1
|
Xu R, Ooi HS, Bian L, Ouyang L, Sun W. Dynamic hydrogels for biofabrication: A review. Biomaterials 2025; 320:123266. [PMID: 40120174 DOI: 10.1016/j.biomaterials.2025.123266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Reversibly crosslinked dynamic hydrogels have emerged as a significant material platform for biomedical applications owing to their distinctive time-dependent characteristics, including shear-thinning, self-healing, stress relaxation, and creep. These physical properties permit the use of dynamic hydrogels as injectable carriers or three-dimensional printable bioinks. It is noteworthy that matrix dynamics can serve as physical cues that stimulate cellular processes. Therefore, dynamic hydrogels are preferred for tissue engineering and biofabrication, which seek to create functional tissue constructs that require regulation of cellular processes. This review summarizes the critical biophysical properties of dynamic hydrogels, various cellular processes and related mechanisms triggered by hydrogel dynamics, particularly in three-dimensional culture scenarios. Subsequently, we present an overview of advanced biofabrication techniques, particularly 3D bioprinting, of dynamic hydrogels for the large-scale production of tissue and organ engineering models. This review presents an overview of the strategies that can be used to expand the range of applications of dynamic hydrogels in biofabrication, while also addressing the challenges and opportunities that arise in the field. This review highlights the importance of matrix dynamics in regulating cellular processes and elucidates strategies for leveraging them in the context of biofabrication.
Collapse
Affiliation(s)
- Runze Xu
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hon Son Ooi
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, China
| | - Liliang Ouyang
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China.
| | - Wei Sun
- Biomanufacturing and Engineering Living Systems Innovation International Talents Base (111 Base), Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Department of Mechanical Engineering and Mechanics, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Huang Y, Ye Q, Wang J, Zhu K, Yang H, Jiang X, Shen M. Recent progress in the identification and in vitro culture of skin organoids. Regen Ther 2025; 29:341-351. [PMID: 40242086 PMCID: PMC12000699 DOI: 10.1016/j.reth.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/13/2024] [Accepted: 01/04/2025] [Indexed: 04/18/2025] Open
Abstract
An organoid is a cell-based structure that shows organ-specific properties and shares a similar spatial organization as the corresponding organ. Organoids possess powerful capability to reproduce the key functions of the associated organ structures, and their similarity to the organs makes them physiologically relevant systems. The primary challenge associated with the development of skin organoids is the complexity of the human skin architecture, which encompasses the epidermis and the dermis as well as accessory structures, including hair follicles, sweat glands, and sebaceous glands, that perform various functions such as thermoregulation. The ultimate objectives of developing skin organoids are to regenerate the complete skin structure in vitro and reconstruct the skin in vivo. Consequently, safety, reliability, and the fidelity of the tissue interfaces are key considerations in this process. For this purpose, the present article reviews the most recent advances in this field, focusing on the cell sources, culture methods, culture conditions, and biomarkers for identifying the structure and function of skin organoids developed in vitro or in vivo. The subsequent sections summarize the recent applications of skin organoids in related disease diagnosis and treatments, and discuss the future prospects of these organoids in terms of clinical applications. This review of skin organoids can provide an important foundation for studies on human skin development, disease modeling, and reconstructive surgery, with broad utility for promising future opportunities in both biomedical research and clinical practice.
Collapse
Affiliation(s)
- Yanan Huang
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Qing Ye
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | | | - Kaimin Zhu
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Haojie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, China
| | - Xiaoping Jiang
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Meihua Shen
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| |
Collapse
|
3
|
Spagnuolo FD, Kronemberger GS, Storey KJ, Kelly DJ. The maturation state and density of human cartilage microtissues influence their fusion and development into scaled-up grafts. Acta Biomater 2025; 194:109-121. [PMID: 39818242 DOI: 10.1016/j.actbio.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Functional cartilaginous tissues can potentially be engineered by bringing together numerous microtissues (µTs) and allowing them to fuse and re-organize into larger, structurally organized grafts. The maturation level of individual microtissues is known to influence their capacity to fuse, however its impact on the long-term development of the resulting tissue remains unclear. The first objective of this study was to investigate the influence of the maturation state of human bone-marrow mesenchymal stem/stromal cells (hBM-MSCSs) derived microtissues on their fusion capacity and the phenotype of the final engineered tissue. Less mature (day 2) cartilage microtissues were found to fuse faster, supporting the development of a matrix that was richer in sulphated glycosaminoglycans (sGAG) and collagen, while low in calcium deposits. This enhanced fusion in less mature microtissues correlated with enhanced expression of N-cadherin, followed by a progressive increase in markers associated with cell-extracellular matrix (ECM) interactions. We then engineered larger constructs with varying initial numbers (50, 150 or 300 µTs per well) of less mature microtissues, observing enhanced sGAG synthesis with increased microtissue density. We finally sought to engineer a scaled-up cartilage graft by fusing 4,000 microtissues and maintaining the resulting constructs under either dynamic or static culture conditions. Robust and reliable fusion was observed between microtissues at this scale, with no clear benefit of dynamic culture on the levels of matrix accumulation or the tensile modulus of the resulting construct. These results support the use of BM-MSCs derived microtissues for the development of large-scale, engineered functional cartilaginous grafts. STATEMENT OF SIGNIFICANCE: Microtissues are gaining attention for their use as biological building blocks in the field of tissue engineering. The fusion of multiple microtissues is crucial for achieving a cohesive engineered tissue of scale, however the impact of their maturation level on the long-term properties of the engineered graft is poorly understood. This paper emphasizes the importance of using less mature cartilage microtissues for supporting appropriate cell-cell interactions and robust chondrogenesis in vitro. We demonstrate that tissue development is not negatively impacted by increasing the initial numbers of microtissues within the graft. This biofabrication strategy has significant translation potential, as it enables the engineering of scaled-up cartilage grafts of clinically relevant sizes using bone marrow derived MSCs.
Collapse
Affiliation(s)
- Francesca D Spagnuolo
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Gabriela S Kronemberger
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Kyle J Storey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Dalir L, Tatic-Lucic S, Berdichevsky Y. Cell-generated mechanical forces play a role in epileptogenesis after injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.09.637325. [PMID: 39990400 PMCID: PMC11844397 DOI: 10.1101/2025.02.09.637325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Traumatic brain injury (TBI) is associated with a significantly increased risk of epilepsy. One of the consequences of severe TBI is progressive brain atrophy, which is frequently characterized by organized tissue retraction. Retraction is an active process synchronized by mechanical interactions between surviving cells. This results in unbalanced mechanical forces acting on surviving neurons, potentially activating mechanotransduction and leading to hyperexcitability. This novel mechanism of epileptogenesis was examined in organotypic hippocampal cultures, which develop spontaneous seizure-like activity in vitro. Cell-generated forces in this model resulted in contraction of hippocampal tissue. Artificial imbalances in mechanical forces were introduced by placing cultured slices on surfaces with adhesive and non-adhesive regions. This modeled disbalance in mechanical forces that may occur in the brain after trauma. Portions of the slices that were not stabilized by substrate adhesion underwent increased contraction and compaction, revealing the presence of cell-generated forces capable of shaping tissue geometry. Changes in tissue geometry were followed by excitability changes that were specific to hippocampal sub-region and orientation of contractile forces relative to pyramidal cell apical-basal axis. Results of this study suggest that imbalanced cell-generated forces contribute to development of epilepsy, and that force imbalance may represent a novel mechanism of epileptogenesis after trauma.
Collapse
Affiliation(s)
- Laya Dalir
- Department of Bioengineering, Lehigh University, Bethlehem, PA
| | - Svetlana Tatic-Lucic
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA
| | - Yevgeny Berdichevsky
- Department of Bioengineering, Lehigh University, Bethlehem, PA
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA
| |
Collapse
|
5
|
Li J, Raina M, Wang Y, Xu C, Su L, Guo Q, Ferreira RM, Eadon MT, Ma Q, Wang J, Xu D. scBSP: A fast and accurate tool for identifying spatially variable features from high-resolution spatial omics data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636138. [PMID: 39974940 PMCID: PMC11838397 DOI: 10.1101/2025.02.02.636138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Emerging spatial omics technologies empower comprehensive exploration of biological systems from multi-omics perspectives in their native tissue location in two and three-dimensional space. However, sparse sequencing capacity and growing spatial resolution in spatial omics present significant computational challenges in identifying biologically meaningful molecules that exhibit variable spatial distributions across different omics. We introduce scBSP, an open-source, versatile, and user-friendly package for identifying spatially variable features in high-resolution spatial omics data. scBSP leverages sparse matrix operation to significantly increase computational efficiency in both computational time and memory usage. In diverse spatial sequencing data and simulations, scBSP consistently and rapidly identifies spatially variable genes and spatially variable peaks across various sequencing techniques and spatial resolutions, handling two- and three-dimensional data with up to millions of cells. It can process high-definition spatial transcriptomics data for 19,950 genes across 181,367 spots within 10 seconds on a typical desktop computer, making it the fastest tool available for handling such high-resolution, sparse spatial omics data while maintaining high accuracy. In a case study of kidney disease using 10x Xenium data, scBSP identified spatially variable genes representative of critical pathological mechanisms associated with histology.
