leon
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Mirko Zimic
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Grace Tan
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
| | | | | | | | | | - Jimena Ráez
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Orchid M Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| | - Chrispin Chaguza
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Matthew Brandt
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Daniel M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Benjamin Sobkowiak
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ted Cohen
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Louis Grandjean
- Department of Infection, Immunity, and Inflammation, Institute of Child Health, University College Longon, London, England
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, Connecticut, USA
| | - Seth N Redmond
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
- Yale Institute for Global Health, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
8
|
Zhou S, Cao Q, Zhang Z, Du Y, Hou Y, Zhang X, Xie Z, Zhou Y, Zhu B, Zhang Y, Zhu A, Niu H. The adjuvant effect of manganese on tuberculosis subunit vaccine Bfrb-GrpE. NPJ Vaccines 2024; 9:248. [PMID: 39702587 DOI: 10.1038/s41541-024-01049-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Protein subunit vaccines, lacking pathogen-associated molecular patterns that trigger immune responses, rely on adjuvants to induce robust immune responses against the target pathogen. Thus, selection of adjuvants plays a crucial role in the design of protein subunit vaccines. Recently, there has been growing interest in utilizing cGAS-STING agonists as vaccine adjuvants. In this study, we investigated the adjuvant effect of manganese (Mn), a cGAS-STING agonist, on the tuberculosis subunit vaccine Bfrb-GrpE (BG) in a mouse model. Initially, mice were administered with BG-Mn(J), and its immunogenicity and protective efficacy were assessed six weeks after the final immunization. The results showed that Mn(J) enhanced both the cellular and humoral immune responses to the BG vaccine and conferred effective protection against M. tuberculosis H37Ra infection in mice, leading to a significant reduction of 2.0 ± 0.17 Log10 CFU in spleens and 1.3 ± 0.17 Log10 CFU in lungs compared to the PBS control group. Additionally, we assessed the BG-Mn(J) vaccine in a surrogate model of tuberculosis in rabbit skin model. The vaccination with BG-Mn(J) also provided effective protection in the rabbit model, as indicated by a decreased bacterial load at the infection site, minimal pathological damage, and accelerated healing. These findings suggest that Mn(J) holds promise as an adjuvant for tuberculosis vaccines, underscoring its potential to enhance vaccine efficacy and offer protection against tuberculosis infection.
Collapse
Affiliation(s)
- Shuai Zhou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qianqian Cao
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Zunjing Zhang
- Key Laboratory of Inheritance and Innovation of She Medicine of Zhejiang Province, Zhejiang Chinese Medical University Affiliated Lishui Traditional Chinese Medicine Hospital, Lishui, Zhejiang, China
| | - Yunjie Du
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Yilin Hou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaojuan Zhang
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuan Zhou
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Bingdong Zhu
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China
| | - Ying Zhang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Aisong Zhu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| | - Hongxia Niu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
- School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Wang J, Fan XY, Hu Z. Immune correlates of protection as a game changer in tuberculosis vaccine development. NPJ Vaccines 2024; 9:208. [PMID: 39478007 PMCID: PMC11526030 DOI: 10.1038/s41541-024-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
The absence of validated correlates of protection (CoPs) hampers the rational design and clinical development of new tuberculosis vaccines. In this review, we provide an overview of the potential CoPs in tuberculosis vaccine research. Major hindrances and potential opportunities are then discussed. Based on recent progress, it is reasonable to anticipate that success in the ongoing efforts to identify CoPs would be a game-changer in tuberculosis vaccine development.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| | - Zhidong Hu
