1
|
Tang X, Tao J, Liu Y, Gong D, Shan X, Wang K, Tang N. SLC27A5 inhibits cancer stem cells by inducing alternative polyadenylation of METTL14 in hepatocellular carcinoma. Genes Dis 2025; 12:101488. [PMID: 40290127 PMCID: PMC12033915 DOI: 10.1016/j.gendis.2024.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/06/2024] [Accepted: 11/16/2024] [Indexed: 04/30/2025] Open
Abstract
Solute carrier family 27 member 5 (SLC27A5/FATP5) is a liver-specific metabolic enzyme that plays a crucial role in fatty acid transport and bile acid metabolism. Deficiency of SLC27A5 promotes the progression of hepatocellular carcinoma (HCC) and is strongly associated with a poor prognosis. SLC27A5 exhibits noncanonical functions beyond its metabolic role; however, its specific mechanisms in hepatocarcinogenesis remain elusive and are therefore investigated in this study. Immunoprecipitation-mass spectrometry analysis showed that SLC27A5-interacting proteins were significantly enriched in alternative polyadenylation (APA). RNA-sequencing data provided evidence that SLC27A5 plays a global role in regulating APA events in HCC. Mechanistically, SLC27A5 facilitates the usage of the proximal polyadenylation site of METTL14 by downregulating the expression of the APA-associated factor PABPC1, resulting in the shortening of the METTL14-3'UTR and the conversion of METTL14-UL to METTL14-US. In contrast to METTL14-UL, METTL14-US escapes the inhibitory effect of miRNA targeting, leading to increased METTL14 expression. METTL14-US upregulation by SLC27A5 suppressed the stemness of HCC. Therefore, low levels of SLC27A5 and METTL14 may serve as reliable biomarkers for identifying poor prognosis in patients with HCC. In conclusion, SLC27A5/PABPC1 inhibits HCC stemness via APA-regulated expression of METTL14, providing potential avenues for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xin Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Junji Tao
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yuanyuan Liu
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Deao Gong
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xuefeng Shan
- Department of Pharmacy, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Kai Wang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ni Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Nesta A, Veiga DFT, Banchereau J, Anczukow O, Beck CR. Alternative splicing of transposable elements in human breast cancer. Mob DNA 2025; 16:6. [PMID: 39987084 PMCID: PMC11846448 DOI: 10.1186/s13100-025-00341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 02/24/2025] Open
Abstract
Transposable elements (TEs) drive genome evolution and can affect gene expression through diverse mechanisms. In breast cancer, disrupted regulation of TE sequences may facilitate tumor-specific transcriptomic alterations. We examine 142,514 full-length isoforms derived from long-read RNA sequencing (LR-seq) of 30 breast samples to investigate the effects of TEs on the breast cancer transcriptome. Approximately half of these isoforms contain TE sequences, and these contribute to half of the novel annotated splice junctions. We quantify splicing of these LR-seq derived isoforms in 1,135 breast tumors from The Cancer Genome Atlas (TCGA) and 1,329 healthy tissue samples from the Genotype-Tissue Expression (GTEx), and find 300 TE-overlapping tumor-specific splicing events. Some splicing events are enriched in specific breast cancer subtypes - for example, a TE-driven transcription start site upstream of ERBB2 in HER2 + tumors, and several TE-mediated splicing events are associated with patient survival and poor prognosis. The full-length sequences we capture with LR-seq reveal thousands of isoforms with signatures of RNA editing, including a novel isoform belonging to RHOA; a gene previously implicated in tumor progression. We utilize our full-length isoforms to discover polymorphic TE insertions that alter splicing and validate one of these events in breast cancer cell lines. Together, our results demonstrate the widespread effects of dysregulated TEs on breast cancer transcriptomes and highlight the advantages of long-read isoform sequencing for understanding TE biology. TE-derived isoforms may alter the expression of genes important in cancer and can potentially be used as novel, disease-specific therapeutic targets or biomarkers.One sentence summary: Transposable elements generate alternative isoforms and alter post-transcriptional regulation in human breast cancer.
Collapse
Affiliation(s)
- Alex Nesta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| | - Diogo F T Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, 13083, Brazil
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Immunoledge LLC, Montclair, NJ, 07042, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, 06030, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
3
|
Camandona A, Gagliardi A, Licheri N, Tarallo S, Francescato G, Budinska E, Carnogurska M, Zwinsová B, Martinoglio B, Franchitti L, Gallo G, Cutrupi S, De Bortoli M, Pardini B, Naccarati A, Ferrero G. Multiple regulatory events contribute to a widespread circular RNA downregulation in precancer and early stage of colorectal cancer development. Biomark Res 2025; 13:30. [PMID: 39980011 PMCID: PMC11844049 DOI: 10.1186/s40364-025-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Early detection of colorectal cancer (CRC) significantly improves its management and patients' survival. Circular RNAs (circRNAs) are peculiar covalently closed transcripts involved in gene expression modulation whose dysregulation has been extensively reported in CRC cells. However, little is known about their alterations in the early phases of colorectal carcinogenesis. METHODS In this study, we performed an integrative analysis of circRNA profiles in RNA-sequencing (RNA-Seq) data of 96 colorectal cancers, 27 adenomas, and matched adjacent mucosa tissues. We also investigated the levels of cognate linear transcripts and those of regulating RNA-binding proteins (RBPs). Levels of circRNA-interacting microRNAs (miRNAs) were explored by integrating data of small RNA-Seq performed on the same samples. RESULTS Our results revealed a significant dysregulation of 34 circRNAs (paired adj. p < 0.05), almost exclusively downregulated in tumor tissues and, prevalently, in early disease stages. This downregulation was associated with decreased expression of circRNA host genes and those encoding for RBPs involved in circRNA biogenesis, including NOVA1, RBMS3, and MBNL1. Guilt-by-association analysis showed that dysregulated circRNAs correlated with increased predicted activity of cell proliferation, DNA repair, and c-Myc signaling pathways. Functional analysis showed interactions among dysregulated circRNAs, RBPs, and miRNAs, which were supported by significant correlations among their expression levels. Findings were validated in independent cohorts and public datasets, and the downregulation of circLPAR1(2,3) and circLINC00632(5) was validated by ddPCR. CONCLUSIONS These results support that multiple altered regulatory mechanisms may contribute to the reduction of circRNA levels that characterize early colorectal carcinogenesis.
Collapse
Affiliation(s)
- Alessandro Camandona
- Department of Clinical and Biological Sciences, University of Torino, Turin, 10100, Italy
| | - Amedeo Gagliardi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, 10060, Italy
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, 10060, Italy
| | - Nicola Licheri
- Department of Clinical and Biological Sciences, University of Torino, Turin, 10100, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, 10060, Italy
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, 10060, Italy
| | - Giulia Francescato
- Department of Clinical and Biological Sciences, University of Torino, Turin, 10100, Italy
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, 10060, Italy
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Martina Carnogurska
- RECETOX, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Barbora Zwinsová
- RECETOX, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, 62500, Czech Republic
| | | | - Lorenzo Franchitti
- Department of Clinical and Biological Sciences, University of Torino, Turin, 10100, Italy
| | - Gaetano Gallo
- Department of Surgery, "La Sapienza" University of Rome, Rome, 00161, Italy
- Department of Colorectal Surgery, Clinica S. Rita, Vercelli, 13100, Italy
| | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Torino, Turin, 10100, Italy
| | - Michele De Bortoli
- Department of Clinical and Biological Sciences, University of Torino, Turin, 10100, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, 10060, Italy
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, 10060, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, 10060, Italy
- Candiolo Cancer Institute, FPO IRCCS, Candiolo, Turin, 10060, Italy
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Torino, Turin, 10100, Italy.
