1
|
Zhang J, Shi H, Qin X, Wang P, Ling Y, Jin X, Cui M, Song B, Wang H, He Y. Sterically Controlled Cyclobutane-Dioxetane Ultrabright Afterglow Nanosystem for Cyclic Therapy of Choroidal Neovascularization in Mice. J Am Chem Soc 2025. [PMID: 40392694 DOI: 10.1021/jacs.5c05187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Afterglow occurring after light excitation ceases offers a safer light source to the laser-activated verteporfin therapy approved by the FDA for choroidal neovascularization (CNV). However, conventional afterglow molecules, especially adamantane-dioxetanes with high steric hindrance, exhibit limited chemiexcitation, restricting electron transfer and diminishing therapeutic effects. Here, we constructed ultrabright afterglow nanosystems by integrating low-hindrance cyclobutane moieties into the dioxetane framework. Among these cyclobutane substituents, the benzyl oxocyclobutane-dioxetane is the brightest afterglow molecule due to its lowest hindrance, showing 35.7 times faster relative chemiexcitation rate and 59 times higher afterglow intensity than adamantane-dioxetane, alongside a three-order-of-magnitude increase in total afterglow emission. Consequently, at the equivalent concentration, the benzyl oxocyclobutane-dioxetane-based nanosystem produces nearly five times more singlet oxygen than free verteporfin. In a CNV mouse model, cyclic treatment with our nanosystem reduced lesion areas by 64.9%, outperforming the 39.3% reduction achieved by free verteporfin counterpart. By eliminating the need for laser activation, this strategy minimizes ocular damage, providing a safe and effective treatment for CNV and other retinal disorders.
Collapse
Affiliation(s)
- Jiawei Zhang
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Haoliang Shi
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Xuan Qin
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Pengcheng Wang
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yufan Ling
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xiangbowen Jin
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Mingyue Cui
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yao He
- Institute of Functional Nano & Soft Materials & Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, Macau 999078, SAR, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, SAR, China
| |
Collapse
|
2
|
Zhang Z, Fan YN, Jiang SQ, Ma YJ, Yu YR, Qing YX, Li QR, Liu YL, Shen S, Wang J. Recent Advances in mRNA Delivery Systems for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e17571. [PMID: 40391789 DOI: 10.1002/advs.202417571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Indexed: 05/22/2025]
Abstract
mRNA therapy is a promising approach in oncology, offering innovative applications such as tumor vaccines, protein replacement therapy, cell therapy, and gene therapy. However, challenges such as mRNA stability and delivery efficiency must be addressed. Advances in delivery system technologies are crucial for precise mRNA delivery, enhancing treatment safety and efficacy. The development of delivery systems requires accurate organ or cell targeting, intelligent release mechanisms, and optimized administration routes. This review outlines the applications of mRNA therapy in oncology, as well as the utilization of nonviral vectors, encompassing organic, inorganic, and biomimetic systems. It further elucidates the strategies for passive and active vector targeting and examines recent advances in the realm of stimuli-responsive delivery systems that are sensitive to pH and ultrasound. Additionally, the review addresses the development of noninvasive mRNA delivery systems designed for oral and pulmonary administration. The current challenges and emerging trends of mRNA therapy are discussed, and the potential strategies to mitigate these issues are emphasized.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Nan Fan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Si-Qi Jiang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Ya-Jing Ma
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yao-Ru Yu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yu-Xin Qing
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Qian-Ru Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Yi-Lin Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, 511442, P. R. China
| | - Song Shen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Jun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
3
|
Jia J, Hao Y, Zhang L, Cao X, An L, Wang H, Ma Q, Jin X, Ma X. Development and validation of optimized lentivirus-like particles for gene editing tool delivery with Gag-Only strategy. Eur J Med Res 2025; 30:242. [PMID: 40186294 PMCID: PMC11969815 DOI: 10.1186/s40001-025-02499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND The development of gene editing tools such as CRISPR-Cas9 and base editors (BE) is critical for genetic diseases and cancer. Lentivirus-like particles (LVLPs) grows into an auspicious platform for delivering mRNA or ribonucleic proteins (RNPs) due to it integrates the advantage of viral and non-viral vectors. Current LVLP systems predominantly utilize HIV-Gag and Pol proteins. However, the reverse transcriptase and integrase of Pol, pose risks of genomic integration and potential tumorigenesis. Enhancing the safety of VLP system is essential. This study focuses on improving the LVLP to minimize these risks. METHODS We implemented a Gag-Only strategy, constructing LVLPs with HIV-Gag protein, thereby eliminating the integration risks linked to Pol. By leveraging the interactions between MS2-MCP (MS2 coat protein), PP7 and PP7 BP (PP7 binding protein), and the psi (HIV packaging signal) with HIV-Gag, we encapsulated PAMless andesine base editor (CE-8e-SpRY) mRNA and sgRNA targeting the PD1 start codon (ATG) into the LVLP. Using recombinant lentiviral vector technology, we developed a stable PD1-expressing 293T cell line (PD1-293T) to assess the editing efficiency of LVLP. RESULTS The psi-LVLP demonstrated effective packaging capabilities, achieving 15% base editing efficiency in 293T cells. By optimizing plasmid ratios, we observed increased CE-8e-SpRY mRNA copy numbers, with 30% base editing efficiency. Additionally, the integration of HDVrz (hepatitis delta virus ribozyme) and psi into sgRNA (HDVrz-psi-LVLP) substantially enhanced sgRNA copy numbers, resulting in approximately 50% base editing efficiency in 293T cells and 20% base editing efficiency in Jurkat cells. Mendelian randomization analyses revealed significant genetic correlations between PD1, B2M, CIITA, and TIGIT genes with various cancer risks. Furthermore, HDVrz-psi-LVLPs targeting the start codons of B2M, CIITA, and TIGIT exhibited high base editing activity in both Jurkat and 293T cells. CONCLUSION In conclusion, this optimized platform effectively encapsulates CE-8e-SpRY mRNA and sgRNA, achieving high editing efficiencies across multiple genes and cell types. We introduce a safer and more efficient gene editing tool delivery system by constructing LVLPs based on the Gag-Only strategy. Our study presents a promising implication for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinlin Jia
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Yanzhe Hao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, 100052, China.
| | - Lu Zhang
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Xiaofang Cao
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Lisha An
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Hu Wang
- National Research Institute for Family Planning, Beijing, 100081, China
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- National Human Genetic Resources Center, Beijing, 100052, China
| | - Qi Ma
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Chinese Center for Disease Control and Prevention, National Institute for Viral Disease Control and Prevention, Beijing, 100052, China
| | - Xiaohua Jin
- National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- National Human Genetic Resources Center, Beijing, 100052, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, 100081, China.
- Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- National Human Genetic Resources Center, Beijing, 100052, China.
| |
Collapse
|
4
|
Ling S, Zhang X, Dai Y, Jiang Z, Zhou X, Lu S, Qian X, Liu J, Selfjord N, Satir TM, Lundin A, Touza JL, Firth M, Van Zuydam N, Bilican B, Akcakaya P, Hong J, Cai Y. Customizable virus-like particles deliver CRISPR-Cas9 ribonucleoprotein for effective ocular neovascular and Huntington's disease gene therapy. NATURE NANOTECHNOLOGY 2025; 20:543-553. [PMID: 39930103 PMCID: PMC12015117 DOI: 10.1038/s41565-024-01851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/17/2024] [Indexed: 04/24/2025]
Abstract
In vivo CRISPR gene editing holds enormous potential for various diseases. Ideally, CRISPR delivery should be cell type-specific and time-restricted for optimal efficacy and safety, but customizable methods are lacking. Here we develop a cell-tropism programmable CRISPR-Cas9 ribonucleoprotein delivery system (RIDE) based on virus-like particles. The efficiency of RIDE was comparable to that of adeno-associated virus and lentiviral vectors and higher than lipid nanoparticles. RIDE could be readily reprogrammed to target dendritic cells, T cells and neurons, and significantly ameliorated the disease symptoms in both ocular neovascular and Huntington's disease models via cell-specific gene editing. In addition, RIDE could efficiently edit the huntingtin gene in patients' induced pluripotent stem cell-derived neurons and was tolerated in non-human primates. This study is expected to facilitate the development of in vivo CRISPR therapeutics.
Collapse
Affiliation(s)
- Sikai Ling
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- BDGENE Therapeutics, Shanghai, China
| | - Xue Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Dai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuofan Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xujiao Zhou
- Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Sicong Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jianping Liu
- Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Tugce Munise Satir
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundin
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mike Firth
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Natalie Van Zuydam
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Bilada Bilican
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jiaxu Hong
- Department of Ophthalmology, Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.
- Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China.
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Medical Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Gene Editing and Cell-based Immunotherapy for Hematological Diseases, Shanghai, China.
| |
Collapse
|
5
|
Lu C, Li Y, Cummings JR, Banskota S. Delivery of genome editors with engineered virus-like particles. Methods Enzymol 2025; 712:475-516. [PMID: 40121085 DOI: 10.1016/bs.mie.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Genome editing technologies have revolutionized biomedical sciences and biotechnology. However, their delivery in vivo remains one of the major obstacles for clinical translation. Here, we introduce various emerging genome editing systems and review different delivery systems have been developed to realize the promise of in vivo gene editing therapies. In particular, we focus on virus-like particles (VLPs), an emerging delivery platform and provide in depth analysis on recent advancements to improve VLPs delivery potential and highlight opportunities for future improvements. To this end, we also provide detail workflows for engineered VLP (eVLP) selection, production, and purification, along with methods for characterization and validation.