- Shanghai Public Health Clinical Center & Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
10
|
Karunakaran KP, Yu H, Jiang X, Chan QWT, Sigola L, Millis LA, Chen J, Tang P, Foster LJ, Brunham RC. Immunoproteomic discovery of Mycobacterium bovis antigens, including the surface lipoprotein Mpt83 as a T cell antigen useful for vaccine development. Vaccine 2024; 42:126266. [PMID: 39232399 DOI: 10.1016/j.vaccine.2024.126266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
Tuberculosis (TB) is one of the leading causes of death from infectious diseases, killing approximately 1.3 million people worldwide in 2022 alone. The current vaccine for TB contains a live attenuated bacterium, Mycobacterium bovis BCG (Bacille Calmette-Guérin). The BCG vaccine is highly effective in preventing severe forms of childhood TB but does not protect against latent infection or disease in older age groups. A new or improved BCG vaccine for prevention of pulmonary TB is urgently needed. In this study, we infected murine bone marrow derived dendritic cells from C57BL/6 mice with M. bovis BCG followed by elution and identification of BCG-derived MHC class I and class II-bound peptides using tandem mass spectrometry. We identified 1436 MHC-bound peptides of which 94 were derived from BCG. Fifty-five peptides were derived from MHC class I molecules and 39 from class II molecules. We tested the 94 peptides for their immunogenicity using IFN- γ ELISPOT assay with splenocytes purified from BCG immunized mice and 10 showed positive responses. Seven peptides were derived from MHC II and three from MHC class I. In particular, MHC class II binding peptides derived from the mycobacterial surface lipoprotein Mpt83 were highly antigenic. Further evaluations of these immunogenic BCG peptides may identify proteins useful as new TB vaccine candidates.
Collapse
Affiliation(s)
- Karuna P Karunakaran
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, B.C., Canada; Department of Biology, Faculty of Science and Technology, Douglas College, New Westminster, B.C., Canada
| | - Hong Yu
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, B.C., Canada
| | - Xiaozhou Jiang
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, B.C., Canada
| | - Queenie W T Chan
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C., Canada
| | - Lynette Sigola
- Department of Biology, Faculty of Science and Technology, Douglas College, New Westminster, B.C., Canada
| | - Leonard A Millis
- Department of Biology, Faculty of Science and Technology, Douglas College, New Westminster, B.C., Canada
| | - Jiaqi Chen
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C., Canada
| | | | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, B.C., Canada
| | - Robert C Brunham
- Vaccine Research Laboratory, University of British Columbia Centre for Disease Control, Vancouver, B.C., Canada.
| |
Collapse
|
11
|
Pillay K, Chiliza TE, Senzani S, Pillay B, Pillay M. In silico design of Mycobacterium tuberculosis multi-epitope adhesin protein vaccines. Heliyon 2024; 10:e37536. [PMID: 39323805 PMCID: PMC11422057 DOI: 10.1016/j.heliyon.2024.e37536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) adhesin proteins are promising candidates for subunit vaccine design. Multi-epitope Mtb vaccine and diagnostic candidates were designed using immunoinformatic tools. The antigenic potential of 26 adhesin proteins were determined using VaxiJen 2.0. The truncated heat shock protein 70 (tnHSP70), 19 kDa antigen lipoprotein (lpqH), Mtb curli pili (MTP), and Phosphate transport protein S1 (PstS1) were selected based on the number of known epitopes on the Immune Epitope Database (IEDB). B- and T-cell epitopes were identified using BepiPred2.0, ABCpred, SVMTriP, and IEDB, respectively. Population coverage was analysed using prominent South African specific alleles on the IEDB. The allergenicity, physicochemical characteristics and tertiary structure of the tri-fusion proteins were determined. The in silico immune simulation was performed using C-ImmSim. Three truncated sequences, with predicted B and T cell epitopes, and without allergenicity or signal peptides were linked by three glycine-serine residues, resulting in the stable, hydrophilic molecules, tnlpqH-tnPstS1-tnHSP70 (64,86 kDa) and tnMTP-tnPstS1-tnHSP70 (63,96 kDa). Restriction endonuclease recognition sequences incorporated at the N- and C-terminal ends of each construct, facilitated virtual cloning using Snapgene, into pGEX6P-1, resulting in novel, highly immunogenic vaccine candidates (0,912-0,985). Future studies will involve the cloning, recombinant protein expression and purification of these constructs for downstream applications.