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, Turin, 10060, Italy.
| |
Collapse
|
4
|
Woolley CR, Chariker JH, Rouchka EC, Ford EE, Hudson E, Rasche KM, Whitley CS, Vanwinkle Z, Casella CR, Smith ML, Mitchell TC. Full-length mRNA sequencing resolves novel variation in 5' UTR length for genes expressed during human CD4 T-cell activation. Immunogenetics 2025; 77:14. [PMID: 39904916 PMCID: PMC11794378 DOI: 10.1007/s00251-025-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Isoform sequencing (Iso-Seq) uses long-read technology to produce highly accurate full-length reads of mRNA transcripts. Visualization of individual mRNA molecules can reveal new details of transcript variation within understudied portions of mRNA, such as the 5' untranslated region (UTR). Differential 5' UTRs may contain motifs, upstream open reading frames (uORFs), and secondary structures that can serve to regulate translation or further indicate changes in promoter usage, where transcriptional control may impact protein expression levels. To begin to explore isoform variation during T-cell activation, we generated the first Iso-Seq reference transcriptome of activated human CD4 T cells. Within this dataset, we discovered many novel splice- and end-variant transcripts. Remarkably, one in every eight genes expressed in our dataset was found to have a notable proportion of transcripts with 5' UTR lengthened by over 100 bp compared to the longest corresponding UTR within the Gencode dataset. Among these end-variant transcripts, two novel isoforms were identified for CXCR5, a chemokine receptor associated with T follicular helper cell (Tfh) function and differentiation. When investigated in a model cell system, these lengthened UTR conferred reduced transcript stability and, for one of these isoforms, short uORFs introduced by the added length altered protein expression kinetics. This study highlights instances in which current reference databases are incomplete relative to the information obtained by long-read sequencing of intact mRNA. Iso-Seq is thus a promising approach to better understanding the plasticity of promoter usage, alternative splicing, and UTR sequences that influence RNA stability and translation efficiency.
Collapse
Affiliation(s)
- Cassandra R Woolley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Julia H Chariker
- Department of Neuroscience Training, University of Louisville School of Medicine, KY, Louisville, USA
| | - Eric C Rouchka
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
- KY INBRE Bioinformatics Core, University of Louisville School of Medicine, Louisville, KY, USA
| | - Easton E Ford
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Elizabeth Hudson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Kamille M Rasche
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Caleb S Whitley
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Zachary Vanwinkle
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Carolyn R Casella
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Melissa L Smith
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Thomas C Mitchell
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
5
|
Hu J, Yang J, Zhong H, Yu Q, Xiao J, Zhang C. Identification of Three POMCa Genotypes in Largemouth Bass ( Micropterus salmoides) and Their Differential Physiological Responses to Feed Domestication. Animals (Basel) 2024; 14:3638. [PMID: 39765543 PMCID: PMC11672714 DOI: 10.3390/ani14243638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Diverse feeding habits in teleosts involve a wide range of appetite-regulating factors. As an appetite-suppressing gene, the polymorphisms of POMCa in largemouth bass (Micropterus salmoides) were validated via sequencing and high-resolution melting (HRM). The frequency distribution of different POMCa genotypes were analyzed in two populations, and physiological responses of different POMCa genotypes to feed domestication were investigated. The indel of an 18 bp AU-rich element (ARE) in the 3' UTR and four interlocked SNP loci in the ORF of 1828 bp of POMCa cDNA sequence were identified in largemouth bass and constituted three genotypes of POMC-A I, II, and III, respectively. POMC-A I and Allele I had increased frequencies in the selection population than in the non-selection population (p < 0.01), 63.55% vs. 43.33% and 0.7850 vs. 0.6778, respectively. POMC-A I possessed the lowest value of POMCa mRNA during fasting (p < 0.05) and exhibited growth and physiological advantages under food deprivation and refeeding according to the levels of body mass and four physiological indicators, i.e., cortisol (Cor), growth hormone (GH), insulin-like growth factor-1 (IGF-1), and glucose (Glu). The identification of three POMCa genotypes, alongside their varying physiological responses during feed domestication, suggests a selective advantage that could be leveraged in molecular marker-assisted breeding of largemouth bass that are adapted to feeding on formula diet.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (J.Y.); (H.Z.); (Q.Y.); (J.X.)
| | | | | | | | | | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (J.Y.); (H.Z.); (Q.Y.); (J.X.)
| |
Collapse
|
6
|
Zhang X, Liu F, Zhou Y. Coupling of alternative splicing and alternative polyadenylation. Acta Biochim Biophys Sin (Shanghai) 2024; 57:22-32. [PMID: 39632657 PMCID: PMC11802343 DOI: 10.3724/abbs.2024211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
RNA splicing and 3'-cleavage and polyadenylation (CPA) are essential processes for the maturation of RNA. There have been extensive independent studies of these regulated processing events, including alternative splicing (AS) and alternative polyadenylation (APA). However, growing evidence suggests potential crosstalk between splicing and 3'-end processing in regulating AS or APA. Here, we first provide a brief overview of the molecular machines involved in splicing and 3'-end processing events, and then review recent studies on the functions and mechanisms of the crosstalk between the two processes. On the one hand, 3'-end processing can affect splicing, as 3'-end processing factors and CPA-generated polyA tail promote the splicing of the last intron. Beyond that, 3'-end processing factors can also influence the splicing of internal and terminal exons. Those 3'-end processing factors can also interact with different RNA-binding proteins (RBPs) to exert their effects on AS. The length of 3' untranslated region (3' UTR) can affect the splicing of upstream exons. On the other hand, splicing and CPA may compete within introns in generating different products. Furthermore, splicing within the 3' UTR is a significant factor contributing to 3' UTR diversity. Splicing also influences 3'-end processing through the actions of certain splicing factors. Interestingly, some classical RBPs play dual roles in both splicing and 3'-end processing. Finally, we discuss how long-read sequencing technologies aid in understanding the coordination of AS-APA events and envision that these findings may potentially promote the development of new strategies for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Xueying Zhang
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Feiyan Liu
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
| | - Yu Zhou
- College of Life SciencesTaiKang Center for Life and Medical SciencesHubei Key Laboratory of Cell HomeostasisRNA InstituteWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
7
|
Zaccaron AZ, Chen LH, Stergiopoulos I. Transcriptome analysis of two isolates of the tomato pathogen Cladosporium fulvum, uncovers genome-wide patterns of alternative splicing during a host infection cycle. PLoS Pathog 2024; 20:e1012791. [PMID: 39693392 DOI: 10.1371/journal.ppat.1012791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/02/2025] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Alternative splicing (AS) is a key element of eukaryotic gene expression that increases transcript and proteome diversity in cells, thereby altering their responses to external stimuli and stresses. While AS has been intensively researched in plants and animals, its frequency, conservation, and putative impact on virulence, are relatively still understudied in plant pathogenic fungi. Here, we profiled the AS events occurring in genes of Cladosporium fulvum isolates Race 5 and Race 4, during nearly a complete compatible infection cycle on their tomato host. Our studies revealed extensive heterogeneity in the transcript isoforms assembled from different isolates, infections, and infection timepoints, as over 80% of the transcript isoforms were singletons that were detected in only a single sample. Despite that, nearly 40% of the protein-coding genes in each isolate were predicted to be recurrently AS across the disparate infection timepoints, infections, and the two isolates. Of these, 37.5% were common to both isolates and 59% resulted in multiple protein isoforms, thereby putatively increasing proteome diversity in the pathogen by 31% during infections. An enrichment analysis showed that AS mostly affected genes likely to be involved in the transport of nutrients, regulation of gene expression, and monooxygenase activity, suggesting a role for AS in finetuning adaptation of C. fulvum on its tomato host during infections. Tracing the location of the AS genes on the fungal chromosomes showed that they were mostly located in repeat-rich regions of the core chromosomes, indicating a causal connection between gene location on the genome and propensity to AS. Finally, multiple cases of differential isoform usage in AS genes of C. fulvum were identified, suggesting that modulation of AS at different infection stages may be another way by which pathogens refine infections on their hosts.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