Collapse
Affiliation(s)
- Jinpu Li
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Mauminah Raina
- Department of Biomedical Engineering and Informatics, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Yiqing Wang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Chunhui Xu
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Li Su
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Ricardo Melo Ferreira
- Department of Medicine, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Michael T Eadon
- Department of Medicine, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Juexin Wang
- Department of Biomedical Engineering and Informatics, Indiana University Indianapolis, Indianapolis, IN 46202, USA
| | - Dong Xu
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Kim M, Cho S, Hwang DG, Shim IK, Kim SC, Jang J, Jang J. Bioprinting of bespoke islet-specific niches to promote maturation of stem cell-derived islets. Nat Commun 2025; 16:1430. [PMID: 39920133 PMCID: PMC11805982 DOI: 10.1038/s41467-025-56665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Pancreatic islets are densely packed cellular aggregates containing various hormonal cell types essential for blood glucose regulation. Interactions among these cells markedly affect the glucoregulatory functions of islets along with the surrounding niche and pancreatic tissue-specific geometrical organization. However, stem cell (SC)-derived islets generated in vitro often lack the three-dimensional extracellular microenvironment and peri-vasculature, which leads to the immaturity of SC-derived islets, reducing their ability to detect glucose fluctuations and insulin release. Here, we bioengineer the in vivo-like pancreatic niches by optimizing the combination of pancreatic tissue-specific extracellular matrix and basement membrane proteins and utilizing bioprinting-based geometrical guidance to recreate the spatial pattern of islet peripheries. The bioprinted islet-specific niche promotes coordinated interactions between islets and vasculature, supporting structural and functional features resembling native islets. Our strategy not only improves SC-derived islet functionality but also offers significant potential for advancing research on islet development, maturation, and diabetic disease modeling, with future implications for translational applications.
Collapse
Affiliation(s)
- Myungji Kim
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Seungyeun Cho
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - In Kyong Shim
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Jiwon Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jinah Jang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Jiang Z, Jin B, Liang Z, Wang Y, Ren S, Huang Y, Li C, Sun H, Li Y, Liu L, Li N, Wang J, Cui Z, Huang P, Yang H, Mao Y, Ye H. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization. Biomaterials 2024; 311:122681. [PMID: 38944968 DOI: 10.1016/j.biomaterials.2024.122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/28/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Cell-laden bioprinting is a promising biofabrication strategy for regenerating bioactive transplants to address organ donor shortages. However, there has been little success in reproducing transplantable artificial organs with multiple distinctive cell types and physiologically relevant architecture. In this study, an omnidirectional printing embedded network (OPEN) is presented as a support medium for embedded 3D printing. The medium is state-of-the-art due to its one-step preparation, fast removal, and versatile ink compatibility. To test the feasibility of OPEN, exceptional primary mouse hepatocytes (PMHs) and endothelial cell line-C166, were used to print hepatospheroid-encapsulated-artificial livers (HEALs) with vein structures following predesigned anatomy-based printing paths in OPEN. PMHs self-organized into hepatocyte spheroids within the ink matrix, whereas the entire cross-linked structure remained intact for a minimum of ten days of cultivation. Cultivated HEALs maintained mature hepatic functions and marker gene expression at a higher level than conventional 2D and 3D conditions in vitro. HEALs with C166-laden vein structures promoted endogenous neovascularization in vivo compared with hepatospheroid-only liver prints within two weeks of transplantation. Collectively, the proposed platform enables the manufacture of bioactive tissues or organs resembling anatomical architecture, and has broad implications for liver function replacement in clinical applications.
Collapse
Affiliation(s)
- Zhuoran Jiang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China; Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Zhu Liang
- Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Yinhan Wang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Shuai Ren
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Yongfa Huang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Changcan Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Yunzhu Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Li Liu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Nianlin Li
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Jinzhuo Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK; The Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou, 215123, China
| | - Pengyu Huang
- Engineering Research Center of Pulmonary and Critical Care Technology and Device (MOE of China), Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK; The Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou, 215123, China.
| |
Collapse
|
8
|
Singh A, Cho YK, Cohen DJ. Rapid Whole-Plate Cell and Tissue Micropatterning Using a Budget 3D Resin Printer. ACS OMEGA 2024; 9:43808-43816. [PMID: 39494000 PMCID: PMC11525498 DOI: 10.1021/acsomega.4c06539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
The ability to precisely pattern cells and proteins is crucial in various scientific disciplines, including cell biology, bioengineering, and materials chemistry. Current techniques, such as microcontact stamping, 3D bioprinting, and direct photopatterning, have limitations in terms of cost, versatility, and throughput. In this Article, we present an accessible approach that combines the throughput of photomask systems with the versatility of programmable light patterning using a low-cost consumer LCD resin printer. The method involves utilizing a bioinert hydrogel, poly(ethylene glycol) diacrylate (PEGDA), and a 405 nm sensitive photoinitiator (LAP) that are selectively cross-linked to form a hydrogel upon light exposure, creating specific regions that are protein and cell-repellent. Our result highlights that a low-cost LCD resin printer can project virtual photomasks onto the hydrogel, allowing for reasonable resolution and large-area printing at a fraction of the cost of traditional systems. The study demonstrates the calibration of exposure times for optimal resolution and accuracy and shape corrections to overcome the inherent challenges of wide-field resin printing. The potential of this approach is validated through widely studied 2D and 3D stem cell applications, showcasing its biocompatibility and ability to replicate complex tissue engineering patterns. We also validate the method with a cell-adhesive polymer (gelatin methacrylate; GelMA). The combination of low cost, high throughput, and accessibility makes this method broadly applicable across fields for enabling rapid and precise fabrication of cells and tissues in standard laboratory culture vessels.
Collapse
Affiliation(s)
- Anamika Singh
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Youn Kyoung Cho
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Daniel J. Cohen
- Department
of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
9
|
Zhu T, Hu Y, Cui H, Cui H. 3D Multispheroid Assembly Strategies towards Tissue Engineering and Disease Modeling. Adv Healthc Mater 2024; 13:e2400957. [PMID: 38924326 DOI: 10.1002/adhm.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Cell spheroids (esp. organoids) as 3D culture platforms are popular models for representing cell-cell and cell-extracellular matrix (ECM) interactions, bridging the gap between 2D cell cultures and natural tissues. 3D cell models with spatially organized multiple cell types are preferred for gaining comprehensive insights into tissue pathophysiology and constructing in vitro tissues and disease models because of the complexities of natural tissues. In recent years, an assembly strategy using cell spheroids (or organoids) as living building blocks has been developed to construct complex 3D tissue models with spatial organization. Here, a comprehensive overview of recent advances in multispheroid assembly studies is provided. The different mechanisms of the multispheroid assembly techniques, i.e., automated directed assembly, noncontact remote assembly, and programmed self-assembly, are introduced. The processing steps, advantages, and technical limitations of the existing methodologies are summarized. Applications of the multispheroid assembly strategies in disease modeling, drug screening, tissue engineering, and organogenesis are reviewed. Finally, this review concludes by emphasizing persistent issues and future perspectives, encouraging researchers to adopt multispheroid assembly techniques for generating advanced 3D cell models that better resemble real tissues.
Collapse
Affiliation(s)
- Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
10
|
Kang SY, Kimura M, Shrestha S, Lewis P, Lee S, Cai Y, Joshi P, Acharya P, Liu J, Yang Y, Sanchez JG, Ayyagari S, Alsberg E, Wells JM, Takebe T, Lee MY. A Pillar and Perfusion Plate Platform for Robust Human Organoid Culture and Analysis. Adv Healthc Mater 2024; 13:e2302502. [PMID: 37616035 PMCID: PMC10891301 DOI: 10.1002/adhm.202302502] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/10/2023] [Indexed: 08/25/2023]
Abstract
Human organoids have the potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo. This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by the lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, these challenges are overcome by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing, and encapsulation techniques are demonstrated on a pillar plate, which is coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels are differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.
Collapse
Affiliation(s)
- Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Phillip Lewis
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sangjoon Lee
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Pranav Joshi
- Bioprinting Laboratories Inc., Dallas, TX, 75234, USA
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
| | - J Guillermo Sanchez
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sriramya Ayyagari
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Departments of Orthopedics, Pharmacology, and Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James M Wells
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, Denton, TX, 76205, USA
- Bioprinting Laboratories Inc., Dallas, TX, 75234, USA
| |
Collapse
|
11
|
Kong L, Gao X, Yao X, Xie H, Kang Q, Sun W, You Z, Qian Y, Fan C. Multilevel neurium-mimetic individualized graft via additive manufacturing for efficient tissue repair. Nat Commun 2024; 15:6428. [PMID: 39079956 PMCID: PMC11289102 DOI: 10.1038/s41467-024-49980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Complicated peripheral nerve injuries or defects, especially at branching sites, remain a prominent clinical challenge after the application of different treatment strategies. Current nerve grafts fail to match the expected shape and size for delicate and precise branched nerve repair on a case-by-case basis, and there is a lack of geometrical and microscale regenerative navigation. In this study, we develop a sugar painting-inspired individualized multilevel epi-/peri-/endoneurium-mimetic device (SpinMed) to customize natural cues, featuring a selectively protective outer sheath and an instructive core, to support rapid vascular reconstruction and consequent efficient neurite extension along the defect area. The biomimetic perineurium dictates host-guest crosslinking in which new vessels secrete multimerin 1 binding to the fibroin filler surface as an anchor, contributing to the biological endoneurium that promotes Schwann cell homing and remyelination. SpinMed implantation into rat sciatic nerve defects yields a satisfactory outcome in terms of structural reconstruction, with sensory and locomotive function restoration. We further customize SpinMed grafts based on anatomy and digital imaging, achieving rapid repair of the nerve trunk and branches superior to that achieved by autografts and decellularized grafts in a specific beagle nerve defect model, with reliable biosafety. Overall, this intelligent art-inspired biomimetic design offers a facile way to customize sophisticated high-performance nerve grafts and holds great potential for application in translational regenerative medicine.
