1
|
Wang Y, Ruf S, Wang L, Heimerl T, Bange G, Groeger S. The Dual Roles of Lamin A/C in Macrophage Mechanotransduction. Cell Prolif 2025; 58:e13794. [PMID: 39710429 PMCID: PMC12099221 DOI: 10.1111/cpr.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force. We discovered that hydrostatic compressive force induces heterochromatin formation, decreases SUN1/SUN2 levels, and transiently downregulates lamin A/C. Notably, downregulated lamin A/C increased nuclear permeability to yes-associated protein 1 (YAP1), thereby amplifying certain effects of force, such as inflammation induction and proliferation inhibition. Additionally, lamin A/C deficiency detached the linker of nucleoskeleton and cytoskeleton (LINC) complex from nuclear envelope, consequently reducing force-induced DNA damage and IRF4 expression. In summary, lamin A/C exerted dual effects on macrophage responses to mechanical compression, promoting certain outcomes while inhibiting others. It operated through two distinct mechanisms: enhancing nuclear permeability and impairing intracellular mechanotransmission. The results of this study support the understanding of the mechanisms of intracellular mechanotransduction and may assist in identifying potential therapeutic targets for mechanotransduction-related diseases.
Collapse
Affiliation(s)
- Yao Wang
- Department of Orthodontics, Faculty of MedicineJustus Liebig UniversityGiessenGermany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of MedicineJustus Liebig UniversityGiessenGermany
| | - Lei Wang
- Department of Orthodontics, Faculty of MedicineJustus Liebig UniversityGiessenGermany
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological HospitalSouthwest Medical UniversityLuzhouP. R. China
| | - Thomas Heimerl
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO)Philipps‐University MarburgMarburgGermany
| | - Sabine Groeger
- Department of Orthodontics, Faculty of MedicineJustus Liebig UniversityGiessenGermany
| |
Collapse
|
2
|
Weaver MR, Shkoruta D, Pellegatta M, Berti C, Palmisano M, Ferguson S, Hurley E, French J, Patel S, Belin S, Selbach M, Paul FE, Sim F, Poitelon Y, Feltri ML. The STRIPAK complex is required for radial sorting and laminin receptor expression in Schwann cells. Cell Rep 2025; 44:115401. [PMID: 40056414 PMCID: PMC12035956 DOI: 10.1016/j.celrep.2025.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/19/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to sort and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are Rac1 interactors. We show that Schwann-cell-specific ablation of striatin-3 causes defects in lamellipodia formation, and conditional Schwann cell knockout for striatins presents a severe delay in radial sorting. Finally, we demonstrate that deletion of Rac1 or striatin-1/3 in Schwann cells causes defects in the activation of Hippo pathway effectors YAP and TAZ and the expression of genes co-regulated by YAP and TAZ, such as extracellular matrix receptors. In summary, our results indicate that striatin-3 is a Rac1 interactor and that striatins are required for peripheral nervous system development and reveal a role for Rac1 in the regulation of the Hippo pathway in Schwann cells.
Collapse
Affiliation(s)
| | - Dominika Shkoruta
- Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ivano-Frankivsk Oblast, Ukraine
| | - Marta Pellegatta
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Biochemistry, Buffalo, NY, USA
| | - Caterina Berti
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Biochemistry, Buffalo, NY, USA
| | - Marilena Palmisano
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Biochemistry, Buffalo, NY, USA
| | - Scott Ferguson
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Pharmaceutical Sciences, Buffalo, NY, USA
| | - Edward Hurley
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA
| | - Julianne French
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Shreya Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | | | - Fraser Sim
- Department of Pharmacology and Toxicology, Buffalo, NY, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA.
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Biochemistry, Buffalo, NY, USA; Department of Neurology, State University of New York at Buffalo Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
3
|
Chen X, Ji X, Lao Z, Pan B, Qian Y, Yang W. Role of YAP/TAZ in bone diseases: A transductor from mechanics to biology. J Orthop Translat 2025; 51:13-23. [PMID: 39902099 PMCID: PMC11787699 DOI: 10.1016/j.jot.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Wolff's Law and the Mechanostat Theory elucidate how bone tissues detect and convert mechanical stimuli into biological signals, crucial for maintaining bone equilibrium. Abnormal mechanics can lead to diseases such as osteoporosis, osteoarthritis, and nonunion fractures. However, the detailed molecular mechanisms by which mechanical cues are transformed into biological responses in bone remain underexplored. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of bone homeostasis, are instrumental in this process. Emerging research highlights bone cells' ability to sense various mechanical stimuli and relay these signals intracellularly. YAP/TAZ are central in receiving these mechanical cues and converting them into signals that influence bone cell behavior. Abnormal YAP/TAZ activity is linked to several bone pathologies, positioning these proteins as promising targets for new treatments. Thus, this review aims to provide an in-depth examination of YAP/TAZ's critical role in the interpretation of mechanical stimuli to biological signals, with a special emphasis on their involvement in bone cell mechanosensing, mechanotransduction, and mechanoresponse. The translational potential of this article: Clinically, appropriate stress stimulation promotes fracture healing, while bed rest can lead to disuse osteoporosis and excessive stress can cause osteoarthritis or bone spurs. Recent advancements in the understanding of YAP/TAZ-mediated mechanobiological signal transduction in bone diseases have been significant, yet many aspects remain unknown. This systematic review summarizes current research progress, identifies unaddressed areas, and highlights potential future research directions. Advancements in this field facilitate a deeper understanding of the molecular mechanisms underlying bone mechanics regulation and underscore the potential of YAP/TAZ as therapeutic targets for bone diseases such as fractures, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
4
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Zhao L, Gui Y, Deng X. Focus on mechano-immunology: new direction in cancer treatment. Int J Surg 2025; 111:2590-2602. [PMID: 39764598 DOI: 10.1097/js9.0000000000002224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/29/2024] [Indexed: 03/16/2025]
Abstract
The immune response is modulated by a diverse array of signals within the tissue microenvironment, encompassing biochemical factors, mechanical forces, and pressures from adjacent tissues. Furthermore, the extracellular matrix and its constituents significantly influence the function of immune cells. In the case of carcinogenesis, changes in the biophysical properties of tissues can impact the mechanical signals received by immune cells, and these signals c1an be translated into biochemical signals through mechano-transduction pathways. These mechano-transduction pathways have a profound impact on cellular functions, influencing processes such as cell activation, metabolism, proliferation, and migration, etc. Tissue mechanics may undergo temporal changes during the process of carcinogenesis, offering the potential for novel dynamic levels of immune regulation. Here, we review advances in mechanoimmunology in malignancy studies, focusing on how mechanosignals modulate the behaviors of immune cells at the tissue level, thereby triggering an immune response that ultimately influences the development and progression of malignant tumors. Additionally, we have also focused on the development of mechano-immunoengineering systems, with the help of which could help to further understand the response of tumor cells or immune cells to alterations in the microenvironment and may provide new research directions for overcoming immunotherapeutic resistance of malignant tumors.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
| | - Yajun Gui
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
| | - Xiangying Deng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Human, China
- Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Fan H, Zhao H, Hou Y, Meng D, Jiang J, Lee EB, Fu Y, Zhang X, Chen R, Wang Y. Heterogeneous focal adhesion cytoskeleton nanoarchitectures from microengineered interfacial curvature to oversee nuclear remodeling and mechanotransduction of mesenchymal stem cells. Cell Mol Biol Lett 2025; 30:10. [PMID: 39856556 PMCID: PMC11762875 DOI: 10.1186/s11658-025-00692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure. METHODS Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture. The colonies of human mesenchymal stem cells (hMSCs) were formed by controlling cell seeding density to investigate the influences of cell density, curvature and heterogeneity on mechanotransduction. Immunofluorescent staining of integrin, vinculin, and talin-1 was conducted to evaluate adhesion-related expression levels. Then, immunofluorescent staining of actin, actinin, and myosin was performed to detect cytoskeleton distribution, especially at the periphery. Nuclear force-sensing mechanotransduction was explained by yes-associated protein (YAP) and laminA/C analysis. RESULTS The micropatterned colony of hMSCs demonstrated the coincident characters with engineered micropores of microstencils. The cell colony obviously developed the heterogeneous morphogenesis. Heterogeneous focal adhesion guided the development of actin, actinin, and myosin together to regulate cellular contractility and movement by integrin, vinculin, and talin-1. Cytoskeletal staining showed that actin, actinin, and myosin fibers were reorganized at the periphery of microstencils. YAP nuclear translocation and laminA/C nuclear remodeling were enhanced at the periphery by the regulation of heterogeneous focal adhesion (FA) and cytoskeleton arrangement. CONCLUSIONS The characters of the engineered clustering colony showed similar results with prepared microstencils, and colony curvature was also well adjusted to establish heterogeneous balance at the periphery of cell colony. The mechanism of curvature, spreading, and elongation was also investigated to disclose the compliance of FA and cytoskeleton along with curvature microarrays for increased nuclear force-sensing mechanotransduction. The results may provide helpful information for understanding interfacial heterogeneity and nuclear mechanotransduction of stem cells.
Collapse
Affiliation(s)
- Huayu Fan
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, 450008, Henan, China
| | - Hui Zhao
- Zhengzhou Revogene Technology Co., LTD, Airport District, Zhengzhou, 451162, Henan, China
| | - Yan Hou
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Danni Meng
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jizong Jiang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Eon-Bee Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yinzheng Fu
- Zhengzhou Revogene Technology Co., LTD, Airport District, Zhengzhou, 451162, Henan, China
| | - Xiangdong Zhang
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, 450008, Henan, China.
| | - Rui Chen
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province (Henan Provincial Orthopedic Hospital), Zhengzhou, 450008, Henan, China.