- Integrative Genetics and Genomics Graduate Group, University of California Davis (UC Davis), California, United States of America
| | - Li-Hung Chen
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UC Davis), Davis, California United States of America
| |
Collapse
|
8
|
Li Q, Li Z, Chen B, Zhao J, Yu H, Hu J, Lai H, Zhang H, Li Y, Meng Z, Hu Z, Huang S. RNA splicing junction landscape reveals abundant tumor-specific transcripts in human cancer. Cell Rep 2024; 43:114893. [PMID: 39446586 DOI: 10.1016/j.celrep.2024.114893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
RNA splicing is a critical process governing gene expression and transcriptomic diversity. Despite its importance, a detailed examination of transcript variation at the splicing junction level remains scarce. Here, we perform a thorough analysis of RNA splicing junctions in 34,775 samples across multiple sample types. We identified 29,051 tumor-specific transcripts (TSTs) in pan-cancer, with a majority of these TSTs being unannotated. Our findings show that TSTs are positively correlated with tumor stemness and linked to unfavorable outcomes in cancer patients. Additionally, TSTs display mutual exclusivity with somatic mutations and are overrepresented in transposable-element-derived transcripts possessing oncogenic functions. Importantly, TSTs can generate putative neoantigens for immunotherapy. Moreover, TSTs can be detected in blood extracellular vesicles from cancer patients. Our results shed light on the intricacies of RNA splicing and offer promising avenues for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Qin Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, Fudan University Shanghai Cancer Center, and Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Ziteng Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Bing Chen
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jingjing Zhao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwu Yu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jia Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongyan Lai
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hena Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yan Li
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiqiang Meng
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Zhixiang Hu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shenglin Huang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Hu H, Tang J, Wang H, Guo X, Tu C, Li Z. The crosstalk between alternative splicing and circular RNA in cancer: pathogenic insights and therapeutic implications. Cell Mol Biol Lett 2024; 29:142. [PMID: 39550559 PMCID: PMC11568689 DOI: 10.1186/s11658-024-00662-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
RNA splicing is a fundamental step of gene expression. While constitutive splicing removes introns and joins exons unbiasedly, alternative splicing (AS) selectively determines the assembly of exons and introns to generate RNA variants corresponding to the same transcript. The biogenesis of circular RNAs (circRNAs) is inextricably associated with AS. Back-splicing, the biogenic process of circRNA, is a special form of AS. In cancer, both AS and circRNA deviate from the original track. In the present review, we delve into the intricate interplay between AS and circRNAs in the context of cancer. The relationship between AS and circRNAs is intricate, where AS modulates the biogenesis of circRNAs and circRNAs in return regulate AS events. Beyond that, epigenetic and posttranscriptional modifications concurrently regulate AS and circRNAs. On the basis of this modality, we summarize current knowledge on how splicing factors and other RNA binding proteins regulate circRNA biogenesis, and how circRNAs interact with splicing factors to influence AS events. Specifically, the feedback loop regulation between circRNAs and AS events contributes greatly to oncogenesis and cancer progression. In summary, resolving the crosstalk between AS and circRNA will not only provide better insight into cancer biology but also provoke novel strategies to combat cancer.
Collapse
Affiliation(s)
- Hongkun Hu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Hua Wang
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Xiaoning Guo
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| | - Chao Tu
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| | - Zhihong Li
- Department of Orthopaedics, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Hunan Engineering Research Center of Artificial Intelligence-Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
10
|
Wang Y, Zhang S, Kang N, Dong L, Ni H, Liu S, Chong S, Ji Z, Wan Z, Chen X, Wang F, Lu Y, Hou B, Tong P, Qi H, Xu MM, Liu W. Progressive polyadenylation and m6A modification of Ighg1 mRNA maintain IgG1 antibody homeostasis in antibody-secreting cells. Immunity 2024; 57:2547-2564.e12. [PMID: 39476842 DOI: 10.1016/j.immuni.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Antigen-specific antibodies are generated by antibody-secreting cells (ASCs). How RNA post-transcriptional modification affects antibody homeostasis remains unclear. Here, we found that mRNA polyadenylations and N6-methyladenosine (m6A) modifications maintain IgG1 antibody production in ASCs. IgG heavy-chain transcripts (Ighg) possessed a long 3' UTR with m6A sites, targeted by the m6A reader YTHDF1. B cell-specific deficiency of YTHDF1 impaired IgG production upon antigen immunization through reducing Ighg1 mRNA abundance in IgG1+ ASCs. Disrupting either the m6A modification of a nuclear-localized splicing intermediate Ighg1 or the nuclear localization of YTHDF1 reduced Ighg1 transcript stability. Single-cell RNA sequencing identified an ASC subset with excessive YTHDF1 expression in systemic lupus erythematosus patients, which was decreased upon therapy with immunosuppressive drugs. In a lupus mouse model, inhibiting YTHDF1-m6A interactions alleviated symptoms. Thus, we highlight a mechanism in ASCs to sustain the homeostasis of IgG antibody transcripts by integrating Ighg1 mRNA polyadenylation and m6A modification.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Shaocun Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Lihui Dong
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, College of Future Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sichen Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Siankang Chong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengpeng Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Baidong Hou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, College of life Sciences, University of Chinese Academy of Sciences, Beijing, P.R.China
| | - Pei Tong
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Hai Qi
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Cho N, Kim SY, Lee SG, Park C, Choi S, Kim EM, Kim KK. Alternative splicing of PBRM1 mediates resistance to PD-1 blockade therapy in renal cancer. EMBO J 2024; 43:5421-5444. [PMID: 39375538 PMCID: PMC11574163 DOI: 10.1038/s44318-024-00262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
Alternative pre-mRNA splicing (AS) is a biological process that results in proteomic diversity. However, implications of AS alterations in cancer remain poorly understood. Herein, we performed a comprehensive AS analysis in cancer driver gene transcripts across fifteen cancer types and found global alterations in inclusion rates of the PBAF SWI/SNF chromatin remodeling complex subunit Polybromo 1 (PBRM1) exon 27 (E27) in most types of cancer tissues compared with those in normal tissues. Further analysis confirmed that PBRM1 E27 is excluded by the direct binding of RBFOX2 to intronic UGCAUG elements. In addition, the E27-included PBRM1 isoform upregulated PD-L1 expression via enhanced PBAF complex recruitment to the PD-L1 promoter. PBRM1 wild-type patients with clear cell renal cell carcinoma were resistant to PD-1 blockade therapy when they expressed low RBFOX2 mRNA levels. Overall, our study suggests targeting of RBFOX2-mediated AS of PBRM1 as a potential therapeutic strategy for immune checkpoint blockade.