Collapse
Affiliation(s)
- Lingchi Kong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Xin Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China
| | - Xiangyun Yao
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co.Ltd., 310003, Hangzhou, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Wei Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China.
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, 201620, Shanghai, China.
| | - Yun Qian
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, 201306, Shanghai, China.
| |
Collapse
|
12
|
Almeida-Pinto J, Moura BS, Gaspar VM, Mano JF. Advances in Cell-Rich Inks for Biofabricating Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313776. [PMID: 38639337 DOI: 10.1002/adma.202313776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Advancing biofabrication toward manufacturing living constructs with well-defined architectures and increasingly biologically relevant cell densities is highly desired to mimic the biofunctionality of native human tissues. The formulation of tissue-like, cell-dense inks for biofabrication remains, however, challenging at various levels of the bioprinting process. Promising advances have been made toward this goal, achieving relatively high cell densities that surpass those found in conventional platforms, pushing the current boundaries closer to achieving tissue-like cell densities. On this focus, herein the overarching challenges in the bioprocessing of cell-rich living inks into clinically grade engineered tissues are discussed, as well as the most recent advances in cell-rich living ink formulations and their processing technologies are highlighted. Additionally, an overview of the foreseen developments in the field is provided and critically discussed.
Collapse
Affiliation(s)
- José Almeida-Pinto
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Beatriz S Moura
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
13
|
Mazari‐Arrighi E, Lépine M, Ayollo D, Faivre L, Larghero J, Chatelain F, Fuchs A. Self-Organization of Long-Lasting Human Endothelial Capillary-Like Networks Guided by DLP Bioprinting. Adv Healthc Mater 2024; 13:e2302830. [PMID: 38366136 PMCID: PMC11468676 DOI: 10.1002/adhm.202302830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Tissue engineering holds great promise for regenerative medicine, drug discovery, and as an alternative to animal models. However, as soon as the dimensions of engineered tissue exceed the diffusion limit of oxygen and nutriments, a necrotic core forms leading to irreversible damage. To overcome this constraint, the establishment of a functional perfusion network is essential. In this work, digital light processing bioprinting is used to encapsulate endothelial progenitor cells (EPCs) in 3D light-cured hydrogel scaffolds to guide them toward vascular network formation. In these scaffolds, EPCs proliferate and self-organize within a few days into branched tubular structures with predefined geometry, forming capillary-like vascular tubes or trees of diameters in the range of 10 to 100 µm. Presenting a confluent monolayer wall of cells strongly connect by tight junctions around a central lumen-like space, these structures can be microinjected with a fluorescent dye and are stable for several weeks in vitro. These endothelial structures can be recovered and manipulated in an alginate patch without altering their shape or viability. This approach opens new opportunities for future applications, such as stacking with other cell sheets or multicellular constructs to yield bioengineered tissue with higher complexity and functionality.
Collapse
Affiliation(s)
- Elsa Mazari‐Arrighi
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - Matthieu Lépine
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - Dmitry Ayollo
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - Lionel Faivre
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - Jérôme Larghero
- Université de ParisU976 HIPI, InsermParisF‐75006France
- AP‐HPHôpital Saint‐Louis1 avenue VellefauxParisF‐75010France
| | - François Chatelain
- Université de ParisU976 HIPI, InsermParisF‐75006France
- CEAIRIGGrenobleF‐38000France
| | - Alexandra Fuchs
- Université de ParisU976 HIPI, InsermParisF‐75006France
- CEAIRIGGrenobleF‐38000France
| |
Collapse
|
14
|
Li J, Wang Y, Raina MA, Xu C, Su L, Guo Q, Ma Q, Wang J, Xu D. scBSP: A fast and accurate tool for identifying spatially variable genes from spatial transcriptomic data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592851. [PMID: 38765956 PMCID: PMC11100755 DOI: 10.1101/2024.05.06.592851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Spatially resolved transcriptomics have enabled the inference of gene expression patterns within two and three-dimensional space, while introducing computational challenges due to growing spatial resolutions and sparse expressions. Here, we introduce scBSP, an open-source, versatile, and user-friendly package designed for identifying spatially variable genes in large-scale spatial transcriptomics. scBSP implements sparse matrix operation to significantly increase the computational efficiency in both computational time and memory usage, processing the high-definition spatial transcriptomics data for 19,950 genes on 181,367 spots within 10 seconds. Applied to diverse sequencing data and simulations, scBSP efficiently identifies spatially variable genes, demonstrating fast computational speed and consistency across various sequencing techniques and spatial resolutions for both two and three-dimensional data with up to millions of cells. On a sample with hundreds of thousands of sports, scBSP identifies SVGs accurately in seconds to on a typical desktop computer.
Collapse
|
15
|
Li C, Nijjer J, Feng L, Zhang Q, Yan J, Zhang S. Agent-based modeling of stress anisotropy driven nematic ordering in growing biofilms. SOFT MATTER 2024; 20:3401-3410. [PMID: 38563244 PMCID: PMC11041162 DOI: 10.1039/d3sm01535a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Living active collectives have evolved with remarkable self-patterning capabilities to adapt to the physical and biological constraints crucial for their growth and survival. However, the intricate process by which complex multicellular patterns emerge from a single founder cell remains elusive. In this study, we utilize an agent-based model, validated through single-cell microscopy imaging, to track the three-dimensional (3D) morphodynamics of cells within growing bacterial biofilms encased by agarose gels. The confined growth conditions give rise to a spatiotemporally heterogeneous stress landscape within the biofilm. In the core of the biofilm, where high hydrostatic and low shear stresses prevail, cell packing appears disordered. In contrast, near the gel-cell interface, a state of high shear stress and low hydrostatic stress emerges, driving nematic ordering, albeit with a time delay inherent to shear stress relaxation. Strikingly, we observe a robust spatiotemporal correlation between stress anisotropy and nematic ordering within these confined biofilms. This correlation suggests a mechanism whereby stress anisotropy plays a pivotal role in governing the spatial organization of cells. The reciprocity between stress anisotropy and cell ordering in confined biofilms opens new avenues for innovative 3D mechanically guided patterning techniques for living active collectives, which hold significant promise for a wide array of environmental and biomedical applications.
Collapse
Affiliation(s)
- Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
| | - Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Luyi Feng
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Material Science and Engineering, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Sun M, Zhang J, Xuanyuan T, Liu X, Liu W. Facile and Rapid Microcontact Printing of Additive-Free Polydimethylsiloxane for Biological Patterning Diversity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38597685 DOI: 10.1021/acsami.4c00460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The development and application of micropatterning technology play a promising role in the manipulation of biological substances and the exploration of life sciences at the microscale. However, the universally adaptable micropatterning method with user-friendly properties for acceptance in routine laboratories remains scarce. Herein, a green, facile, and rapid microcontact printing method is reported for upgrading popularization and diversification of biological patterning. The three-step printing can achieve high simplicity and fidelity of additive-free polydimethylsiloxane (PDMS) micropatterning and chip fabrication within 8 min as well as keep their high stability and diversity. A detailed experimental report is provided to support the advanced microcontact printing method. Furthermore, the applications of easy-to-operate PDMS-patterned chips are extensively validated to complete microdroplet array assembly with spatial control, cell pattern formation with high efficiency and geometry customization, and microtissue assembly and biomimetic tumor construction on a large scale. This straightforward method promotes diverse micropatternings with minimal time, effort, and expertise and maximal biocompatibility, which might broaden its applications in interdisciplinary scientific communities. This work also offers an insight into the establishment of popularized and market-oriented microtools for biomedical purposes such as biosensing, organs on a chip, cancer research, and bioscreening.
Collapse
Affiliation(s)
- Meilin Sun
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jinwei Zhang
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Tingting Xuanyuan
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Xufang Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
17
|
Zhou Y, Sun M, Xuanyuan T, Zhang J, Liu X, Liu W. Straightforward Cell Patterning with Ultra-Low Background Using Polydimethylsiloxane Through-Hole Membranes. Macromol Biosci 2023; 23:e2300267. [PMID: 37580176 DOI: 10.1002/mabi.202300267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/25/2023] [Indexed: 08/16/2023]
Abstract
Micropatterning is becoming an increasingly popular tool to realize microscale cell positioning and decipher cell activities and functions under specific microenvironments. However, a facile methodology for building a highly precise cell pattern still remains challenging. In this study, A simple and straightforward method for stable and efficient cell patterning with ultra-low background using polydimethylsiloxane through-hole membranes is developed. The patterning process is conveniently on the basis of membrane peeling and routine pipetting. Cell patterning in high quality involving over 97% patterning coincidence and zero residue on the background is achieved. The high repeatability and stability of the established method for multiple types of cell arrangements with different spatial profiles is demonstrated. The customizable cell patterning with ultra-low background and high diversity is confirmed to be quite feasible and reliable. Furthermore, the applicability of the patterning method for investigating the fundamental cell activities is also verified experimentally. The authors believe this microengineering advancement has valuable applications in many microscale cell manipulation-associated research fields including cell biology, cell engineering, cell imaging, and cell sensing.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Meilin Sun
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Tingting Xuanyuan
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jinwei Zhang
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Xufang Liu
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Wenming Liu
- School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
18
|
Andrés-San Román JA, Gordillo-Vázquez C, Franco-Barranco D, Morato L, Fernández-Espartero CH, Baonza G, Tagua A, Vicente-Munuera P, Palacios AM, Gavilán MP, Martín-Belmonte F, Annese V, Gómez-Gálvez P, Arganda-Carreras I, Escudero LM. CartoCell, a high-content pipeline for 3D image analysis, unveils cell morphology patterns in epithelia. CELL REPORTS METHODS 2023; 3:100597. [PMID: 37751739 PMCID: PMC10626192 DOI: 10.1016/j.crmeth.2023.100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/19/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
Decades of research have not yet fully explained the mechanisms of epithelial self-organization and 3D packing. Single-cell analysis of large 3D epithelial libraries is crucial for understanding the assembly and function of whole tissues. Combining 3D epithelial imaging with advanced deep-learning segmentation methods is essential for enabling this high-content analysis. We introduce CartoCell, a deep-learning-based pipeline that uses small datasets to generate accurate labels for hundreds of whole 3D epithelial cysts. Our method detects the realistic morphology of epithelial cells and their contacts in the 3D structure of the tissue. CartoCell enables the quantification of geometric and packing features at the cellular level. Our single-cell cartography approach then maps the distribution of these features on 2D plots and 3D surface maps, revealing cell morphology patterns in epithelial cysts. Additionally, we show that CartoCell can be adapted to other types of epithelial tissues.