Collapse
Affiliation(s)
- Koobashnee Pillay
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Thamsanqa E. Chiliza
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa
| | - Sibusiso Senzani
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| | - Balakrishna Pillay
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa
| | - Manormoney Pillay
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Science, University of KwaZulu-Natal, South Africa
| |
Collapse
|
12
|
Karanika S, Wang T, Yilma A, Castillo JR, Gordy JT, Bailey H, Quijada D, Fessler K, Tasneen R, Rouse Salcido EM, Harris HT, Bates RE, Ton H, Meza J, Li Y, Taylor AD, Zheng JJ, Zhang J, Peske JD, Karantanos T, Maxwell AR, Nuermberger E, Markham RB, Karakousis PC. Therapeutic DNA Vaccine Targeting Mycobacterium tuberculosis Persisters Shortens Curative Tuberculosis Treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.611055. [PMID: 39282461 PMCID: PMC11398349 DOI: 10.1101/2024.09.03.611055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Mycobacterium tuberculosis ( Mtb) is one of the leading infectious causes of death worldwide. There is no available licensed therapeutic vaccine that shortens active tuberculosis (TB) disease drug treatment and prevents relapse, despite the World Health Organization's calls. Here, we show that an intranasal DNA vaccine containing a fusion of the stringent response rel Mtb gene with the gene encoding the immature dendritic cell-targeting chemokine, MIP-3α/CCL20, shortens the duration of curative TB treatment in immunocompetent mice. Compared to the first-line regimen for drug-susceptible TB alone, our novel adjunctive vaccine induced greater Rel Mtb -specific T-cell responses associated with optimal TB control in spleen, blood, lungs, mediastinal lymph nodes, and bronchoalveolar lavage (BAL) fluid. These responses were sustained, if not augmented, over time. It also triggered more effective dendritic cell recruitment, activation, and colocalization with T cells, implying enhanced crosstalk between innate and adaptive immunity. Moreover, it potentiated a 6-month TB drug-resistant regimen, rendering it effective across treatment regimens, and also showed promising results in CD4+ knockout mice, perhaps due to enhanced Rel-specific CD8+ T-cell responses. Notably, our novel fusion vaccine was also immunogenic in nonhuman primates, the gold standard animal model for TB vaccine studies, eliciting antigen-specific T-cell responses in blood and BAL fluid analogous to those observed in protected mice. Our findings have critical implications for therapeutic TB vaccine clinical development in immunocompetent and immunocompromised populations and may serve as a model for defining immunological correlates of therapeutic vaccine-induced protection. One sentence summary A TB vaccine shortens curative drug treatment in mice by eliciting strong TB-protective immune responses and induces similar responses in macaques.
Collapse
|
13
|
Olawade DB, Teke J, Fapohunda O, Weerasinghe K, Usman SO, Ige AO, Clement David-Olawade A. Leveraging artificial intelligence in vaccine development: A narrative review. J Microbiol Methods 2024; 224:106998. [PMID: 39019262 DOI: 10.1016/j.mimet.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Vaccine development stands as a cornerstone of public health efforts, pivotal in curbing infectious diseases and reducing global morbidity and mortality. However, traditional vaccine development methods are often time-consuming, costly, and inefficient. The advent of artificial intelligence (AI) has ushered in a new era in vaccine design, offering unprecedented opportunities to expedite the process. This narrative review explores the role of AI in vaccine development, focusing on antigen selection, epitope prediction, adjuvant identification, and optimization strategies. AI algorithms, including machine learning and deep learning, leverage genomic data, protein structures, and immune system interactions to predict antigenic epitopes, assess immunogenicity, and prioritize antigens for experimentation. Furthermore, AI-driven approaches facilitate the rational design of immunogens and the identification of novel adjuvant candidates with optimal safety and efficacy profiles. Challenges such as data heterogeneity, model interpretability, and regulatory considerations must be addressed to realize the full potential of AI in vaccine development. Integrating emerging technologies, such as single-cell omics and synthetic biology, promises to enhance vaccine design precision and scalability. This review underscores the transformative impact of AI on vaccine development and highlights the need for interdisciplinary collaborations and regulatory harmonization to accelerate the delivery of safe and effective vaccines against infectious diseases.