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, Fujian, China.
| | - Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
7
|
Pecoraro C, Carbone D, Scianò F, Terrana F, Xu G, Bergonzini C, Roeten MSF, Cascioferro S, Cirrincione G, Diana P, Giovannetti E, Parrino B. Exploring the therapeutic potential of a novel series of imidazothiadiazoles targeting focal adhesion kinase (FAK) for pancreatic cancer treatment: synthesis, mechanistic insights and promising antitumor and safety profile. J Drug Target 2024; 32:1278-1294. [PMID: 39067009 DOI: 10.1080/1061186x.2024.2385557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Focal Adhesion Kinase (FAK) is a non-receptor protein tyrosine kinase that plays a crucial role in various oncogenic processes related to cell adhesion, migration, proliferation, and survival. The strategic targeting of FAK represents a burgeoning approach to address resistant tumours, such as pancreatic ductal adenocarcinoma (PDAC). Herein, we report a new series of twenty imidazo[2,1-b][1, 3, 4]thiadiazole derivatives assayed for their antiproliferative activity against the National Cancer Institute (NCI-60) panel and a wide panel of PDAC models. Lead compound 10l exhibited effective antiproliferative activity against immortalised (SUIT-2, CAPAN-1, PANC-1, PATU-T, BxPC-3), primary (PDAC-3) and gemcitabine-resistant clone (PANC-1-GR) PDAC cells, eliciting IC50 values in the low micromolar range (1.04-3.44 µM), associated with a significant reduction in cell-migration and spheroid shrinkage in vitro. High-throughput kinase arrays revealed a significant inhibition of the FAK signalling network, associated to induction of cell cycle arrest in G2/M phase, suppression of tumour cell invasion and apoptosis induction. The high selectivity index/toxicity prompted studies using PDAC mouse xenografts, demonstrating significant inhibition of tumour growth and safety. In conclusion, compound 10l displayed antitumor activity and safety in both in vitro and in vivo models, emerging as a highly promising lead for the development of FAK inhibitors in PDAC.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Lumobiotics, Karlsruhe, Germany
| | - Francesca Terrana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Cecilia Bergonzini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Margot S F Roeten
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University, Amsterdam, The Netherlands
- Cancer Pharmacology Laboratory, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
8
|
Yang H, Yang J, Zheng X, Chen T, Zhang R, Chen R, Cao T, Zeng F, Liu Q. The Hippo Pathway in Breast Cancer: The Extracellular Matrix and Hypoxia. Int J Mol Sci 2024; 25:12868. [PMID: 39684583 DOI: 10.3390/ijms252312868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
As one of the most prevalent malignant neoplasms among women globally, the optimization of therapeutic strategies for breast cancer has perpetually been a research hotspot. The tumor microenvironment (TME) is of paramount importance in the progression of breast cancer, among which the extracellular matrix (ECM) and hypoxia are two crucial factors. The alterations of these two factors are predominantly regulated by the Hippo signaling pathway, which promotes tumor invasiveness, metastasis, therapeutic resistance, and susceptibility. Hence, this review focuses on the Hippo pathway in breast cancer, specifically, how the ECM and hypoxia impact the biological traits and therapeutic responses of breast cancer. Moreover, the role of miRNAs in modulating ECM constituents was investigated, and hsa-miR-33b-3p was identified as a potential therapeutic target for breast cancer. The review provides theoretical foundations and potential therapeutic direction for clinical treatment strategies in breast cancer, with the aspiration of attaining more precise and effective treatment alternatives in the future.
Collapse
Affiliation(s)
- Hanyu Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Jiaxin Yang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Xiang Zheng
- School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Tingting Cao
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
9
|
Wang C, Xiao L, Gao L, Wu J, Wang S, Zheng MM, Qin CT, Huang XG, Zhou L, Xu WJ, Li HG, Chen WL, Zhu LH, Jin X. Comparative proteomic analysis between tumor tissues and intratumoral exosomes from lung adenocarcinoma patients identifies PAFAH1B3 as an exosomal protein key for initiating metastasis in lung adenocarcinoma. Heliyon 2024; 10:e39859. [PMID: 39553628 PMCID: PMC11567031 DOI: 10.1016/j.heliyon.2024.e39859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Mounting evidence strongly indicates that exosomes are pivotal in the advancement of cancer, yet the overarching profile of exosomal proteins and their contribution to lung adenocarcinoma (LUAD) progression remain underexplored. In our investigation, we isolated exosomes from treatment-naive LUAD (n = 20) and paired normal adjacent tissues (NATs), and conducted integrated proteomic on the acquired exosomes and source tissues to ascertain origin characteristics and potential therapeutic targets of the exosomal proteins in LUAD. The omics data revealed the overall landscape of exosomal proteins from tissues in LUAD, underscoring the profound linkage between exosomal proteins and tumor metastasis. Integrated analysis indicated a significant overlap in protein species, demonstrating high concordance between exosomal proteins and those in their originating tissues. However, only a small subset showed significant positive correlation in protein abundance between exosomes and their source tissues. Notably, we pinpointed five proteins (DDX18, DNAJA3, PAFAH1B3, BAG6, and CAD). Significantly, platelet activating factor acetylhydrolase 1b catalytic subunit 3 (PAFAH1B3), an essential serine hydrolase within cellular metabolic processes, stood out as the singular protein closely associated with disease-free survival (DFS) of patients. Cell invasion and migration assays further substantiated that PAFAH1B3 promoted metastasis of LUAD via the exosomal release pathway. Furthermore, analysis of public databases validated elevated PAFAH1B3 expression in LUAD and linked it to poor patient survival outcomes. Overall, our research positioned PAFAH1B3 as a promising candidate for prognostic marker and potential therapeutic target in lung cancer treatment.
Collapse
Affiliation(s)
- Congcong Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Ling Xiao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ling Gao
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Jia Wu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Siliang Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Miao-Miao Zheng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Chen-Tai Qin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Xian-ge Huang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lei Zhou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wei-jie Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - He-gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| | - Li-hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
- Shanghai Frontiers Science Center of Disease and Syndrome Biology of Inflammatory Cancer Transformation, Shanghai, 200032, China
| |
Collapse
|
10
|
Lan Y, Lu J, Zhang S, Jie C, Chen C, Xiao C, Qin C, Cheng D. Piezo1-Mediated Mechanotransduction Contributes to Disturbed Flow-Induced Atherosclerotic Endothelial Inflammation. J Am Heart Assoc 2024; 13:e035558. [PMID: 39450718 PMCID: PMC11935715 DOI: 10.1161/jaha.123.035558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Disturbed flow generates oscillatory shear stress (OSS), which in turn leads to endothelial inflammation and atherosclerosis. Piezo1, a biomechanical force sensor, plays a crucial role in the cardiovascular system. However, the specific role of Piezo1 in atherosclerosis remains to be fully elucidated. METHODS AND RESULTS We detected the expression of Piezo1 in atherosclerotic mice and endothelial cells from regions with disturbed blood flow. The pharmacological inhibitor Piezo1 inhibitor (GsMTx4) was used to evaluate the impact of Piezo1 on plaque progression and endothelial inflammation. We examined Piezo1's direct response to OSS in vitro and its effects on endothelial inflammation. Furthermore, mechanistic studies were conducted to explore the potential molecular cascade through which Piezo1 mediates endothelial inflammation in response to OSS. Our findings revealed the upregulation of Piezo1 in apoE-/- (apolipoprotein E) atherosclerotic mice, which is associated with disturbed flow. Treatment with GsMTx4 not only delayed plaque progression but also mitigated endothelial inflammation in both chronic and disturbed flow-induced atherosclerosis. Piezo1 was shown to facilitate calcium ions (Ca2+) influx in response to OSS, thereby activating endothelial inflammation. This inflammatory response was attenuated in the absence of Piezo1. Additionally, we identified that under OSS, Piezo1 activates the Ca2+/CaM/CaMKII (calmodulin/calmodulin-dependent protein kinases Ⅱ) pathways, which subsequently stimulate downstream kinases FAK (focal adhesion kinase) and Src. This leads to the activation of the OSS-sensitive YAP (yes-associated protein), ultimately triggering endothelial inflammation. CONCLUSIONS Our study highlights the key role of Piezo1 in atherosclerotic endothelial inflammation, proposing the Piezo1-Ca2+/CaM/CaMKII-FAK/Src-YAP axis as a previously unknown endothelial mechanotransduction pathway. Piezo1 is expected to become a potential therapeutic target for atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Yining Lan
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jing Lu
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Shaohan Zhang
- The Second Affiliated Hospital of Qiqihar Medical CollegeQiqiharHeilongjiangChina
| | - Chunxiao Jie
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Chunyong Chen
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Chao Xiao
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
- Department of NeurologyLiuzhou People’s HospitalLiuzhouGuangxiChina
| | - Chao Qin
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Daobin Cheng
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| |
Collapse
|
11
|
Weaver MR, Shkoruta D, Pellegatta M, Berti C, Palmisano M, Ferguson S, Hurley E, French J, Patel S, Belin S, Selbach M, Paul FE, Sim F, Poitelon Y, Feltri ML. The STRIPAK complex is required for radial sorting and laminin receptor expression in Schwann cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620661. [PMID: 39554194 PMCID: PMC11565846 DOI: 10.1101/2024.10.30.620661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to radially sort, ensheath, and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are novel Rac1 interactors. We show that, similar to Rac1-null Schwann cells, Schwann cell specific ablation of striatin-3 causes defects in lamellipodia formation. In addition, conditional Schwann cell knockout of multiple striatin proteins presents a severe delay in radial sorting. Finally, we demonstrate here that deletion of Rac1 or striatin-1/3 in Schwann cells causes defects in Hippo pathway regulation, phosphorylation of the Hippo pathway effectors YAP and TAZ, and expression of genes co-regulated by YAP and TAZ, such as extracellular matrix receptors. In summary, our results indicate that striatin-3 is a novel Rac1 interactor, show that striatin proteins are required for peripheral nervous system development, and reveal a role for Rac1 in regulation of the Hippo pathway in Schwann cells.
Collapse
|
12
|
Li Z, Lin J, Wu J, Suo J, Wang Z. The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging. Cell Prolif 2024; 57:e13652. [PMID: 38700015 PMCID: PMC11471399 DOI: 10.1111/cpr.13652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
The Hippo signalling pathway is a conserved kinase cascade that orchestrates diverse cellular processes, such as proliferation, apoptosis, lineage commitment and stemness. With the onset of society ages, research on skeletal aging-mechanics-bone homeostasis has exploded. In recent years, aging and mechanical force in the skeletal system have gained groundbreaking research progress. Under the regulation of mechanics and aging, the Hippo signalling pathway has a crucial role in the development and homeostasis of bone. We synthesize the current knowledge on the role of the Hippo signalling pathway, particularly its downstream effectors yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), in bone homeostasis. We discuss the regulation of the lineage specification and function of different skeletal cell types by the Hippo signalling pathway. The interactions of the Hippo signalling pathway with other pathways, such as Wnt, transforming growth factor beta and nuclear factor kappa-B, are also mentioned because of their importance for modulating bone homeostasis. Furthermore, YAP/TAZ have been extensively studied as mechanotransducers. Due to space limitations, we focus on reviewing how mechanical forces and aging influence cell fate, communications and homeostasis through a dysregulated Hippo signalling pathway.
