1
|
Xue J, Dou C, Shi Y, Fu Y, Du X, Yang H, Yu L, Li X, Zhao X, Li Y. Glyco-based building blocks for the chemical synthesis of glycoproteins. Int J Biol Macromol 2025; 313:144141. [PMID: 40368212 DOI: 10.1016/j.ijbiomac.2025.144141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
Glycoproteins, which are conjugates of glycans and proteins, are crucial in a wide variety of physiological and disease processes. Understanding the structures and functions of glycoproteins, as well as the regulation of glycosylation, is essential for studying the causes of diseases for intervention therapy. However, the detailed structure-function relationships and therapeutic applications of glycoproteins are hindered by their structural complexity and heterogeneity. Chemical protein synthesis is a powerful and effective strategy for producing homogeneous glycoforms of glycoproteins. The chemical synthesis of glycoproteins involves ligating different peptide and/or glycopeptide fragments, and the preparation of glycopeptide fragments requires the assembly of amino acid and glyco-based building blocks. This review provides a comprehensive and systematic survey of glyco-based building blocks for synthesizing homogeneous glycopeptides and glycoproteins, encompassing glyco-amino acids for direct SPPS and glyco-based donors for convergent sugar assembly. Additionally, an analysis of the applications of these building blocks in the chemical synthesis of representative glycoproteins with therapeutic potential is presented.
Collapse
Affiliation(s)
- Jingwen Xue
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Chunhui Dou
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, Shandong, China
| | - Yejiao Shi
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China; School of Medicine, Institute of Translational Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yinxue Fu
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiaoru Du
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Hao Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Longjie Yu
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiang Li
- School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Xuemei Zhao
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| | - Yulei Li
- School of Pharmaceutical Sciences & Institute of Materia Medica, State Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
2
|
Serna S, Comino N, Reichardt NC, López-Gallego F. Preparative Isolation of N-Glycans from Natural Sources Mediated by a Deglycosylating Heterogeneous Biocatalyst in Flow. CHEMSUSCHEM 2025; 18:e202402346. [PMID: 39817794 DOI: 10.1002/cssc.202402346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Efficient methods for isolating N-glycans are essential to understanding the functions and characteristics of the entire N-glycome. Enzymatic release using PNGaseF is the most effective approach for releasing mammalian N-glycans for analytical purposes. However, the use of PNGaseF for preparative N-glycan isolation is precluded due to the enzyme's cost and limited stability. In this work, we develop a PNGaseF heterogeneous biocatalyst for the preparative isolation of N-glycans from natural sources. By controlling the immobilization conditions, 100-51 % of offered PNGaseF is immobilized on aldehyde-functionalized agarose porous microbeads through distinct protein orientations, achieving different performances. The enzyme orientation through the N-terminus provides the best activity/operational stability balance, being 20 % more efficient than that randomly oriented. This active and stable heterogeneous biocatalyst eases its application in a packed bed reactor (PBR) for continuous release of free N-glycans from a model glycoprotein. This PBR processes 1 g of ovalbumin from chicken egg white to isolate 95 % of its N-glycans upon operating the PBR for 7 days. Finally, by tuning the flow rate, we can control the profile of N-glycans isolated due to different enzyme kinetics for the deglycosylation reactions. In-line methodologies to isolate N-glycans open new paths for more sustainable protocols to prepare relevant glycans.
Collapse
Affiliation(s)
- Sonia Serna
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Natalia Comino
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
| | - Niels C Reichardt
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009, Bilbao, Spain
| |
Collapse
|
3
|
Li R, Chen P, Zeng YF, Tseng TH, Gannedi V, Krasnova L, Wong CH. Expedient Assembly of Multiantennary N-Glycans from Common N-Glycan Cores with Orthogonal Protection for the Profiling of Glycan-Binding Proteins. J Am Chem Soc 2025; 147:12937-12948. [PMID: 40193327 PMCID: PMC12006998 DOI: 10.1021/jacs.5c02356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025]
Abstract
Complex-type N-glycans are structurally diverse molecules, responsible for many biological processes, yet the specific sequences of N-glycans involved in biological recognition remain largely unknown. Despite the recent development of many efficient chemoenzymatic approaches, it is still lacking a general approach to produce structurally diverse complex-type N-glycans. Here, we designed two common precursors equipped with orthogonal protecting groups for antennary differentiation and selective glycan elongation. The N-acetyllactosamine (LacNAc) repeat modules were synthesized separately based on iterative Au(I) promoted glycosylation and programmable one-pot strategy and were incorporated into the N-glycan core structure in a site-specific manner. The final removal of benzyl groups was cleanly achieved using pressurized flow chemistry. A total of 51 N-glycans were assembled and presented as an array to study the binding specificity toward a panel of influenza hemagglutinins and other lectins. The established method allows a rapid and previously infeasible synthesis of asymmetric bi- and triantennary N-glycans, especially with the LacNAc repeats residing at a specific arm, bringing in new opportunities to study carbohydrate-receptor interactions.