Collapse
Affiliation(s)
- David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, United Kingdom; Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom.
| | - Jennifer Teke
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom; Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, United Kingdom
| | | | - Kusal Weerasinghe
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, United Kingdom
| | - Sunday O Usman
- Department of Systems and Industrial Engineering, University of Arizona, USA
| | - Abimbola O Ige
- Department of Chemistry, Faculty of Science, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
14
|
Aarthi Y, Anjana A, Tejal G, Shanmugaraja M, Ramadevi S, Princess R. A Simple and Rapid Method of Probiotic Bacterial Ghost Cell Preparation to Deliver Mycobacterium tuberculosis Antigen. Mol Biotechnol 2024:10.1007/s12033-024-01260-0. [PMID: 39162910 DOI: 10.1007/s12033-024-01260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/29/2024] [Indexed: 08/21/2024]
Abstract
A bacterial ghost cell is an empty cell envelope of bacteria lacking cytoplasmic content. Bacterial ghost cells (BGs) can be used for various applications such as vaccines, adjuvants, and drug delivery systems. Since BGs offer many advantages over classically prepared vaccines, developing novel methods for the preparation of high-quality BGs remains to be an interesting field of study by various research groups. Several novel methodologies have been reported that involve the biological (gene E mediated) and combination of various chemicals such as NaOH, SDS, H2O2, CaCO3, and ethanol, non-detergent method using Tween80, limulus antimicrobial peptide, and high hydrostatic pressure method, the porcine myeloid antimicrobial peptide (PMPA) 36-lysozyme fusion method, NaOH-Penicillin/Streptolysin combination method. In this study, we have reported a novel methodology that combines the action of chemical and physical factors to produce ghost cells from gram-negative bacteria, the probiotic E.coli Nissle 1917. The mild detergent Triton X-100 and NaCl alter the permeability of the cell membrane which is further amplified by heat shock induction. This enables the cell to expel its cytoplasmic components without affecting the external morphology. The efficiency of this method was analyzed based on viability assay, cell leakage assay, live-dead cell assay, and scanning electron microscopic analysis. Moreover, the protein loading capacity was optimized for Mycobacterium tuberculosis antigen namely, ESAT-6.
Collapse
Affiliation(s)
- Yesupatham Aarthi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Aravindha Anjana
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, 626005, India
| | - Glaudia Tejal
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, 626005, India
| | - Meenakshi Shanmugaraja
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, 626005, India.
| | - S Ramadevi
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - R Princess
- Department of Biotechnology, Mepco Schlenk Engineering College (Autonomous), Sivakasi, Tamil Nadu, 626005, India
| |
Collapse
|
15
|
Balasingam S, Dheda K, Fortune S, Gordon SB, Hoft D, Kublin JG, Loynachan CN, McShane H, Morton B, Nambiar S, Sharma NR, Robertson B, Schrager LK, Weller CL. Review of Current Tuberculosis Human Infection Studies for Use in Accelerating Tuberculosis Vaccine Development: A Meeting Report. J Infect Dis 2024; 230:e457-e464. [PMID: 38709726 PMCID: PMC11326834 DOI: 10.1093/infdis/jiae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.