Collapse
Affiliation(s)
- Christopher Lu
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States
| | - Yuanhang Li
- Biological Design Center, Boston University, Boston, MA, United States; Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Jacob Ryan Cummings
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States
| | - Samagya Banskota
- Department of Biomedical Engineering, Boston University, Boston, MA, United States; Biological Design Center, Boston University, Boston, MA, United States.
| |
Collapse
|
6
|
Zhao Q, Wei L, Chen Y. From bench to bedside: Developing CRISPR/Cas-based therapy for ocular diseases. Pharmacol Res 2025; 213:107638. [PMID: 39889868 DOI: 10.1016/j.phrs.2025.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
Vision-threatening disorders, including both hereditary and multifactorial ocular diseases, necessitate innovative therapeutic approaches. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) has emerged as a promising tool for treating ocular diseases through gene editing and expression regulation. This system has contributed to the development of representative disease models, including animal models, organoids, and cell lines, thereby facilitating investigations into the pathogenesis of disease-related genes. Besides, therapeutic applications of CRISPR/Cas have been extensively explored in preclinical in vitro and in vivo studies, targeting various ocular conditions, such as retinitis pigmentosa, Leber congenital amaurosis, Usher syndrome, fundus neovascular diseases, glaucoma, and corneal diseases. Recent advancements have demonstrated the technology's potential to restore cellular homeostasis and alleviate disease phenotypes, thereby prompting a variety of clinical trials. To date, active trials include treatments for primary open angle glaucoma with MYOC mutations, refractory herpetic viral keratitis, CEP290-associated inherited retinal degenerations, neovascular age-related macular degeneration, and retinitis pigmentosa with RHO mutations. However, challenges remain, primarily concerning off-target effects, immunogenicity, ethical considerations, and regulatory particularity. To reach higher safety and efficiency before truly transitioning from bench to bedside, future research should concentrate on improving the specificity and efficacy of Cas proteins, optimizing delivery vectors, and broadening the applicability of therapeutic targets. This review summarizes the application strategies and delivery methods of CRISPR/Cas, discusses recent progress in CRISPR/Cas-based disease models and therapies, and provides an overview of the landscape of clinical trials. Current obstacles and future directions regarding the bench-to-bedside transition are also discussed.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China
| | - Linxin Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China; Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China; Beijing Key Laboratory of Fundus Diseases Intelligent Diagnosis & Drug/Device Development and Translation, Beijing 100730, China.
| |
Collapse
|
7
|
Shi Y, Mao J, Wang S, Ma S, Luo L, You J. Pharmaceutical strategies for optimized mRNA expression. Biomaterials 2025; 314:122853. [PMID: 39342919 DOI: 10.1016/j.biomaterials.2024.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Messenger RNA (mRNA)-based immunotherapies and protein in situ production therapies hold great promise for addressing theoretically all the diseases characterized by aberrant protein levels. The safe, stable, and precise delivery of mRNA to target cells via appropriate pharmaceutical strategies is a prerequisite for its optimal efficacy. In this review, we summarize the structural characteristics, mode of action, development prospects, and limitations of existing mRNA delivery systems from a pharmaceutical perspective, with an emphasis on the impacts from formulation adjustments and preparation techniques of non-viral vectors on mRNA stability, target site accumulation and transfection efficiency. In addition, we introduce strategies for synergistical combination of mRNA and small molecules to augment the potency or mitigate the adverse effects of mRNA therapeutics. Lastly, we delve into the challenges impeding the development of mRNA drugs while exploring promising avenues for future advancements.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Jiapeng Mao
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Sijie Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China
| | - Siyao Ma
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 166 Qiutaobei Road, Hangzhou, Zhejiang, 310017, PR China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, 310006, PR China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, 310000, PR China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, 321299, PR China.
| |
Collapse
|
8
|
Xiong K, Wang X, Feng C, Zhang K, Chen D, Yang S. Vectors in CRISPR Gene Editing for Neurological Disorders: Challenges and Opportunities. Adv Biol (Weinh) 2025; 9:e2400374. [PMID: 39950370 DOI: 10.1002/adbi.202400374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/13/2025] [Indexed: 03/18/2025]
Abstract
Diseases of the nervous system are recognized as the second leading cause of death worldwide. The global prevalence of neurological diseases, such as Huntington's disease, Alzheimer's disease, and Parkinson's disease has seen a significant rise due to the increasing proportion of the aging population. The discovery of the clustered regularly interspaced short palindromic repeats (CRISPR) genome editing technique has paved way for universal neurological diseases treatment. However, finding a safe and effective method to deliver CRISPR gene-editing tools remains a main challenge for genome editing therapies in vivo. Adeno-associated virus (AAV) is currently one of the most commonly used vector systems, but some issues remain unresolved, including capsid immunogenicity, off-target mutations, and potential genotoxicity. To address these concerns, researchers are actively encouraging the development of new delivery systems, like virus-like particles and nanoparticles. These novel systems have the potential to enhance targeting efficiency, thereby offering possible solutions to the current challenges. This article reviews CRISPR delivery vectors for neurological disorders treatment and explores potential solutions to overcome limitations in vector systems. Additionally, the delivery strategies of CRISPR systems are highlighted as valuable tools for studying neurological diseases, and the challenges and opportunities that these vectors present.
Collapse
Affiliation(s)
- Kexin Xiong
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Xiaxia Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Caicai Feng
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| | - Sen Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, 450001, China
| |
Collapse
|
9
|
Ma C, Yang M, Zhou W, Guo S, Zhang H, Gong J, Zhang XE, Li F. The RNA Landscape of In Vivo-Assembled MS2 Virus-Like Particles as mRNA Carriers Reveals RNA Contamination from Host Viruses. NANO LETTERS 2025; 25:3038-3044. [PMID: 39932477 PMCID: PMC11869999 DOI: 10.1021/acs.nanolett.4c04541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Virus-like particles (VLPs) are attractive systems for packaging and delivering therapeutic RNA molecules in vaccine development, protein replacement therapy, and gene editing. Different VLPs carrying target functional RNA have been biosynthesized and demonstrated for biomedical purposes. However, little attention has been paid to what other types of RNA, besides the target RNA, are encapsulated into VLPs, leading to a lack of knowledge of the landscape of RNA cargoes. In this work, we engineered the widely used MS2 VLPs to encapsulate a model cargo mRNA in yeast, with the packaging efficiency and specificity being quantitatively tuned by the copy number of packaging signals. Transcriptome sequencing of the RNA in the VLPs revealed RNA contamination from the hosts and host viruses. This study highlights the necessity of precise VLP and cargo design and a clear background of production hosts to ensure specificity and safety.
Collapse
Affiliation(s)
- Chun Ma
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengsi Yang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Songxin Guo
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Jun Gong
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xian-En Zhang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- Faculty
of Synthetic Biology, Shenzhen University
of Advanced Technology, Shenzhen 518107, China
| | - Feng Li
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese
Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Yin D, Zhong Y, Ling S, Lu S, Wang X, Jiang Z, Wang J, Dai Y, Tian X, Huang Q, Wang X, Chen J, Li Z, Li Y, Xu Z, Jiang H, Wu Y, Shi Y, Wang Q, Xu J, Hong W, Xue H, Yang H, Zhang Y, Da L, Han ZG, Tao SC, Dong R, Ying T, Hong J, Cai Y. Dendritic-cell-targeting virus-like particles as potent mRNA vaccine carriers. Nat Biomed Eng 2025; 9:185-200. [PMID: 38714892 DOI: 10.1038/s41551-024-01208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/31/2024] [Indexed: 02/21/2025]
Abstract
Messenger RNA vaccines lack specificity for dendritic cells (DCs)-the most effective cells at antigen presentation. Here we report the design and performance of a DC-targeting virus-like particle pseudotyped with an engineered Sindbis-virus glycoprotein that recognizes a surface protein on DCs, and packaging mRNA encoding for the Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or for the glycoproteins B and D of herpes simplex virus 1. Injection of the DC-targeting SARS-CoV-2 mRNA vaccine in the footpad of mice led to substantially higher and durable antigen-specific immunoglobulin-G titres and cellular immune responses than untargeted virus-like particles and lipid-nanoparticle formulations. The vaccines also protected the mice from infection with SARS-CoV-2 or with herpes simplex virus 1. Virus-like particles with preferential uptake by DCs may facilitate the development of potent prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Di Yin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiye Zhong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sikai Ling
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- BDGENE Therapeutics, Shanghai, China
| | - Sicong Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Zhuofan Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Dai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolong Tian
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xingbo Wang
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, China
| | - Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hewei Jiang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Wu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Quanjun Wang
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory of Medical Countermeasures and Toxicology, Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, China
| | - Jianjiang Xu
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wei Hong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Heng Xue
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- Hubei Jiangxia Laboratory, Wuhan, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaxu Hong
- Department of Ophthalmology and Vision Science, Shanghai Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China.
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Liu Y, Bai X, Feng X, Liu S, Hu Y, Chu H, Zhang L, Cai B, Ma Y. Revolutionizing animal husbandry: Breakthroughs in gene editing delivery systems. Gene 2025; 935:149044. [PMID: 39490705 DOI: 10.1016/j.gene.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Gene editing technology has become an essential tool for advancing breeding practices, enhancing disease resistance, and boosting productivity in animal husbandry. Despite its potential, the delivery of gene editing reagents into cells faces several challenges, including low targeting efficiency, immunogenicity, and cytotoxicity, which have hindered its wider application in the field. This review discusses the evolution of gene editing technologies and highlights recent advancements in various delivery methods used in animal husbandry. It critically evaluates the strengths and weaknesses of these different delivery approaches while identifying potential directions for future development. The goal is to equip researchers with effective strategies to optimize delivery methods, ultimately facilitating the implementation and progress of gene editing technologies in animal husbandry.
Collapse
Affiliation(s)
- Yuan Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Xue Bai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China
| | - Xue Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Shuang Liu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yamei Hu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Hongen Chu
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Lingkai Zhang
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Bei Cai
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| | - Yun Ma
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China; Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
12
|
Yu M, Lin L, Zhou D, Liu S. Interaction design in mRNA delivery systems. J Control Release 2025; 377:413-426. [PMID: 39580076 DOI: 10.1016/j.jconrel.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024]
Abstract
Following the coronavirus disease 2019 (COVID-19) pandemic, mRNA technology has made significant breakthroughs, emerging as a potential universal platform for combating various diseases. To address the challenges associated with mRNA delivery, such as instability and limited delivery efficacy, continuous advancements in genetic engineering and nanotechnology have led to the exploration and refinement of various mRNA structural modifications and delivery platforms. These achievements have significantly broadened the clinical applications of mRNA therapies. Despite the progress, the understanding of the interactions in mRNA delivery systems remains limited. These interactions are complex and multi-dimensional, occurring between mRNA and vehicles as well as delivery materials and helper ingredients. Resultantly, stability of the mRNA delivery systems and their delivery efficiency can be both significantly affected. This review outlines the current state of mRNA delivery strategies and summarizes the interactions in mRNA delivery systems. The interactions include the electrostatic interactions, hydrophobic interactions, hydrogen bonding, π-π stacking, coordination interactions, and so on. This interaction understanding provides guideline for future design of next-generation mRNA delivery systems, thereby offering new perspectives and strategies for developing diverse mRNA therapeutics.