Collapse
Affiliation(s)
- Zhengda Li
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Junqing Lin
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Jing Wu
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| | - Jinlong Suo
- Institute of Microsurgery on Extremities, and Department of Orthopedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine ShanghaiShanghaiChina
| | - Zuoyun Wang
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences and Shanghai Jing'an District Central HospitalFudan UniversityShanghaiChina
| |
Collapse
|
13
|
Dias AP, Rehmani T, Applin BD, Salih M, Tuana B. SLMAP3 is crucial for organogenesis through mechanisms involving primary cilia formation. Open Biol 2024; 14:rsob240206. [PMID: 39417621 PMCID: PMC11484480 DOI: 10.1098/rsob.240206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3-/- embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies. Analysis of cell polarity in primary mouse embryonic fibroblasts (MEFs) including cell migration, orientation and mitotic spindle angle did not reveal any changes due to SLMAP3 loss in these cells, although the expression of DVL3 was significantly reduced. Furthermore, MEFs lacking FGFR1OP2 or STRN3, two other STRIPAK members, did not reveal any significant changes in any of these parameters either. Significant changes in the number of ciliated cells and primary cilium length in SLMAP3 and FGFR1OP2 deficient MEFs were evident, while a reduced primary cilium length was notable in chondrocytes of SLMAP3 deficient embryos. Our findings suggest that SLMAP3 is essential for mouse embryogenesis through novel mechanisms involving the primary cilium/PCP and protein stability independent of Hippo signalling.
Collapse
Affiliation(s)
- Ana Paula Dias
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Taha Rehmani
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Billi Dawn Applin
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Maysoon Salih
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| | - Balwant Tuana
- Department of Cellular and Molecular Medicine, University of Ottawa, OttawaK1H 8M5, Canada
| |
Collapse
|
14
|
Su D, Wang R, Chen G, Ding C, Liu Y, Tao J, Wang Y, Qiu J, Luo W, Weng G, Yang G, Zhang T. FBXO32 Stimulates Protein Synthesis to Drive Pancreatic Cancer Progression and Metastasis. Cancer Res 2024; 84:2607-2625. [PMID: 38775804 DOI: 10.1158/0008-5472.can-23-3638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/16/2024] [Accepted: 05/15/2024] [Indexed: 08/16/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the leading causes of cancer-related death worldwide, primarily due to its rapid progression. The current treatment options for PDAC are limited, and a better understanding of the underlying mechanisms responsible for PDAC progression is required to identify improved therapeutic strategies. In this study, we identified FBXO32 as an oncogenic driver in PDAC. FBXO32 was aberrantly upregulated in PDAC, and high FBXO32 expression was significantly associated with an unfavorable prognosis in patients with PDAC. FRG1 deficiency promoted FBXO32 upregulation in PDAC. FBXO32 promoted cell migration and invasion in vitro and tumor growth and metastasis in vivo. Mechanistically, FBXO32 directly interacted with eEF1A1 and promoted its polyubiquitination at the K273 site, leading to enhanced activity of eEF1A1 and increased protein synthesis in PDAC cells. Moreover, FBXO32-catalyzed eEF1A1 ubiquitination boosted the translation of ITGB5 mRNA and activated focal adhesion kinase (FAK) signaling, thereby facilitating focal adhesion assembly and driving PDAC progression. Importantly, interfering with the FBXO32-eEF1A1 axis or pharmaceutical inhibition of FAK by defactinib, an FDA-approved FAK inhibitor, substantially inhibited PDAC growth and metastasis driven by aberrantly activated FBXO32-eEF1A1 signaling. Overall, this study uncovers a mechanism by which PDAC cells rely on FBXO32-mediated eEF1A1 activation to drive progression and metastasis. FBXO32 may serve as a promising biomarker for selecting eligible patients with PDAC for treatment with defactinib. Significance: FBXO32 upregulation in pancreatic cancer induced by FRG1 deficiency increases eEF1A1 activity to promote ITGB5 translation and stimulate FAK signaling, driving cancer progression and sensitizing tumors to the FAK inhibitor defactinib.
Collapse
Affiliation(s)
- Dan Su
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruobing Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guangyu Chen
- Department of Breast Surgery, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
| | - Chen Ding
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yueze Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinxin Tao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuanyang Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangdong Qiu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenhao Luo
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guihu Weng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Li S, Li X, Yang YB, Wu SF. YAP/TAZ-TEAD activity promotes the malignant transformation of cervical intraepithelial neoplasia through enhancing the characteristics and Warburg effect of cancer stem cells. Apoptosis 2024; 29:1198-1210. [PMID: 38553612 PMCID: PMC11263238 DOI: 10.1007/s10495-023-01935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2023] [Indexed: 07/23/2024]
Abstract
A number of studies have confirmed that Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ)-transcriptional enhanced associate domain (TEAD) activity is the driver of cancer development. However, the role and mechanism of the YAP/TAZ-TEAD pathway in cervical intraepithelial neoplasia (CIN) remain to be clarified. Therefore, this study was designed to observe the effect of YAP/TAZ-TEAD activity on the development of CIN and provide new ideas for the diagnosis and treatment of CIN. Firstly, cervical tissues were collected from CIN patients in different stages [CIN grade 1 (CIN1) tissue, CIN grade 2/3 (CIN 2/3) and squamous cell carcinoma (SCC)] and healthy volunteers. Next, the expression levels of YAP, TAZ and TEAD in cervical tissues and cells were observed by immunohistochemistry, qRT-PCR and western blot. Besides, Z172 and Z183 cells were transfected with siRNA-YAP/TAZ (si-YAP/TAZ) and YAP/TAZ overexpression vector (YAP-5SA). Also, Z172 cells were co-transfected with YAP-5SA and si-TEAD2/4. Subsequently, the stemness characteristics, glycolysis level and malignant transformation of cells in each group were observed by sphere-formation assay, commercial kit, MTT, Transwell, scratch experiment, xenotransplantation and western blot.The expression of YAP, TAZ and TEAD increased significantly in cervical cancer tissue and cell line at the stage of CIN2/3 and SCC. When YAP/TAZ was knocked down, the stemness characteristics, glycolysis level and malignant transformation of cancer cells were notably inhibited; while activating YAP/TAZ exhibited a completely opposite result. In addition, activating YAP/TAZ and knocking down the TEAD expression at the same time significant weakened the effect of activated YAP/TAZ signal on precancerous cells and reduced inhibitory effect of knocking down TEAD alone. YAP/TAZ-TEAD signal activates the characteristics and Warburg effect of cancer stem cells, thereby promoting the malignant transformation of CIN.
Collapse
MESH Headings
- Humans
- Female
- Transcription Factors/genetics
- Transcription Factors/metabolism
- YAP-Signaling Proteins/metabolism
- YAP-Signaling Proteins/genetics
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
- Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Uterine Cervical Dysplasia/pathology
- Uterine Cervical Dysplasia/genetics
- Uterine Cervical Dysplasia/metabolism
- Animals
- Trans-Activators/genetics
- Trans-Activators/metabolism
- TEA Domain Transcription Factors/metabolism
- Cell Line, Tumor
- Mice
- Warburg Effect, Oncologic
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Cell Proliferation/genetics
- Mice, Nude
- Gene Expression Regulation, Neoplastic
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
Collapse
Affiliation(s)
- Shu Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Yong-Bin Yang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Su-Fang Wu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
16
|
Lyu P, Gu X, Wang F, Sun H, Zhou Q, Yang S, Yuan W. Advances in targeting cancer-associated fibroblasts through single-cell spatial transcriptomic sequencing. Biomark Res 2024; 12:73. [PMID: 39075612 PMCID: PMC11287900 DOI: 10.1186/s40364-024-00622-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the major components of the tumor microenvironment and are related to tumor proliferation, metastasis, relapse, and drug resistance. With the development of sequencing technologies, single-cell RNA sequencing has become a popular method for identifying CAFs in the tumor microenvironment. Whereas the drawbacks of CAFs, such as the lack of a spatial landscape, still exist, recent research has utilized spatial transcriptomics combined with single-cell RNA sequencing to address this issue. These multiomics analyses can resolve the single-cell resolution problem in spatial transcriptomics. In this review, we summarized the recent literature regarding the targeting of CAFs to address drug resistance, angiogenesis, metabolic reprogramming and metastasis in tumor tissue.
Collapse
Affiliation(s)
- Pin Lyu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Haifeng Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
17
|
Xie M, Cao H, Qiao W, Yan G, Qian X, Zhang Y, Xu L, Wen S, Shi J, Cheng M, Dong N. Shear stress activates the Piezo1 channel to facilitate valvular endothelium-oriented differentiation and maturation of human induced pluripotent stem cells. Acta Biomater 2024; 178:181-195. [PMID: 38447808 DOI: 10.1016/j.actbio.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.