Collapse
Affiliation(s)
- Jesús A Andrés-San Román
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Carmen Gordillo-Vázquez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Daniel Franco-Barranco
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain; Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain
| | - Laura Morato
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Cecilia H Fernández-Espartero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Gabriel Baonza
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ramón & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Antonio Tagua
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | | | - Ana M Palacios
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - María P Gavilán
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), JA/CSIC/Universidad de Sevilla/Universidad Pablo de Olavide and Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, 41009 Seville, Spain
| | - Fernando Martín-Belmonte
- Program of Tissue and Organ Homeostasis, Centro de Biología Molecular Severo Ochoa, CSIC-UAM and Ramón & Cajal Health Research Institute (IRYCIS), Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Valentina Annese
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain
| | - Pedro Gómez-Gálvez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| | - Ignacio Arganda-Carreras
- Department of Computer Science and Artificial Intelligence, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain; Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain; Biofisika Institute, 48940 Leioa, Spain.
| | - Luis M Escudero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41013 Seville, Spain; Biomedical Network Research Centre on Neurodegenerative Diseases (CIBERNED), 28029 Madrid, Spain.
| |
Collapse
|
19
|
Fang Y, Ji M, Wu B, Xu X, Wang G, Zhang Y, Xia Y, Li Z, Zhang T, Sun W, Xiong Z. Engineering Highly Vascularized Bone Tissues by 3D Bioprinting of Granular Prevascularized Spheroids. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43492-43502. [PMID: 37691550 DOI: 10.1021/acsami.3c08550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The convergence of 3D bioprinting with powerful manufacturing capability and cellular self-organization that can reproduce intricate tissue microarchitecture and function is a promising direction toward building functional tissues and has yet to be demonstrated. Here, we develop a granular aggregate-prevascularized (GAP) bioink for engineering highly vascularized bone tissues by capitalizing on the condensate-mimicking, self-organization, and angiogenic properties of prevascularized mesenchymal spheroids. The GAP bioink utilizes prevascularized aggregates as building blocks, which are embedded densely in extracellular matrices conducive to spontaneous self-organization. We printed various complex structures with high cell density (∼1.5 × 108 cells/cm3), viability (∼80%), and shape fidelity using GAP bioink. After printing, the prevascularized mesenchymal spheroids developed an interconnected vascular network through angiogenic sprouting. We printed highly vascularized bone tissues using GAP bioink and found that prevascularized spheroids were more conducive to osteogenesis and angiogenesis. We envision that the design of the GAP bioink could be further integrated with human-induced pluripotent stem cell-derived organoids, which opens new avenues to create patient-specific vascularized tissues for therapeutic applications..
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Mengke Ji
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Bingyan Wu
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Xinxin Xu
- Senior Department of General Surgery, the First Medical Center, Chinese PLA General Hospital, Beijing 100853, P. R. China
| | - Ge Wang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Yanmei Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Yingkai Xia
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Zhe Li
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
- Department of Mechanical Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States of America
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, P. R. China
- Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing 100084, P. R. China
| |
Collapse
|
20
|
Dong J, Zhou J, Tang H, Chen B, Huang L. Laser-guided programmable construction of cell-laden hydrogel microstructures for in vitrodrug evaluation. Biofabrication 2023; 15:045011. [PMID: 37406632 DOI: 10.1088/1758-5090/ace47d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
Cell-laden hydrogel microstructures have been used in broad applications in tissue engineering, translational medicine, and cell-based assays for pharmaceutical research. However, the construction of cell-laden hydrogel microstructuresin vitroremains challenging. The technologies permitting generation of multicellular structures with different cellular compositions and spatial distributions are needed. Herein, we propose a laser-guided programmable hydrogel-microstructures-construction platform, allowing controllable and heterogeneous assembly of multiple cellular spheroids into spatially organized multicellular structures with good bioactivity. And the cell-laden hydrogel microstructures could be further leveraged forin vitrodrug evaluation. We demonstrate that cells within hydrogels exhibit significantly higher half-maximal inhibitory concentration values against doxorubicin compared with traditional 2D plate culture. Moreover, we reveal the differences in drug responses between heterogeneous and homogeneous cell-laden hydrogel microstructures, providing valuable insight intoin vitrodrug evaluation.
Collapse
Affiliation(s)
- Jianpei Dong
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Hao Tang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Baiqi Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| | - Lu Huang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, People's Republic of China
| |
Collapse
|
21
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
22
|
Kang SY, Kimura M, Shrestha S, Lewis P, Lee S, Cai Y, Joshi P, Acharya P, Liu J, Yang Y, Sanchez JG, Ayyagari S, Alsberg E, Wells JM, Takebe T, Lee MY. A Pillar and Perfusion Plate Platform for Robust Human Organoid Culture and Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.532210. [PMID: 36993405 PMCID: PMC10055006 DOI: 10.1101/2023.03.11.532210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human organoids have potential to revolutionize in vitro disease modeling by providing multicellular architecture and function that are similar to those in vivo . This innovative and evolving technology, however, still suffers from assay throughput and reproducibility to enable high-throughput screening (HTS) of compounds due to cumbersome organoid differentiation processes and difficulty in scale-up and quality control. Using organoids for HTS is further challenged by lack of easy-to-use fluidic systems that are compatible with relatively large organoids. Here, we overcome these challenges by engineering "microarray three-dimensional (3D) bioprinting" technology and associated pillar and perfusion plates for human organoid culture and analysis. High-precision, high-throughput stem cell printing and encapsulation techniques were demonstrated on a pillar plate, which was coupled with a complementary deep well plate and a perfusion well plate for static and dynamic organoid culture. Bioprinted cells and spheroids in hydrogels were differentiated into liver and intestine organoids for in situ functional assays. The pillar/perfusion plates are compatible with standard 384-well plates and HTS equipment, and thus may be easily adopted in current drug discovery efforts.
Collapse
Affiliation(s)
- Soo-Yeon Kang
- Department of Biomedical Engineering, University of North Texas
| | - Masaki Kimura
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
| | - Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas
| | - Phillip Lewis
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center
| | - Sangjoon Lee
- Department of Biomedical Engineering, University of North Texas
| | - Yuqi Cai
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
| | | | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas
| | - Jiafeng Liu
- Department of Biomedical Engineering, University of North Texas
| | - Yong Yang
- Department of Biomedical Engineering, University of North Texas
| | - J Guillermo Sanchez
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center
| | - Sriramya Ayyagari
- Department of Biomedical Engineering, University of Illinois at Chicago
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago
- Departments of Orthopedics, Pharmacology, and Mechanical and Industrial Engineering, University of Illinois at Chicago
| | - James M Wells
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center
| | - Takanori Takebe
- Division of Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center
- Center for Stem Cell and Organoid Medicine, Cincinnati Children's Hospital Medical Center
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas
- Bioprinting Laboratories Inc
| |
Collapse
|
23
|
Blatchley MR, Anseth KS. Middle-out methods for spatiotemporal tissue engineering of organoids. NATURE REVIEWS BIOENGINEERING 2023; 1:329-345. [PMID: 37168734 PMCID: PMC10010248 DOI: 10.1038/s44222-023-00039-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 05/13/2023]
Abstract
Organoids recapitulate many aspects of the complex three-dimensional (3D) organization found within native tissues and even display tissue and organ-level functionality. Traditional approaches to organoid culture have largely employed a top-down tissue engineering strategy, whereby cells are encapsulated in a 3D matrix, such as Matrigel, alongside well-defined biochemical cues that direct morphogenesis. However, the lack of spatiotemporal control over niche properties renders cellular processes largely stochastic. Therefore, bottom-up tissue engineering approaches have evolved to address some of these limitations and focus on strategies to assemble tissue building blocks with defined multi-scale spatial organization. However, bottom-up design reduces the capacity for self-organization that underpins organoid morphogenesis. Here, we introduce an emerging framework, which we term middle-out strategies, that relies on existing design principles and combines top-down design of defined synthetic matrices that support proliferation and self-organization with bottom-up modular engineered intervention to limit the degrees of freedom in the dynamic process of organoid morphogenesis. We posit that this strategy will provide key advances to guide the growth of organoids with precise geometries, structures and function, thereby facilitating an unprecedented level of biomimicry to accelerate the utility of organoids to more translationally relevant applications.