Collapse
Affiliation(s)
- Mengyao Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Lixin Lin
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Shuai Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China.
| |
Collapse
|
13
|
Ahmadian M, Okan ICT, Uyanik G, Tschopp M, Agca C. Precise Gene Editing Technologies in Retinal Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:119-123. [PMID: 39930183 DOI: 10.1007/978-3-031-76550-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Gene therapy is emerging as a promising treatment for inherited retinal diseases (IRDs). One of the first successful applications of gene therapy for IRDs was the gene replacement therapy for the RPE65 mutation. This therapy delivers a functional copy of the RPE65 gene to patients via AAV vectors, rather than targeting the mutation itself. Gene editing technologies have advanced significantly in recent years, allowing it to make precise in vivo modifications to the genetic code. After the discovery of CRISPR-Cas9, other gene editing technologies such as base editing and prime editing have been developed by modifying and combining the original CRISPR-Cas9 technology with other methods. Moreover, recently discovered CRISPR-Cas systems allow RNA editing to correct mutations at the posttranscriptional level. These technologies have potential applications in various fields, including inherited retinal diseases. This mini-review evaluates and summarizes the most current advancements in genome editing methods, including prime editing, base editing, and RNA editing, and their applications on retinal diseases.
Collapse
Affiliation(s)
- Mehri Ahmadian
- Molecular Biology, Genetics And Bioengineering Program, Sabanci University, Istanbul, Turkey
| | | | - Gokce Uyanik
- Molecular Biology, Genetics And Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Markus Tschopp
- Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
- Department of Ophthalmology, Inselspital Universitatsspital Bern, Bern, Switzerland
| | - Cavit Agca
- Molecular Biology, Genetics And Bioengineering Program, Sabanci University, Istanbul, Turkey.
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey.
- Virscio, Inc, New Haven, CT, USA.
| |
Collapse
|
14
|
Bansal M. Advances in retina genetics: Progress, potential, and challenges. Indian J Ophthalmol 2025; 73:S31-S36. [PMID: 39257094 PMCID: PMC11834934 DOI: 10.4103/ijo.ijo_3334_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 09/12/2024] Open
Abstract
The field of retinal genetics has seen remarkable advancements lately, reshaping our understanding of various retinal conditions, including age-related macular degeneration, diabetic retinopathy, and inherited retinal dystrophies. The purpose of this review is to provide an overview of the current status of genetics in the retina, covering the progress made, the expected future developments, and the challenges yet to be overcome. We highlight key advancements such as the advent of next-generation sequencing, which has exponentially enhanced the discovery of genetic mutations, thus also enabling personalized medicine/therapeutic approaches. Stem cells, gene augmentation, and gene-editing techniques such as CRISPR/Cas9 are discussed, in which we highlight ongoing research as well as their potential in the targeted treatment of retinal diseases. Despite these promising advancements, the field faces significant challenges, such as the complex interpretation of genetic data, ethical considerations, and the translational gap from bench to bedside. This review serves as a comprehensive guide not only to ophthalmologists but also to other healthcare professionals, scientists, and policymakers, providing insights into the rapidly evolving landscape of retinal genetics. It aims to stimulate further research and collaboration to surmount existing challenges and harness the full potential of genetic advancements for retinal health.
Collapse
Affiliation(s)
- Mayank Bansal
- Vitreo-Retinal Surgery, CSIR - Institute of Genomics and Integrative Biology, Sightgenics Research and Fortis Memorial Research Institute, Delhi, India
| |
Collapse
|
15
|
Sosnovtseva AO, Demidova NA, Klimova RR, Kovalev MA, Kushch AA, Starodubova ES, Latanova AA, Karpov DS. Control of HSV-1 Infection: Directions for the Development of CRISPR/Cas-Based Therapeutics and Diagnostics. Int J Mol Sci 2024; 25:12346. [PMID: 39596412 PMCID: PMC11595115 DOI: 10.3390/ijms252212346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
It is estimated that nearly all individuals have been infected with herpesviruses, with herpes simplex virus type 1 (HSV-1) representing the most prevalent virus. In most cases, HSV-1 causes non-life-threatening skin damage in adults. However, in patients with compromised immune systems, it can cause serious diseases, including death. The situation is further complicated by the emergence of strains that are resistant to both traditional and novel antiviral drugs. It is, therefore, imperative that new methods of combating HSV-1 and other herpesviruses be developed without delay. CRISPR/Cas systems may prove an effective means of controlling herpesvirus infections. This review presents the current understanding of the underlying molecular mechanisms of HSV-1 infection and discusses four potential applications of CRISPR/Cas systems in the fight against HSV-1 infections. These include the search for viral and cellular genes that may serve as effective targets, the optimization of anti-HSV-1 activity of CRISPR/Cas systems in vivo, the development of CRISPR/Cas-based HSV-1 diagnostics, and the validation of HSV-1 drug resistance mutations.
Collapse
Affiliation(s)
- Anastasiia O. Sosnovtseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Natalia A. Demidova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Regina R. Klimova
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Maxim A. Kovalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
| | - Alla A. Kushch
- N.F. Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Str., 18, 123098 Moscow, Russia; (N.A.D.); (R.R.K.); (A.A.K.)
| | - Elizaveta S. Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Anastasia A. Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Dmitry S. Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia; (A.O.S.); (M.A.K.); (E.S.S.); (A.A.L.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| |
Collapse
|
16
|
Shi Y, Shi M, Wang Y, You J. Progress and prospects of mRNA-based drugs in pre-clinical and clinical applications. Signal Transduct Target Ther 2024; 9:322. [PMID: 39543114 PMCID: PMC11564800 DOI: 10.1038/s41392-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/26/2024] [Indexed: 11/17/2024] Open
Abstract
In the last decade, messenger ribonucleic acid (mRNA)-based drugs have gained great interest in both immunotherapy and non-immunogenic applications. This surge in interest can be largely attributed to the demonstration of distinct advantages offered by various mRNA molecules, alongside the rapid advancements in nucleic acid delivery systems. It is noteworthy that the immunogenicity of mRNA drugs presents a double-edged sword. In the context of immunotherapy, extra supplementation of adjuvant is generally required for induction of robust immune responses. Conversely, in non-immunotherapeutic scenarios, immune activation is unwanted considering the host tolerability and high expression demand for mRNA-encoded functional proteins. Herein, mainly focused on the linear non-replicating mRNA, we overview the preclinical and clinical progress and prospects of mRNA medicines encompassing vaccines and other therapeutics. We also highlight the importance of focusing on the host-specific variations, including age, gender, pathological condition, and concurrent medication of individual patient, for maximized efficacy and safety upon mRNA administration. Furthermore, we deliberate on the potential challenges that mRNA drugs may encounter in the realm of disease treatment, the current endeavors of improvement, as well as the application prospects for future advancements. Overall, this review aims to present a comprehensive understanding of mRNA-based therapies while illuminating the prospective development and clinical application of mRNA drugs.
Collapse
Affiliation(s)
- Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Meixing Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, P. R. China.
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, P. R. China.
- The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang, P. R. China.
- Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang, P. R. China.
| |
Collapse
|
17
|
Zhang Y, Shi Y, Khan MM, Xiao F, Chen W, Tao W, Yao K, Kong N. Ocular RNA nanomedicine: engineered delivery nanoplatforms in treating eye diseases. Trends Biotechnol 2024; 42:1439-1452. [PMID: 38821834 DOI: 10.1016/j.tibtech.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Ocular disorders remain a major global health challenge with unmet medical needs. RNA nanomedicine has shown significant therapeutic benefits and safety profiles in patients with complex eye disorders, already benefiting numerous patients with gene-related eye disorders. The effective delivery of RNA to the unique structure of the eye is challenging owing to RNA instability, off-target effects, and ocular physiological barriers. Specifically tailored RNA medication, coupled with sophisticated engineered delivery platforms, is crucial to guide and advance developments in treatments for oculopathy. Herein we review recent advances in RNA-based nanomedicine, innovative delivery strategies, and current clinical progress and present challenges in ocular disease therapy.
Collapse
Affiliation(s)
- Yiming Zhang
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Muhammad M Khan
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Fan Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ke Yao
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Na Kong
- Liangzhu Laboratory, Zhejiang University Medical Center and Zhejiang Provincial Key Lab of Ophthalmology, Eye Center of The Second Affiliated Hospital, Zhejiang University, Hangzhou, China; Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Feng X, Li Z, Liu Y, Chen D, Zhou Z. CRISPR/Cas9 technology for advancements in cancer immunotherapy: from uncovering regulatory mechanisms to therapeutic applications. Exp Hematol Oncol 2024; 13:102. [PMID: 39427211 PMCID: PMC11490091 DOI: 10.1186/s40164-024-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, immunotherapy has developed rapidly as a new field of tumour therapy. However, the efficacy of tumour immunotherapy is not satisfactory due to the immune evasion mechanism of tumour cells, induction of immunosuppressive tumour microenvironment (TME), and reduction of antigen delivery, etc. CRISPR/Cas9 gene editing technology can accurately modify immune and tumour cells in tumours, and improve the efficacy of immunotherapy by targeting immune checkpoint molecules and immune regulatory genes, which has led to the great development and application. In current clinical trials, there are still many obstacles to the application of CRISPR/Cas9 in tumour immunotherapy, such as ensuring the accuracy and safety of gene editing, overcoming overreactive immune responses, and solving the challenges of in vivo drug delivery. Here we provide a systematic review on the application of CRISPR/Cas9 in tumour therapy to address the above existing problems. We focus on CRISPR/Cas9 screening and identification of immunomodulatory genes, targeting of immune checkpoint molecules, manipulation of immunomodulators, enhancement of tumour-specific antigen presentation and modulation of immune cell function. Second, we also highlight preclinical studies of CRISPR/Cas9 in animal models and various delivery systems, and evaluate the efficacy and safety of CRISPR/Cas9 technology in tumour immunotherapy. Finally, potential synergistic approaches for combining CRISPR/Cas9 knockdown with other immunotherapies are presented. This study underscores the transformative potential of CRISPR/Cas9 to reshape the landscape of tumour immunotherapy and provide insights into novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xiaohang Feng
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengxing Li
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Liu
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Chen
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuolong Zhou
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Yin M, Sun H, Li Y, Zhang J, Wang J, Liang Y, Zhang K. Delivery of mRNA Using Biomimetic Vectors: Progress and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402715. [PMID: 39004872 DOI: 10.1002/smll.202402715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/04/2024] [Indexed: 07/16/2024]
Abstract
Messenger RNA (mRNA) is an emerging class of therapeutic agents for treating a wide range of diseases. However, due to the instability and low cell transfection rate of naked mRNA, the expression of delivered mRNA in target cells or tissues in vivo requires delivery strategies. Biomimetic vectors hold advantages such as high biocompatibility, tissue specific targeting ability and efficient delivery mechanisms, potentially overcoming challenges faced by other delivery vectors. In this review, biomimetic vector-based mRNA delivery systems are summarized and discuss the possible challenges and prospects of such delivery systems, which may contribute to the progress and application of mRNA-based therapy in the biomedical field.