Collapse
Affiliation(s)
- Minghui Xie
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong Cao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yan
- Department of Cardiovascular Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yecen Zhang
- Department of Cardiovascular Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuyu Wen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Min Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Li Z, Yang B, Yang Z, Xie X, Guo Z, Zhao J, Wang R, Fu H, Zhao P, Zhao X, Chen G, Li G, Wei F, Bian L. Supramolecular Hydrogel with Ultra-Rapid Cell-Mediated Network Adaptation for Enhancing Cellular Metabolic Energetics and Tissue Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307176. [PMID: 38295393 DOI: 10.1002/adma.202307176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Indexed: 02/02/2024]
Abstract
Cellular energetics plays an important role in tissue regeneration, and the enhanced metabolic activity of delivered stem cells can accelerate tissue repair and regeneration. However, conventional hydrogels with limited network cell adaptability restrict cell-cell interactions and cell metabolic activities. In this work, it is shown that a cell-adaptable hydrogel with high network dynamics enhances the glucose uptake and fatty acid β-oxidation of encapsulated human mesenchymal stem cells (hMSCs) compared with a hydrogel with low network dynamics. It is further shown that the hMSCs encapsulated in the high dynamic hydrogels exhibit increased tricarboxylic acid (TCA) cycle activity, oxidative phosphorylation (OXPHOS), and adenosine triphosphate (ATP) biosynthesis via an E-cadherin- and AMP-activated protein kinase (AMPK)-dependent mechanism. The in vivo evaluation further showed that the delivery of MSCs by the dynamic hydrogel enhanced in situ bone regeneration in an animal model. It is believed that the findings provide critical insights into the impact of stem cell-biomaterial interactions on cellular metabolic energetics and the underlying mechanisms.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Boguang Yang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Zhengmeng Yang
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Zhengnan Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Jianyang Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Ruinan Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Hao Fu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Pengchao Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Guosong Chen
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, P. R. China
| | - Gang Li
- Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, 999077, P. R. China
| | - Fuxin Wei
- Department of Orthopedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Shenzhen, 518107, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 511442, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 511442, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 511442, P. R. China
| |
Collapse
|
19
|
Hu R, Cao Y, Wang Y, Zhao T, Yang K, Fan M, Guan M, Hou Y, Ying J, Ma X, Deng N, Sun X, Zhang Y, Zhang X. TMEM120B strengthens breast cancer cell stemness and accelerates chemotherapy resistance via β1-integrin/FAK-TAZ-mTOR signaling axis by binding to MYH9. Breast Cancer Res 2024; 26:48. [PMID: 38504374 PMCID: PMC10949598 DOI: 10.1186/s13058-024-01802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/29/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Breast cancer stem cell (CSC) expansion results in tumor progression and chemoresistance; however, the modulation of CSC pluripotency remains unexplored. Transmembrane protein 120B (TMEM120B) is a newly discovered protein expressed in human tissues, especially in malignant tissues; however, its role in CSC expansion has not been studied. This study aimed to determine the role of TMEM120B in transcriptional coactivator with PDZ-binding motif (TAZ)-mediated CSC expansion and chemotherapy resistance. METHODS Both bioinformatics analysis and immunohistochemistry assays were performed to examine expression patterns of TMEM120B in lung, breast, gastric, colon, and ovarian cancers. Clinicopathological factors and overall survival were also evaluated. Next, colony formation assay, MTT assay, EdU assay, transwell assay, wound healing assay, flow cytometric analysis, sphere formation assay, western blotting analysis, mouse xenograft model analysis, RNA-sequencing assay, immunofluorescence assay, and reverse transcriptase-polymerase chain reaction were performed to investigate the effect of TMEM120B interaction on proliferation, invasion, stemness, chemotherapy sensitivity, and integrin/FAK/TAZ/mTOR activation. Further, liquid chromatography-tandem mass spectrometry analysis, GST pull-down assay, and immunoprecipitation assays were performed to evaluate the interactions between TMEM120B, myosin heavy chain 9 (MYH9), and CUL9. RESULTS TMEM120B expression was elevated in lung, breast, gastric, colon, and ovarian cancers. TMEM120B expression positively correlated with advanced TNM stage, lymph node metastasis, and poor prognosis. Overexpression of TMEM120B promoted breast cancer cell proliferation, invasion, and stemness by activating TAZ-mTOR signaling. TMEM120B directly bound to the coil-coil domain of MYH9, which accelerated the assembly of focal adhesions (FAs) and facilitated the translocation of TAZ. Furthermore, TMEM120B stabilized MYH9 by preventing its degradation by CUL9 in a ubiquitin-dependent manner. Overexpression of TMEM120B enhanced resistance to docetaxel and doxorubicin. Conversely, overexpression of TMEM120B-∆CCD delayed the formation of FAs, suppressed TAZ-mTOR signaling, and abrogated chemotherapy resistance. TMEM120B expression was elevated in breast cancer patients with poor treatment outcomes (Miller/Payne grades 1-2) than in those with better outcomes (Miller/Payne grades 3-5). CONCLUSIONS Our study reveals that TMEM120B bound to and stabilized MYH9 by preventing its degradation. This interaction activated the β1-integrin/FAK-TAZ-mTOR signaling axis, maintaining stemness and accelerating chemotherapy resistance.
Collapse
Affiliation(s)
- Ran Hu
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Cao
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Wang
- Department of Anesthesiology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Tingting Zhao
- Department of Surgical Oncology and Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Kaibo Yang
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, China
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Mingwei Fan
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Mengyao Guan
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Yuekang Hou
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Jiao Ying
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China
| | - Xiaowen Ma
- Second Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Ning Deng
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China.
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, First Affiliated Hospital of China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province, 110122, China.
| |
Collapse
|
20
|
Tang L, Zhou M, Xu Y, Peng B, Gao Y, Mo Y. Knockdown of CCM3 promotes angiogenesis through activation and nuclear translocation of YAP/TAZ. Biochem Biophys Res Commun 2024; 701:149525. [PMID: 38320423 DOI: 10.1016/j.bbrc.2024.149525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024]
Abstract
Angiogenesis, a finely regulated process, plays a crucial role in the progression of various diseases. Cerebral cavernous malformation 3 (CCM3), alternatively referred to as programmed cell death 10 (PDCD10), stands as a pivotal functional gene with a broad distribution across the human body. However, the precise role of CCM3 in angiogenesis regulation has remained elusive. YAP/TAZ, as core components of the evolutionarily conserved Hippo pathway, have garnered increasing attention as a novel mechanism in angiogenesis regulation. Nonetheless, whether CCM3 regulates angiogenesis through YAP/TAZ mediation has not been comprehensively explored. In this study, our primary focus centers on investigating the regulation of angiogenesis through CCM3 knockdown mediated by YAP/TAZ. Silencing CCM3 significantly enhances the proliferation, migration, and tubular formation of human umbilical vein endothelial cells (HUVECs), thereby promoting angiogenesis. Furthermore, we observe an upregulation in the expression levels of VEGF and VEGFR2 within HUVECs upon silencing CCM3. Mechanistically, the evidence we provide suggests for the first time that endothelial cell CCM3 knockdown induces the activation and nuclear translocation of YAP/TAZ. Finally, we further demonstrate that the YAP/TAZ inhibitor verteporfin can reverse the pro-angiogenic effects of siCCM3, thereby confirming the role of CCM3 in angiogenesis regulation dependent on YAP/TAZ. In summary, our findings pave the way for potential therapeutic targeting of the CCM3-YAP/TAZ signaling axis as a novel approach to promote angiogenesis.
Collapse
Affiliation(s)
- Lu Tang
- Department of Cardiology, Yiyang Central Hospital, Kangfu North Road 118, Yiyang, Hunan, 413000, China
| | - Miao Zhou
- Yiyang Central Hospital Affiliated to Hunan University of Chinese Medicine, Kangfu North Road 118, Yiyang, Hunan, 413000, China
| | - Yuping Xu
- School of Clinical Medicine, Yiyang Medical College, Yingbin Road 516, Yiyang, Hunan, 413000, China
| | - Bin Peng
- School of Clinical Medicine, Yiyang Medical College, Yingbin Road 516, Yiyang, Hunan, 413000, China
| | - Yuanyuan Gao
- Department of Cardiology, Yiyang Central Hospital, Kangfu North Road 118, Yiyang, Hunan, 413000, China.
| | - Yingli Mo
- School of Nursing, Yiyang Medical College, Yingbin Road 516, Yiyang, Hunan, 413000, China.
| |
Collapse
|
21
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
22
|
Ge F, Zeng C, Wang J, Liu X, Zheng C, Zhang H, Yang L, Yang B, Zhu H, He Q. Cancer-associated fibroblasts drive early pancreatic cancer cell invasion via the SOX4/MMP11 signalling axis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166852. [PMID: 37633471 DOI: 10.1016/j.bbadis.2023.166852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant cancer-associated fibroblasts (CAFs), early perineural invasion (PNI) and microvascular invasion (MVI). However, the differentiation trajectories and underlying molecular mechanisms of CAFs in PDAC early invasion have not been fully elucidated. In this study, we integrated and reanalysed single-cell data from the National Geoscience Data Centre (NGDC) database and confirmed that myofibroblast-like CAFs (myCAFs) mediated epithelial-mesenchymal transformation (EMT) and enhanced the invasion abilities of PDAC cells by secreting regulators of angiogenesis and metastasis. Furthermore, we constructed a differentiation trajectory of CAFs and revealed that reprogramming from iCAFs to myCAFs was associated with poor prognosis. Mechanistically, SOX4 was aberrantly activated in myCAFs, which promoted the secretion of MMP11 and eventually induced early cancer cell invasion. Together, our results provide a comprehensive transcriptomic overview of PDAC patients with early invasion and reveal the intercellular crosstalk between myCAFs and cancer cells, which suggests potential targets for early invasion PDAC therapy.
Collapse
Affiliation(s)
- Fujing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Chenming Zeng
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Jiaer Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangning Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Churun Zheng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongyu Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Behrmann A, Zhong D, Li L, Xie S, Mead M, Sabaeifard P, Goodarzi M, Lemoff A, Kozlitina J, Towler DA. Wnt16 Promotes Vascular Smooth Muscle Contractile Phenotype and Function via Taz (Wwtr1) Activation in Male LDLR-/- Mice. Endocrinology 2023; 165:bqad192. [PMID: 38123514 PMCID: PMC10765280 DOI: 10.1210/endocr/bqad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Wnt16 is expressed in bone and arteries, and maintains bone mass in mice and humans, but its role in cardiovascular physiology is unknown. We show that Wnt16 protein accumulates in murine and human vascular smooth muscle (VSM). WNT16 genotypes that convey risk for bone frailty also convey risk for cardiovascular events in the Dallas Heart Study. Murine Wnt16 deficiency, which causes postnatal bone loss, also reduced systolic blood pressure. Electron microscopy demonstrated abnormal VSM mitochondrial morphology in Wnt16-null mice, with reductions in mitochondrial respiration. Following angiotensin-II (AngII) infusion, thoracic ascending aorta (TAA) dilatation was greater in Wnt16-/- vs Wnt16+/+ mice (LDLR-/- background). Acta2 (vascular smooth muscle alpha actin) deficiency has been shown to impair contractile phenotype and worsen TAA aneurysm with concomitant reductions in blood pressure. Wnt16 deficiency reduced expression of Acta2, SM22 (transgelin), and other contractile genes, and reduced VSM contraction induced by TGFβ. Acta2 and SM22 proteins were reduced in Wnt16-/- VSM as was Ankrd1, a prototypic contractile target of Yap1 and Taz activation via TEA domain (TEAD)-directed transcription. Wnt16-/- VSM exhibited reduced nuclear Taz and Yap1 protein accumulation. SiRNA targeting Wnt16 or Taz, but not Yap1, phenocopied Wnt16 deficiency, and Taz siRNA inhibited contractile gene upregulation by Wnt16. Wnt16 incubation stimulated mitochondrial respiration and contraction (reversed by verteporfin, a Yap/Taz inhibitor). SiRNA targeting Taz inhibitors Ccm2 and Lats1/2 mimicked Wnt16 treatment. Wnt16 stimulated Taz binding to Acta2 chromatin and H3K4me3 methylation. TEAD cognates in the Acta2 promoter conveyed transcriptional responses to Wnt16 and Taz. Wnt16 regulates cardiovascular physiology and VSM contractile phenotype, mediated via Taz signaling.