Collapse
Affiliation(s)
- Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
24
|
Cabral KA, Srivastava V, Graham AJ, Coyle MC, Stashko C, Weaver V, Gartner ZJ. Programming the Self-Organization of Endothelial Cells into Perfusable Microvasculature. Tissue Eng Part A 2023; 29:80-92. [PMID: 36181350 PMCID: PMC10266707 DOI: 10.1089/ten.tea.2022.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/15/2022] [Indexed: 11/12/2022] Open
Abstract
The construction of three-dimensional (3D) microvascular networks with defined structures remains challenging. Emerging bioprinting strategies provide a means of patterning endothelial cells (ECs) into the geometry of 3D microvascular networks, but the microenvironmental cues necessary to promote their self-organization into cohesive and perfusable microvessels are not well known. To this end, we reconstituted microvessel formation in vitro by patterning thin lines of closely packed ECs fully embedded within a 3D extracellular matrix (ECM) and observed how different microenvironmental parameters influenced EC behaviors and their self-organization into microvessels. We found that the inclusion of fibrillar matrices, such as collagen I, into the ECM positively influenced cell condensation into extended geometries such as cords. We also identified the presence of a high-molecular-weight protein(s) in fetal bovine serum that negatively influenced EC condensation. This component destabilized cord structure by promoting cell protrusions and destabilizing cell-cell adhesions. Endothelial cords cultured in the presence of fibrillar collagen and in the absence of this protein activity were able to polarize, lumenize, incorporate mural cells, and support fluid flow. These optimized conditions allowed for the construction of branched and perfusable microvascular networks directly from patterned cells in as little as 3 days. These findings reveal important design principles for future microvascular engineering efforts based on bioprinting and micropatterning techniques. Impact statement Bioprinting is a potential strategy to achieve microvascularization in engineered tissues. However, the controlled self-organization of patterned endothelial cells into perfusable microvasculature remains challenging. We used DNA Programmed Assembly of Cells to create cell-dense, capillary-sized cords of endothelial cells with complete control over their structure. We optimized the matrix and media conditions to promote self-organization and maturation of these endothelial cords into stable and perfusable microvascular networks.
Collapse
Affiliation(s)
- Katelyn A. Cabral
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California, USA
| | - Vasudha Srivastava
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Austin J. Graham
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, California, USA
| | - Maxwell C. Coyle
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, California, USA
| | - Connor Stashko
- Graduate Program in Bioengineering, University of California, San Francisco and University of California, Berkeley, Berkeley, California, USA
| | - Valerie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Zev J. Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
- Chan Zuckerberg Biohub, University of California, San Francisco, San Francisco, California, USA
- Center for Cellular Construction, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
25
|
Homma J, Sekine H, Shimizu T. Tricultured Cell Sheets Develop into Functional Pancreatic Islet Tissue with a Vascular Network. Tissue Eng Part A 2023; 29:211-224. [PMID: 36565034 DOI: 10.1089/ten.tea.2022.0167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Methods to induce islet β-cells from induced pluripotent stem cells or embryonic stem cells have been established. However, islet β-cells are susceptible to apoptosis under hypoxic conditions, so the technique used to transplant β-cells must maintain the viability of cells in vivo. This study describes the development of a tricultured cell sheet, which was made by coculturing islet β-cells, vascular endothelial cells, and mesenchymal stem cells for 1 day. The islet β-cells in the tricultured cell sheet self-organized into islet-like structures surrounded by a dense vascular network in vitro. Triple-layered tricultured cell sheets engrafted well after transplantation in vivo and developed into insulin-secreting tissue with abundant blood vessels and a high density of islet β-cells. We anticipate that the tricultured cell sheet could be used as an in vitro pseudo-islet model for pharmaceutical testing and may have potential for development into transplantable grafts for use in regenerative medicine.
Collapse
Affiliation(s)
- Jun Homma
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
26
|
Shao C, Zhang Q, Kuang G, Fan Q, Ye F. Construction and application of liver cancer models in vitro. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
27
|
Campisi M, Shelton SE, Chen M, Kamm RD, Barbie DA, Knelson EH. Engineered Microphysiological Systems for Testing Effectiveness of Cell-Based Cancer Immunotherapies. Cancers (Basel) 2022; 14:3561. [PMID: 35892819 PMCID: PMC9330888 DOI: 10.3390/cancers14153561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cell therapies, including adoptive immune cell therapies and genetically engineered chimeric antigen receptor (CAR) T or NK cells, have shown promise in treating hematologic malignancies. Yet, immune cell infiltration and expansion has proven challenging in solid tumors due to immune cell exclusion and exhaustion and the presence of vascular barriers. Testing next-generation immune therapies remains challenging in animals, motivating sophisticated ex vivo models of human tumor biology and prognostic assays to predict treatment response in real-time while comprehensively recapitulating the human tumor immune microenvironment (TIME). This review examines current strategies for testing cell-based cancer immunotherapies using ex vivo microphysiological systems and microfluidic technologies. Insights into the multicellular interactions of the TIME will identify novel therapeutic strategies to help patients whose tumors are refractory or resistant to current immunotherapies. Altogether, these microphysiological systems (MPS) have the capability to predict therapeutic vulnerabilities and biological barriers while studying immune cell infiltration and killing in a more physiologically relevant context, thereby providing important insights into fundamental biologic mechanisms to expand our understanding of and treatments for currently incurable malignancies.
Collapse
Affiliation(s)
- Marco Campisi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Sarah E. Shelton
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Minyue Chen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Roger D. Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David A. Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| | - Erik H. Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; (M.C.); (S.E.S.); (M.C.); (D.A.B.)
| |
Collapse
|
28
|
Zhao Y, Liu Y, Dai Y, Yang L, Chen G. Application of 3D Bioprinting in Urology. MICROMACHINES 2022; 13:mi13071073. [PMID: 35888890 PMCID: PMC9321242 DOI: 10.3390/mi13071073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022]
Abstract
Tissue engineering is an emerging field to create functional tissue components and whole organs. The structural and functional defects caused by congenital malformation, trauma, inflammation or tumor are still the major clinical challenges facing modern urology, and the current treatment has not achieved the expected results. Recently, 3D bioprinting has gained attention for its ability to create highly specialized tissue models using biological materials, bridging the gap between artificially engineered and natural tissue structures. This paper reviews the research progress, application prospects and current challenges of 3D bioprinting in urology tissue engineering.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Department of Public Health Laboratory Sciences, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China
| | - Yuebai Liu
- Department of Education and Training, Sichuan Cancer Hospital, Chengdu 610000, China;
| | - Yi Dai
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
| | - Luo Yang
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| | - Guo Chen
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610000, China; (Y.Z.); (Y.D.)
- Laboratory of Reconstructive Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610000, China
- Correspondence: (L.Y.); (G.C.); Tel.: +86-1-820-288-8984 (G.C.)
| |
Collapse
|
29
|
Bouhlel W, Kui J, Bibette J, Bremond N. Encapsulation of Cells in a Collagen Matrix Surrounded by an Alginate Hydrogel Shell for 3D Cell Culture. ACS Biomater Sci Eng 2022; 8:2700-2708. [PMID: 35609296 DOI: 10.1021/acsbiomaterials.1c01486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous techniques for mammalian cell culture have been developed to mimic the complex in vivo three-dimensional structure of tissues and organs. Among them, the sole use of proteins to create a matrix where cells are embedded already gives rise to self-organized multicellular assemblies. Loading cells in a controlled extracellular matrix along with cell culture and monitoring through a strategy that is compatible with pipetting tools would be beneficial for high throughput screening applications or simply for a standardized method. Here, we design submillimeter compartments having a thin alginate hydrogel shell and a core made of a collagen matrix where cells are embedded. The process, using a microfluidic device, is based on a high speed co-extrusion in air, leading to a compound jet whose fragmentation is controlled. The resulting core-shell liquid drops are then collected in a gelling bath that triggers a fast hardening of the shell and is followed by a slower self-assembly of collagen molecules into fibers. We show how to formulate the core solution in order to maintain cell viability at physiological conditions that otherwise induce tropocollagen molecules to self-assemble, while being able to prevent flow disturbances that are detrimental for this jetting method. Encapsulated Caco-2 cells, mainly used to model the intestinal barrier, proliferate and form a closed polarized epithelial cell monolayer where the apical membrane faces the continuous medium.
Collapse
Affiliation(s)
- Wafa Bouhlel
- Laboratoire Colloïdes et Matériaux Divisés, CBI, ESPCI Paris, Université PSL, CNRS, 10 rue Vauquelin, F-75005 Paris, France.,Sorbonne University, 4 place Jussieu, F-75005 Paris, France
| | - Jessica Kui
- Laboratoire Colloïdes et Matériaux Divisés, CBI, ESPCI Paris, Université PSL, CNRS, 10 rue Vauquelin, F-75005 Paris, France
| | - Jérôme Bibette
- Laboratoire Colloïdes et Matériaux Divisés, CBI, ESPCI Paris, Université PSL, CNRS, 10 rue Vauquelin, F-75005 Paris, France
| | - Nicolas Bremond
- Laboratoire Colloïdes et Matériaux Divisés, CBI, ESPCI Paris, Université PSL, CNRS, 10 rue Vauquelin, F-75005 Paris, France
| |
Collapse
|
30
|
Zhang J, Griesbach J, Ganeyev M, Zehnder AK, Zeng P, Schädli GN, Leeuw AD, Lai Y, Rubert M, Mueller R. Long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Biofabrication 2022; 14. [PMID: 35617929 DOI: 10.1088/1758-5090/ac73b9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/26/2022] [Indexed: 11/11/2022]
Abstract
Mechanical loading has been shown to influence various osteogenic responses of bone-derived cells and bone formation in vivo. However, the influence of mechanical stimulation on the formation of bone organoid in vitro is not clearly understood. Here, 3D bioprinted human mesenchymal stem cells (hMSCs)-laden graphene oxide composite scaffolds were cultured in a novel cyclic-loading bioreactors for up to 56 days. Our results showed that mechanical loading from day 1 (ML01) significantly increased organoid mineral density, organoid stiffness, and osteoblast differentiation compared with non-loading and mechanical loading from day 21. Importantly, ML01 stimulated collagen I maturation, osteocyte differentiation, lacunar-canalicular network formation and YAP expression on day 56. These finding are the first to reveal that long-term mechanical loading is required for the formation of 3D bioprinted functional osteocyte bone organoids. Such 3D bone organoids may serve as a human-specific alternative to animal testing for the study of bone pathophysiology and drug screening.