Collapse
Affiliation(s)
- Ruofan Li
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Pengxi Chen
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Yi-Fang Zeng
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Tzu-Hao Tseng
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Veeranjaneyulu Gannedi
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Larissa Krasnova
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
| | - Chi-Huey Wong
- Department
of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, United States
- Genomics
Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Nishiuchi Y, Elouali S, Noguchi M, Ochiai H. Conjugation of Human N-Glycans Improves the Drug Properties of Existing Peptides and Proteins. Chembiochem 2025; 26:e202401066. [PMID: 39972604 DOI: 10.1002/cbic.202401066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 02/21/2025]
Abstract
Glycosylation is one of the most ubiquitous post-translational modifications observed in peptides and proteins. It affects the structural and functional characteristics of these macromolecules, thereby exerting a profound influence on a multitude of biological processes. N-Glycans are expected to be a beneficial modifier for increasing the solubility and in vivo half-life, and reducing the aggregation and immunogenicity of native bioactive peptides and proteins, which have seen limited clinical utility due to their short blood half-life and unsuitable physicochemical properties. Chemoselective glycosylation reactions that can be conducted post-synthesis and in aqueous conditions are a promising strategy for the high-throughput development of peptide/protein drugs. This "glycoconjugation" approach is particularly advantageous in that manipulation of glycan protecting groups is not necessary, thereby allowing conjugation reactions to be carried out between target molecules and unprotected glycans. By providing a single glycosylation profile, i. e., glycan structure, number, and position, glycoconjugation not only allows the beneficial properties of N-glycans to be exploited, but also facilitates the investigation of N-glycan function.
Collapse
Affiliation(s)
- Yuji Nishiuchi
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
- Graduate School of Science, Tohoku University, -3, Aramaki Aza-Aoba, Aoba-ku, Sendai, 980-8578, Japan
| | - Sofia Elouali
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Masato Noguchi
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| | - Hirofumi Ochiai
- GlyTech, Inc., 134 Chudoji Minamimachi KRP #1-2F, Shimogyo-ku, Kyoto, 600-8813, Japan
| |
Collapse
|
5
|
Tang L, Zhang J, Oumata N, Mignet N, Sollogoub M, Zhang Y. Sialyl Lewis X (sLe x):Biological functions, synthetic methods and therapeutic implications. Eur J Med Chem 2025; 287:117315. [PMID: 39919437 DOI: 10.1016/j.ejmech.2025.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/09/2025]
Abstract
Carbohydrates are shown to be crucial to several biological processes. They are essential mediators of cell-cell recognition processes. Among them, Sialyl Lewis X (sLex) is a very significant structure in the human body. It is a critical tetrasaccharide that plays a pivotal role in various biological processes, including cell adhesion, immune response, and cancer metastasis. Known as the blood group antigen, sLex is also referred to as cluster of differentiation 15s (CD15s) or stage-specific embryonic antigen 1 (SSEA-1). sLex is not only a prominent blood group antigen, but also involved in the attraction of sperm to the egg during fertilization, prominently displayed at the terminus of glycolipids on the cell surface. By describing the synthetic methods and biological functions of sLex, this review underscores the importance of sLex in both fundamental and applied sciences and its potential to impact clinical practice.
Collapse
Affiliation(s)
- Leyu Tang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiaxu Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Nassima Oumata
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Nathalie Mignet
- Université Paris Cité, UCTBS, Inserm U 1267, CNRS, UMR 8258, 4 Avenue de l'Observatoire, 75006, Paris, France
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Yongmin Zhang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France; Fuyang Institute & School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 311422, Zhejiang, China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, 571158, China.
| |
Collapse
|
6
|
Wang K, Ma W, Meng X, Xu Z, Zhao W, Li T. Chemoenzymatic Synthesis of Core-Fucosylated Asymmetrical N-Glycans with Different-Length Oligo-N-Acetyllactosamine Motifs and Their Sialylated Extensions. Chemistry 2025; 31:e202500183. [PMID: 40079522 DOI: 10.1002/chem.202500183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
An efficient chemoenzymatic approach for the diversity-oriented synthesis of core-fucosylated asymmetrical N-glycans bearing different lengths of oligo-N-acetyllactosamine (LacNAc) and their sialylated extensions is described. Two oligosaccharide precursors were chemically synthesized by length-controlled introduction of oligo-LacNAc motifs through stereoselectively iterative glycosylation of a common hexasaccharide intermediate. Both oligosaccharide precursors can be well recognized by α1,6-fucosyltransferase FUT8 to generate core-fucosylated N-glycans, which were subjected to divergent enzymatic extension using a galactosyltransferase module and two sialyltransferase modules to provide a wide array of core-fucosylated asymmetrical biantennary N-glycans having different-length oligo-LacNAc motifs capped by various sialic acid linkages.
Collapse
Affiliation(s)
- Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenjing Ma
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Meng
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Puagsopa J, Tongviseskul N, Jaroentomeechai T, Meksiriporn B. Recent Progress in Developing Extracellular Vesicles as Nanovehicles to Deliver Carbohydrate-Based Therapeutics and Vaccines. Vaccines (Basel) 2025; 13:285. [PMID: 40266147 PMCID: PMC11946770 DOI: 10.3390/vaccines13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Cell-derived, nanoscale extracellular vesicles (EVs) have emerged as promising tools in diagnostic, therapeutic, and vaccine applications. Their unique properties including the capability to encapsulate diverse molecular cargo as well as the versatility in surface functionalization make them ideal candidates for safe and effective vehicles to deliver a range of biomolecules including gene editing cassettes, therapeutic proteins, glycans, and glycoconjugate vaccines. In this review, we discuss recent advances in the development of EVs derived from mammalian and bacterial cells for use in a delivery of carbohydrate-based protein therapeutics and vaccines. We highlight key innovations in EVs' molecular design, characterization, and deployment for treating diseases including Alzheimer's disease, infectious diseases, and cancers. We discuss challenges for their clinical translation and provide perspectives for future development of EVs within biopharmaceutical research and the clinical translation landscape.