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalian Zhong
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Li
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangkui Xie
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Mead
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Kozlitina
- McDermott Center for Human Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight A Towler
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
24
|
Melchionna R, Trono P, Di Carlo A, Di Modugno F, Nisticò P. Transcription factors in fibroblast plasticity and CAF heterogeneity. J Exp Clin Cancer Res 2023; 42:347. [PMID: 38124183 PMCID: PMC10731891 DOI: 10.1186/s13046-023-02934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Trono
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
25
|
Chai XX, Liu J, Yu TY, Zhang G, Sun WJ, Zhou Y, Ren L, Cao HL, Yin DC, Zhang CY. Recent progress of mechanosensitive mechanism on breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 185:1-16. [PMID: 37793504 DOI: 10.1016/j.pbiomolbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/10/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
The mechanical environment is important for tumorigenesis and progression. Tumor cells can sense mechanical signals by mechanosensitive receptors, and these mechanical signals can be converted to biochemical signals to regulate cell behaviors, such as cell differentiation, proliferation, migration, apoptosis, and drug resistance. Here, we summarized the effects of the mechanical microenvironment on breast cancer cell activity, and mechanotransduction mechanism from cellular microenvironment to cell membrane, and finally to the nucleus, and also relative mechanosensitive proteins, ion channels, and signaling pathways were elaborated, therefore the mechanical signal could be transduced to biochemical or molecular signal. Meanwhile, the mechanical models commonly used for biomechanics study in vitro and some quantitative descriptions were listed. It provided an essential theoretical basis for the occurrence and development of mechanosensitive breast cancer, and also some potential drug targets were proposed to treat such disease.
Collapse
Affiliation(s)
- Xiao-Xia Chai
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Tong-Yao Yu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Wen-Jun Sun
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Yan Zhou
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China
| | - Li Ren
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China; Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo, 315103, Zhejiang, PR China
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, School of Pharmacy, Xi'an Medical University, Xi'an, 710021, Shaanxi, PR China.
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, PR China.
| |
Collapse
|
26
|
Huixin P, Guangji W, Yanxin H, Yanfang P, Huixiong Y, Xiong Z, Yu'an X, Wencheng C. Transcriptome-based analysis of the toxic effects of aluminum chloride exposure on spermatocytes. Toxicol In Vitro 2023; 92:105658. [PMID: 37544489 DOI: 10.1016/j.tiv.2023.105658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/16/2023] [Accepted: 07/30/2023] [Indexed: 08/08/2023]
Abstract
Aluminum chloride (AlCl3) exposure is pervasive in our daily lives. Numerous studies have demonstrated that exposure to AlCl3 can lead to male reproductive toxicity. However, the precise mechanism of action remains unclear. The objective of this study is to investigate the mechanism of aluminum-induced toxicity by analyzing the alterations in the global transcriptome gene profile of mouse spermatocytes (GC-2spd cells) exposed to AlCl3. GC-2spd cells were exposed to concentrations of 0, 1, 2, and 4 mM AlCl3, and high-throughput mRNA-seq was performed to investigate the changes in the transcriptome after exposure to 4 mM AlCl3. Our findings indicate that exposure to AlCl3 led to an increase in oxidative stress, disrupted glutathione metabolism, reduced cell viability, and altered gene expression in mouse spermatocytes. Gene enrichment analysis revealed that the differentially expressed genes (DEGs) were associated with various biological functions such as mitochondrial inner membrane, response to oxidative stress. Furthermore, these DEGs were found to be enriched in pathways including proteasome, glutathione metabolism, oxidative phosphorylation, and Hif-1 signaling pathway. Real-time PCR and western blot were employed to validate the expression alterations of pivotal genes, and the outcomes exhibited concordance with the mRNA-seq findings. This study provides a theoretical basis for revealing the potential mechanism of male reproductive toxicity caused by aluminum exposure.
Collapse
Affiliation(s)
- Peng Huixin
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Wei Guangji
- Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China; Clinical Laboratory, The People's Hospital of Baise, Baise 530000, Guangxi, China
| | - Huang Yanxin
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
| | - Pang Yanfang
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China
| | - Yuan Huixiong
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China
| | - Zou Xiong
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning 530000, Guangxi, China
| | - Xie Yu'an
- Guangxi Key Laboratory of reproductive health and birth defect prevention, Nanning 530000, Guangxi, China.
| | - Chen Wencheng
- The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi,China; Graduate School of Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China.
| |
Collapse
|
27
|
Luo X, Liu Z, Xu R. Adult tissue-specific stem cell interaction: novel technologies and research advances. Front Cell Dev Biol 2023; 11:1220694. [PMID: 37808078 PMCID: PMC10551553 DOI: 10.3389/fcell.2023.1220694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Adult tissue-specific stem cells play a dominant role in tissue homeostasis and regeneration. Various in vivo markers of adult tissue-specific stem cells have been increasingly reported by lineage tracing in genetic mouse models, indicating that marked cells differentiation is crucial during homeostasis and regeneration. How adult tissue-specific stem cells with indicated markers contact the adjacent lineage with indicated markers is of significance to be studied. Novel methods bring future findings. Recent advances in lineage tracing, synthetic receptor systems, proximity labeling, and transcriptomics have enabled easier and more accurate cell behavior visualization and qualitative and quantitative analysis of cell-cell interactions than ever before. These technological innovations have prompted researchers to re-evaluate previous experimental results, providing increasingly compelling experimental results for understanding the mechanisms of cell-cell interactions. This review aimed to describe the recent methodological advances of dual enzyme lineage tracing system, the synthetic receptor system, proximity labeling, single-cell RNA sequencing and spatial transcriptomics in the study of adult tissue-specific stem cells interactions. An enhanced understanding of the mechanisms of adult tissue-specific stem cells interaction is important for tissue regeneration and maintenance of homeostasis in organisms.
Collapse
Affiliation(s)
| | | | - Ruoshi Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Chitty JL, Yam M, Perryman L, Parker AL, Skhinas JN, Setargew YFI, Mok ETY, Tran E, Grant RD, Latham SL, Pereira BA, Ritchie SC, Murphy KJ, Trpceski M, Findlay AD, Melenec P, Filipe EC, Nadalini A, Velayuthar S, Major G, Wyllie K, Papanicolaou M, Ratnaseelan S, Phillips PA, Sharbeen G, Youkhana J, Russo A, Blackwell A, Hastings JF, Lucas MC, Chambers CR, Reed DA, Stoehr J, Vennin C, Pidsley R, Zaratzian A, Da Silva AM, Tayao M, Charlton B, Herrmann D, Nobis M, Clark SJ, Biankin AV, Johns AL, Croucher DR, Nagrial A, Gill AJ, Grimmond SM, Pajic M, Timpson P, Jarolimek W, Cox TR. A first-in-class pan-lysyl oxidase inhibitor impairs stromal remodeling and enhances gemcitabine response and survival in pancreatic cancer. NATURE CANCER 2023; 4:1326-1344. [PMID: 37640930 PMCID: PMC10518255 DOI: 10.1038/s43018-023-00614-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/07/2023] [Indexed: 08/31/2023]
Abstract
The lysyl oxidase family represents a promising target in stromal targeting of solid tumors due to the importance of this family in crosslinking and stabilizing fibrillar collagens and its known role in tumor desmoplasia. Using small-molecule drug-design approaches, we generated and validated PXS-5505, a first-in-class highly selective and potent pan-lysyl oxidase inhibitor. We demonstrate in vitro and in vivo that pan-lysyl oxidase inhibition decreases chemotherapy-induced pancreatic tumor desmoplasia and stiffness, reduces cancer cell invasion and metastasis, improves tumor perfusion and enhances the efficacy of chemotherapy in the autochthonous genetically engineered KPC model, while also demonstrating antifibrotic effects in human patient-derived xenograft models of pancreatic cancer. PXS-5505 is orally bioavailable, safe and effective at inhibiting lysyl oxidase activity in tissues. Our findings present the rationale for progression of a pan-lysyl oxidase inhibitor aimed at eliciting a reduction in stromal matrix to potentiate chemotherapy in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jessica L Chitty
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Michelle Yam
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Lara Perryman
- Pharmaxis, Frenchs Forest, New South Wales, Australia
| | - Amelia L Parker
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Joanna N Skhinas
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Yordanos F I Setargew
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ellie T Y Mok
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Emmi Tran
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Rhiannon D Grant
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sharissa L Latham
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Brooke A Pereira
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Shona C Ritchie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Kendelle J Murphy
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Trpceski
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | | | - Pauline Melenec
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Elysse C Filipe
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Audrey Nadalini
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Sipiththa Velayuthar
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Gretel Major
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Kaitlin Wyllie
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Papanicolaou
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Shivanjali Ratnaseelan
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Phoebe A Phillips
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - George Sharbeen
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Janet Youkhana
- School of Biomedical Sciences, Faculty of Medicine, Lowy Cancer Research Centre, UNSW Sydney, Sydney, New South Wales, Australia
| | - Alice Russo
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Antonia Blackwell
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Cecilia R Chambers
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Daniel A Reed
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Janett Stoehr
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Claire Vennin
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Ruth Pidsley
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew M Da Silva
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Michael Tayao
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | | | - David Herrmann
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Max Nobis
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Intravital Imaging Expertise Center, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Susan J Clark
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Andrew V Biankin
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Glasgow, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Amber L Johns
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - David R Croucher
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Adnan Nagrial
- Department of Medical Oncology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Anthony J Gill
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- NSW Health Pathology, Department of Anatomical Pathology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sean M Grimmond
- University of Melbourne Centre for Cancer Research, VCCC, Melbourne, Victoria, Australia
| | - Marina Pajic
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
| | - Paul Timpson
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Thomas R Cox
- Cancer Ecosystems Program, The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, New South Wales, Australia.
- School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, UNSW Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
29
|
Liu X, Li J, Yang X, Li X, Kong J, Qi D, Zhang F, Sun B, Liu Y, Liu T. Carcinoma-associated fibroblast-derived lysyl oxidase-rich extracellular vesicles mediate collagen crosslinking and promote epithelial-mesenchymal transition via p-FAK/p-paxillin/YAP signaling. Int J Oral Sci 2023; 15:32. [PMID: 37532712 PMCID: PMC10397209 DOI: 10.1038/s41368-023-00236-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 08/04/2023] Open
Abstract
Carcinoma-associated fibroblasts (CAFs) are the main cellular components of the tumor microenvironment and promote cancer progression by modifying the extracellular matrix (ECM). The tumor-associated ECM is characterized by collagen crosslinking catalyzed by lysyl oxidase (LOX). Small extracellular vesicles (sEVs) mediate cell-cell communication. However, the interactions between sEVs and the ECM remain unclear. Here, we demonstrated that sEVs released from oral squamous cell carcinoma (OSCC)-derived CAFs induce collagen crosslinking, thereby promoting epithelial-mesenchymal transition (EMT). CAF sEVs preferably bound to the ECM rather than being taken up by fibroblasts and induced collagen crosslinking, and a LOX inhibitor or blocking antibody suppressed this effect. Active LOX (αLOX), but not the LOX precursor, was enriched in CAF sEVs and interacted with periostin, fibronectin, and bone morphogenetic protein-1 on the surface of sEVs. CAF sEV-associated integrin α2β1 mediated the binding of CAF sEVs to collagen I, and blocking integrin α2β1 inhibited collagen crosslinking by interfering with CAF sEV binding to collagen I. CAF sEV-induced collagen crosslinking promoted the EMT of OSCC through FAK/paxillin/YAP pathway. Taken together, these findings reveal a novel role of CAF sEVs in tumor ECM remodeling, suggesting a critical mechanism for CAF-induced EMT of cancer cells.