Collapse
Affiliation(s)
- Menghao Yin
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Hanruo Sun
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanan Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingge Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Jinjin Wang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Yan Liang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou, 450001, China
| |
Collapse
|
20
|
Ma D, Xie A, Lv J, Min X, Zhang X, Zhou Q, Gao D, Wang E, Gao L, Cheng L, Liu S. Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins. Protein Cell 2024; 15:724-743. [PMID: 38518087 PMCID: PMC11443452 DOI: 10.1093/procel/pwae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024] Open
Abstract
Developing an intracellular delivery system is of key importance in the expansion of protein-based therapeutics acting on cytosolic or nuclear targets. Recently, extracellular vesicles (EVs) have been exploited as next-generation delivery modalities due to their natural role in intercellular communication and biocompatibility. However, fusion of protein of interest to a scaffold represents a widely used strategy for cargo enrichment in EVs, which could compromise the stability and functionality of cargo. Herein, we report intracellular delivery via EV-based approach (IDEA) that efficiently packages and delivers native proteins both in vitro and in vivo without the use of a scaffold. As a proof-of-concept, we applied the IDEA to deliver cyclic GMP-AMP synthase (cGAS), an innate immune sensor. The results showed that cGAS-carrying EVs activated interferon signaling and elicited enhanced antitumor immunity in multiple syngeneic tumor models. Combining cGAS EVs with immune checkpoint inhibition further synergistically boosted antitumor efficacy in vivo. Mechanistically, scRNA-seq demonstrated that cGAS EVs mediated significant remodeling of intratumoral microenvironment, revealing a pivotal role of infiltrating neutrophils in the antitumor immune milieu. Collectively, IDEA, as a universal and facile strategy, can be applied to expand and advance the development of protein-based therapeutics.
Collapse
Affiliation(s)
- Ding Ma
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - An Xie
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiahui Lv
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolin Min
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xinye Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qian Zhou
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Daxing Gao
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Enyu Wang
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Lei Gao
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Linzhao Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Senquan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
21
|
Sin TN, Tng N, Dragoli J, Ramesh Kumar S, Villafuerte-Trisolini C, Chung SH, Tu L, Le SM, Shim JH, Pepple KL, Ravindran R, Khan IH, Moshiri A, Thomasy SM, Yiu G. Safety and efficacy of CRISPR-mediated genome ablation of VEGFA as a treatment for choroidal neovascularization in nonhuman primate eyes. Mol Ther 2024:S1525-0016(24)00651-8. [PMID: 39342431 DOI: 10.1016/j.ymthe.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
CRISPR-based genome editing enables permanent suppression of angiogenic factors such as vascular endothelial growth factor (VEGF) as a potential treatment for choroidal neovascularization (CNV)-a major cause of blindness in age-related macular degeneration. We previously designed adeno-associated viral (AAV) vectors with S. pyogenes Cas 9 (SpCas9) and guide RNAs (gRNAs) to target conserved sequences in VEGFA across mouse, rhesus macaque, and human, with successful suppression of VEGF and laser-induced CNV in mice. Here, we advanced the platform to nonhuman primates and found that subretinal AAV8-SpCas9 with gRNAs targeting VEGFA may reduce VEGF and CNV severity as compared with SpCas9 without gRNAs. However, all eyes that received AAV8-SpCas9 regardless of gRNA presence developed subfoveal deposits, concentric macular rings, and outer retinal disruption that worsened at higher dose. Immunohistochemistry showed subfoveal accumulation of retinal pigment epithelial cells, collagen, and vimentin, disrupted photoreceptor structure, and retinal glial and microglial activation. Subretinal AAV8-SpCas9 triggered aqueous elevations in CCL2, but minimal systemic humoral or cellular responses against AAV8, SpCas9, or GFP reporter. Our findings suggest that CRISPR-mediated VEGFA ablation in nonhuman primate eyes may suppress VEGF and CNV, but can also lead to unexpected subretinal fibrosis, photoreceptor damage, and retinal inflammation despite minimal systemic immune responses.
Collapse
Affiliation(s)
- Tzu-Ni Sin
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Nicole Tng
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jack Dragoli
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sruthi Ramesh Kumar
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | | | - Sook Hyun Chung
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Lien Tu
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sophie M Le
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Jae Ho Shim
- Department of Surgical & Radiological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Kathryn L Pepple
- Department of Ophthalmology, University of Washington, Seattle, WA 98104, USA
| | - Resmi Ravindran
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Imran H Khan
- Department of Pathology, University of California Davis Medical Center, Sacramento, CA 95817, USA
| | - Ala Moshiri
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sara M Thomasy
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA; Department of Surgical & Radiological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Glenn Yiu
- Department of Ophthalmology & Vision Sciences, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
22
|
Foster T, Lim P, Ionescu CM, Wagle SR, Kovacevic B, Mooranian A, Al-Salami H. Exploring delivery systems for targeted nanotechnology-based gene therapy in the inner ear. Ther Deliv 2024; 15:801-818. [PMID: 39324734 PMCID: PMC11457609 DOI: 10.1080/20415990.2024.2389032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 08/02/2024] [Indexed: 09/27/2024] Open
Abstract
Hearing loss places a significant burden on our aging population. However, there has only been limited progress in developing therapeutic techniques to effectively mediate this condition. This review will outline several of the most commonly utilized practices for the treatment of sensorineural hearing loss before exploring more novel techniques currently being investigated via both in vitro and in vivo research. This review will place particular emphasis on novel gene-delivery technologies. Primarily, it will focus on techniques used to deliver genes that have been shown to encourage the proliferation and differentiation of sensory cells within the inner ear and how these technologies may be translated into providing clinically useful results for patients.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology & Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, University of Western Australia, Perth, 6000, Western Australia, Australia
| |
Collapse
|
23
|
Gowda DAA, Birappa G, Rajkumar S, Ajaykumar CB, Srikanth B, Kim SL, Singh V, Jayachandran A, Lee J, Ramakrishna S. Recent progress in CRISPR/Cas9 system for eye disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:21-46. [PMID: 39824582 DOI: 10.1016/bs.pmbts.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Ocular disorders encompass a broad spectrum of phenotypic and clinical symptoms resulting from several genetic variants and environmental factors. The unique anatomy and physiology of the eye facilitate validation of cutting-edge gene editing treatments. Genome editing developments have allowed researchers to treat a variety of diseases, including ocular disorders. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) system holds considerable promise for therapeutic applications in the field of ophthalmology, including repair of aberrant genes and treatment of retinal illnesses related to the genome or epigenome. Application of CRISPR/Cas9 systems to the study of ocular disease and visual sciences have yielded innovations including correction of harmful mutations in patient-derived cells and gene modifications in several mammalian models of eye development and disease. In this study, we discuss the generation of several ocular disease models in mammalian cell lines and in vivo systems using a CRISPR/Cas9 system. We also provide an overview of current uses of CRISPR/Cas9 technologies for the treatment of ocular pathologies, as well as future challenges.
Collapse
Affiliation(s)
- D A Ayush Gowda
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Girish Birappa
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Sripriya Rajkumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - C Bindu Ajaykumar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Sammy L Kim
- Department of Biological Science, College of Sang-Huh Life Science, Department of Biological Science, Konkuk University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Aparna Jayachandran
- Fiona Elsey Cancer Research Institute, VIC, Australia; Federation University, VIC, Australia.
| | - Junwon Lee
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
24
|
Roth GV, Gengaro IR, Qi LS. Precision epigenetic editing: Technological advances, enduring challenges, and therapeutic applications. Cell Chem Biol 2024; 31:S2451-9456(24)00309-X. [PMID: 39137782 PMCID: PMC11799355 DOI: 10.1016/j.chembiol.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024]
Abstract
The epigenome is a complex framework through which gene expression is precisely and flexibly modulated to incorporate heritable memory and responses to environmental stimuli. It governs diverse cellular processes, including cell fate, disease, and aging. The need to understand this system and precisely control gene expression outputs for therapeutic purposes has precipitated the development of a diverse set of epigenetic editing tools. Here, we review the existing toolbox for targeted epigenetic editing, technical considerations of the current technologies, and opportunities for future development. We describe applications of therapeutic epigenetic editing and their potential for treating disease, with a discussion of ongoing delivery challenges that impede certain clinical interventions, particularly in the brain. With simultaneous advancements in available engineering tools and appropriate delivery technologies, we predict that epigenetic editing will increasingly cement itself as a powerful approach for safely treating a wide range of disorders in all tissues of the body.
Collapse
Affiliation(s)
- Goldie V Roth
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Isabella R Gengaro
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Lei S Qi
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
25
|
Khaparde A, Mathias GP, Poornachandra B, Thirumalesh MB, Shetty R, Ghosh A. Gene therapy for retinal diseases: From genetics to treatment. Indian J Ophthalmol 2024; 72:1091-1101. [PMID: 39078952 PMCID: PMC11451791 DOI: 10.4103/ijo.ijo_2902_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 04/19/2024] [Indexed: 10/06/2024] Open
Abstract
The gene therapy approach for retinal disorders has been considered largely over the last decade owing to the favorable outcomes of the US Food and Drug Administration-approved commercial gene therapy, Luxturna. Technological advances in recent years, such as next-generation sequencing, research in molecular pathogenesis of retinal disorders, and precise correlations with their clinical phenotypes, have contributed to the progress of gene therapies for various diseases worldwide, and more recently in India as well. Thus, considerable research is being conducted for the right choice of vectors, transgene engineering, and accessible and cost-effective large-scale vector production. Many retinal disease-specific clinical trials are presently being conducted, thereby necessitating the collation of such information as a ready reference for the scientific and clinical community. In this article, we present an overview of existing gene therapy research, which is derived from an extensive search across PubMed, Google Scholar, and clinicaltrials.gov sources. This contributes to prime the understanding of basic aspects of this cutting-edge technology and information regarding current clinical trials across many different conditions. This information will provide a comprehensive evaluation of therapies in existing use/research for personalized treatment approaches in retinal disorders.