Collapse
Affiliation(s)
- Jianhua Zhang
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Julia Griesbach
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| | - Marsel Ganeyev
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Anna-Katharina Zehnder
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Peng Zeng
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Gian Nutal Schädli
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Anke de Leeuw
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8092, SWITZERLAND
| | - Yuxiao Lai
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, Shenzhen, 518055, CHINA
| | - Marina Rubert
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| | - Ralph Mueller
- ETH Zurich Department of Health Sciences and Technology, Leopold-Ruzicka-Weg 4, Zurich, Zürich, 8093, SWITZERLAND
| |
Collapse
|
31
|
Bjørge IM, de Sousa BM, Patrício SG, Silva AS, Nogueira LP, Santos LF, Vieira SI, Haugen HJ, Correia CR, Mano JF. Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19116-19128. [PMID: 35446549 DOI: 10.1021/acsami.2c01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia G Patrício
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Ana Sofia Silva
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Lúcia F Santos
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Clara R Correia
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| |
Collapse
|
32
|
Shang L, Ye F, Li M, Zhao Y. Spatial confinement toward creating artificial living systems. Chem Soc Rev 2022; 51:4075-4093. [PMID: 35502858 DOI: 10.1039/d1cs01025e] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.
Collapse
Affiliation(s)
- Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
33
|
Skylar-Scott MA, Huang JY, Lu A, Ng AHM, Duenki T, Liu S, Nam LL, Damaraju S, Church GM, Lewis JA. Orthogonally induced differentiation of stem cells for the programmatic patterning of vascularized organoids and bioprinted tissues. Nat Biomed Eng 2022; 6:449-462. [PMID: 35332307 DOI: 10.1038/s41551-022-00856-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/03/2022] [Indexed: 12/12/2022]
Abstract
The generation of organoids and tissues with programmable cellular complexity, architecture and function would benefit from the simultaneous differentiation of human induced pluripotent stem cells (hiPSCs) into divergent cell types. Yet differentiation protocols for the overexpression of specific transcription factors typically produce a single cell type. Here we show that patterned organoids and bioprinted tissues with controlled composition and organization can be generated by simultaneously co-differentiating hiPSCs into distinct cell types via the forced overexpression of transcription factors, independently of culture-media composition. Specifically, we used such orthogonally induced differentiation to generate endothelial cells and neurons from hiPSCs in a one-pot system containing either neural or endothelial stem-cell-specifying media, and to produce vascularized and patterned cortical organoids within days by aggregating inducible-transcription-factor and wild-type hiPSCs into randomly pooled or multicore-shell embryoid bodies. Moreover, by leveraging multimaterial bioprinting of hiPSC inks without extracellular matrix, we generated patterned neural tissues with layered regions composed of neural stem cells, endothelium and neurons. Orthogonally induced differentiation of stem cells may facilitate the fabrication of engineered tissues for biomedical applications.
Collapse
Affiliation(s)
- Mark A Skylar-Scott
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA. .,Basic Science and Engineering Initiative, Betty Irene Moore Children's Heart Center, Lucile Packard Children's Hospital, Stanford, CA, USA.
| | - Jeremy Y Huang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Aric Lu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.,Biological Engineering Division, Draper Laboratory, Cambridge, MA, USA
| | - Alex H M Ng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tomoya Duenki
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Songlei Liu
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Lucy L Nam
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Sarita Damaraju
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - George M Church
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Lewis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA. .,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| |
Collapse
|
34
|
Effects of fibrin matrix and Ishikawa cells on in vitro 3D uterine tissue cultures on a rat model: A controlled study. JOURNAL OF SURGERY AND MEDICINE 2022. [DOI: 10.28982/josam.1054556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
35
|
Synthetic developmental biology: Engineering approaches to guide multicellular organization. Stem Cell Reports 2022; 17:715-733. [PMID: 35276092 PMCID: PMC9023767 DOI: 10.1016/j.stemcr.2022.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Multicellular organisms of various complexities self-organize in nature. Organoids are in vitro 3D structures that display important aspects of the anatomy and physiology of their in vivo counterparts and that develop from pluripotent or tissue-specific stem cells through a self-organization process. In this review, we describe the multidisciplinary concept of “synthetic developmental biology” where engineering approaches are employed to guide multicellular organization in an experimental setting. We introduce a novel classification of engineering approaches based on the extent of microenvironmental manipulation applied to organoids. In the final section, we discuss how engineering tools might help overcome current limitations in organoid construction.
Collapse
|
36
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
37
|
Exploiting the fundamentals of biological organization for the advancement of biofabrication. Curr Opin Biotechnol 2021; 74:42-54. [PMID: 34798447 DOI: 10.1016/j.copbio.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/26/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
The field of biofabrication continues to progress, offering higher levels of spatial control, reproducibility, and functionality. However, we remain far from recapitulating what nature has achieved. Biological systems such as tissues and organs are assembled from the bottom-up through coordinated supramolecular and cellular processes that result in their remarkable structures and functionalities. In this perspective, we propose that incorporating such biological assembling mechanisms within fabrication techniques, offers an opportunity to push the boundaries of biofabrication. We dissect these mechanisms into distinct biological organization principles (BOPs) including self-assembly, compartmentalization, diffusion-reaction, disorder-to-order transitions, and out-of-equilibrium processes. We highlight recent work demonstrating the viability and potential of these approaches to enhance scalability, reproducibility, vascularization, and biomimicry; as well as current challenges to overcome.
Collapse
|
38
|
Mazari-Arrighi E, Ayollo D, Farhat W, Marret A, Gontran E, Dupuis-Williams P, Larghero J, Chatelain F, Fuchs A. Construction of functional biliary epithelial branched networks with predefined geometry using digital light stereolithography. Biomaterials 2021; 279:121207. [PMID: 34741977 DOI: 10.1016/j.biomaterials.2021.121207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/11/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022]
Abstract
Cholangiocytes, biliary epithelial cells, are known to spontaneously self-organize into spherical cysts with a central lumen. In this work, we explore a promising biocompatible stereolithographic approach to encapsulate cholangiocytes into geometrically controlled 3D hydrogel structures to guide them towards the formation of branched tubular networks. We demonstrate that within the appropriate mix of hydrogels, normal rat cholangiocytes can proliferate, migrate, and organize into branched tubular structures with walls consisting of a cell monolayer, transport fluorescent dyes into the luminal space, and show markers of epithelial maturation such as primary cilia and continuous tight junctions. The resulting structures have dimensions typically found in the intralobular and intrahepatic biliary tree and are stable for weeks, without any requirement of bulk supporting material, thereby offering total access to the external side of these biliary epithelial constructs.
Collapse
Affiliation(s)
- Elsa Mazari-Arrighi
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Dmitry Ayollo
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Wissam Farhat
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Auriane Marret
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Emilie Gontran
- INSERM U-1279, Gustave Roussy, Villejuif, F-94805, France; Université Paris-Saclay, Inserm, Physiopathogenèse et traitement des maladies du foie, F-94800, Villejuif, France
| | - Pascale Dupuis-Williams
- Université Paris-Saclay, Inserm, Physiopathogenèse et traitement des maladies du foie, F-94800, Villejuif, France; ESPCI Paris, Université PSL, F-75005, Paris, France
| | - Jerome Larghero
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France
| | - Francois Chatelain
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France
| | - Alexandra Fuchs
- Université de Paris, Inserm, U976 HIPI, F-75006, Paris, France; AP-HP, Hôpital Saint-Louis, 1 avenue Vellefaux, F-75010, Paris, France; CEA, IRIG, F-38000, Grenoble, France.
| |
Collapse
|
39
|
Self-Organization Provides Cell Fate Commitment in MSC Sheet Condensed Areas via ROCK-Dependent Mechanism. Biomedicines 2021; 9:biomedicines9091192. [PMID: 34572378 PMCID: PMC8470239 DOI: 10.3390/biomedicines9091192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSC) are one of the crucial regulators of regeneration and tissue repair and possess an intrinsic program from self-organization mediated by condensation, migration and self-patterning. The ability to self-organize has been successfully exploited in tissue engineering approaches using cell sheets (CS) and their modifications. In this study, we used CS as a model of human MSC spontaneous self-organization to demonstrate its structural, transcriptomic impact and multipotent stromal cell commitment. We used CS formation to visualize MSC self-organization and evaluated the role of the Rho-GTPase pathway in spontaneous condensation, resulting in a significant anisotropy of the cell density within the construct. Differentiation assays were carried out using conventional protocols, and microdissection and RNA-sequencing were applied to establish putative targets behind the observed phenomena. The differentiation of MSC to bone and cartilage, but not to adipocytes in CS, occurred more effectively than in the monolayer. RNA-sequencing indicated transcriptional shifts involving the activation of the Rho-GTPase pathway and repression of SREBP, which was concordant with the lack of adipogenesis in CS. Eventually, we used an inhibitory analysis to validate our findings and suggested a model where the self-organization of MSC defined their commitment and cell fate via ROCK1/2 and SREBP as major effectors under the putative switching control of AMP kinase.