Collapse
Affiliation(s)
- Xue Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Jiao Li
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian Medical University, Dalian, China
| | - Xiaojie Li
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Kong
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Dongyuan Qi
- Department of Oral Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fuyin Zhang
- Department of Oral Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Sun
- Department of Oral Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuehua Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
31
|
Young KM, Reinhart-King CA. Cellular mechanosignaling for sensing and transducing matrix rigidity. Curr Opin Cell Biol 2023; 83:102208. [PMID: 37473514 PMCID: PMC10527818 DOI: 10.1016/j.ceb.2023.102208] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023]
Abstract
The mechanisms by which cells sense their mechanical environment and transduce the signal through focal adhesions and signaling pathways to the nucleus is an area of key focus for the field of mechanobiology. In the past two years, there has been expansion of our knowledge of commonly studied pathways, such as YAP/TAZ, FAK/Src, RhoA/ROCK, and Piezo1 signaling, as well as the discovery of new interactions, such as the effect of matrix rigidity of cell mitochondrial function and metabolism, which represent a new and exciting direction for the field as a whole. This review covers the most recent advances in the field of substrate stiffness sensing as well as perspective on future directions.
Collapse
Affiliation(s)
- Katherine M Young
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA
| | - Cynthia A Reinhart-King
- Vanderbilt University Department of Biomedical Engineering 2414 Highland Ave, Nashville, TN 37212, USA.
| |
Collapse
|
32
|
Zhang H, Zhu Q, Ji Y, Wang M, Zhang Q, Liu W, Li R, Zhang J, Xu P, Song X, Lv C. hucMSCs treatment prevents pulmonary fibrosis by reducing circANKRD42-YAP1-mediated mechanical stiffness. Aging (Albany NY) 2023; 15:5514-5534. [PMID: 37335082 PMCID: PMC10333056 DOI: 10.18632/aging.204805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fibrosing interstitial pneumonia of unknown cause. The most typical characteristic of IPF is gradual weakening of pulmonary elasticity and increase in hardness/rigidity with aging. This study aims to identify a novel treatment approach for IPF and explore mechanism of mechanical stiffness underlying human umbilical cord mesenchymal stem cells (hucMSCs) therapy. Target ability of hucMSCs was examined by labeling with cell membrane dye Dil. Anti-pulmonary fibrosis effect of hucMSCs therapy by reducing mechanical stiffness was evaluated by lung function analysis and MicroCT imaging system and atomic force microscope in vivo and in vitro. Results showed that stiff environment of fibrogenesis caused cells to establish a mechanical connection between cytoplasm and nucleus, initiating expression of related mechanical genes such as Myo1c and F-actin. HucMSCs treatment blocked force transmission and reduced mechanical force. For further exploration of mechanism, ATGGAG was mutated to CTTGCG (the binding site of miR-136-5p) in the full-length sequence of circANKRD42. Wildtype and mutant plasmids of circANKRD42 were packaged into adenovirus vectors and sprayed into lungs of mice. Mechanistic dissection revealed that hucMSCs treatment repressed circANKRD42 reverse splicing biogenesis by inhibiting hnRNP L, which in turn promoted miR-136-5p binds to 3'-Untranslated Region (3'-UTR) of YAP1 mRNA directly, thus inhibiting translation of YAP1 and reducing YAP1 protein entering nucleus. The condition repressed expression of related mechanical genes to block force transmission and reduce mechanical forces. The mechanosensing mechanism mediated directly by circANKRD42-YAP1 axis in hucMSCs treatment, which has potential general applicability in IPF treatment.
Collapse
Affiliation(s)
- Haitong Zhang
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Qi Zhu
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Yunxia Ji
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Meirong Wang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Qian Zhang
- Department of Pathology, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Weili Liu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Ruiqiong Li
- Department of Clinical Nursing, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Jinjin Zhang
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Pan Xu
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| | - Xiaodong Song
- Department of Cellular and Genetic Medicine, School of Pharmaceutical Sciences, Binzhou Medical University, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, China
| |
Collapse
|
33
|
Luo J, Zou H, Guo Y, Tong T, Chen Y, Xiao Y, Pan Y, Li P. The oncogenic roles and clinical implications of YAP/TAZ in breast cancer. Br J Cancer 2023; 128:1611-1624. [PMID: 36759723 PMCID: PMC10133323 DOI: 10.1038/s41416-023-02182-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed form of cancer and a leading cause of cancer-related deaths among women worldwide. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are homologous transcriptional coactivators and downstream effectors of Hippo signalling. YAP/TAZ activation has been revealed to play essential roles in multiple events of BC development, including tumour initiation, progression, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of YAP/TAZ-mediated oncogenesis in BC, and then systematically summarise the oncogenic roles of YAP/TAZ in various BC subtypes, BC stem cells (BCSCs) and tumour microenvironments (TMEs). Based on these findings, we will further discuss the clinical implications of YAP/TAZ-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Hailin Zou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yibo Guo
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Tongyu Tong
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.,Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yun Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yunjun Xiao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China
| | - Yihang Pan
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628 Zhenyuan Road, 518107, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
34
|
Ryltseva GA, Dudaev AE, Menzyanova NG, Volova TG, Alexandrushkina NA, Efimenko AY, Shishatskaya EI. Influence of PHA Substrate Surface Characteristics on the Functional State of Endothelial Cells. J Funct Biomater 2023; 14:jfb14020085. [PMID: 36826884 PMCID: PMC9959859 DOI: 10.3390/jfb14020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The needs of modern regenerative medicine for biodegradable polymers are wide and varied. Restoration of the viability of the vascular tree is one of the most important components of the preservation of the usefulness of organs and tissues. The creation of vascular implants compatible with blood is an important task of vascular bioengineering. The function of the endothelial layer of the vessel, being largely responsible for the development of thrombotic complications, is of great importance for hemocompatibility. The development of surfaces with specific characteristics of biomaterials that are used in vascular technologies is one of the solutions for their correct endothelialization. Linear polyhydroxyalkanoates (PHAs) are biodegradable structural polymeric materials suitable for obtaining various types of implants and tissue engineering, having a wide range of structural and physicomechanical properties. The use of PHA of various monomeric compositions in endothelial cultivation makes it possible to evaluate the influence of material properties, especially surface characteristics, on the functional state of cells. It has been established that PHA samples with the inclusion of 3-hydroxyhexanoate have optimal characteristics for the formation of a human umbilical vein endothelial cell, HUVEC, monolayer in terms of cell morphology as well as the levels of expression of vinculin and VE-cadherin. The obtained results provide a rationale for the use of PHA copolymers as materials for direct contact with the endothelium in vascular implants.
Collapse
Affiliation(s)
- Galina A. Ryltseva
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| | - Alexey E. Dudaev
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Natalia G. Menzyanova
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Tatiana G. Volova
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Basic Department of Biotechnology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Natalia A. Alexandrushkina
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Anastasia Yu. Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, M.V. Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Ekaterina I. Shishatskaya
- Department of Medical Biology, School of Fundamental Biology and Biotechnology, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
- Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, 660036 Krasnoyarsk, Russia
- Correspondence: (G.A.R.); (E.I.S.)
| |
Collapse
|
35
|
Zhang H, Zhu H, Feng J, Zhang Z, Zhang S, Wang Z, Sun L, Zhang W, Gao B, Zhang Y, Lin M. Reprogramming of Activated Pancreatic Stellate Cells via Mechanical Modulation of Transmembrane Force-sensitive N-cadherin Receptor. J Mol Biol 2023; 435:167819. [PMID: 36089055 DOI: 10.1016/j.jmb.2022.167819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 02/04/2023]
Abstract
Cancer has been the leading cause of death due mainly to tumor metastasis. The tumor microenvironment plays a key role in tumor metastasis. As the main stromal cells in tumor microenvironment originated from activated fibroblast, cancer-associated fibroblasts (CAFs) play a major role in promoting tumor metastasis. A promising therapeutic avenue is reprogramming of CAFs into tumor-restraining quiescence state. In this study, we observed that CAF-like active pancreatic stellate cells (PSCs) interact with each other via N-cadherin, a force-sensitive transmembrane receptor. Since N-cadherin ligation mediated mechanotransduction has been reported to restrict integrin mediated signalling, we thus hypothesized that the reprogramming of activated PSCs by mechanical modulation of N-cadherin ligation might be possible. To test this hypothesis, we grafted N-cadherin ligand (HAVDI peptide) onto soft polyethylene glycol hydrogel substrate prior to cell adhesion to mimic cell-cell interaction via N-cadherin ligation. We found that the activated PSCs could be reprogrammed to their original quiescent state when transferred onto the substrate with immobilized HAVDI peptide. These results reveal a key role of mechanosensing by intercellular transmembrane receptor in reprogramming of activated PSCs, and provide a potential way for designing novel therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Huan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hongyuan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jinteng Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zheng Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Lin Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Wencheng Zhang
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, PR China
| | - Bin Gao
- Department of Endocrinology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an 710038, PR China
| | - Ying Zhang
- Xijing 986 Hospital Department, Fourth Military Medical University, Xi'an 710054, PR China
| | - Min Lin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
36
|
Fang Z, Meng Q, Xu J, Wang W, Zhang B, Liu J, Liang C, Hua J, Zhao Y, Yu X, Shi S. Signaling pathways in cancer-associated fibroblasts: recent advances and future perspectives. Cancer Commun (Lond) 2023; 43:3-41. [PMID: 36424360 PMCID: PMC9859735 DOI: 10.1002/cac2.12392] [Citation(s) in RCA: 120] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/20/2022] [Accepted: 11/04/2022] [Indexed: 11/26/2022] Open
Abstract
As a critical component of the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) play important roles in cancer initiation and progression. Well-known signaling pathways, including the transforming growth factor-β (TGF-β), Hedgehog (Hh), Notch, Wnt, Hippo, nuclear factor kappa-B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K)/AKT pathways, as well as transcription factors, including hypoxia-inducible factor (HIF), heat shock transcription factor 1 (HSF1), P53, Snail, and Twist, constitute complex regulatory networks in the TME to modulate the formation, activation, heterogeneity, metabolic characteristics and malignant phenotype of CAFs. Activated CAFs remodel the TME and influence the malignant biological processes of cancer cells by altering the transcriptional and secretory characteristics, and this modulation partially depends on the regulation of signaling cascades. The results of preclinical and clinical trials indicated that therapies targeting signaling pathways in CAFs demonstrated promising efficacy but were also accompanied by some failures (e.g., NCT01130142 and NCT01064622). Hence, a comprehensive understanding of the signaling cascades in CAFs might help us better understand the roles of CAFs and the TME in cancer progression and may facilitate the development of more efficient and safer stroma-targeted cancer therapies. Here, we review recent advances in studies of signaling pathways in CAFs and briefly discuss some future perspectives on CAF research.