Collapse
Affiliation(s)
- Ashish Khaparde
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| | - Grace P Mathias
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - B Poornachandra
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - M B Thirumalesh
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| |
Collapse
|
26
|
Wu Z, Sun W, Qi H. Recent Advancements in mRNA Vaccines: From Target Selection to Delivery Systems. Vaccines (Basel) 2024; 12:873. [PMID: 39203999 PMCID: PMC11359327 DOI: 10.3390/vaccines12080873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
mRNA vaccines are leading a medical revolution. mRNA technologies utilize the host's own cells as bio-factories to produce proteins that serve as antigens. This revolutionary approach circumvents the complicated processes involved in traditional vaccine production and empowers vaccines with the ability to respond to emerging or mutated infectious diseases rapidly. Additionally, the robust cellular immune response elicited by mRNA vaccines has shown significant promise in cancer treatment. However, the inherent instability of mRNA and the complexity of tumor immunity have limited its broader application. Although the emergence of pseudouridine and ionizable cationic lipid nanoparticles (LNPs) made the clinical application of mRNA possible, there remains substantial potential for further improvement of the immunogenicity of delivered antigens and preventive or therapeutic effects of mRNA technology. Here, we review the latest advancements in mRNA vaccines, including but not limited to target selection and delivery systems. This review offers a multifaceted perspective on this rapidly evolving field.
Collapse
Affiliation(s)
- Zhongyan Wu
- Newish Biological R&D Center, Beijing 100101, China;
| | - Weilu Sun
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
| | - Hailong Qi
- Newish Biological R&D Center, Beijing 100101, China;
| |
Collapse
|
27
|
Qiu L, Sun M, Chen L, Jiang J, Fu Z, Wang Y, Bi Y, Guo Q, Bai H, Chen S, Gao L, Chang G. Iron-Confined CRISPR/Cas9-Ribonucleoprotein Delivery System for Redox-Responsive Gene Editing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309431. [PMID: 38402425 DOI: 10.1002/smll.202309431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) is a promising gene editing tool to treat diseases at the genetic level. Nonetheless, the challenge of the safe and efficient delivery of CRISPR/Cas9 to host cells constrains its clinical applicability. In the current study, a facile, redox-responsive CRISPR/Cas9-Ribonucleoprotein (RNP) delivery system by combining iron-coordinated aggregation with liposomes (Fe-RNP@L) is reported. The Fe-RNP is formed by the coordination of Fe3+ with amino and carboxyl groups of Cas9, which modifies the lipophilicity and surface charge of RNP and alters cellular uptake from primary endocytosis to endocytosis and cholesterol-dependent membrane fusion. RNP can be rapidly and reversibly released from Fe-RNP in response to glutathione without loss of structural integrity and enzymatic activity. In addition, iron coordination also improves the stability of RNP and substantially mitigates cytotoxicity. This construct enabled highly efficient cytoplasmic/nuclear delivery (≈90%) and gene-editing efficiency (≈70%) even at low concentrations. The high payload content, high editing efficiency, good stability, low immunogenicity, and ease of production and storage, highlight its potential for diverse genome editing and clinical applications.
Collapse
Affiliation(s)
- Lingling Qiu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Minmin Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lei Chen
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhendong Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ying Wang
- Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yulin Bi
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hao Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Shihao Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
28
|
Lin Y, Chen X, Wang K, Liang L, Zhang H. An Overview of Nanoparticle-Based Delivery Platforms for mRNA Vaccines for Treating Cancer. Vaccines (Basel) 2024; 12:727. [PMID: 39066365 PMCID: PMC11281455 DOI: 10.3390/vaccines12070727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
With its unique properties and potential applications, nanoparticle-based delivery platforms for messenger RNA (mRNA) vaccines have gained significant attention in recent years. Nanoparticles have the advantages of enhancing immunogenicity, targeting delivery, and improving stability, providing a new solution for drug and vaccine delivery. In some clinical studies, a variety of nanoparticle delivery platforms have been gradually applied to a wide range of vaccine applications. Current research priorities are exploring various types of nanoparticles as vaccine delivery systems to enhance vaccine stability and immunogenicity. Lipid nanoparticles (LNPs) have shown promising potential in preclinical and clinical studies on the efficient delivery of antigens to immune cells. Moreover, lipid nanoparticles and other nanoparticles for nucleic acids, especially for mRNA delivery systems, have shown vast potential for vaccine development. In this review, we present various vaccine platforms with an emphasis on nanoparticles as mRNA vaccine delivery vehicles. We describe several novel nanoparticle delivery platforms for mRNA vaccines, such as lipid-, polymer-, and protein-based nanoparticles. In addition, we provide an overview of the anti-tumor immunity of nanovaccines against different tumors in cancer immunotherapy. Finally, we outline future perspectives and remaining challenges for this promising technology of nanoparticle-based delivery platforms for vaccines.
Collapse
Affiliation(s)
- Yang Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Xuehua Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
| | - Ke Wang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
| | - Li Liang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Jinfeng Laboratory, Chongqing Science and Technology Innovation Center, Chongqing 401329, China
| | - Hongxia Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.L.); (X.C.); (K.W.)
- Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Liu X, Huang K, Zhang F, Huang G, Wang L, Wu G, Ren H, Yang G, Lin Z. Multifunctional nano-in-micro delivery systems for targeted therapy in fundus neovascularization diseases. J Nanobiotechnology 2024; 22:354. [PMID: 38902775 PMCID: PMC11191225 DOI: 10.1186/s12951-024-02614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Fundus neovascularization diseases are a series of blinding eye diseases that seriously impair vision worldwide. Currently, the means of treating these diseases in clinical practice are continuously evolving and have rapidly revolutionized treatment opinions. However, key issues such as inadequate treatment effectiveness, high rates of recurrence, and poor patient compliance still need to be urgently addressed. Multifunctional nanomedicine can specifically respond to both endogenous and exogenous microenvironments, effectively deliver drugs to specific targets and participate in activities such as biological imaging and the detection of small molecules. Nano-in-micro (NIM) delivery systems such as metal, metal oxide and up-conversion nanoparticles (NPs), quantum dots, and carbon materials, have shown certain advantages in overcoming the presence of physiological barriers within the eyeball and are widely used in the treatment of ophthalmic diseases. Few studies, however, have evaluated the efficacy of NIM delivery systems in treating fundus neovascular diseases (FNDs). The present study describes the main clinical treatment strategies and the adverse events associated with the treatment of FNDs with NIM delivery systems and summarizes the anatomical obstacles that must be overcome. In this review, we wish to highlight the principle of intraocular microenvironment normalization, aiming to provide a more rational approach for designing new NIM delivery systems to treat specific FNDs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Keke Huang
- Department of Ophthalmology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, 610031, China
| | - Fuxiao Zhang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Ge Huang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Lu Wang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Guiyu Wu
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China
| | - Hui Ren
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Guang Yang
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| | - Zhiqing Lin
- Department of Ophthalmology, The Second People's Hospital of Chengdu, The Affiliated Hospital of Chengdu Medical College, Chengdu, 610031, China.
| |
Collapse
|
30
|
Li M, Liu Z, Wang D, Ye J, Shi Z, Pan C, Zhang Q, Ju R, Zheng Y, Liu Y. Intraocular mRNA delivery with endogenous MmPEG10-based virus-like particles. Exp Eye Res 2024; 243:109899. [PMID: 38636802 DOI: 10.1016/j.exer.2024.109899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/02/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Virus-like particles (VLP) are a promising tool for intracellular gene delivery, yet their potential in ocular gene therapy remains underexplored. In this study, we bridged this knowledge gap by demonstrating the successful generation and application of vesicular stomatitis virus glycoprotein (VSVG)-pseudotyped mouse PEG10 (MmPEG10)-VLP for intraocular mRNA delivery. Our findings revealed that PEG10-VLP can efficiently deliver GFP mRNA to adult retinal pigment epithelial cell line-19 (ARPE-19) cells, leading to transient expression. Moreover, we showed that MmPEG10-VLP can transfer SMAD7 to inhibit epithelial-mesenchymal transition (EMT) in RPE cells effectively. In vivo experiments further substantiated the potential of these vectors, as subretinal delivery into adult mice resulted in efficient transduction of retinal pigment epithelial (RPE) cells and GFP reporter gene expression without significant immune response. However, intravitreal injection did not yield efficient ocular expression. We also evaluated the transduction characteristics of MmPEG10-VLP following intracameral delivery, revealing transient GFP protein expression in corneal endothelial cells without significant immunotoxicities. In summary, our study established that VSVG pseudotyped MmPEG10-based VLP can transduce mitotically inactive RPE cells and corneal endothelial cells in vivo without triggering an inflammatory response, underscoring their potential utility in ocular gene therapy.
Collapse
Affiliation(s)
- Mengke Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085 China
| | - Zhong Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Dongliang Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jinguo Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Zhuoxing Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Caineng Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Qikai Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085 China.
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China; Research Unit of Ocular Development and Regeneration, Chinese Academy of Medical Sciences, Beijing, 100085 China
| |
Collapse
|
31
|
Hu Y, Yu C, Cheng L, Zhong C, An J, Zou M, Liu B, Gao X. Flavokawain C inhibits glucose metabolism and tumor angiogenesis in nasopharyngeal carcinoma by targeting the HSP90B1/STAT3/HK2 signaling axis. Cancer Cell Int 2024; 24:158. [PMID: 38711062 DOI: 10.1186/s12935-024-03314-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
OBJECTIVE Over the past decade, heat shock protein 90 (HSP90) inhibitors have emerged as promising anticancer drugs in solid and hematological malignancies. Flavokawain C (FKC) is a naturally occurring chalcone that has been found to exert considerable anti-tumor efficacy by targeting multiple molecular pathways. However, the efficacy of FKC has not been studied in nasopharyngeal carcinoma (NPC). Metabolic abnormalities and uncontrolled angiogenesis are two important features of malignant tumors, and the occurrence of these two events may involve the regulation of HSP90B1. Therefore, this study aimed to explore the effects of FKC on NPC proliferation, glycolysis, and angiogenesis by regulating HSP90B1 and the underlying molecular regulatory mechanisms. METHODS HSP90B1 expression was analyzed in NPC tissues and its relationship with patient's prognosis was further identified. Afterward, the effects of HSP90B1 on proliferation, apoptosis, glycolysis, and angiogenesis in NPC were studied by loss-of-function assays. Next, the interaction of FKC, HSP90B1, and epidermal growth factor receptor (EGFR) was evaluated. Then, in vitro experiments were designed to analyze the effect of FKC treatment on NPC cells. Finally, in vivo experiments were allowed to investigate whether FKC treatment regulates proliferation, glycolysis, and angiogenesis of NPC cells by HSP90B1/EGFR pathway. RESULTS HSP90B1 was highly expressed in NPC tissues and was identified as a poor prognostic factor in NPC. At the same time, knockdown of HSP90B1 can inhibit the proliferation of NPC cells, trigger apoptosis, and reduce glycolysis and angiogenesis. Mechanistically, FKC affects downstream EGFR phosphorylation by regulating HSP90B1, thereby regulating the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. FKC treatment inhibited the proliferation, glycolysis, and angiogenesis of NPC cells, which was reversed by introducing overexpression of HSP90B1. In addition, FKC can affect NPC tumor growth and metastasis in vivo by regulating the HSP90B1/EGFR pathway. CONCLUSION Collectively, FKC inhibits glucose metabolism and tumor angiogenesis in NPC by targeting the HSP90B1/EGFR/PI3K/Akt/mTOR signaling axis.