Collapse
Affiliation(s)
- Japigorn Puagsopa
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Niksa Tongviseskul
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Bunyarit Meksiriporn
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| |
Collapse
|
8
|
Bains RK, Liu F, Nasseri SA, Wardman JF, Withers SG. Streamlining Sulfated Oligosaccharide and Glycan Synthesis with Engineered Mutant 6-SulfoGlcNAcases. J Am Chem Soc 2025; 147:5554-5559. [PMID: 39928485 DOI: 10.1021/jacs.4c14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Sulfation is a common, but poorly understood, post-glycosylational modification (PGM) used to modulate biological function. To deepen our understanding of the roles of various sulfated glycoforms and their relevant binding proteins, we must expand our enzymatic toolkit for their synthesis. Here, we bypass the need for both sulfotransferases and glycosyltransferases by engineering a series of mutants of a 6-SulfoGlcNAcase, from Streptococcus pneumoniae, to directly and efficiently synthesize not only the ubiquitous 6S-GlcNAc-β-1,3-Gal linkage prevalent within host glycans, but also the 6S-GlcNAc-β-1,6-GalNAc commonly observed within core-6 O-glycans, and the more exotic 6S-GlcNAc-β-1,4-GalNAc linkage. We further elaborate these into complex sulfated N-glycan and O-glycan structures of biological relevance. By utilizing the cost-effective activated donor pNP-6S-GlcNAc in conjunction with mutant GH185 6-SulfoGlcNAcases we demonstrate a simple yet powerful in vitro method for generating well-defined sulfated oligosaccharides and glycoforms for use in a variety of applications including glycan arrays, glycan remodeling, and specificity studies with carbohydrate binding proteins such as lectins.
Collapse
Affiliation(s)
- Rajneesh K Bains
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Feng Liu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Seyed A Nasseri
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jacob F Wardman
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
9
|
Tseng HK, Lee TY, Chiang YC, Kuo WH, Tseng HW, Wang HK, Ni CK, Lin CC. Versatile Strategy for the Chemoenzymatic Synthesis of Branched Human Milk Oligosaccharides Containing the Lacto-N-Biose Motif. Angew Chem Int Ed Engl 2025; 64:e202419021. [PMID: 39589188 DOI: 10.1002/anie.202419021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 11/27/2024]
Abstract
Human milk oligosaccharides (HMOs) exhibit prebiotic, antimicrobial, and immunomodulatory properties and confer significant benefits to infants. Branched HMOs are constructed through diverse glycosidic linkages and prominently feature the lacto-N-biose (LNB, Gal-β1,3-GlcNAc) motif with fucose and/or sialic acid modifications, displaying structural complexity that surpasses that of N- and O-glycans. However, synthesizing comprehensive libraries of branched HMO is challenging due to this complexity. Although a few systematic synthetic strategies have emerged, many of them rely on labor-intensive chemical methodologies or exploit the substrate specificity of human N-acetylglucosaminyltransferase 2 (hGCNT2). In this study, we capitalized on the substrate promiscuities of hGCNT2 and bacterial glycosyltransferases (GTs) to construct a universal tetrasaccharide core in a highly efficient manner. This core was systematically and flexibly extended to generate diverse branched HMOs utilizing the promiscuity of bacterial GTs coupled with N-trifluoroacetyl glucosamine (GlcNTFA), which facilitated sugar chain elongation. The GlcNTFA residues were subsequently converted into various N-modified glucosamines through straightforward chemical manipulations to modulate the activities of additional GTs during glycan extension. These masked amino groups were ultimately reverted to N-acetyl groups, facilitating the synthesis of a broad range of asymmetric and multiantennary HMOs featuring LNB moieties, including many previously inaccessible structures.
Collapse
Affiliation(s)
- Hsin-Kai Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Ting-Yi Lee
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yu-Ching Chiang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Wen-Hua Kuo
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hsien-Wei Tseng
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Hung-Kai Wang
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
10
|
Costa AF, Teixeira A, Reis CA, Gomes C. Novel anticancer drug discovery efforts targeting glycosylation: the emergence of fluorinated monosaccharides analogs. Expert Opin Drug Discov 2025; 20:193-203. [PMID: 39749684 DOI: 10.1080/17460441.2024.2444375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION Glycosylation is an essential enzymatic process of building glycan structures that occur mainly within the cell and gives rise to a diversity of cell surface and secreted glycoconjugates. These glycoconjugates play vital roles, for instance in cellcell adhesion, interaction and communication, activation of cell surface receptors, inflammatory response and immune recognition. This controlled and wellcoordinated enzymatic process is altered in cancer, leading to the biosynthesis of cancerassociated glycans, which impact glycandependent biological roles. AREAS COVERED In this review, the authors discuss the importance of targeting cancerassociated glycans through potent glycan biosynthesis inhibitors. It focuses on the use of analogs, providing an overview of findings involving these in cancer. The highly explored fluorinated monosaccharide analogs targeting aberrant glycosylation are described, aiming to inspire advances in the field. EXPERT OPINION Altered glycosylation, such as increased sialylation and fucosylation, is a feature in cancer and has been shown to play key roles in several malignant properties of cancer cells. Strategies aiming at remodeling cancer cells´ glycome are emerging and present a huge potential for cancer therapy. Fluorinated monosaccharides have been gathering promising preclinical results as novel cancer drugs. Nevertheless, cancer specific targeting strategies must be considered to avoid significant sideeffects.