Collapse
Affiliation(s)
- Zengli Fang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Qingcai Meng
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jin Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Wei Wang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Bo Zhang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jiang Liu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Chen Liang
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Jie Hua
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Yingjun Zhao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Institutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
| | - Xianjun Yu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| | - Si Shi
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032P. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032P. R. China
- Shanghai Pancreatic Cancer InstituteShanghai200032P. R. China
- Pancreatic Cancer InstituteFudan UniversityShanghai200032P. R. China
| |
Collapse
|
37
|
Wang Y, Wang N, Chen Y, Yang Y. Regulation of micropatterned curvature-dependent FA heterogeneity on cytoskeleton tension and nuclear DNA synthesis of malignant breast cancer cells. J Mater Chem B 2022; 11:99-108. [PMID: 36477803 DOI: 10.1039/d2tb01774a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Breast cancer is considered as a worldwide disease due to its high incidence and malignant metastasis. Although numerous techniques have been developed well to conduct breast cancer therapy, the influence of micropattern-induced interfacial heterogeneity on the molecular mechanism and nuclear signalling transduction of carcinogenesis is rarely announced. In this study, PDMS stencil-assisted micropatterns were fabricated on tissue culture plates to manage cell clustering colony by adjusting initial cell seeding density and the size of microholes. The curvature of each microholes was controlled to construct the interfacial heterogeneity of MDA-MB231 cancer cells at the periphery of micropatterned colony. The distinguished focal adhesion (FA) and cytoskeleton distribution at the central and peripheral regions of the cell colony were regulated by heterogeneous properties. The interfacial heterogeneity of FA and cytoskeleton would induce the biased tension force to encourage more ezrin expression at the periphery and further promote DNA synthesis, therefore disclosing a stem-like phenotype in heterogeneous cells. This study will provide a value source of information for the development of micropattern-induced heterogeneity and the interpretation of metastatic mechanism in malignant breast cancer cells.
Collapse
Affiliation(s)
- Yongtao Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Nana Wang
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yazhou Chen
- Medical 3D Printing center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China
| | - Yingjun Yang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| |
Collapse
|
38
|
The Dual Role of PDCD10 in Cancers: A Promising Therapeutic Target. Cancers (Basel) 2022; 14:cancers14235986. [PMID: 36497468 PMCID: PMC9740655 DOI: 10.3390/cancers14235986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death 10 (PDCD10) was initially considered as a protein associated with apoptosis. However, recent studies showed that PDCD10 is actually an adaptor protein. By interacting with multiple molecules, PDCD10 participates in various physiological processes, such as cell survival, migration, cell differentiation, vesicle trafficking, cellular senescence, neurovascular development, and gonadogenesis. Moreover, over the past few decades, accumulating evidence has demonstrated that the aberrant expression or mutation of PDCD10 is extremely common in various pathological processes, especially in cancers. The dysfunction of PDCD10 has been strongly implicated in oncogenesis and tumor progression. However, the updated data seem to indicate that PDCD10 has a dual role (either pro- or anti-tumor effects) in various cancer types, depending on cell/tissue specificity with different cellular interactors. In this review, we aimed to summarize the knowledge of the dual role of PDCD10 in cancers with a special focus on its cellular function and potential molecular mechanism. With these efforts, we hoped to provide new insight into the future development and application of PDCD10 as a clinical therapeutic target in cancers.
Collapse
|
39
|
Han KJ, Mikalayeva V, Gerber SA, Kettenbach AN, Skeberdis VA, Prekeris R. Rab40c regulates focal adhesions and PP6 activity by controlling ANKRD28 ubiquitylation. Life Sci Alliance 2022; 5:5/9/e202101346. [PMID: 35512830 PMCID: PMC9070665 DOI: 10.26508/lsa.202101346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
Rab40c is a SOCS box-containing protein which binds Cullin5 to form a ubiquitin E3 ligase complex (Rab40c/CRL5) to regulate protein ubiquitylation. However, the exact functions of Rab40c remain to be determined, and what proteins are the targets of Rab40c-Cullin5-mediated ubiquitylation in mammalian cells are unknown. Here we showed that in migrating MDA-MB-231 cells Rab40c regulates focal adhesion's number, size, and distribution. Mechanistically, we found that Rab40c binds the protein phosphatase 6 (PP6) complex and ubiquitylates one of its subunits, ankyrin repeat domain 28 (ANKRD28), thus leading to its lysosomal degradation. Furthermore, we identified that phosphorylation of FAK and MOB1 is decreased in Rab40c knock-out cells, which may contribute to focal adhesion site regulation by Rab40c. Thus, we propose a model where Rab40c/CRL5 regulates ANKRD28 ubiquitylation and degradation, leading to a decrease in PP6 activity, which ultimately affects FAK and Hippo pathway signaling to alter focal adhesion dynamics.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Valeryia Mikalayeva
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Scott A Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Norris Cotton Cancer Center, Lebanon, NH, USA
| | - Vytenis A Skeberdis
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
40
|
Xu H, Zhang F, Gao X, Zhou Q, Zhu L. Fate decisions of breast cancer stem cells in cancer progression. Front Oncol 2022; 12:968306. [PMID: 36046046 PMCID: PMC9420991 DOI: 10.3389/fonc.2022.968306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer has a marked recurrence and metastatic trait and is one of the most prevalent malignancies affecting women’s health worldwide. Tumor initiation and progression begin after the cell goes from a quiescent to an activated state and requires different mechanisms to act in concert to regulate t a specific set of spectral genes for expression. Cancer stem cells (CSCs) have been proven to initiate and drive tumorigenesis due to their capability of self-renew and differentiate. In addition, CSCs are believed to be capable of causing resistance to anti-tumor drugs, recurrence and metastasis. Therefore, exploring the origin, regulatory mechanisms and ultimate fate decision of CSCs in breast cancer outcomes has far-reaching clinical implications for the development of breast cancer stem cell (BCSC)-targeted therapeutic strategies. In this review, we will highlight the contribution of BCSCs to breast cancer and explore the internal and external factors that regulate the fate of BCSCs.
Collapse
|
41
|
Papanicolaou M, Parker AL, Yam M, Filipe EC, Wu SZ, Chitty JL, Wyllie K, Tran E, Mok E, Nadalini A, Skhinas JN, Lucas MC, Herrmann D, Nobis M, Pereira BA, Law AMK, Castillo L, Murphy KJ, Zaratzian A, Hastings JF, Croucher DR, Lim E, Oliver BG, Mora FV, Parker BL, Gallego-Ortega D, Swarbrick A, O'Toole S, Timpson P, Cox TR. Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nat Commun 2022; 13:4587. [PMID: 35933466 PMCID: PMC9357007 DOI: 10.1038/s41467-022-32255-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse. The distribution and organisation of matrix molecules in the tumour stroma help shape solid tumour progression. Here they perform temporal proteomic profiling of the matrisome during breast cancer progression and show that collagen XII secreted from CAFs provides a pro-invasive microenvironment.
Collapse
Affiliation(s)
- Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Amelia L Parker
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Yam
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Elysse C Filipe
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sunny Z Wu
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica L Chitty
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kaitlin Wyllie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Emmi Tran
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ellie Mok
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Audrey Nadalini
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Joanna N Skhinas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Max Nobis
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke A Pereira
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew M K Law
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Lesley Castillo
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Elgene Lim
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, Sydney, NSW, Australia
| | - Fatima Valdes Mora
- Cancer Epigenetic Biology and Therapeutics, Personalised Medicine, Children's Cancer Institute, Sydney, NSW, 2031, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Gallego-Ortega
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sandra O'Toole
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Baumann Z, Auf der Maur P, Bentires‐Alj M. Feed-forward loops between metastatic cancer cells and their microenvironment-the stage of escalation. EMBO Mol Med 2022; 14:e14283. [PMID: 35506376 PMCID: PMC9174884 DOI: 10.15252/emmm.202114283] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent cancer among women, and metastases in distant organs are the leading cause of the cancer-related deaths. While survival of early-stage breast cancer patients has increased dramatically, the 5-year survival rate of metastatic patients has barely improved in the last 20 years. Metastases can arise up to decades after primary tumor resection, hinting at microenvironmental factors influencing the sudden outgrowth of disseminated tumor cells (DTCs). This review summarizes how the environment of the most common metastatic sites (lung, liver, bone, brain) is influenced by the primary tumor and by the varying dormancy of DTCs, with a special focus on how established metastases persist and grow in distant organs due to feed-forward loops (FFLs). We discuss in detail the importance of FFL of cancer cells with their microenvironment including the secretome, interaction with specialized tissue-specific cells, nutrients/metabolites, and that novel therapies should target not only the cancer cells but also the tumor microenvironment, which are thick as thieves.
Collapse
Affiliation(s)
- Zora Baumann
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Priska Auf der Maur
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - Mohamed Bentires‐Alj
- Tumor Heterogeneity Metastasis and ResistanceDepartment of BiomedicineUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| |
Collapse
|
43
|
Rigiracciolo DC, Nohata N, Lappano R, Cirillo F, Talia M, Adame-Garcia SR, Arang N, Lubrano S, De Francesco EM, Belfiore A, Gutkind JS, Maggiolini M. Focal Adhesion Kinase (FAK)-Hippo/YAP transduction signaling mediates the stimulatory effects exerted by S100A8/A9-RAGE system in triple-negative breast cancer (TNBC). JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:193. [PMID: 35655319 PMCID: PMC9164429 DOI: 10.1186/s13046-022-02396-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Understanding the intricate signaling network involved in triple-negative breast cancer (TNBC) represents a challenge for developing novel therapeutic approaches. Here, we aim to provide novel mechanistic insights on the function of the S100A8/A9-RAGE system in TNBC. METHODS TNM plot analyzer, Kaplan-Meier plotter, Meta-analysis, GEPIA2 and GOBO publicly available datasets were used to evaluate the clinical significance of S100A8/A9 and expression levels of S100A8/A9, RAGE and Filamin family members in breast cancer (BC) subtypes. METABRIC database and Cox proportional hazard model defined the clinical impact of high RAGE expression in BC patients. Multiple bioinformatics programs identified the main enriched pathways within high RAGE expression BC cohorts. By lentiviral system, TNBC cells were engineered to overexpress RAGE. Western blotting, immunofluorescence, nucleus/cytoplasm fractionation, qRT-PCR, gene silencing and luciferase experiments were performed to identify signal transduction mediators engaged by RAGE upon stimulation with S100A8/A9 in TNBC cells. Proliferation, colony formation and transwell migration assays were carried out to evaluate the growth and migratory capacity of TNBC cells. Statistical analysis was performed by ANOVA and independent t-tests. RESULTS We found a remarkable high expression of S100A8 and S100A9 in BC, particularly in HER2-positive and TNBC, with the latter associated to worst clinical outcomes. In addition, high RAGE expression correlated with a poor overall survival in BC. Next, we determined that the S100A8/A9-RAGE system triggers FAK activation by engaging a cytoskeleton mechanosensing complex in TNBC cells. Through bioinformatics analysis, we identified the Hippo pathway as the most enriched in BC patients expressing high RAGE levels. In accordance with these data, we demonstrated the involvement of S100A8/A9-RAGE-FAK signaling in the control of Hippo/YAP activities, and we established the crucial contribution of RAGE-FAK-YAP circuitry in the growth and migratory effects initiated by S100A8/A9 in TNBC cells. CONCLUSIONS The present study provides novel mechanistic insights on RAGE actions in TNBC. Moreover, our findings suggest that RAGE-FAK-YAP transduction pathway could be exploited as a druggable system halting the aggressive TNBC subtype.