Collapse
Affiliation(s)
- YuQiang Hu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - ChenJie Yu
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - LiangJun Cheng
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chang Zhong
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jun An
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - MingZhen Zou
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Bing Liu
- Department of Otolaryngology Head and Neck Surgery, XuZhou Central Hospital, (Xuzhou Clinical School of Nanjing Medical University), No.199, Jiefang South Roa, Xuzhou, 221009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Xia Gao
- Department of Otolaryngology Head and Neck Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, No.321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
32
|
Jia S, Liang R, Chen J, Liao S, Lin J, Li W. Emerging technology has a brilliant future: the CRISPR-Cas system for senescence, inflammation, and cartilage repair in osteoarthritis. Cell Mol Biol Lett 2024; 29:64. [PMID: 38698311 PMCID: PMC11067114 DOI: 10.1186/s11658-024-00581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/19/2024] [Indexed: 05/05/2024] Open
Abstract
Osteoarthritis (OA), known as one of the most common types of aseptic inflammation of the musculoskeletal system, is characterized by chronic pain and whole-joint lesions. With cellular and molecular changes including senescence, inflammatory alterations, and subsequent cartilage defects, OA eventually leads to a series of adverse outcomes such as pain and disability. CRISPR-Cas-related technology has been proposed and explored as a gene therapy, offering potential gene-editing tools that are in the spotlight. Considering the genetic and multigene regulatory mechanisms of OA, we systematically review current studies on CRISPR-Cas technology for improving OA in terms of senescence, inflammation, and cartilage damage and summarize various strategies for delivering CRISPR products, hoping to provide a new perspective for the treatment of OA by taking advantage of CRISPR technology.
Collapse
Affiliation(s)
- Shicheng Jia
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Rongji Liang
- Shantou University Medical College, Shantou, 515041, China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shantou University Medical College, Shantou, 515041, China
| | - Shuai Liao
- Department of Bone and Joint, Peking University Shenzhen Hospital, Shenzhen, 518036, China
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Wei Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
33
|
Berkowitz ST, Finn AP. Gene therapy for age-related macular degeneration: potential, feasibility, and pitfalls. Curr Opin Ophthalmol 2024; 35:170-177. [PMID: 38441066 DOI: 10.1097/icu.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW The landscape for age-related macular degeneration (AMD) is rapidly changing with addition of biosimilars and now United States Food and Drug Administration (FDA) approved nonneovascular AMD (nnAMD) treatment options. These developments have inspired a burgeoning pipeline of gene therapy approaches focused on similar antivascular endothelial growth factors (VEGF) and complement related pathways. Historic and more recent setbacks in the gene therapy pipeline, including intraocular inflammatory reactions, have raised important concerns for adverse events related to AMD therapeutics both for gene and nongene approaches. The specific clinical profile of these therapeutics approaching later stage clinical trials are complex and under active investigation; however, these options hold promise to disrupt the current landscape and change management paradigms for one of the leading causes of vision loss worldwide. RECENT FINDINGS This review covers current gene therapy approaches for neovascular AMD (nAMD) and nnAMD. Intravitreal, suprachoroidal, and subretinal delivery routes are discussed with attention to technical procedure, capabilities for transgene delivery to target tissue, immunogenicity, and collateral effects. Suprachoroidal delivery is an emerging approach which may bridge some of the practical drawbacks for intravitreal and subretinal methods, though with less elaborated immunologic profile. In parallel to delivery modification, viral vectors have been cultivated to target specific cells, with promising enhancements in adeno-associated viral (AAV) vectors and persistent interest in alternate viral and nonviral delivery vectors. Ongoing questions such as steroid or immunosuppressive regimen and economic considerations from a payer and societal perspective are discussed. SUMMARY The present review discusses emerging gene therapy options which could foster new, more durable nAMD and nnAMD therapeutics. These options will need refinement with regards to route, vector, and dosage, and specialists must decipher the specific clinical risk benefit profile for individual patients. Ongoing concerns for immunogenicity or dosage related adverse events could stifle progress, while further vector development and refined delivery techniques have the potential to change the safety and efficacy of currently options in the pipeline.
Collapse
Affiliation(s)
- Sean T Berkowitz
- Vanderbilt University Medical Center, Department of Ophthalmology, Nashville, Tennessee, USA
| | | |
Collapse
|
34
|
Liu S, Yan Z, Huang Z, Yang H, Li J. Smart Nanocarriers for the Treatment of Retinal Diseases. ACS APPLIED BIO MATERIALS 2024; 7:2070-2085. [PMID: 38489843 DOI: 10.1021/acsabm.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Retinal diseases, such as age-related macular degeneration, diabetic retinopathy, and retinoblastoma, stand as the leading causes of irreversible vision impairment and blindness worldwide. Effectively administering drugs for retinal diseases poses a formidable challenge due to the presence of complex ocular barriers and elimination mechanisms. Over time, various approaches have been developed to fabricate drug delivery systems for improving retinal therapy including virus vectors, lipid nanoparticles, and polymers. However, conventional nanocarriers encounter issues related to the controllability, efficiency, and safety in the retina. Therefore, the development of smart nanocarriers for effective or more invasive long-term treatment remains a desirable goal. Recently, approaches have surfaced for the intelligent design of nanocarriers, leveraging specific responses to external or internal triggers and enabling multiple functions for retinal therapy such as topical administration, prolonged drug release, and site-specific drug delivery. This Review provides an overview of prevalent retinal pathologies and related pharmacotherapies to enhance the understanding of retinal diseases. It also surveys recent developments and strategies employed in the intelligent design of nanocarriers for retinal disease. Finally, the challenges of smart nanocarriers in potential clinical retinal therapeutic applications are discussed to inspire the next generation of smart nanocarriers.
Collapse
Affiliation(s)
- Shuya Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zhike Yan
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zixiang Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jingying Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
35
|
Teng M, Xia ZJ, Lo N, Daud K, He HH. Assembling the RNA therapeutics toolbox. MEDICAL REVIEW (2021) 2024; 4:110-128. [PMID: 38680684 PMCID: PMC11046573 DOI: 10.1515/mr-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
From the approval of COVID-19 mRNA vaccines to the 2023 Nobel Prize awarded for nucleoside base modifications, RNA therapeutics have entered the spotlight and are transforming drug development. While the term "RNA therapeutics" has been used in various contexts, this review focuses on treatments that utilize RNA as a component or target RNA for therapeutic effects. We summarize the latest advances in RNA-targeting tools and RNA-based technologies, including but not limited to mRNA, antisense oligos, siRNAs, small molecules and RNA editors. We focus on the mechanisms of current FDA-approved therapeutics but also provide a discussion on the upcoming workforces. The clinical utility of RNA-based therapeutics is enabled not only by the advances in RNA technologies but in conjunction with the significant improvements in chemical modifications and delivery platforms, which are also briefly discussed in the review. We summarize the latest RNA therapeutics based on their mechanisms and therapeutic effects, which include expressing proteins for vaccination and protein replacement therapies, degrading deleterious RNA, modulating transcription and translation efficiency, targeting noncoding RNAs, binding and modulating protein activity and editing RNA sequences and modifications. This review emphasizes the concept of an RNA therapeutic toolbox, pinpointing the readers to all the tools available for their desired research and clinical goals. As the field advances, the catalog of RNA therapeutic tools continues to grow, further allowing researchers to combine appropriate RNA technologies with suitable chemical modifications and delivery platforms to develop therapeutics tailored to their specific clinical challenges.
Collapse
Affiliation(s)
- Mona Teng
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ziting Judy Xia
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Lo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Kashif Daud
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
36
|
Xu F, Zheng C, Xu W, Zhang S, Liu S, Chen X, Yao K. Breaking genetic shackles: The advance of base editing in genetic disorder treatment. Front Pharmacol 2024; 15:1364135. [PMID: 38510648 PMCID: PMC10953296 DOI: 10.3389/fphar.2024.1364135] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The rapid evolution of gene editing technology has markedly improved the outlook for treating genetic diseases. Base editing, recognized as an exceptionally precise genetic modification tool, is emerging as a focus in the realm of genetic disease therapy. We provide a comprehensive overview of the fundamental principles and delivery methods of cytosine base editors (CBE), adenine base editors (ABE), and RNA base editors, with a particular focus on their applications and recent research advances in the treatment of genetic diseases. We have also explored the potential challenges faced by base editing technology in treatment, including aspects such as targeting specificity, safety, and efficacy, and have enumerated a series of possible solutions to propel the clinical translation of base editing technology. In conclusion, this article not only underscores the present state of base editing technology but also envisions its tremendous potential in the future, providing a novel perspective on the treatment of genetic diseases. It underscores the vast potential of base editing technology in the realm of genetic medicine, providing support for the progression of gene medicine and the development of innovative approaches to genetic disease therapy.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Caiyan Zheng
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Weihui Xu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shiyao Zhang
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Shanshan Liu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaopeng Chen
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan, China
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Tatarūnas V, Čiapienė I, Giedraitienė A. Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System. Pharmaceutics 2024; 16:292. [PMID: 38399346 PMCID: PMC10893373 DOI: 10.3390/pharmaceutics16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs can often target non-specific areas and produce both desired and undesired pharmacological effects. The use of nanoparticles, liposomes, or other available forms for drug formulation could help to overcome the latter problem. Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. Therefore, formulations with PEG10 may have a lower immunogenicity. The use of existing knowledge can lead to the development of suitable drug formulations for the precise treatment of individual diseases.