Collapse
Affiliation(s)
- Ana F Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Porto, Portugal
| | - Andreia Teixeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar - ICBAS, University of Porto, Porto, Portugal
- Medical Faculty, University of Porto, Porto, Portugal
| | - Catarina Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| |
Collapse
|
11
|
Gimeno A, Ehlers AM, Delgado S, Langenbach JWH, van den Bos LJ, Kruijtzer JAW, Guigas BGA, Boons GJ. Site-Specific Glyco-Tagging of Native Proteins for the Development of Biologicals. J Am Chem Soc 2024; 146:34452-34465. [PMID: 39653378 DOI: 10.1021/jacs.4c11091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Glycosylation is an attractive approach to enhance biological properties of pharmaceutical proteins; however, the precise installation of glycans for structure-function studies remains challenging. Here, we describe a chemoenzymatic methodology for glyco-tagging of proteins by peptidoligase catalyzed modification of the N-terminus of a protein with a synthetic glycopeptide ester having an N-acetyl-glucosamine (GlcNAc) moiety to generate an N-GlcNAc modified protein. The GlcNAc moiety can be elaborated into complex glycans by trans-glycosylation using well-defined sugar oxazolines and mutant forms of endo β-N-acetylglucosaminidases (ENGases). The glyco-tagging methodology makes it possible to modify on-demand therapeutic proteins, including heterologous proteins expressed in E. coli, with diverse glycan structures. As a proof of principle, the N-terminus of interleukin (IL)-18 and interferon (IFN)α-2a was modified by a glycopeptide harboring a complex N-glycan without compromising biological potencies. The glyco-tagging methodology was also used to prepare several glycosylated insulin variants that exhibit reduced oligomerization, aggregation, and fibrillization yet maintained cell signaling properties, which are attractive for the development of insulins with improved shelf-lives. It was found that by employing different peptidoligases, it is possible to modify either the A or both chains of human insulin.
Collapse
Affiliation(s)
- Ana Gimeno
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Anna M Ehlers
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Sandra Delgado
- CIC bioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio 48160, Bizkaia Spain
| | - Jan-Willem H Langenbach
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | | | - John A W Kruijtzer
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
| | - Bruno G A Guigas
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, ZA 2333, The Netherlands
| | - Geert-Jan Boons
- Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, CG 3584, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Tseng HW, Tseng HK, Ooi KE, You CE, Wang HK, Kuo WH, Ni CK, Manabe Y, Lin CC. Controllable Enzymatic Synthesis of Natural Asymmetric Human Milk Oligosaccharides. JACS AU 2024; 4:4496-4506. [PMID: 39610756 PMCID: PMC11600167 DOI: 10.1021/jacsau.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Among human milk oligosaccharides (HMOs), linear HMOs are synthesized through mature but varied routes. Although branched HMOs can be synthesized by chemical, enzymatic, or chemoenzymatic methods, these methods cannot be easily applied to the synthesis of asymmetric multiantennary oligosaccharides. Herein, we developed a controllable method to synthesize asymmetric biantennary HMOs. In our synthetic route, GlcNAcβ1,3(GlcN3β1,6)Glaβ1,4Glc was first chemically synthesized as the core tetrasaccharide, which contains β1,6GlcN3 as the "stop" sugar in transferase-catalyzed glycosylation. The desired sugars at the GlcNAcβ1-3Gal arm can be assembled using galactosyltransferase, N-acetylglucosaminyltransferase, and fucosyltransferase. Then, the Staudinger reduction and acetylation were used to transform GlcN3 to GlcNAc and assemble sugars by initiating the "go" process. By manipulating transferase-catalyzed glycosylations, 22 natural asymmetric biantennary oligosaccharides were synthesized.