Collapse
Affiliation(s)
- Damiano Cosimo Rigiracciolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.,Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | | | - Nadia Arang
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Simone Lubrano
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - J Silvio Gutkind
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA. .,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
44
|
HIF-1α Regulates the Progression of Cervical Cancer by Targeting YAP/TAZ. JOURNAL OF ONCOLOGY 2022; 2022:3814809. [PMID: 35664561 PMCID: PMC9159877 DOI: 10.1155/2022/3814809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 01/19/2023]
Abstract
Cervical carcinoma is one of the serious pernicious cancers that influence women's health. Invasion and metastasis are the chief reason of poor prognosis of cervical carcinoma. Hypoxia-inducible factor-1α (HIF-1α) is a significant regulatory factor of intracellular oxygen supersession, and its expression or increased activity is closely related to the arise and expansion of various human tumors. However, the relationship between HIF-1α (hypoxia-inducible factor 1) and Hippo pathway target gene Yes-related protein (YAP) and transcriptional coactivator (TAZ) in cervical carcinoma remains unclear. Here, we studied the clinical correlation of HIF-1α and YAP/TAZ expression in normal tissues, cervical intraepithelial neoplasia (CIN), and cervical squamous cell carcinoma (CSCC). In order to analyze the role of HIF-1α in CCSC in vitro, SiHa cells with high expression of HIF-1α and C33a cells with low expression of HIF-1α were screened by detection. After transfection with lentivirus, HIF-1α levels were downregulated in SiHa cells and upregulated in C33a Cells, respectively. Then, the expression of HIF-1α in transfected cervical cancer cells Siha and C33a was detected by qRT-PCR and Western blot, and the expression of YAP/TAZ was detected in cervical squamous cell carcinoma cells after HIF-1α expression was altered. To explore HIF-1α role in cell proliferation, invasion, and metastasis, we examined the changes of cell function in cervical cancer cells with HIF-1α overexpression and inhibition by MTT assay, wound healing assay, Transwell test, and other cell function tests. At the same time, HIF-1α overexpression and HIF-1α inhibition cervical cancer cells were transplanted into nude mice, and tumors were isolated from the nude mice, and tumor volume and weight were observed. In conclusion, HIF-1α significantly promotes the proliferation, invasion, and migration of cervical carcinoma cells by upregulating YAP/TAZ. In addition, YAP/TAZ, the target gene of Hippo pathway, plays an important role in CCSC cells, pointing out that HIF-1α is provided with treatment potential for the treatment of CCSC.
Collapse
|
45
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
46
|
Truncation of the N-terminus of cardiac troponin I initiates adaptive remodeling of the myocardial proteosome via phosphorylation of mechano-sensitive signaling pathways. Mol Cell Biochem 2022; 477:1803-1815. [PMID: 35316461 DOI: 10.1007/s11010-022-04414-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
The cardiac isoform of troponin I has a unique N-terminal extension (~ 1-30 amino acids), which contributes to the modulation of cardiac contraction and relaxation. Hearts of various species including humans produce a truncated variant of cardiac troponin I (cTnI-ND) deleting the first ~ 30 amino acids as an adaption in pathophysiological conditions. In this study, we investigated the impact of cTnI-ND chronic expression in transgenic mouse hearts compared to wildtype (WT) controls (biological n = 8 in each group). We aimed to determine the global phosphorylation effects of cTnI-ND on the cardiac proteome, thereby determining the signaling pathways that have an impact on cardiac function. The samples were digested and isobarically labeled and equally mixed for relative quantification via nanoLC-MS/MS. The peptides were then enriched for phospho-peptides and bioinformatic analysis was done with Ingenuity Pathway Analysis (IPA). We found approximately 77% replacement of the endogenous intact cTnI with cTnI-ND in the transgenic mouse hearts with 1674 phospho-proteins and 2971 non-modified proteins. There were 73 significantly altered phospho-proteins; bioinformatic analysis identified the top canonical pathways as associated with integrin, protein kinase A, RhoA, and actin cytoskeleton signaling. Among the 73 phospho-proteins compared to controls cTnI-ND hearts demonstrated a significant decrease in paxillin and YAP1, which are known to play a role in cell mechano-sensing pathways. Our data indicate that cTnI-ND modifications in the sarcomere are sufficient to initiate changes in the phospho-signaling profile that may underly the chronic-adaptive response associated with cTnI cleavage in response to stressors by modifying mechano-sensitive signaling pathways.
Collapse
|
47
|
Sen B, Xie Z, Howard S, Styner M, van Wijnen AJ, Uzer G, Rubin J. Mechanically Induced Nuclear Shuttling of β-Catenin Requires Co-transfer of Actin. Stem Cells 2022; 40:423-434. [PMID: 35278073 PMCID: PMC9633329 DOI: 10.1093/stmcls/sxac006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/27/2022] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cells (MSCs) respond to environmental forces with both cytoskeletal re-structuring and activation of protein chaperones of mechanical information, β-catenin, and yes-associated protein 1 (YAP1). To function, MSCs must differentiate between dynamic forces such as cyclic strains of extracellular matrix due to physical activity and static strains due to ECM stiffening. To delineate how MSCs recognize and respond differently to both force types, we compared effects of dynamic (200 cycles × 2%) and static (1 × 2% hold) strain on nuclear translocation of β-catenin and YAP1 at 3 hours after force application. Dynamic strain induced nuclear accumulation of β-catenin, and increased cytoskeletal actin structure and cell stiffness, but had no effect on nuclear YAP1 levels. Critically, both nuclear actin and nuclear stiffness increased along with dynamic strain-induced β-catenin transport. Augmentation of cytoskeletal structure using either static strain or lysophosphatidic acid did not increase nuclear content of β-catenin or actin, but induced robust nuclear increase in YAP1. As actin binds β-catenin, we considered whether β-catenin, which lacks a nuclear localization signal, was dependent on actin to gain entry to the nucleus. Knockdown of cofilin-1 (Cfl1) or importin-9 (Ipo9), which co-mediate nuclear transfer of G-actin, prevented dynamic strain-mediated nuclear transfer of both β-catenin and actin. In sum, dynamic strain induction of actin re-structuring promotes nuclear transport of G-actin, concurrently supporting nuclear access of β-catenin via mechanisms used for actin transport. Thus, dynamic and static strain activate alternative mechanoresponses reflected by differences in the cellular distributions of actin, β-catenin, and YAP1.
Collapse
Affiliation(s)
- Buer Sen
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhihui Xie
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Sean Howard
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Maya Styner
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont Medical School, Burlington, VT, USA
| | - Gunes Uzer
- Department of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Janet Rubin
- Corresponding author: Janet Rubin, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
48
|
Swamy H, Glading AJ. Is Location Everything? Regulation of the Endothelial CCM Signaling Complex. Front Cardiovasc Med 2022; 9:954780. [PMID: 35898265 PMCID: PMC9309484 DOI: 10.3389/fcvm.2022.954780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances have steadily increased the number of proteins and pathways known to be involved in the development of cerebral cavernous malformation (CCM). Our ability to synthesize this information into a cohesive and accurate signaling model is limited, however, by significant gaps in our knowledge of how the core CCM proteins, whose loss of function drives development of CCM, are regulated. Here, we review what is known about the regulation of the three core CCM proteins, the scaffolds KRIT1, CCM2, and CCM3, with an emphasis on binding interactions and subcellular location, which frequently control scaffolding protein function. We highlight recent work that challenges the current model of CCM complex signaling and provide recommendations for future studies needed to address the large number of outstanding questions.
Collapse
Affiliation(s)
- Harsha Swamy
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
49
|
Luo J, Zou H, Guo Y, Tong T, Ye L, Zhu C, Deng L, Wang B, Pan Y, Li P. SRC kinase-mediated signaling pathways and targeted therapies in breast cancer. Breast Cancer Res 2022; 24:99. [PMID: 36581908 PMCID: PMC9798727 DOI: 10.1186/s13058-022-01596-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/17/2022] [Indexed: 12/30/2022] Open
Abstract
Breast cancer (BC) has been ranked the most common malignant tumor throughout the world and is also a leading cause of cancer-related deaths among women. SRC family kinases (SFKs) belong to the non-receptor tyrosine kinase (nRTK) family, which has eleven members sharing similar structure and function. Among them, SRC is the first identified proto-oncogene in mammalian cells. Oncogenic overexpression or activation of SRC has been revealed to play essential roles in multiple events of BC progression, including tumor initiation, growth, metastasis, drug resistance and stemness regulations. In this review, we will first give an overview of SRC kinase and SRC-relevant functions in various subtypes of BC and then systematically summarize SRC-mediated signaling transductions, with particular emphasis on SRC-mediated substrate phosphorylation in BC. Furthermore, we will discuss the progress of SRC-based targeted therapies in BC and the potential future direction.
Collapse
Affiliation(s)
- Juan Luo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Hailin Zou
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yibo Guo
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Tongyu Tong
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Department of Urology, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liping Ye
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Chengming Zhu
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Liang Deng
- grid.511083.e0000 0004 7671 2506Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Bo Wang
- grid.511083.e0000 0004 7671 2506Department of Oncology, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Yihang Pan
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| | - Peng Li
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China ,grid.511083.e0000 0004 7671 2506Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen, 518107 Guangdong People’s Republic of China
| |
Collapse
|