Collapse
Affiliation(s)
- Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Agnė Giedraitienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| |
Collapse
|
38
|
Blasiak J, Pawlowska E, Ciupińska J, Derwich M, Szczepanska J, Kaarniranta K. A New Generation of Gene Therapies as the Future of Wet AMD Treatment. Int J Mol Sci 2024; 25:2386. [PMID: 38397064 PMCID: PMC10888617 DOI: 10.3390/ijms25042386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Age-related macular degeneration (AMD) is an eye disease and the most common cause of vision loss in the Western World. In its advanced stage, AMD occurs in two clinically distinguished forms, dry and wet, but only wet AMD is treatable. However, the treatment based on repeated injections with vascular endothelial growth factor A (VEGFA) antagonists may at best stop the disease progression and prevent or delay vision loss but without an improvement of visual dysfunction. Moreover, it is a serious mental and financial burden for patients and may be linked with some complications. The recent first success of intravitreal gene therapy with ADVM-022, which transformed retinal cells to continuous production of aflibercept, a VEGF antagonist, after a single injection, has opened a revolutionary perspective in wet AMD treatment. Promising results obtained so far in other ongoing clinical trials support this perspective. In this narrative/hypothesis review, we present basic information on wet AMD pathogenesis and treatment, the concept of gene therapy in retinal diseases, update evidence on completed and ongoing clinical trials with gene therapy for wet AMD, and perspectives on the progress to the clinic of "one and done" therapy for wet AMD to replace a lifetime of injections. Gene editing targeting the VEGFA gene is also presented as another gene therapy strategy to improve wet AMD management.
Collapse
Affiliation(s)
- Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, 09-402 Plock, Poland
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Justyna Ciupińska
- Clinical Department of Infectious Diseases and Hepatology, H. Bieganski Hospital, 91-347 Lodz, Poland;
| | - Marcin Derwich
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-217 Lodz, Poland; (E.P.); (M.D.); (J.S.)
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, 70210 Kuopio, Finland;
- Department of Ophthalmology, Kuopio University Hospital, 70210 Kuopio, Finland
| |
Collapse
|
39
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
40
|
Leclerc D, Siroky MD, Miller SM. Next-generation biological vector platforms for in vivo delivery of genome editing agents. Curr Opin Biotechnol 2024; 85:103040. [PMID: 38103518 DOI: 10.1016/j.copbio.2023.103040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/04/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
CRISPR-based genome editing holds promise for addressing genetic disease, infectious disease, and cancer and has rapidly advanced from primary research to clinical trials in recent years. However, the lack of safe and potent in vivo delivery methods for CRISPR components has limited most ongoing clinical trials to ex vivo gene therapy. Effective CRISPR in vivo genome editing necessitates an effective vehicle ensuring target cell transduction while minimizing off-target effects, toxicity, and immune reactions. In this review, we examine promising biological-derived platforms to deliver DNA editing agents in vivo and the engineering thereof, encompassing potent viral-based vehicles, flexible protein nanocages, and mammalian-derived particles.
Collapse
Affiliation(s)
- Delphine Leclerc
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael D Siroky
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shannon M Miller
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Gu J, Xu Z, Liu Q, Tang S, Zhang W, Xie S, Chen X, Chen J, Yong KT, Yang C, Xu G. Building a Better Silver Bullet: Current Status and Perspectives of Non-Viral Vectors for mRNA Vaccines. Adv Healthc Mater 2024; 13:e2302409. [PMID: 37964681 DOI: 10.1002/adhm.202302409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Indexed: 11/16/2023]
Abstract
In recent years, messenger RNA (mRNA) vaccines have exhibited great potential to replace conventional vaccines owing to their low risk of insertional mutagenesis, safety and efficacy, rapid and scalable production, and low-cost manufacturing. With the great achievements of chemical modification and sequence optimization methods of mRNA, the key to the success of mRNA vaccines is strictly dependent on safe and efficient gene vectors. Among various delivery platforms, non-viral mRNA vectors could represent perfect choices for future clinical translation regarding their safety, sufficient packaging capability, low immunogenicity, and versatility. In this review, the recent progress in the development of non-viral mRNA vectors is focused on. Various organic vectors including lipid nanoparticles (LNPs), polymers, peptides, and exosomes for efficient mRNA delivery are presented and summarized. Furthermore, the latest advances in clinical trials of mRNA vaccines are described. Finally, the current challenges and future possibilities for the clinical translation of these promising mRNA vectors are also discussed.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan, University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Wenguang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan, University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Jiajie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| |
Collapse
|
42
|
Khoshandam M, Soltaninejad H, Mousazadeh M, Hamidieh AA, Hosseinkhani S. Clinical applications of the CRISPR/Cas9 genome-editing system: Delivery options and challenges in precision medicine. Genes Dis 2024; 11:268-282. [PMID: 37588217 PMCID: PMC10425811 DOI: 10.1016/j.gendis.2023.02.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/08/2023] [Indexed: 03/29/2023] Open
Abstract
CRISPR/Cas9 is an effective gene editing tool with broad applications for the prevention or treatment of numerous diseases. It depends on CRISPR (clustered regularly interspaced short palindromic repeats) as a bacterial immune system and plays as a gene editing tool. Due to the higher specificity and efficiency of CRISPR/Cas9 compared to other editing approaches, it has been broadly investigated to treat numerous hereditary and acquired illnesses, including cancers, hemolytic diseases, immunodeficiency disorders, cardiovascular diseases, visual maladies, neurodegenerative conditions, and a few X-linked disorders. CRISPR/Cas9 system has been used to treat cancers through a variety of approaches, with stable gene editing techniques. Here, the applications and clinical trials of CRISPR/Cas9 in various illnesses are described. Due to its high precision and efficiency, CRISPR/Cas9 strategies may treat gene-related illnesses by deleting, inserting, modifying, or blocking the expression of specific genes. The most challenging barrier to the in vivo use of CRISPR/Cas9 like off-target effects will be discussed. The use of transfection vehicles for CRISPR/Cas9, including viral vectors (such as an Adeno-associated virus (AAV)), and the development of non-viral vectors is also considered.
Collapse
Affiliation(s)
- Mohadeseh Khoshandam
- Department of Reproductive Biology, Academic Center for Education, Culture, and Research (ACECR), Qom Branch, Qom 3716986466, Iran
- National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14155-6463, Iran
| | - Hossein Soltaninejad
- Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran 14117-13116, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Marziyeh Mousazadeh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran 14155-6559, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| |
Collapse
|
43
|
Zhang Y, Luo J, Gui X, Zheng Y, Schaar E, Liu G, Shi J. Bioengineered nanotechnology for nucleic acid delivery. J Control Release 2023; 364:124-141. [PMID: 37879440 PMCID: PMC10838211 DOI: 10.1016/j.jconrel.2023.10.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Nucleic acid-based therapy has emerged as a promising therapeutic approach for treating various diseases, such as genetic disorders, cancers, and viral infections. Diverse nucleic acid delivery systems have been reported, and some, including lipid nanoparticles, have exhibited clinical success. In parallel, bioengineered nucleic acid delivery nanocarriers have also gained significant attention due to their flexible functional design and excellent biocompatibility. In this review, we summarize recent advances in bioengineered nucleic acid delivery nanocarriers, focusing on exosomes, cell membrane-derived nanovesicles, protein nanocages, and virus-like particles. We highlight their unique features, advantages for nucleic acid delivery, and biomedical applications. Furthermore, we discuss the challenges that bioengineered nanocarriers face towards clinical translation and the possible avenues for their further development. This review ultimately underlines the potential of bioengineered nanotechnology for the advancement of nucleic acid therapy.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jing Luo
- Department of Urology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xiran Gui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Eric Schaar
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
44
|
Xu T, Wang J, Wu Y, Wu J, Lu W, Liu M, Zhang S, Xie D, Xin W, Xie J. Ac4C Enhances the Translation Efficiency of Vegfa mRNA and Mediates Central Sensitization in Spinal Dorsal Horn in Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303113. [PMID: 37877615 PMCID: PMC10724395 DOI: 10.1002/advs.202303113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Indexed: 10/26/2023]
Abstract
N4-Acetylcytidine (ac4C), a highly conserved post-transcriptional machinery with extensive existence for RNA modification, plays versatile roles in various cellular processes and functions. However, the molecular mechanism by which ac4C modification mediates neuropathic pain remains elusive. Here, it is found that the enhanced ac4C modification promotes the recruitment of polysome in Vegfa mRNA and strengthens the translation efficiency following SNI. Nerve injury increases the expression of NAT10 and the interaction between NAT10 and Vegfa mRNA in the dorsal horn neurons, and the gain and loss of NAT10 function further confirm that NAT10 is involved in the ac4C modification in Vegfa mRNA and pain behavior. Moreover, the ac4C-mediated VEGFA upregulation contributes to the central sensitivity and neuropathic pain induced by SNI or AAV-hSyn-NAT10. Finally, SNI promotes the binding of HNRNPK in Vegfa mRNA and subsequently recruits the NAT10. The enhanced interaction between HNRNPK and NAT10 contributes to the ac4C modification of Vegfa mRNA and neuropathic pain. These findings suggest that the enhanced interaction between HNRNPK and Vegfa mRNA upregulates the ac4C level by recruiting NAT10 and contributes to the central sensitivity and neuropathic pain following SNI. Blocking this cascade may be a novel therapeutic approach in patients with neuropathic pain.