Collapse
|
40
|
Shrestha S, Lekkala VKR, Acharya P, Siddhpura D, Lee MY. Recent advances in microarray 3D bioprinting for high-throughput spheroid and tissue culture and analysis. Essays Biochem 2021; 65:481-489. [PMID: 34296737 PMCID: PMC9270997 DOI: 10.1042/ebc20200150] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022]
Abstract
Three-dimensional (3D) cell culture in vitro has proven to be more physiologically relevant than two-dimensional (2D) culture of cell monolayers, thus more predictive in assessing efficacy and toxicity of compounds. There have been several 3D cell culture techniques developed, which include spheroid and multicellular tissue cultures. Cell spheroids have been generated from single or multiple cell types cultured in ultralow attachment (ULA) well plates and hanging droplet plates. In general, cell spheroids are formed in a relatively short period of culture, in the absence of extracellular matrices (ECMs), via gravity-driven self-aggregation, thus having limited ability to self-organization in layered structure. On the other hand, multicellular tissue cultures including miniature tissues derived from pluripotent stem cells and adult stem cells (a.k.a. 'organoids') and 3D bioprinted tissue constructs require biomimetic hydrogels or ECMs and show highly ordered structure due to spontaneous self-organization of cells during differentiation and maturation processes. In this short review article, we summarize traditional methods of spheroid and multicellular tissue cultures as well as their technical challenges, and introduce how droplet-based, miniature 3D bioprinting ('microarray 3D bioprinting') can be used to improve assay throughput and reproducibility for high-throughput, predictive screening of compounds. Several platforms including a micropillar chip and a 384-pillar plate developed to facilitate miniature spheroid and tissue cultures via microarray 3D bioprinting are introduced. We excluded microphysiological systems (MPSs) in this article although they are important tissue models to simulate multiorgan interactions.
Collapse
Affiliation(s)
- Sunil Shrestha
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Vinod Kumar Reddy Lekkala
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Prabha Acharya
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| | - Darshita Siddhpura
- Department of Chemical and Biomedical Engineering, Cleveland State University, 2121 Euclid Ave, Cleveland, Ohio 44115, United States
| | - Moo-Yeal Lee
- Department of Biomedical Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203, United States
| |
Collapse
|
41
|
Abstract
Micropatterning encompasses a set of methods aimed at precisely controlling the spatial distribution of molecules onto the surface of materials. Biologists have borrowed the idea and adapted these methods, originally developed for electronics, to impose physical constraints on biological systems with the aim of addressing fundamental questions across biological scales from molecules to multicellular systems. Here, I approach this topic from a developmental biologist's perspective focusing specifically on how and why micropatterning has gained in popularity within the developmental biology community in recent years. Overall, this Primer provides a concise overview of how micropatterns are used to study developmental processes and emphasises how micropatterns are a useful addition to the developmental biologist's toolbox.
Collapse
Affiliation(s)
- Guillaume Blin
- Institute for Regeneration and Repair, Institute for Stem Cell Research, School of Biological Sciences, The University of Edinburgh, 5 Little France Drive, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| |
Collapse
|
42
|
Ebner-Peking P, Krisch L, Wolf M, Hochmann S, Hoog A, Vári B, Muigg K, Poupardin R, Scharler C, Schmidhuber S, Russe E, Stachelscheid H, Schneeberger A, Schallmoser K, Strunk D. Self-assembly of differentiated progenitor cells facilitates spheroid human skin organoid formation and planar skin regeneration. Theranostics 2021; 11:8430-8447. [PMID: 34373751 PMCID: PMC8344006 DOI: 10.7150/thno.59661] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023] Open
Abstract
Self-assembly of solid organs from single cells would greatly expand applicability of regenerative medicine. Stem/progenitor cells can self-organize into micro-sized organ units, termed organoids, partially modelling tissue function and regeneration. Here we demonstrated 3D self-assembly of adult and induced pluripotent stem cell (iPSC)-derived fibroblasts, keratinocytes and endothelial progenitors into both, planar human skin in vivo and a novel type of spheroid-shaped skin organoids in vitro, under the aegis of human platelet lysate. Methods: Primary endothelial colony forming cells (ECFCs), skin fibroblasts (FBs) and keratinocytes (KCs) were isolated from human tissues and polyclonally propagated under 2D xeno-free conditions. Human tissue-derived iPSCs were differentiated into endothelial cells (hiPSC-ECs), fibroblasts (hiPSC-FBs) and keratinocytes (hiPSC-KCs) according to efficiency-optimized protocols. Cell identity and purity were confirmed by flow cytometry and clonogenicity indicated their stem/progenitor potential. Triple cell type floating spheroids formation was promoted by human platelet-derived growth factors containing culture conditions, using nanoparticle cell labelling for monitoring the organization process. Planar human skin regeneration was assessed in full-thickness wounds of immune-deficient mice upon transplantation of hiPSC-derived single cell suspensions. Results: Organoids displayed a distinct architecture with surface-anchored keratinocytes surrounding a stromal core, and specific signaling patterns in response to inflammatory stimuli. FGF-7 mRNA transfection was required to accelerate keratinocyte long-term fitness. Stratified human skin also self-assembled within two weeks after either adult- or iPSC-derived skin cell-suspension liquid-transplantation, healing deep wounds of mice. Transplant vascularization significantly accelerated in the presence of co-transplanted endothelial progenitors. Mechanistically, extracellular vesicles mediated the multifactorial platelet-derived trophic effects. No tumorigenesis occurred upon xenografting. Conclusion: This illustrates the superordinate progenitor self-organization principle and permits novel rapid 3D skin-related pharmaceutical high-content testing opportunities with floating spheroid skin organoids. Multi-cell transplant self-organization facilitates development of iPSC-based organ regeneration strategies using cell suspension transplantation supported by human platelet factors.
Collapse
Affiliation(s)
- Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
- Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolf
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Anna Hoog
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Balázs Vári
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Muigg
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Rodolphe Poupardin
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Cornelia Scharler
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| | | | - Elisabeth Russe
- Department of Plastic, Aesthetic and Reconstructive Surgery, Hospital Barmherzige Brueder, Salzburg, Austria
| | | | | | - Katharina Schallmoser
- Department of Transfusion Medicine, University Clinic, Paracelsus Medical University, Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), University Clinic, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
43
|
Miao Y, Niu X, Wu A, Wu M, Jin S, Zhang P, Zhao W, Zhao X. Metallic Oxide-Induced Self-Assembly of Block Copolymers to Form Polymeric Hybrid Micelles with Tunable Stability for Tumor Microenvironment-Responsive Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32753-32762. [PMID: 34236174 DOI: 10.1021/acsami.1c07168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since block copolymers are able to self-assemble into various polymeric architectures, it is intriguing to explore a unique self-assembly strategy for polymers. Two different metallic oxides [manganese dioxide (MnO2) and zinc oxide (ZnO)] are displayed herein to demonstrate this self-assembly mechanism of polymers. In situ generation of metallic oxides induces self-assembly of block copolymers to form polymeric hybrid micelles with tunable stability in aqueous solutions. These final ZnO-cross-linked polymeric micelles exhibited a high drug loading capacity of 0.41 mg mg-1 toward doxorubicin (DOX), whereas DOX-loaded ZnO-cross-linked polymeric micelles could be broken down into Zn2+ and polymer scraps, which facilitated drug release in tumor microenvironments. Both in vitro and in vivo investigations showed that the drug-loaded ZnO-cross-linked polymeric micelles effectively suppressed tumor growth. Accordingly, the present study demonstrates a novel strategy of polymer self-assembly for fabricating polymeric architectures that can potentially provide insight for developing other polymeric architectures.
Collapse
Affiliation(s)
- Yalei Miao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoshuang Niu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Aijun Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Menghan Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Shengzhe Jin
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Panke Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xubo Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
44
|
Jalili AR, Satalov A, Nazari S, Rahmat Suryanto BH, Sun J, Ghasemian MB, Mayyas M, Kandjani AE, Sabri YM, Mayes E, Bhargava SK, Araki J, Zakri C, Poulin P, Esrafilzadeh D, Amal R. Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28627-28638. [PMID: 34110785 DOI: 10.1021/acsami.1c05025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The emergence of three-dimensional (3D) printing promises a disruption in the design and on-demand fabrication of smart structures in applications ranging from functional devices to human organs. However, the scale at which 3D printing excels is within macro- and microlevels and principally lacks the spatial ordering of building blocks at nanolevels, which is vital for most multifunctional devices. Herein, we employ liquid crystal (LC) inks to bridge the gap between the nano- and microscales in a single-step 3D printing. The LC ink is prepared from mixtures of LCs of nanocellulose whiskers and large sheets of graphene oxide, which offers a highly ordered laminar organization not inherently present in the source materials. LC-mediated 3D printing imparts the fine-tuning required for the design freedom of architecturally layered systems at the nanoscale with intricate patterns within the 3D-printed constructs. This approach empowered the development of a high-performance humidity sensor composed of self-assembled lamellar organization of NC whiskers. We observed that the NC whiskers that are flat and parallel to each other in the laminar organization allow facile mass transport through the structure, demonstrating a significant improvement in the sensor performance. This work exemplifies how LC ink, implemented in a 3D printing process, can unlock the potential of individual constituents to allow macroscopic printing architectures with nanoscopic arrangements.