Collapse
Affiliation(s)
- Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seung-Yeon Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sung-Gwon Lee
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunkyung Choi
- Department of Biological Sciences, College of Natural Sciences, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Eun-Mi Kim
- Department of Bio & Environmental Technology, College of Science and Convergence Technology, Seoul Women's University, Seoul, 01797, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
12
|
Du Y, Cao L, Wang S, Guo L, Tan L, Liu H, Feng Y, Wu W. Differences in alternative splicing and their potential underlying factors between animals and plants. J Adv Res 2024; 64:83-98. [PMID: 37981087 PMCID: PMC11464654 DOI: 10.1016/j.jare.2023.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Alternative splicing (AS), a posttranscriptional process, contributes to the complexity of transcripts from a limited number of genes in a genome, and AS is considered a great source of genetic and phenotypic diversity in eukaryotes. In animals, AS is tightly regulated during the processes of cell growth and differentiation, and its dysregulation is involved in many diseases, including cancers. Likewise, in plants, AS occurs in all stages of plant growth and development, and it seems to play important roles in the rapid reprogramming of genes in response to environmental stressors. To date, the prevalence and functional roles of AS have been extensively reviewed in animals and plants. However, AS differences between animals and plants, especially their underlying molecular mechanisms and impact factors, are anecdotal and rarely reviewed. AIM OF REVIEW This review aims to broaden our understanding of AS roles in a variety of biological processes and provide insights into the underlying mechanisms and impact factors likely leading to AS differences between animals and plants. KEY SCIENTIFIC CONCEPTS OF REVIEW We briefly summarize the roles of AS regulation in physiological and biochemical activities in animals and plants. Then, we underline the differences in the process of AS between plants and animals and especially analyze the potential impact factors, such as gene exon/intron architecture, 5'/3' untranslated regions (UTRs), spliceosome components, chromatin dynamics and transcription speeds, splicing factors [serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs)], noncoding RNAs, and environmental stimuli, which might lead to the differences. Moreover, we compare the nonsense-mediated mRNA decay (NMD)-mediated turnover of the transcripts with a premature termination codon (PTC) in animals and plants. Finally, we summarize the current AS knowledge published in animals versus plants and discuss the potential development of disease therapies and superior crops in the future.
Collapse
Affiliation(s)
- Yunfei Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lu Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Ying Feng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai 200032, China.
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| |
Collapse
|
13
|
Nesta A, Veiga DFT, Banchereau J, Anczukow O, Beck CR. Alternative splicing of transposable elements in human breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615242. [PMID: 39386569 PMCID: PMC11463404 DOI: 10.1101/2024.09.26.615242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transposable elements (TEs) drive genome evolution and can affect gene expression through diverse mechanisms. In breast cancer, disrupted regulation of TE sequences may facilitate tumor-specific transcriptomic alterations. We examine 142,514 full-length isoforms derived from long-read RNA sequencing (LR-seq) of 30 breast samples to investigate the effects of TEs on the breast cancer transcriptome. Approximately half of these isoforms contain TE sequences, and these contribute to half of the novel annotated splice junctions. We quantify splicing of these LR-seq derived isoforms in 1,135 breast tumors from The Cancer Genome Atlas (TCGA) and 1,329 healthy tissue samples from the Genotype-Tissue Expression (GTEx), and find 300 TE-overlapping tumor-specific splicing events. Some splicing events are enriched in specific breast cancer subtypes - for example, a TE-driven transcription start site upstream of ERBB2 in HER2+ tumors, and several TE-mediated splicing events are associated with patient survival and poor prognosis. The full-length sequences we capture with LR-seq reveal thousands of isoforms with signatures of RNA editing, including a novel isoform belonging to RHOA; a gene previously implicated in tumor progression. We utilize our full-length isoforms to discover polymorphic TE insertions that alter splicing and validate one of these events in breast cancer cell lines. Together, our results demonstrate the widespread effects of dysregulated TEs on breast cancer transcriptomes and highlight the advantages of long-read isoform sequencing for understanding TE biology. TE-derived isoforms may alter the expression of genes important in cancer and can potentially be used as novel, disease-specific therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Alex Nesta
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Diogo F. T. Veiga
- Department of Translational Medicine, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP 13083, Brazil
| | - Jacques Banchereau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Immunoledge LLC, Montclair, NJ, 07042, USA
| | - Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Christine R. Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032 USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
14
|
Li Z, Zhang B, Chan JJ, Tabatabaeian H, Tong QY, Chew XH, Fan X, Driguez P, Chan C, Cheong F, Wang S, Siew BE, Tan IJW, Lee KY, Lieske B, Cheong WK, Kappei D, Tan KK, Gao X, Tay Y. An isoform-resolution transcriptomic atlas of colorectal cancer from long-read single-cell sequencing. CELL GENOMICS 2024; 4:100641. [PMID: 39216476 PMCID: PMC11480860 DOI: 10.1016/j.xgen.2024.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) ranks as the second leading cause of cancer deaths globally. In recent years, short-read single-cell RNA sequencing (scRNA-seq) has been instrumental in deciphering tumor heterogeneities. However, these studies only enable gene-level quantification but neglect alterations in transcript structures arising from alternative end processing or splicing. In this study, we integrated short- and long-read scRNA-seq of CRC samples to build an isoform-resolution CRC transcriptomic atlas. We identified 394 dysregulated transcript structures in tumor epithelial cells, including 299 resulting from various combinations of splicing events. Second, we characterized genes and isoforms associated with epithelial lineages and subpopulations exhibiting distinct prognoses. Among 31,935 isoforms with novel junctions, 330 were supported by The Cancer Genome Atlas RNA-seq and mass spectrometry data. Finally, we built an algorithm that integrated novel peptides derived from open reading frames of recurrent tumor-specific transcripts with mass spectrometry data and identified recurring neoepitopes that may aid the development of cancer vaccines.