Collapse
Affiliation(s)
- Hsien-Wei Tseng
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Kai Tseng
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kai-Eng Ooi
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-En You
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hung-Kai Wang
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Hua Kuo
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chi-Kung Ni
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Yoshiyuki Manabe
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Chun-Cheng Lin
- Department
of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department
of Medicinal and Applied Chemistry, Kaohsiung
Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
13
|
Bertok T, Jane E, Hires M, Tkac J. N-Acetylated Monosaccharides and Derived Glycan Structures Occurring in N- and O-Glycans During Prostate Cancer Development. Cancers (Basel) 2024; 16:3786. [PMID: 39594740 PMCID: PMC11592093 DOI: 10.3390/cancers16223786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Post-translational modifications of proteins play an important role in their stability, solubility and in vivo function. Also, for several reasons, such as the Golgi fragmentation during cancerogenesis, glycosylation as the most common modification is especially promising in offering high cancer specificity which, in combination with tissue-specific biomarkers available in the case of prostate diseases (PSA, PSMA, PAP), may lead to the development of novel oncodiagnostic approaches. In this review, we present the importance of subterminal glycan structures based on the N-acetylated monosaccharides GlcNAc and GalNAc in N- and also O-glycans, structures of which they are a component (LacNAc, LacdiNAc, branched structures). We also discuss the importance and clinical performance of these structures in cases of prostate cancer diagnostics using lectin-based affinity methods, which could be implemented in clinical laboratory practice in the future.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
- Glycanostics, Kudlakova 7, 841 08 Bratislava, Slovakia
| |
Collapse
|
14
|
Leslie K, Berry SS, Miller GJ, Mahon CS. Sugar-Coated: Can Multivalent Glycoconjugates Improve upon Nature's Design? J Am Chem Soc 2024; 146:27215-27232. [PMID: 39340450 PMCID: PMC11467903 DOI: 10.1021/jacs.4c08818] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Multivalent interactions between receptors and glycans play an important role in many different biological processes, including pathogen infection, self-recognition, and the immune response. The growth in the number of tools and techniques toward the assembly of multivalent glycoconjugates means it is possible to create synthetic systems that more and more closely resemble the diversity and complexity we observe in nature. In this Perspective we present the background to the recognition and binding enabled by multivalent interactions in nature, and discuss the strategies used to construct synthetic glycoconjugate equivalents. We highlight key discoveries and the current state of the art in their applications to glycan arrays, vaccines, and other therapeutic and diagnostic tools, with an outlook toward some areas we believe are of most interest for future work in this area.
Collapse
Affiliation(s)
- Kathryn
G. Leslie
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Sian S. Berry
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
15
|
Wu Y, Bosman GP, Vos GM, Uslu E, Chapla D, Huang C, Moremen KW, Boons GJ. Chemoenzymatic Synthesis of Keratan Sulfate Oligosaccharides Using UDP-Galactose-6-aldehyde To Control Sulfation at Galactosides. Org Lett 2024; 26:8272-8277. [PMID: 39311767 PMCID: PMC11459510 DOI: 10.1021/acs.orglett.4c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024]
Abstract
Keratan sulfate (KS) is a highly complex proteoglycan that has a poly-LacNAc chain that can be modified by diverse patterns of sulfate esters at C-6 positions of galactoside (Gal) and N-acetylglucosamine (GlcNAc) residues. Here, a chemo-enzymatic methodology is described that can control the pattern of sulfation at Gal using UDP-Gal-aldehyde as a donor for poly-LacNAc assembly to temporarily block specific sites from sulfation by galactose 6-sulfotransferase (CHST1).
Collapse
Affiliation(s)
- Yunfei Wu
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Gerlof P. Bosman
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Gaël M. Vos
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Elif Uslu
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
| | - Digantkumar Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Chemical
Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, 3584 CH Utrecht, Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Ma S, Gao J, Tian Y, Wen L. Recent progress in chemoenzymatic synthesis of human glycans. Org Biomol Chem 2024; 22:7767-7785. [PMID: 39246045 DOI: 10.1039/d4ob01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Glycan is an essential cell component that usually exists in either a free form or a glycoconjugated form. Glycosylation affects the regulatory function of glycoconjugates in health and disease development, indicating the key role of glycan in organisms. Because of the complexity and diversity of glycan structures, it is challenging to prepare structurally well-defined glycans, which hinders the investigation of biological functions at the molecular level. Chemoenzymatic synthesis is an attractive approach for preparing complex glycans, because it avoids tedious protecting group manipulations in chemical synthesis and ensures high regio- and stereo-selectivity of glucosides during glycan assembly. Herein, enzymes, such as glycosyltransferases (GTs) and glycosidases (GHs), and sugar donors involved in the chemoenzymatic synthesis of human glycans are initially discussed. Many state-of-the-art chemoenzymatic methodologies are subsequently displayed and summarized to illustrate the development of synthetic human glycans, for example, N- and O-linked glycans, human milk oligosaccharides, and glycosaminoglycans. Thus, we provide an overview of recent chemoenzymatic synthetic designs and applications for synthesizing complex human glycans, along with insights into the limitations and perspectives of the current methods.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Gao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Mohamed KA, Kruf S, Büll C. Putting a cap on the glycome: Dissecting human sialyltransferase functions. Carbohydr Res 2024; 544:109242. [PMID: 39167930 DOI: 10.1016/j.carres.2024.109242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Human glycans are capped with sialic acids and these nine-carbon sugars mediate many of the biological functions and interactions of glycans. Structurally diverse sialic acid caps mark human cells as self and they form the ligands for the Siglec immune receptors and other glycan-binding proteins. Sialic acids enable host interactions with the human microbiome and many human pathogens utilize sialic acids to infect host cells. Alterations in sialic acid-carrying glycans, sialoglycans, can be found in every major human disease including inflammatory conditions and cancer. Twenty sialyltransferase family members in the Golgi apparatus of human cells transfer sialic acids to distinct glycans and glycoconjugates. Sialyltransferases catalyze specific reactions to form unique sialoglycans or they have shared functions where multiple family members generate the same sialoglycan product. Moreover, some sialyltransferases compete for the same glycan substrate, but create different sialic acid caps. The redundant and competing functions make it difficult to understand the individual roles of the human sialyltransferases in biology and to reveal the specific contributions to pathobiological processes. Recent insights hint towards the existence of biosynthetic rules formed by the individual functions of sialyltransferases, their interactions, and cues from the local Golgi environment that coordinate sialoglycan biosynthesis. In this review, we discuss the current structural and functional understanding of the human sialyltransferase family and we review recent technological advances that enable the dissection of individual sialyltransferase activities.