Collapse
Affiliation(s)
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and University of Cape Town (UCT) Lung Institute and South African Medical Research Council/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, South Africa
| | - Sarah Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Stephen B Gordon
- Clinical Experimental Medicine, Malawi Liverpool Wellcome Programme, Blantyre
| | - Daniel Hoft
- Departments of Internal Medicine and Molecular Microbiology & Immunology, Saint Louis University of Medicine, Missouri
| | - James G Kublin
- Cancer Center, Vaccine and Infectious Disease Division, Fred Hutchinson Institute, Seattle, Washington
| | | | - Helen McShane
- The Jenner Institute, University of Oxford, United Kingdom
| | - Ben Morton
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, United Kingdom
| | - Sujatha Nambiar
- TB Impact Area, International AIDS Vaccine Initiative, New York, New York
| | | | - Brian Robertson
- Department of Infectious Disease, Imperial College London, United Kingdom
| | - Lewis K Schrager
- TB Impact Area, International AIDS Vaccine Initiative, New York, New York
| | | |
Collapse
|
16
|
Kim H, Shin SJ. Immunogenicity and vaccine potential of clinical isolate Mycobacterium kansasii strain against Mycobacterium tuberculosis infection. Microbiol Spectr 2024; 12:e0081924. [PMID: 38980025 PMCID: PMC11302008 DOI: 10.1128/spectrum.00819-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/13/2024] [Indexed: 07/10/2024] Open
Abstract
Mycobacterium kansasii is a bacterium included in non-tuberculous mycobacteria (NTM) that can cause lung disease. It shares a significant number of antigens with Mycobacterium tuberculosis (Mtb), suggesting that it has the potential to be used as a tuberculosis (TB) vaccine. Therefore, we subcutaneously vaccinated mice with reference strain, M. kansasii-ATCC12478 [M. kansasii-American Type Culture Collection (ATCC)], and clinically isolated strain, M. kansasii-SM-1 to evaluate potential as a TB vaccine by comparing with bacille Calmette-Guerin (BCG) vaccine. Ten weeks after vaccination, we evaluated immunogenicity of M. kansasii-ATCC and M. kansasii-SM-1, and M. kansasii-SM-1 immunization induces potent Mtb antigen-specific IFN-γ-producing CD4+ T cells than M. kansasii-ATCC. Upon Mtb infection, M. kansasii-SM-1 provided better protection than M. kansasii-ATCC, which was comparable to the efficacy of BCG. These results showed that the clinical strain M. kansasii-SM-1, which exhibits an enhanced Mtb antigen-specific Th1 response, shows greater vaccine efficacy compared to M. kansasii-ATCC. In this study, we demonstrated that vaccine efficacy can vary depending on the strain of M. kansasii and that its efficacy can be comparable to BCG. This suggests that M. kansasii has the potential to be a live TB vaccine candidate.IMPORTANCEMycobacterium kansasii, a non-tuberculous mycobacteria (NTM) species causing lung disease, shares key antigens with Mycobacterium tuberculosis (Mtb), indicating its potential for TB vaccine development. Subcutaneous vaccination of mice with M. kansasii strains reference strain M. kansasii-ATCC12478 [(M. kansasii-American Type Culture Collection (ATCC)] and clinically isolated strain M. kansasii-SM-1 revealed differences in immunogenicity. M. kansasii-SM-1 induced a robust Mtb antigen-specific IFN-γ-producing CD4+ T cell response compared to M. kansasii-ATCC. Additionally, M. kansasii-SM-1 conferred better protection against Mtb infection than M. kansasii-ATCC, which is comparable to bacille Calmette-Guerin (BCG). These findings underscore the variable vaccine efficacy among M. kansasii strains, with M. kansasii-SM-1 exhibiting promising potential as a live TB vaccine candidate, suggesting its comparative effectiveness to BCG.