Collapse
Affiliation(s)
- Zhongxiao Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Bin Zhang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Jia Jia Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Qing Yun Tong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiao Hong Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Xiaonan Fan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Faith Cheong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shi Wang
- Department of Pathology, National University Health System, Singapore 119228, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ian Jse-Wei Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Kai-Yin Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Bettina Lieske
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Wai-Kit Cheong
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Division of Colorectal Surgery, University Surgical Cluster, National University Health System, Singapore 119228, Singapore
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence for Smart Health (KCSH), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Center of Excellence on Generative AI, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
15
|
Yu S, Wu R, Si Y, Fan Z, Wang Y, Yao C, Sun R, Xue Y, Chen Y, Wang Z, Dong S, Wang N, Ling X, Liang Z, Bi C, Yang Y, Dong W, Sun H. Alternative splicing of ALDOA confers tamoxifen resistance in breast cancer. Oncogene 2024; 43:2901-2913. [PMID: 39164523 DOI: 10.1038/s41388-024-03134-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
The cancer-associated alternative splicing (AS) events generate cancer-related transcripts which are involved in uncontrolled cell proliferation and drug resistance. However, the key AS variants implicated in tamoxifen (TAM) resistance in breast cancer remain elusive. In the current study, we investigated the landscape of AS events in nine pairs of primary and relapse breast tumors from patients receiving TAM-based therapy. We unrevealed a notable association between the inclusion of exon 7.2 in the 5'untranslated region (5'UTR) of ALDOA mRNA and TAM resistance. Mechanistically, the inclusion of ALDOA exon 7.2 enhances the translation efficiency of the transcript, resulting in increased ALDOA protein expression, mTOR pathway activity, and the promotion of TAM resistance in breast cancer cells. Moreover, the inclusion of exon 7.2 in ALDOA mRNA is mediated by MSI1 via direct interaction. In addition, elevated inclusion of ALDOA exon 7.2 or expression of MSI1 is associated with an unfavorable prognosis in patients undergoing endocrine therapy. Notably, treatment with Aldometanib, an ALDOA inhibitor, effectively restrains the growth of TAM-resistant breast cancer cells in vitro and in vivo. The present study unveils the pivotal role of an AS event in ALDOA, under the regulation of MSI1, in driving TAM resistance in breast cancer. Therefore, this study provides a promising therapeutic avenue targeting ALDOA to combat TAM resistance.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Rui Wu
- School of Life Science, Liaoning Normal University, Dalian, China
| | - Yue Si
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Ying Wang
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Chang Yao
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Rongmao Sun
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yaji Xue
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yongli Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zheng Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Shuangshuang Dong
- Department of Pathology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University/Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Xinyue Ling
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Zhengyan Liang
- School of Basic Medical Science, Guangdong Medical University, Dongguan, China
| | - Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China.
| | - Weibing Dong
- School of Life Science, Liaoning Normal University, Dalian, China.
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, China.
- Haian Hospital of Traditional Chinese Medicine, Haian, China.
| |
Collapse
|
16
|
Dao K, Jungers CF, Djuranovic S, Mustoe AM. U-rich elements drive pervasive cryptic splicing in 3' UTR massively parallel reporter assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606557. [PMID: 39149310 PMCID: PMC11326173 DOI: 10.1101/2024.08.05.606557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Non-coding RNA sequences play essential roles in orchestrating gene expression. However, the sequence codes and mechanisms underpinning post-transcriptional regulation remain incompletely understood. Here, we revisit the finding from a prior massively parallel reporter assay (MPRA) that AU-rich (U-rich) elements in 3' untranslated regions (3' UTRs) can drive upregulation or downregulation of mRNA expression depending on 3' UTR context. We unexpectedly discover that this variable regulation arises from widespread cryptic splicing, predominately from an unannotated splice donor in the coding sequence of GFP to diverse acceptor sites in reporter 3' UTRs. Splicing is activated by U-rich sequences, which function as potent position-dependent regulators of 5' and 3' splice site choice and overall splicing efficiency. Splicing has diverse impacts on reporter expression, causing both increases and decreases in reporter expression via multiple mechanisms. We further provide evidence that cryptic splicing impacts between 10 to 50% of measurements made by other published 3' UTR MPRAs. Overall, our work emphasizes U-rich sequences as principal drivers of splicing and provides strategies to minimize cryptic splicing artifacts in reporter assays.
Collapse
Affiliation(s)
- Khoa Dao
- Therapeutic Innovation Center (THINC), Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston TX
| | - Courtney F. Jungers
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis MO
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine in St. Louis, St. Louis MO
| | - Anthony M. Mustoe
- Therapeutic Innovation Center (THINC), Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston TX
| |
Collapse
|
17
|
Lee YF, Phua CZJ, Yuan J, Zhang B, Lee MY, Kannan S, Chiu YHJ, Koh CWQ, Yap CK, Lim EKH, Chen J, Lim Y, Lee JJH, Skanderup AJ, Wang Z, Zhai W, Tan NS, Verma CS, Tay Y, Tan DSW, Tam WL. PARP4 interacts with hnRNPM to regulate splicing during lung cancer progression. Genome Med 2024; 16:91. [PMID: 39034402 PMCID: PMC11265163 DOI: 10.1186/s13073-024-01328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/02/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND The identification of cancer driver genes from sequencing data has been crucial in deepening our understanding of tumor biology and expanding targeted therapy options. However, apart from the most commonly altered genes, the mechanisms underlying the contribution of other mutations to cancer acquisition remain understudied. Leveraging on our whole-exome sequencing of the largest Asian lung adenocarcinoma (LUAD) cohort (n = 302), we now functionally assess the mechanistic role of a novel driver, PARP4. METHODS In vitro and in vivo tumorigenicity assays were used to study the functional effects of PARP4 loss and mutation in multiple lung cancer cell lines. Interactomics analysis by quantitative mass spectrometry was conducted to identify PARP4's interaction partners. Transcriptomic data from cell lines and patient tumors were used to investigate splicing alterations. RESULTS PARP4 depletion or mutation (I1039T) promotes the tumorigenicity of KRAS- or EGFR-driven lung cancer cells. Disruption of the vault complex, with which PARP4 is commonly associated, did not alter tumorigenicity, indicating that PARP4's tumor suppressive activity is mediated independently. The splicing regulator hnRNPM is a potentially novel PARP4 interaction partner, the loss of which likewise promotes tumor formation. hnRNPM loss results in splicing perturbations, with a propensity for dysregulated intronic splicing that was similarly observed in PARP4 knockdown cells and in LUAD cohort patients with PARP4 copy number loss. CONCLUSIONS PARP4 is a novel modulator of lung adenocarcinoma, where its tumor suppressive activity is mediated not through the vault complex-unlike conventionally thought, but in association with its novel interaction partner hnRNPM, thus suggesting a role for splicing dysregulation in LUAD tumorigenesis.
Collapse
Affiliation(s)
- Yi Fei Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Cheryl Zi Jin Phua
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Ju Yuan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Bin Zhang
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - May Yin Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Srinivasaraghavan Kannan
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
| | - Yui Hei Jasper Chiu
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Casslynn Wei Qian Koh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Choon Kong Yap
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Edwin Kok Hao Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jianbin Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Yuhua Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Jane Jia Hui Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
| | - Zhenxun Wang
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Centre for Vision Research, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Weiwei Zhai
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Chandra S Verma
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix, Singapore, 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Daniel Shao Weng Tan
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Boulevard, Singapore, 168583, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore, 138672, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore.
| |
Collapse
|
18
|
Xiao M, Wang L, Tang Q, Yang Q, Yang X, Zhu G, Lei L, Li S. Postoperative tumor treatment strategies: From basic research to clinical therapy. VIEW 2024; 5. [DOI: 10.1002/viw.20230117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/15/2024] [Indexed: 07/04/2024] Open
Abstract
AbstractDespite progression in advanced treatments for malignant tumors, surgery remains the primary treatment intervention, which removes a large portion of firm tumor tissues; however, the postoperative phase poses a possible risk for provincial tumor recurrence and metastasis. Consequently, the prevention of tumor recurrence and metastasis has attracted research attention. In this review, we summarized the postoperative treatment strategies for various tumors from both basic research and clinical perspectives. We delineated the underlying factors contributing to the recurrence of malignant tumors with a substantial prevalence rate, related molecular mechanisms of tumor recurrence post‐surgery, and related means of monitoring recurrence and metastasis after surgery. Furthermore, we described relevant therapeutic approaches for postoperative tumor recurrence, including chemotherapy, radiation therapy, immunotherapy, targeted therapy, and photodynamic therapy. This review focused on the emerging technologies used for postoperative tumor treatment in recent years in terms of functional classification, including the prevention of postoperative tumor recurrence, functional reconstruction, and monitoring of recurrence. Finally, we discussed the future development and deficiencies of postoperative tumor therapy. To understand postoperative treatment strategies for tumors from clinical treatment and basic research and further guide the research directions for postoperative tumors.