Collapse
Affiliation(s)
- Ting Xu
- Neuroscience ProgramZhongshan School of MedicineThe Fifth Affiliated HospitalGuangdong Province Key Laboratory of Brain Function and DiseaseDepartment of Physiology and Pain Research CenterSun Yat‐Sen UniversityGuangzhou510080China
| | - Jing Wang
- Neuroscience ProgramZhongshan School of MedicineThe Fifth Affiliated HospitalGuangdong Province Key Laboratory of Brain Function and DiseaseDepartment of Physiology and Pain Research CenterSun Yat‐Sen UniversityGuangzhou510080China
- Department of Pain ManagementHenan Provincial People's HospitalZhengzhou UniversityZhengzhou450000China
| | - Yan Wu
- Department of AnesthesiologyThe First Affiliated Hospital of Sun Yat‐Sen UniversityGuangzhouGuangdong510062China
| | - Jia‐Yan Wu
- Neuroscience ProgramZhongshan School of MedicineThe Fifth Affiliated HospitalGuangdong Province Key Laboratory of Brain Function and DiseaseDepartment of Physiology and Pain Research CenterSun Yat‐Sen UniversityGuangzhou510080China
| | - Wei‐Cheng Lu
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Meng Liu
- Department of Anesthesia and Pain MedicineGuangzhou First People's HospitalGuangzhou510180China
| | - Su‐Bo Zhang
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Dan Xie
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhou510060China
| | - Wen‐Jun Xin
- Neuroscience ProgramZhongshan School of MedicineThe Fifth Affiliated HospitalGuangdong Province Key Laboratory of Brain Function and DiseaseDepartment of Physiology and Pain Research CenterSun Yat‐Sen UniversityGuangzhou510080China
| | - Jing‐Dun Xie
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhou510060China
| |
Collapse
|
45
|
Liu X, Zhao Z, Li W, Li Y, Yang Q, Liu N, Chen Y, Yin L. Engineering Nucleotidoproteins for Base-Pairing-Assisted Cytosolic Delivery and Genome Editing. Angew Chem Int Ed Engl 2023; 62:e202307664. [PMID: 37718311 DOI: 10.1002/anie.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Protein therapeutics targeting intracellular machineries hold profound potential for disease treatment, and hence robust cytosolic protein delivery technologies are imperatively demanded. Inspired by the super-negatively charged, nucleotide-enriched structure of nucleic acids, adenylated pro-proteins (A-proteins) with dramatically enhanced negative surface charges have been engineered for the first time via facile green synthesis. Then, thymidine-modified polyethyleneimine is developed, which exhibits strong electrostatic attraction, complementary base pairing, and hydrophobic interaction with A-proteins to form salt-resistant nanocomplexes with robust cytosolic delivery efficiencies. The acidic endolysosomal environment enables traceless restoration of the A-proteins and consequently promotes the intracellular release of the native proteins. This strategy shows high efficiency and universality for a variety of proteins with different molecular weights and isoelectric points in mammalian cells. Moreover, it enables highly efficient delivery of CRISPR-Cas9 ribonucleoproteins targeting fusion oncogene EWSR1-FLI1, leading to pronounced anti-tumor efficacy against Ewing sarcoma. This study provides a potent and versatile platform for cytosolic protein delivery and gene editing, and may benefit the development of protein pharmaceuticals.
Collapse
Affiliation(s)
- Xun Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Wei Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yajie Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Qiang Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Ningyu Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| | - Yongbing Chen
- Department of Thoracic Cancer, The Second Affiliated Hospital of Soochow University, 215123, Suzhou, Jiangsu, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 215123, Suzhou, Jiangsu, China
| |
Collapse
|
46
|
Zhu H, Luo H, Chang R, Yang Y, Liu D, Ji Y, Qin H, Rong H, Yin J. Protein-based delivery systems for RNA delivery. J Control Release 2023; 363:253-274. [PMID: 37741460 DOI: 10.1016/j.jconrel.2023.09.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
RNA-based therapeutics have emerged as promising approaches to modulate gene expression and generate therapeutic proteins or antigens capable of inducing immune responses to treat a variety of diseases, such as infectious diseases, cancers, immunologic disorders, and genetic disorders. However, the efficient delivery of RNA molecules into cells poses significant challenges due to their large molecular weight, negative charge, and susceptibility to degradation by RNase enzymes. To overcome these obstacles, viral and non-viral vectors have been developed, including lipid nanoparticles, viral vectors, proteins, dendritic macromolecules, among others. Among these carriers, protein-based delivery systems have garnered considerable attention due to their potential to address specific issues associated with nanoparticle-based systems, such as liver accumulation and immunogenicity. This review provides an overview of currently marketed RNA drugs, underscores the significance of RNA delivery vector development, delineates the essential characteristics of an ideal RNA delivery vector, and introduces existing protein carriers for RNA delivery. By offering valuable insights, this review aims to serve as a reference for the future development of protein-based delivery vectors for RNA therapeutics.
Collapse
Affiliation(s)
- Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hong Luo
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City 550014, Guizhou Province, China.
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
47
|
Wei A, Yin D, Zhai Z, Ling S, Le H, Tian L, Xu J, Paludan SR, Cai Y, Hong J. In vivo CRISPR gene editing in patients with herpetic stromal keratitis. Mol Ther 2023; 31:3163-3175. [PMID: 37658603 PMCID: PMC10638052 DOI: 10.1016/j.ymthe.2023.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
In vivo CRISPR gene therapy holds large clinical potential, but the safety and efficacy remain largely unknown. Here, we injected a single dose of herpes simplex virus 1 (HSV-1)-targeting CRISPR formulation in the cornea of three patients with severe refractory herpetic stromal keratitis (HSK) during corneal transplantation. Our study is an investigator-initiated, open-label, single-arm, non-randomized interventional trial at a single center (NCT04560790). We found neither detectable CRISPR-induced off-target cleavages by GUIDE-seq nor systemic adverse events for 18 months on average in all three patients. The HSV-1 remained undetectable during the study. Our preliminary clinical results suggest that in vivo gene editing targeting the HSV-1 genome holds acceptable safety as a potential therapy for HSK.
Collapse
Affiliation(s)
- Anji Wei
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Di Yin
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zimeng Zhai
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Huangying Le
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lijia Tian
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianjiang Xu
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Soren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Yujia Cai
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiaxu Hong
- Department of Ophthalmology and Visual Science, Eye, and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China; Shanghai Engineering Research Center of Synthetic Immunology, Shanghai, China.
| |
Collapse
|
48
|
Matsevich C, Gopalakrishnan P, Chang N, Obolensky A, Beryozkin A, Salameh M, Kostic C, Sharon D, Arsenijevic Y, Banin E. Gene augmentation therapy attenuates retinal degeneration in a knockout mouse model of Fam161a retinitis pigmentosa. Mol Ther 2023; 31:2948-2961. [PMID: 37580905 PMCID: PMC10556223 DOI: 10.1016/j.ymthe.2023.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023] Open
Abstract
Photoreceptor cell degeneration and death is the major hallmark of a wide group of human blinding diseases including age-related macular degeneration and inherited retinal diseases such as retinitis pigmentosa. In recent years, inherited retinal diseases have become the "testing ground" for novel therapeutic modalities, including gene and cell-based therapies. Currently there is no available treatment for retinitis pigmentosa caused by FAM161A biallelic pathogenic variants. In this study, we injected an adeno-associated virus encoding for the longer transcript of mFam161a into the subretinal space of P24-P29 Fam161a knockout mice to characterize the safety and efficacy of gene augmentation therapy. Serial in vivo assessment of retinal function and structure at 3, 6, and 8 months of age using the optomotor response test, full-field electroretinography, fundus autofluorescence, and optical coherence tomography imaging as well as ex vivo quantitative histology and immunohistochemical studies revealed a significant structural and functional rescue effect in treated eyes accompanied by expression of the FAM161A protein in photoreceptors. The results of this study may serve as an important step toward future application of gene augmentation therapy in FAM161A-deficient patients by identifying a promising isoform to rescue photoreceptors and their function.
Collapse
Affiliation(s)
- Chen Matsevich
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Ning Chang
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne - Jules-Gonin Eye Hospital Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Manar Salameh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Corinne Kostic
- Group for Retinal Disorder Research, Department of Ophthalmology, University Lausanne - Jules-Gonin Eye Hospital Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Yvan Arsenijevic
- Unit of Retinal Degeneration and Regeneration, Department of Ophthalmology, University Lausanne, Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, Lausanne, Switzerland
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
49
|
Cai R, Lv R, Shi X, Yang G, Jin J. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation. Int J Mol Sci 2023; 24:14865. [PMID: 37834313 PMCID: PMC10573330 DOI: 10.3390/ijms241914865] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
CRISPR/Cas9-mediated cleavage of DNA, which depends on the endonuclease activity of Cas9, has been widely used for gene editing due to its excellent programmability and specificity. However, the changes to the DNA sequence that are mediated by CRISPR/Cas9 affect the structures and stability of the genome, which may affect the accuracy of results. Mutations in the RuvC and HNH regions of the Cas9 protein lead to the inactivation of Cas9 into dCas9 with no endonuclease activity. Despite the loss of endonuclease activity, dCas9 can still bind the DNA strand using guide RNA. Recently, proteins with active/inhibitory effects have been linked to the end of the dCas9 protein to form fusion proteins with transcriptional active/inhibitory effects, named CRISPRa and CRISPRi, respectively. These CRISPR tools mediate the transcription activity of protein-coding and non-coding genes by regulating the chromosomal modification states of target gene promoters, enhancers, and other functional elements. Here, we highlight the epigenetic mechanisms and applications of the common CRISPR/dCas9 tools, by which we hope to provide a reference for future related gene regulation, gene function, high-throughput target gene screening, and disease treatment.
Collapse
Affiliation(s)
- Ruijie Cai
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Runyu Lv
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xin'e Shi
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianjun Jin
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
50
|
Cheng YM, Ma C, Jin K, Jin ZB. Retinal organoid and gene editing for basic and translational research. Vision Res 2023; 210:108273. [PMID: 37307693 DOI: 10.1016/j.visres.2023.108273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023]
Abstract
The rapid evolution of two technologies has greatly transformed the basic, translational, and clinical research in the mammalian retina. One is the retinal organoid (RO) technology. Various induction methods have been created or adapted to generate species-specific, disease-specific, and experimental-targeted retinal organoids (ROs). The process of generating ROs can highly mimic the in vivo retinal development, and consequently, the ROs resemble the retina in many aspects including the molecular and cellular profiles. The other technology is the gene editing, represented by the classical CRISPR-Cas9 editing and its derivatives such as prime editing, homology independent targeted integration (HITI), base editing and others. The combination of ROs and gene editing has opened up countless possibilities in the study of retinal development, pathogenesis, and therapeutics. We review recent advances in the ROs, gene editing methodologies, delivery vectors, and related topics that are particularly relevant to retinal studies.
Collapse
Affiliation(s)
- You-Min Cheng
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Chao Ma
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China
| | - Kangxin Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| | - Zi-Bing Jin
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100730 China.
| |
Collapse
|