Collapse
Affiliation(s)
- Khadra A Mohamed
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Stijn Kruf
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Christian Büll
- Department of Biomolecular Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands.
| |
Collapse
|
18
|
Xu Y, Montgomery J. Synthesis of 2-Amino-2-deoxy Sugars via Boron-Catalyzed Coupling of Glycosyl Fluorides and Silyl Ether Acceptors. Org Lett 2024; 26:7474-7478. [PMID: 39185923 PMCID: PMC11407749 DOI: 10.1021/acs.orglett.4c02888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Although aminosugars are important components in a variety of bioactive molecules, their stereoselective formation is made challenging by the Lewis basic nature of amino substituents. Additionally, the use of N-acyl protecting groups is often problematic due to the competing formation of oxazolines during the glycosylation of 2-aminosugar derivatives. Herein, we report a boron-catalyzed strategy utilizing silyl ether glycosyl acceptors and 2-aminosugar donors that employs the 2,2,2-trichloroethoxycarbonyl (Troc) protecting group for the C2 amino functionality in glycosyl fluorides. This modification allows for operationally simple room-temperature glycosylations and features a rapid reaction profile that addresses some of the limitations in the synthesis of 2-amino-2-deoxy sugar-containing glycosides. Tailoring the order of reactivity of the silyl acceptors enables one-pot iterative glycosylations, thus streamlining the synthesis of complex oligosaccharides while allowing fewer intermediates and purification steps.
Collapse
Affiliation(s)
- Yishu Xu
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
19
|
Li T, Spruit CM, Wei N, Liu L, Wolfert MA, de Vries RP, Boons GJ. Chemoenzymatic Synthesis of Tri-antennary N-Glycans Terminating in Sialyl-Lewis x Reveals the Importance of Glycan Complexity for Influenza A Virus Receptor Binding. Chemistry 2024; 30:e202401108. [PMID: 38567703 PMCID: PMC11156558 DOI: 10.1002/chem.202401108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Indexed: 05/09/2024]
Abstract
Sialyl-Lewisx (SLex) is involved in immune regulation, human fertilization, cancer, and bacterial and viral diseases. The influence of the complex glycan structures, which can present SLex epitopes, on binding is largely unknown. We report here a chemoenzymatic strategy for the preparation of a panel of twenty-two isomeric asymmetrical tri-antennary N-glycans presenting SLex-Lex epitopes on either the MGAT4 or MGAT5 arm that include putative high-affinity ligands for E-selectin. The N-glycans were prepared starting from a sialoglycopeptide isolated from egg yolk powder and took advantage of inherent substrate preferences of glycosyltransferases and the use of 5'-diphospho-N-trifluoracetylglucosamine (UDP-GlcNHTFA) that can be transferred by branching N-acetylglucosaminyltransferases to give, after base treatment, GlcNH2-containing glycans that temporarily disable an antenna from enzymatic modification. Glycan microarray binding studies showed that E-selectin bound equally well to linear glycans and tri-antennary N-glycans presenting SLex-Lex. On the other hand, it was found that hemagglutinins (HA) of H5 influenza A viruses (IAV) preferentially bound the tri-antennary N-glycans. Furthermore, several H5 HAs preferentially bound to N-glycan presenting SLex on the MGAT4 arm. SLex is displayed in the respiratory tract of several avian species, demonstrating the relevance of investigating the binding of, among others IAVs, to complex N-glycans presenting SLex.
Collapse
Affiliation(s)
- Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Present address: Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Cindy M Spruit
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Na Wei
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Margreet A Wolfert
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
20
|
Bains RK, Nasseri SA, Wardman JF, Withers SG. Advances in the understanding and exploitation of carbohydrate-active enzymes. Curr Opin Chem Biol 2024; 80:102457. [PMID: 38657391 DOI: 10.1016/j.cbpa.2024.102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Carbohydrate-active enzymes (CAZymes) are responsible for the biosynthesis, modification and degradation of all glycans in Nature. Advances in genomic and metagenomic methodologies, in conjunction with lower cost gene synthesis, have provided access to a steady stream of new CAZymes with both well-established and novel mechanisms. At the same time, increasing access to cryo-EM has resulted in exciting new structures, particularly of transmembrane glycosyltransferases of various sorts. This improved understanding has resulted in widespread progress in applications of CAZymes across diverse fields, including therapeutics, organ transplantation, foods, and biofuels. Herein, we highlight a few of the many important advances that have recently been made in the understanding and applications of CAZymes.