Collapse
Affiliation(s)
- Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery Binzhou People's Hospital Binzhou China
| | - Qinglai Tang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Gangcai Zhu
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| | - Lanjie Lei
- Institute of Translational Medicine Zhejiang Shuren University Hangzhou China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery The Second Xiangya Hospital Central South University Changsha China
| |
Collapse
|
19
|
Hu Z, Li M, Chen Y, Chen L, Han Y, Chen C, Lu X, You N, Lou Y, Huang Y, Huo Z, Liu C, Liang C, Liu S, Deng K, Chen L, Chen S, Wan G, Wu X, Fu Y, Xu A. Disruption of PABPN1 phase separation by SNRPD2 drives colorectal cancer cell proliferation and migration through promoting alternative polyadenylation of CTNNBIP1. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1212-1225. [PMID: 38811444 DOI: 10.1007/s11427-023-2495-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/26/2023] [Indexed: 05/31/2024]
Abstract
Generally shortened 3' UTR due to alternative polyadenylation (APA) is widely observed in cancer, but its regulation mechanisms for cancer are not well characterized. Here, with profiling of APA in colorectal cancer tissues and poly(A) signal editing, we firstly identified that the shortened 3' UTR of CTNNIBP1 in colorectal cancer promotes cell proliferation and migration. We found that liquid-liquid phase separation (LLPS) of PABPN1 is reduced albeit with higher expression in cancer, and the reduction of LLPS leads to the shortened 3' UTR of CTNNBIP1 and promotes cell proliferation and migration. Notably, the splicing factor SNRPD2 upregulated in colorectal cancer, can interact with glutamic-proline (EP) domain of PABPN1, and then disrupt LLPS of PABPN1, which attenuates the repression effect of PABPN1 on the proximal poly(A) sites. Our results firstly reveal a new regulation mechanism of APA by disruption of LLPS of PABPN1, suggesting that regulation of APA by interfering LLPS of 3' end processing factor may have the potential as a new way for the treatment of cancer.
Collapse
Affiliation(s)
- Zhijie Hu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mengxia Li
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yufeng Chen
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Liutao Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuting Han
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengyong Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Lu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Nan You
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yawen Lou
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yingye Huang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhanfeng Huo
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chao Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cheng Liang
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Susu Liu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ke Deng
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liangfu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shangwu Chen
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaojian Wu
- Department of General Surgery (Colorectal Surgery) & Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China.
| | - Yonggui Fu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Anlong Xu
- State Key Laboratory of Biocontrol, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, Department of Biochemistry, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
20
|
Zhou Y, Yang J, Huang L, Liu C, Yu M, Chen R, Zhou Q. Nudt21-mediated alternative polyadenylation of MZT1 3'UTR contributes to pancreatic cancer progression. iScience 2024; 27:108822. [PMID: 38303721 PMCID: PMC10831950 DOI: 10.1016/j.isci.2024.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/26/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism and is involved in many diseases, but its function and mechanism in regulating pancreatic cancer (PC) pathogenesis remain unclear. In this study, we found that the 3' UTR shortening of MZT1 was the most prominent APA event in PC liver metastases. The short-3'UTR isoform exerted a stronger effect in promoting cell proliferation and migration both in vitro and in vivo. NUDT21, a core cleavage factor involved in APA, promoted the usage of proximal polyadenylation sites (PASs) on MZT1 mRNA by binding to the UGUA element located upstream of the proximal PAS. High percentage of distal polyA site usage index of MZT1 was significantly associated with a better prognosis. These findings demonstrate a crucial mechanism that NUDT21-mediated APA of MZT1 could promote the progression of PC. Our findings provided a better understanding of the connection between PC progression and APA machinery.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiabin Yang
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Leyi Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Chao Liu
- Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| | - Min Yu
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quanbo Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
21
|
Zavileyskiy LG, Pervouchine DD. Post-transcriptional Regulation of Gene Expression via Unproductive Splicing. Acta Naturae 2024; 16:4-13. [PMID: 38698955 PMCID: PMC11062102 DOI: 10.32607/actanaturae.27337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/01/2024] [Indexed: 05/05/2024] Open
Abstract
Unproductive splicing is a mechanism of post-transcriptional gene expression control in which premature stop codons are inserted into protein-coding transcripts as a result of regulated alternative splicing, leading to their degradation via the nonsense-mediated decay pathway. This mechanism is especially characteristic of RNA-binding proteins, which regulate each other's expression levels and those of other genes in multiple auto- and cross-regulatory loops. Deregulation of unproductive splicing is a cause of serious human diseases, including cancers, and is increasingly being considered as a prominent therapeutic target. This review discusses the types of unproductive splicing events, the mechanisms of auto- and cross-regulation, nonsense-mediated decay escape, and problems in identifying unproductive splice isoforms. It also provides examples of deregulation of unproductive splicing in human diseases and discusses therapeutic strategies for its correction using antisense oligonucleotides and small molecules.