Collapse
Affiliation(s)
- Ali Rouhollah Jalili
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Alexandra Satalov
- Institut für Anorganische Chemie, Leibniz Universität Hannover, Callinstr. 9, Hannover 30167, Germany
| | - Sahar Nazari
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Bryan Harry Rahmat Suryanto
- Australian Centre for Electromaterials Science, School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Jing Sun
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Mohammad Bagher Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| | - Ahmad E Kandjani
- School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Ylias M Sabri
- School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Edwin Mayes
- School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Suresh K Bhargava
- School of Science, RMIT University, Melbourne 3001, Victoria, Australia
| | - Jun Araki
- Faculty of Textile Science and Technology, Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano prefecture, Japan
- Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda 386-8567, Nagano prefecture, Japan
| | - Cécile Zakri
- Centre de Recherche Paul Pascal-CNRS, University of Bordeaux, Pessac 33600, France
| | - Philippe Poulin
- Centre de Recherche Paul Pascal-CNRS, University of Bordeaux, Pessac 33600, France
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney 2031, New South Wales, Australia
| | - Rose Amal
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney 2052, New South Wales, Australia
| |
Collapse
|
45
|
Hwang DG, Choi YM, Jang J. 3D Bioprinting-Based Vascularized Tissue Models Mimicking Tissue-Specific Architecture and Pathophysiology for in vitro Studies. Front Bioeng Biotechnol 2021; 9:685507. [PMID: 34136473 PMCID: PMC8201787 DOI: 10.3389/fbioe.2021.685507] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
A wide variety of experimental models including 2D cell cultures, model organisms, and 3D in vitro models have been developed to understand pathophysiological phenomena and assess the safety and efficacy of potential therapeutics. In this sense, 3D in vitro models are an intermediate between 2D cell cultures and animal models, as they adequately reproduce 3D microenvironments and human physiology while also being controllable and reproducible. Particularly, recent advances in 3D in vitro biomimicry models, which can produce complex cell structures, shapes, and arrangements, can more similarly reflect in vivo conditions than 2D cell culture. Based on this, 3D bioprinting technology, which enables to place the desired materials in the desired locations, has been introduced to fabricate tissue models with high structural similarity to the native tissues. Therefore, this review discusses the recent developments in this field and the key features of various types of 3D-bioprinted tissues, particularly those associated with blood vessels or highly vascularized organs, such as the heart, liver, and kidney. Moreover, this review also summarizes the current state of the three categories: (1) chemical substance treatment, (2) 3D bioprinting of lesions, and (3) recapitulation of tumor microenvironments (TME) of 3D bioprinting-based disease models according to their disease modeling approach. Finally, we propose the future directions of 3D bioprinting approaches for the creation of more advanced in vitro biomimetic 3D tissues, as well as the translation of 3D bioprinted tissue models to clinical applications.
Collapse
Affiliation(s)
- Dong Gyu Hwang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Yoo-Mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Jinah Jang
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, South Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, South Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea.,Institute of Convergence Science, Yonsei University, Seoul, South Korea
| |
Collapse
|
46
|
Burdis R, Kelly DJ. Biofabrication and bioprinting using cellular aggregates, microtissues and organoids for the engineering of musculoskeletal tissues. Acta Biomater 2021; 126:1-14. [PMID: 33711529 DOI: 10.1016/j.actbio.2021.03.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022]
Abstract
The modest clinical impact of musculoskeletal tissue engineering (TE) can be attributed, at least in part, to a failure to recapitulate the structure, composition and functional properties of the target tissue. This has motivated increased interest in developmentally inspired TE strategies, which seek to recapitulate key events that occur during embryonic and post-natal development, as a means of generating truly biomimetic grafts to replace or regenerate damaged tissues and organs. Such TE strategies can be substantially enabled by emerging biofabrication and bioprinting strategies, and in particular the use of cellular aggregates, microtissues and organoids as 'building blocks' for the development of larger tissues and/or organ precursors. Here, the application of such biological building blocks for the engineering of musculoskeletal tissues, from vascularised bone to zonally organised articular cartilage, will be reviewed. The importance of first scaling-down to later scale-up will be discussed, as this is viewed as a key component of engineering functional grafts using cellular aggregates or microtissues. In the context of engineering anatomically accurate tissues of scale suitable for tissue engineering and regenerative medicine applications, novel bioprinting modalities and their application in controlling the process by which cellular aggregates or microtissues fuse and self-organise will be reviewed. Throughout the paper, we will highlight some of the key challenges facing this emerging field. STATEMENT OF SIGNIFICANCE: The field of bioprinting has grown substantially in recent years, but despite the hype and excitement it has generated, there are relatively few examples of bioprinting strategies producing implants with superior regenerative potential to that achievable with more traditional tissue engineering approaches. This paper provides an up-to-date review of emerging biofabrication and bioprinting strategies which use cellular aggregates and microtissues as 'building blocks' for the development of larger musculoskeletal tissues and/or organ precursors - a field of research that can potentially enable functional regeneration of damaged and diseased tissues. The application of cellular aggregates and microtissues for the engineering of musculoskeletal tissues, from vascularised bone to zonally organised articular cartilage, will be reviewed. In the context of engineering anatomically accurate tissues of scale, novel bioprinting modalities and their application in controlling the process by which cellular aggregates or microtissues self-organise is addressed, as well as key challenges facing this emerging field.
Collapse
|
47
|
Dmitriev RI, Intes X, Barroso MM. Luminescence lifetime imaging of three-dimensional biological objects. J Cell Sci 2021; 134:1-17. [PMID: 33961054 PMCID: PMC8126452 DOI: 10.1242/jcs.254763] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major focus of current biological studies is to fill the knowledge gaps between cell, tissue and organism scales. To this end, a wide array of contemporary optical analytical tools enable multiparameter quantitative imaging of live and fixed cells, three-dimensional (3D) systems, tissues, organs and organisms in the context of their complex spatiotemporal biological and molecular features. In particular, the modalities of luminescence lifetime imaging, comprising fluorescence lifetime imaging (FLI) and phosphorescence lifetime imaging microscopy (PLIM), in synergy with Förster resonance energy transfer (FRET) assays, provide a wealth of information. On the application side, the luminescence lifetime of endogenous molecules inside cells and tissues, overexpressed fluorescent protein fusion biosensor constructs or probes delivered externally provide molecular insights at multiple scales into protein-protein interaction networks, cellular metabolism, dynamics of molecular oxygen and hypoxia, physiologically important ions, and other physical and physiological parameters. Luminescence lifetime imaging offers a unique window into the physiological and structural environment of cells and tissues, enabling a new level of functional and molecular analysis in addition to providing 3D spatially resolved and longitudinal measurements that can range from microscopic to macroscopic scale. We provide an overview of luminescence lifetime imaging and summarize key biological applications from cells and tissues to organisms.
Collapse
Affiliation(s)
- Ruslan I. Dmitriev
- Tissue Engineering and Biomaterials Group, Department of
Human Structure and Repair, Faculty of Medicine and Health Sciences,
Ghent University, Ghent 9000,
Belgium
| | - Xavier Intes
- Department of Biomedical Engineering, Center for
Modeling, Simulation and Imaging for Medicine (CeMSIM),
Rensselaer Polytechnic Institute, Troy, NY
12180-3590, USA
| | - Margarida M. Barroso
- Department of Molecular and Cellular
Physiology, Albany Medical College,
Albany, NY 12208, USA
| |
Collapse
|
48
|
Self-organization and culture of Mesenchymal Stem Cell spheroids in acoustic levitation. Sci Rep 2021; 11:8355. [PMID: 33863936 PMCID: PMC8052426 DOI: 10.1038/s41598-021-87459-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/30/2021] [Indexed: 12/29/2022] Open
Abstract
In recent years, 3D cell culture models such as spheroid or organoid technologies have known important developments. Many studies have shown that 3D cultures exhibit better biomimetic properties compared to 2D cultures. These properties are important for in-vitro modeling systems, as well as for in-vivo cell therapies and tissue engineering approaches. A reliable use of 3D cellular models still requires standardized protocols with well-controlled and reproducible parameters. To address this challenge, a robust and scaffold-free approach is proposed, which relies on multi-trap acoustic levitation. This technology is successfully applied to Mesenchymal Stem Cells (MSCs) maintained in acoustic levitation over a 24-h period. During the culture, MSCs spontaneously self-organized from cell sheets to cell spheroids with a characteristic time of about 10 h. Each acoustofluidic chip could contain up to 30 spheroids in acoustic levitation and four chips could be ran in parallel, leading to the production of 120 spheroids per experiment. Various biological characterizations showed that the cells inside the spheroids were viable, maintained the expression of their cell surface markers and had a higher differentiation capacity compared to standard 2D culture conditions. These results open the path to long-time cell culture in acoustic levitation of cell sheets or spheroids for any type of cells.
Collapse
|
49
|
Soto F, Guimarães CF, Reis RL, Franco W, Rizvi I, Demirci U. Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models. Cancer Lett 2021; 504:116-124. [PMID: 33577978 DOI: 10.1016/j.canlet.2021.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal organoids from laboratory settings to patient-specific models in clinical applications.
Collapse
Affiliation(s)
- Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
| | - Carlos F Guimarães
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA; 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts, Lowell, 01854, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA.
| |
Collapse
|
50
|
Daly AC, Prendergast ME, Hughes AJ, Burdick JA. Bioprinting for the Biologist. Cell 2021; 184:18-32. [PMID: 33417859 DOI: 10.1016/j.cell.2020.12.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/29/2020] [Accepted: 12/01/2020] [Indexed: 12/30/2022]
Abstract
Building tissues from scratch to explore entirely new cell configurations could revolutionize fundamental understanding in biology. Bioprinting is an emerging technology to do this. Although typically applied to engineer tissues for therapeutic tissue repair or drug screening, there are many opportunities for bioprinting within biology, such as for exploring cellular crosstalk or cellular morphogenesis. The overall goals of this Primer are to provide an overview of bioprinting with the biologist in mind, outline the steps in extrusion bioprinting (the most widely used and accessible technology), and discuss alternative bioprinting technologies and future opportunities for bioprinting in biology.
Collapse
Affiliation(s)
- Andrew C Daly
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|