Collapse
Affiliation(s)
- Rajneesh K Bains
- Department of Chemistry, University of British Columbia, Vancouver, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Seyed Amirhossein Nasseri
- Department of Chemistry, University of British Columbia, Vancouver, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
| | - Jacob F Wardman
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada; Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, Canada; Department of Biochemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
21
|
Makrydaki E, Donini R, Krueger A, Royle K, Moya Ramirez I, Kuntz DA, Rose DR, Haslam SM, Polizzi KM, Kontoravdi C. Immobilized enzyme cascade for targeted glycosylation. Nat Chem Biol 2024; 20:732-741. [PMID: 38321209 PMCID: PMC11142912 DOI: 10.1038/s41589-023-01539-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/21/2023] [Indexed: 02/08/2024]
Abstract
Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized β-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Roberto Donini
- Department of Life Sciences, Imperial College London, London, UK
| | - Anja Krueger
- Department of Life Sciences, Imperial College London, London, UK
| | - Kate Royle
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Ignacio Moya Ramirez
- Department of Chemical Engineering, Imperial College London, London, UK
- Departamento de Ingeniería Química, Universidad de Granada, Granada, Spain
| | - Douglas A Kuntz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - David R Rose
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, UK.
| |
Collapse
|
22
|
Unione L, Ammerlaan ANA, Bosman GP, Uslu E, Liang R, Broszeit F, van der Woude R, Liu Y, Ma S, Liu L, Gómez-Redondo M, Bermejo IA, Valverde P, Diercks T, Ardá A, de Vries RP, Boons GJ. Probing altered receptor specificities of antigenically drifting human H3N2 viruses by chemoenzymatic synthesis, NMR, and modeling. Nat Commun 2024; 15:2979. [PMID: 38582892 PMCID: PMC10998905 DOI: 10.1038/s41467-024-47344-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Prototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin's (HAs) are examined by chemoenzymatic synthesis of N-glycans having 13C-labeled monosaccharides at strategic positions. The labeled glycans are employed in 2D STD-1H by 13C-HSQC NMR experiments to pinpoint which monosaccharides of the extended LacNAc chain engage with evolutionarily distinct HAs. The NMR data in combination with computation and mutagenesis demonstrate that mutations distal to the receptor binding domain of recent HAs create an extended binding site that accommodates with the extended LacNAc chain. A fluorine containing sialoside is used as NMR probe to derive relative binding affinities and confirms the contribution of the extended LacNAc chain for binding.
Collapse
Affiliation(s)
- Luca Unione
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain.
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Bizkaia, Spain.
| | - Augustinus N A Ammerlaan
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Gerlof P Bosman
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Elif Uslu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Ruonan Liang
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Frederik Broszeit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Yanyan Liu
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Shengzhou Ma
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA
| | - Marcos Gómez-Redondo
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Iris A Bermejo
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Pablo Valverde
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Tammo Diercks
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
| | - Ana Ardá
- CICbioGUNE, Basque Research & Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Bizkaia, Spain
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands.
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA, 30602, USA.
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
23
|
Wu Y, Bosman GP, Chapla D, Huang C, Moremen KW, de Vries RP, Boons GJ. A Biomimetic Synthetic Strategy Can Provide Keratan Sulfate I and II Oligosaccharides with Diverse Fucosylation and Sulfation Patterns. J Am Chem Soc 2024; 146:9230-9240. [PMID: 38494637 PMCID: PMC10996015 DOI: 10.1021/jacs.4c00363] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
Keratan sulfate (KS) is a proteoglycan that is widely expressed in the extracellular matrix of various tissue types, where it performs multiple biological functions. KS is the least understood proteoglycan, which in part is due to a lack of panels of well-defined KS oligosaccharides that are needed for structure-binding studies, as analytical standards, to examine substrate specificities of keratinases, and for drug development. Here, we report a biomimetic approach that makes it possible to install, in a regioselective manner, sulfates and fucosides on oligo-N-acetyllactosamine (LacNAc) chains to provide any structural element of KS by using specific enzyme modules. It is based on the observation that α1,3-fucosides, α2,6-sialosides and C-6 sulfation of galactose (Gal6S) are mutually exclusive and cannot occur on the same LacNAc moiety. As a result, the pattern of sulfation on galactosides can be controlled by installing α1,3-fucosides or α2,6-sialosides to temporarily block certain LacNAc moieties from sulfation by keratan sulfate galactose 6-sulfotransferase (CHST1). The patterns of α1,3-fucosylation and α2,6-sialylation can be controlled by exploiting the mutual exclusivity of these modifications, which in turn controls the sites of sulfation by CHST1. Late-stage treatment with a fucosidase or sialidase to remove blocking fucosides or sialosides provides selectively sulfated KS oligosaccharides. These treatments also unmasked specific galactosides for further modification by CHST1. To showcase the potential of the enzymatic strategy, we have prepared a range of poly-LacNAc derivatives having different patterns of fucosylation and sulfation and several N-glycans decorated by specific arrangements of sulfates.