Collapse
Affiliation(s)
- L. G. Zavileyskiy
- Lomonosov Moscow State University, Moscow, 119192 Russian Federation
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| | - D. D. Pervouchine
- Skolkovo Institute of Science and Technology, Moscow, 121205 Russian Federation
| |
Collapse
|
22
|
Liu J, Park K, Shen Z, Lee H, Geetha P, Pakyari M, Chai L. Immunotherapy, targeted therapy, and their cross talks in hepatocellular carcinoma. Front Immunol 2023; 14:1285370. [PMID: 38173713 PMCID: PMC10762788 DOI: 10.3389/fimmu.2023.1285370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a challenging malignancy with limited treatment options beyond surgery and chemotherapy. Recent advancements in targeted therapies and immunotherapy, including PD-1 and PD-L1 monoclonal antibodies, have shown promise, but their efficacy has not met expectations. Biomarker testing and personalized medicine based on genetic mutations and other biomarkers represent the future direction for HCC treatment. To address these challenges and opportunities, this comprehensive review discusses the progress made in targeted therapies and immunotherapies for HCC, focusing on dissecting the rationales, opportunities, and challenges for combining these modalities. The liver's unique physiology and the presence of fibrosis in many HCC patients pose additional challenges to drug delivery and efficacy. Ongoing efforts in biomarker development and combination therapy design, especially in the context of immunotherapies, hold promise for improving outcomes in advanced HCC. Through exploring the advancements in biomarkers and targeted therapies, this review provides insights into the challenges and opportunities in the field and proposes strategies for rational combination therapy design.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Kevin Park
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ziyang Shen
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Hannah Lee
- University of California, San Diego, CA, United States
| | | | - Mohammadreza Pakyari
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Li Chai
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
23
|
Choi S, Cho N, Kim EM, Kim KK. The role of alternative pre-mRNA splicing in cancer progression. Cancer Cell Int 2023; 23:249. [PMID: 37875914 PMCID: PMC10594706 DOI: 10.1186/s12935-023-03094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Alternative pre-mRNA splicing is a critical mechanism that generates multiple mRNA from a single gene, thereby increasing the diversity of the proteome. Recent research has highlighted the significance of specific splicing isoforms in cellular processes, particularly in regulating cell numbers. In this review, we examine the current understanding of the role of alternative splicing in controlling cancer cell growth and discuss specific splicing factors and isoforms and their molecular mechanisms in cancer progression. These isoforms have been found to intricately control signaling pathways crucial for cell cycle progression, proliferation, and apoptosis. Furthermore, studies have elucidated the characteristics and functional importance of splicing factors that influence cell numbers. Abnormal expression of oncogenic splicing isoforms and splicing factors, as well as disruptions in splicing caused by genetic mutations, have been implicated in the development and progression of tumors. Collectively, these findings provide valuable insights into the complex interplay between alternative splicing and cell proliferation, thereby suggesting the potential of alternative splicing as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Sunkyung Choi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Namjoon Cho
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Kee K Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
24
|
Dioken DN, Ozgul I, Koksal Bicakci G, Gol K, Can T, Erson-Bensan AE. Differential expression of mRNA 3'-end isoforms in cervical and ovarian cancers. Heliyon 2023; 9:e20035. [PMID: 37810050 PMCID: PMC10559779 DOI: 10.1016/j.heliyon.2023.e20035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 07/26/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Early diagnosis and therapeutic targeting are continuing challenges for gynecological cancers. Here, we focus on cancer transcriptomes and describe the differential expression of 3'UTR isoforms in patients using an algorithm to detect differential poly(A) site usage. We find primarily 3'UTR shortening cases in cervical cancers compared with the normal cervix. We show differential expression of alternate 3'-end isoforms of FOXP1, VPS4B, and OGT in HPV16-positive patients who develop high-grade cervical lesions compared with the infected but non-progressing group. In contrast, in ovarian cancers, 3'UTR lengthening is more evident compared with normal ovary tissue. Nevertheless, highly malignant ovarian tumors have unique 3'UTR shortening events (e.g., CHRAC1, SLC16A1, and TOP2A), some of which correlate with upregulated protein levels in tumors. Overall, our study shows isoform level deregulation in gynecological cancers and highlights the complexity of the transcriptome. This transcript diversity could help identify novel cancer genes and provide new possibilities for diagnosis and therapy.
Collapse
Affiliation(s)
- Didem Naz Dioken
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkiye
| | - Ibrahim Ozgul
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkiye
| | - Gozde Koksal Bicakci
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkiye
| | - Kemal Gol
- Gynecology Clinic, Ugur Mumcu Cad 17/2, Cankaya, Ankara, Turkiye
| | - Tolga Can
- Department of Computer Engineering, Middle East Technical University (METU), Dumlupinar Blv No: 1, Universiteler Mah., Ankara, 06800, Turkiye
| | - Ayse Elif Erson-Bensan
- Department of Biological Sciences, Middle East Technical University (METU), Dumlupinar Blv No: 1 Universiteler Mah., Cankaya, Ankara, 06800, Turkiye
| |
Collapse
|
25
|
Ran Z, Zhang L, Dong M, Zhang Y, Chen L, Song Q. O-GlcNAcylation: A Crucial Regulator in Cancer-Associated Biological Events. Cell Biochem Biophys 2023; 81:383-394. [PMID: 37392316 DOI: 10.1007/s12013-023-01146-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
O-GlcNAcylation, a recently discovered post-translational modification of proteins, plays a crucial role in regulating protein structure and function, and is closely associated with multiple diseases. Research has shown that O-GlcNAcylation is abnormally upregulated in most cancers, promoting disease progression. To elucidate the roles of O-GlcNAcylation in cancer, this review summarizes various cancer-associated biological events regulated by O-GlcNAcylation and the corresponding signaling pathways. This work may provide insights for future studies on the function or underlying mechanisms of O-GlcNAcylation in cancer.
Collapse
Affiliation(s)
- Zhihong Ran
- Medical College, Three Gorges University, Yichang, 443000, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Lei Zhang
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Ming Dong
- Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Yu Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lulu Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Guangzhou National Laboratory, Guangzhou, 510005, China.
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
26
|
Schmeing S, Amrahova G, Bigler K, Chang JY, Openy J, Pal S, Posada L, Gasper R, 't Hart P. Rationally designed stapled peptides allosterically inhibit PTBP1-RNA-binding. Chem Sci 2023; 14:8269-8278. [PMID: 37564416 PMCID: PMC10411625 DOI: 10.1039/d3sc00985h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/28/2023] [Indexed: 08/12/2023] Open
Abstract
The diverse role of the splicing factor PTBP1 in human cells has been widely studied and was found to be a driver for several diseases. PTBP1 binds RNA through its RNA-recognition motifs which lack obvious pockets for inhibition. A unique transient helix has been described to be part of its first RNA-recognition motif and to be important for RNA binding. In this study, we further confirmed the role of this helix and envisioned its dynamic nature as a unique opportunity to develop stapled peptide inhibitors of PTBP1. The peptides were found to be able to inhibit RNA binding via fluorescence polarization assays and directly occupy the helix binding site as observed by protein crystallography. These cell-permeable inhibitors were validated in cellulo to alter the regulation of alternative splicing events regulated by PTBP1. Our study demonstrates transient secondary structures of a protein can be mimicked by stapled peptides to inhibit allosteric mechanisms.