Collapse
Affiliation(s)
- Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
17
|
Krysztopa-Grzybowska K, Lach J, Polak M, Strapagiel D, Dziadek J, Olszewski M, Zasada AA, Darlińska A, Lutyńska A, Augustynowicz-Kopeć E. The whole genome sequence of Polish vaccine strain Mycobacterium bovis BCG Moreau. Microbiol Spectr 2024; 12:e0425923. [PMID: 38757975 PMCID: PMC11237378 DOI: 10.1128/spectrum.04259-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/24/2024] [Indexed: 05/18/2024] Open
Abstract
Currently, tuberculosis immunoprophylaxis is based solely on Bacillus Calmette-Guérin (BCG) vaccination, and some of the new potential tuberculosis vaccines are based on the BCG genome. Therefore, it is reasonable to analyze the genomes of individual BCG substrains. The aim of this study was the genetic characterization of the BCG-Moreau Polish (PL) strain used for the production of the BCG vaccine in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. As a result of comparison, BCG-Moreau PL with BCG-Moreau Rio de Janeiro (RDJ) 143 single nucleotide polymorphisms (SNPs) and 32 insertion/deletion mutations (INDELs) were identified. However, the verification of these mutations showed that the most significant were accumulated in the BCG-Moreau RDJ genome. The mutations unique to the Polish strain genome are 1 SNP and 2 INDEL. The strategy of combining short-read sequencing with long-read sequencing is currently the most optimal approach for sequencing bacterial genomes. With this approach, the only available genomic sequence of BCG-Moreau PL was obtained. This sequence will primarily be a reference point in the genetic control of the stability of the vaccine strain in the future. The results enrich knowledge about the microevolution and attenuation of the BCG vaccine substrains. IMPORTANCE The whole genome sequence obtained is the only genomic sequence of the strain that has been used for vaccine production in Poland since 1955. Sequencing of different BCG lots showed that the strain was stable over a period of 59 years. The comprehensive genomic analysis performed not only enriches knowledge about the microevolution and attenuation of the BCG vaccine substrains but also enables the utilization of identified markers as a reference point in the genetic control and identity tests of the stability of the vaccine strain in the future.
Collapse
Affiliation(s)
- Katarzyna Krysztopa-Grzybowska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Jakub Lach
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Maciej Polak
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Dominik Strapagiel
- Biobank Lab, Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jaroslaw Dziadek
- Mycobacterium Genetics and Physiology Unit, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marcin Olszewski
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Aleksandra A. Zasada
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Aniela Darlińska
- Department of Sera and Vaccines Evaluation, National Institute of Public Health NIH – National Research Institute, Warsaw, Poland
| | - Anna Lutyńska
- Department of Medical Biology, National Institute of Cardiology, Warsaw, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
| |
Collapse
|
18
|
Khanna H, Gupta S, Sheikh Y. Cell-Mediated Immune Response Against Mycobacterium tuberculosis and Its Potential Therapeutic Impact. J Interferon Cytokine Res 2024; 44:244-259. [PMID: 38607324 DOI: 10.1089/jir.2024.0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Cell-mediated immune response is critical for Mycobacterium tuberculosis (M.tb) control. Understanding of pathophysiology and role played by different cell mediators is essential for vaccine development and better management of patients with M.tb. A complex array of cytokines and chemokines are involved in the immune response against M.tb; however, their relative contribution in protection remains to be further explored. The purpose of this review is to summarize the current understanding regarding the cytokine and chemokine profiles in M.tb infection in order to assist research in the field to pursue new direction in prevention and control. We have also summarized recent findings on vaccine trials that have been developed and or are under trials that are targeting these molecules.
Collapse
Affiliation(s)
- Harshika Khanna
- Department of Pediatrics, King George's Medical University, Lucknow, India
| | | | - Yasmeen Sheikh
- Department of Pediatrics, King George's Medical University, Lucknow, India
| |
Collapse
|
19
|
Rubio FA, Amad AAS, Aransiola TJ, de Oliveira RB, Naidoo M, Moya EMD, Anderle RV, Sironi AP, Ordoñez JA, Sanchez MN, de Oliveira JF, de Souza LE, Dourado I, Macinko J, Rasella D. Evaluating social protection mitigation effects on HIV/AIDS and Tuberculosis through a mathematical modelling study. Sci Rep 2024; 14:11739. [PMID: 38778134 PMCID: PMC11111786 DOI: 10.1038/s41598-024-62007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
The global economic downturn due to the COVID-19 pandemic, war in Ukraine, and worldwide inflation surge may have a profound impact on poverty-related infectious diseases, especially in low-and middle-income countries (LMICs). In this work, we developed mathematical models for HIV/AIDS and Tuberculosis (TB) in Brazil, one of the largest and most unequal LMICs, incorporating poverty rates and temporal dynamics to evaluate and forecast the impact of the increase in poverty due to the economic crisis, and estimate the mitigation effects of alternative poverty-reduction policies on the incidence and mortality from AIDS and TB up to 2030. Three main intervention scenarios were simulated-an economic crisis followed by the implementation of social protection policies with none, moderate, or strong coverage-evaluating the incidence and mortality from AIDS and TB. Without social protection policies to mitigate the impact of the economic crisis, the burden of HIV/AIDS and TB would be significantly larger over the next decade, being responsible in 2030 for an incidence 13% (95% CI 4-31%) and mortality 21% (95% CI 12-34%) higher for HIV/AIDS, and an incidence 16% (95% CI 10-25%) and mortality 22% (95% CI 15-31%) higher for TB, if compared with a scenario of moderate social protection. These differences would be significantly larger if compared with a scenario of strong social protection, resulting in more than 230,000 cases and 34,000 deaths from AIDS and TB averted over the next decade in Brazil. Using a comprehensive approach, that integrated economic forecasting with mathematical and epidemiological models, we were able to show the importance of implementing robust social protection policies to avert a significant increase in incidence and mortality from AIDS and TB during the current global economic downturn.
Collapse
Affiliation(s)
- Felipe Alves Rubio
- Institute of Collective Health (ISC), Federal University of Bahia (UFBA), Bahia, Brazil.
- ISGLOBAL, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.
| | - Alan Alves Santana Amad
- Center for Data and Knowledge Integration for Health, Salvador, Brazil
- College of Engineering, Swansea University, Bay Campus, Swansea, UK
| | | | | | - Megan Naidoo
- ISGLOBAL, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | - Alberto Pietro Sironi
- Institute of Collective Health (ISC), Federal University of Bahia (UFBA), Bahia, Brazil
| | | | | | | | - Luis Eugenio de Souza
- Institute of Collective Health (ISC), Federal University of Bahia (UFBA), Bahia, Brazil
| | - Inês Dourado
- Institute of Collective Health (ISC), Federal University of Bahia (UFBA), Bahia, Brazil
| | - James Macinko
- Department of Health Policy and Management, University of California, Los Angeles, USA
| | - Davide Rasella
- Institute of Collective Health (ISC), Federal University of Bahia (UFBA), Bahia, Brazil
- ISGLOBAL, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Cao X, Fu YX, Peng H. Promising Cytokine Adjuvants for Enhancing Tuberculosis Vaccine Immunity. Vaccines (Basel) 2024; 12:477. [PMID: 38793728 PMCID: PMC11126114 DOI: 10.3390/vaccines12050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (M. tuberculosis), remains a formidable global health challenge, affecting a substantial portion of the world's population. The current tuberculosis vaccine, bacille Calmette-Guérin (BCG), offers limited protection against pulmonary tuberculosis in adults, underscoring the critical need for innovative vaccination strategies. Cytokines are pivotal in modulating immune responses and have been explored as potential adjuvants to enhance vaccine efficacy. The strategic inclusion of cytokines as adjuvants in tuberculosis vaccines holds significant promise for augmenting vaccine-induced immune responses and strengthening protection against M. tuberculosis. This review delves into promising cytokines, such as Type I interferons (IFNs), Type II IFN, interleukins such as IL-2, IL-7, IL-15, IL-12, and IL-21, alongside the use of a granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjuvant, which has shown effectiveness in boosting immune responses and enhancing vaccine efficacy in tuberculosis models.
Collapse
Affiliation(s)
- Xuezhi Cao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China;
- Guangzhou National Laboratory, Bio-Island, Guangzhou 510005, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hua Peng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China;
- Guangzhou National Laboratory, Bio-Island, Guangzhou 510005, China
| |
Collapse
|
21
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
22
|
Barber DL. Early innate role for CD8αα+ cells in tuberculosis. J Exp Med 2023; 220:e20231631. [PMID: 37917028 PMCID: PMC10621748 DOI: 10.1084/jem.20231631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Cell types that mediate early control of Mycobacterium tuberculosis (Mtb) infection are not well understood. Winchell and Nyquist et al. (https://doi.org/10.1084/jem.20230707) show that CD8αα+ lymphocytes have a major role in the innate suppression of Mtb growth in the lungs of macaques.
Collapse
Affiliation(s)
- Daniel L. Barber
- T Lymphocyte Biology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|