Collapse
Affiliation(s)
- Stefan Schmeing
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Gulshan Amrahova
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Katrin Bigler
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Jen-Yao Chang
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Joseph Openy
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Sunit Pal
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Laura Posada
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Raphael Gasper
- Crystallography and Biophysics Unit, Max-Planck-Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck Society, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| |
Collapse
|
27
|
Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023; 119:1324-1335. [PMID: 36657944 PMCID: PMC10262186 DOI: 10.1093/cvr/cvad014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 01/21/2023] Open
Abstract
Cleavage and polyadenylation of pre-mRNAs is a necessary step for gene expression and function. Majority of human genes exhibit multiple polyadenylation sites, which can be alternatively used to generate different mRNA isoforms from a single gene. Alternative polyadenylation (APA) of pre-mRNAs is important for the proteome and transcriptome landscape. APA is tightly regulated during development and contributes to tissue-specific gene regulation. Mis-regulation of APA is linked to a wide range of pathological conditions. APA-mediated gene regulation in the heart is emerging as a new area of research. Here, we will discuss the impact of APA on gene regulation during heart development and in cardiovascular diseases. First, we will briefly review how APA impacts gene regulation and discuss molecular mechanisms that control APA. Then, we will address APA regulation during heart development and its dysregulation in cardiovascular diseases. Finally, we will discuss pre-mRNA targeting strategies to correct aberrant APA patterns of essential genes for the treatment or prevention of cardiovascular diseases. The RNA field is blooming due to advancements in RNA-based technologies. RNA-based vaccines and therapies are becoming the new line of effective and safe approaches for the treatment and prevention of human diseases. Overall, this review will be influential for understanding gene regulation at the RNA level via APA in the heart and will help design RNA-based tools for the treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Jun Cao
- Faculty of Environment and Life, Beijing University of Technology, Xueyuan Road, Haidian District, Beijing 100124, PR China
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Translational Sciences, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77573, USA
| |
Collapse
|
28
|
Wojtyś W, Oroń M. How Driver Oncogenes Shape and Are Shaped by Alternative Splicing Mechanisms in Tumors. Cancers (Basel) 2023; 15:cancers15112918. [PMID: 37296881 DOI: 10.3390/cancers15112918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The development of RNA sequencing methods has allowed us to study and better understand the landscape of aberrant pre-mRNA splicing in tumors. Altered splicing patterns are observed in many different tumors and affect all hallmarks of cancer: growth signal independence, avoidance of apoptosis, unlimited proliferation, invasiveness, angiogenesis, and metabolism. In this review, we focus on the interplay between driver oncogenes and alternative splicing in cancer. On one hand, oncogenic proteins-mutant p53, CMYC, KRAS, or PI3K-modify the alternative splicing landscape by regulating expression, phosphorylation, and interaction of splicing factors with spliceosome components. Some splicing factors-SRSF1 and hnRNPA1-are also driver oncogenes. At the same time, aberrant splicing activates key oncogenes and oncogenic pathways: p53 oncogenic isoforms, the RAS-RAF-MAPK pathway, the PI3K-mTOR pathway, the EGF and FGF receptor families, and SRSF1 splicing factor. The ultimate goal of cancer research is a better diagnosis and treatment of cancer patients. In the final part of this review, we discuss present therapeutic opportunities and possible directions of further studies aiming to design therapies targeting alternative splicing mechanisms in the context of driver oncogenes.
Collapse
Affiliation(s)
- Weronika Wojtyś
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Oroń
- Laboratory of Human Disease Multiomics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
29
|
Circular RNAs and Untranslated Regions in Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24043215. [PMID: 36834627 PMCID: PMC9967498 DOI: 10.3390/ijms24043215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Before the advent of next-generation sequencing, research on acute myeloid leukemia (AML) mostly centered on protein-coding genes. In recent years, breakthroughs in RNA sequencing technologies and whole transcriptome analysis have led to the discovery that approximately 97.5% of the human genome is transcribed into non-coding RNAs (ncRNAs). This paradigm shift has led to an explosion of research interest in different classes of non-coding RNAs, such as circular RNAs (circRNAs) as well as non-coding untranslated regions (UTRs) of protein-coding messenger RNAs. The critical roles of circRNAs and UTRs in AML pathogenesis have become increasingly apparent. In this review, we discuss the cellular mechanisms of circRNAs and summarize recent studies that reveal their biological roles in AML. Furthermore, we also review the contribution of 3'UTRs to disease progression. Finally, we discuss the potential of circRNAs and 3'UTRs as new biomarkers for disease stratification and/or the prediction of treatment response and targets for the development of RNA-directed therapeutic applications.
Collapse
|
30
|
Hong D, Jeong S. 3'UTR Diversity: Expanding Repertoire of RNA Alterations in Human mRNAs. Mol Cells 2023; 46:48-56. [PMID: 36697237 PMCID: PMC9880603 DOI: 10.14348/molcells.2023.0003] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/27/2023] Open
Abstract
Genomic information stored in the DNA is transcribed to the mRNA and translated to proteins. The 3' untranslated regions (3'UTRs) of the mRNA serve pivotal roles in posttranscriptional gene expression, regulating mRNA stability, translation, and localization. Similar to DNA mutations producing aberrant proteins, RNA alterations expand the transcriptome landscape and change the cellular proteome. Recent global analyses reveal that many genes express various forms of altered RNAs, including 3'UTR length variants. Alternative polyadenylation and alternative splicing are involved in diversifying 3'UTRs, which could act as a hidden layer of eukaryotic gene expression control. In this review, we summarize the functions and regulations of 3'UTRs and elaborate on the generation and functional consequences of 3'UTR diversity. Given that dynamic 3'UTR length control contributes to phenotypic complexity, dysregulated 3'UTR diversity might be relevant to disease development, including cancers. Thus, 3'UTR diversity in cancer could open exciting new research areas and provide avenues for novel cancer theragnostics.
Collapse
Affiliation(s)
- Dawon Hong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| | - Sunjoo Jeong
- Laboratory of RNA Cell Biology, Department of Bioconvergence Engineering, Dankook University Graduate School, Yongin 16892, Korea
| |
Collapse
|
31
|
Gan J, Di XH, Yan ZY, Gao YF, Xu HH. HLA-G 3'UTR polymorphism diplotypes and soluble HLA-G plasma levels impact cervical cancer susceptibility and prognosis. Front Immunol 2022; 13:1076040. [PMID: 36618382 PMCID: PMC9810980 DOI: 10.3389/fimmu.2022.1076040] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background Human leukocyte antigen G (HLA-G) is an immune checkpoint molecule with relevance in several cancers. The aim of this study was to evaluate the potential role of soluble HLA-G (sHLA-G), its genetic polymorphisms and its haplotype structure in the susceptibility and prognosis of primary cervical cancer in a Chinese Han population. Methods We investigated sHLA-G plasma levels and 3' untranslated region (3'UTR) polymorphisms through ELISA and direct DNA sequencing, respectively, in cervical cancer patients (120 cases) and healthy control women (96 cases). The data were analyzed for associations using PowerMarker, Haploview, and GraphPad Prism. Results In this study, 8 polymorphic sites, 16 haplotypes and 23 diplotypes in the HLA-G 3'UTR were identified in our study population. We observed that each pair of 8 polymorphic sites exhibited linkage disequilibrium. The heterozygote CT genotype at position +3422 (rs17875408) was more common in cervical cancer patients than in healthy women (OR=5.285, P<0.05). Haplotypes UTR-1, UTR-3, and UTR-7 accounted for more than 85% of both groups, but no significant difference was found. The frequency of the UTR-1/UTR-3 diplotype in patients was significantly higher than that in controls (P<0.05). In addition, we further observed that HLA-G 3'UTR polymorphisms may influence the sHLA-G plasma level in patients' peripheral blood, especially 14 bp Ins/Del (rs371194629) and +3142 C/G (rs1063320). A receiver operating characteristic (ROC) curve analysis showed that the sHLA-G level had good diagnostic performance in differentiating patients with cervical cancer from healthy women (AUC>0.7). Among patients, mean sHLA-G levels increased with increasing FIGO stages but were not related to the overall survival time. Conclusions The results of the present study enhance our understanding of how HLA-G 3'UTR polymorphisms can influence the peripheral sHLA-G plasma level and play a key role in cervical carcinogenesis. This study further confirmed that sHLA-G may represent a novel plasma biomarker for the prognosis and potential therapeutic target of cervical cancer.
Collapse
Affiliation(s)
- Jun Gan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xing-Hong Di
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Zi-Yi Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yang-Fan Gao
- School of Clinical Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, Zhejiang, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumour of Zhejiang Province, Linhai, China
| |
Collapse
|
32
|
3′UTR heterogeneity and cancer progression. Trends Cell Biol 2022:S0962-8924(22)00232-X. [DOI: 10.1016/j.tcb.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022]
|