Collapse
Affiliation(s)
- Yunfei Wu
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Gerlof P. Bosman
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Digantkumar Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Liu Y, Yang T, Rong J, Yuan J, Man L, Wei M, Fan J, Lan Y, Liu Y, Gong G, Lu Y, Song X, Wang Z, Huang L. Integrated analysis of natural glycans using a versatile pyrazolone-type heterobifunctional tag ANPMP. Carbohydr Polym 2024; 327:121617. [PMID: 38171699 DOI: 10.1016/j.carbpol.2023.121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Glycans mediate various biological processes through carbohydrate-protein interactions, and glycan microarrays have become indispensable tools for understanding these mechanisms. However, advances in functional glycomics are hindered by the absence of convenient and universal methods for obtaining natural glycan libraries with diverse structures from glycoconjugates. To address this challenge, we have developed an integrative approach that enables one-pot release and simultaneously capture, separation, structural characterization, and functional analysis of N/O-glycans. Using this approach, glycoconjugates are incubated with a pyrazolone-type heterobifunctional tag-ANPMP to obtain glycan-2ANPMP conjugates, which are then converted to glycan-AEPMP conjugates. We prepared a tagged glycan library from porcine gastric mucin, soy protein, human milk oligosaccharides, etc. Following derivatization by N-acetylation and permethylation, glycans were subjected to detailed structural characterization by ESI-MSn analysis, which revealed >83 highly pure glycan-AEPMPs containing various natural glycan epitopes. A shotgun microarray is constructed to study the fine details of glycan-bindings by proteins and antisera.
Collapse
Affiliation(s)
- Yuxia Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Tong Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinqiao Rong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jinhang Yuan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Lijuan Man
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Ming Wei
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Jiangbo Fan
- Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China
| | - Yao Lan
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yinchuan Liu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Guiping Gong
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Yu Lu
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China
| | - Xuezheng Song
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, Shaanxi 710069, PR China.
| |
Collapse
|
25
|
Ma S, Liu L, Eggink D, Herfst S, Fouchier RAM, de Vries RP, Boons GJ. Asymmetrical Biantennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses. JACS AU 2024; 4:607-618. [PMID: 38425896 PMCID: PMC10900492 DOI: 10.1021/jacsau.3c00695] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 03/02/2024]
Abstract
Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biologically relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical biantennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH2 at one of the antennae, which temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of the evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans are critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses again agglutinate erythrocytes, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicate that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses.
Collapse
Affiliation(s)
- Shengzhou Ma
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lin Liu
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Dirk Eggink
- Amsterdam
UMC Location University of Amsterdam, Department
of Medical Microbiology and Infection prevention, Laboratory of Applied
Evolutionary Biology, 1105
AZ Amsterdam, The
Netherlands
- Center
for Infectious Disease Control, National
Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sander Herfst
- Department
of Viroscience, Erasmus University Medical
Center, 3015 CD Rotterdam, The Netherlands
| | - Ron A. M. Fouchier
- Department
of Viroscience, Erasmus University Medical
Center, 3015 CD Rotterdam, The Netherlands
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
26
|
Hu ZF, Zhong K, Cao H. Recent advances in enzymatic and chemoenzymatic synthesis of N- and O-glycans. Curr Opin Chem Biol 2024; 78:102417. [PMID: 38141531 DOI: 10.1016/j.cbpa.2023.102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Glycosylation is one of the most common post-translational modifications of proteins, which plays essential roles in regulating the biological functions of proteins. Efficient and versatile methods for the synthesis of homogeneous and well-defined N- and O-glycans remain an urgent need for biological studies and biomedical applications. Despite their structural complexity, tremendous progress has been made in the synthesis of N- and O-glycans in recent years. This review discusses some recent advances in the enzymatic and chemoenzymatic synthesis of N- and O-glycans.
Collapse
Affiliation(s)
- Zhi-Fei Hu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Kan Zhong
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China; Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, Shandong, 266237, China.
| |
Collapse
|
27
|
Zhao J, Liu X, Liu J, Ye F, Wei B, Deng M, Li T, Huang P, Wang P. Chemical Synthesis Creates Single Glycoforms of the Ectodomain of Herpes Simplex Virus-1 Glycoprotein D. J Am Chem Soc 2024; 146:2615-2623. [PMID: 38117537 DOI: 10.1021/jacs.3c11543] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herpes simplex virus-1 (HSV-1) utilizes multiple viral surface glycoproteins to trigger virus entry and fusion. Among these glycoproteins, glycoprotein D (gD) functions as a receptor-binding protein, which makes it an attractive target for the development of vaccines against HSV-1 infection. Several recombinant gD subunit vaccines have been investigated in both preclinical and clinical phases with varying degrees of success. It is fundamentally critical to explore the functions of gD glycans. In light of this, we report an efficient synthetic platform to construct glycosylated gDs bearing homogeneous glycans at N94 and N121. The oligosaccharides were prepared by enzymatic synthesis and conjugated to peptidyl sectors. The glycoproteins were constructed via a combination of 7-(piperazin-1-yl)-2-(methyl)quinolinyl (PPZQ)-assisted expressed protein ligation and β-mercapto amino acid-assisted-desulfurization strategies. Biological studies showed that synthetic gDs exhibited potent in vivo activity in mice.
Collapse
Affiliation(s)
- Jie Zhao
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinliang Liu
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jialin Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Farong Ye
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingcheng Wei
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minggang Deng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ping Huang
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Wang
- Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
- Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen 518057, China
| |
Collapse
|
28
|
Liu CC, Ye J, Cao H. Chemical Evolution of Enzyme-Catalyzed Glycosylation. Acc Chem Res 2024. [PMID: 38286791 DOI: 10.1021/acs.accounts.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe limited availability of structurally well-defined diverse glycans remains a major obstacle for deciphering biological functions as well as biomedical applications of carbohydrates. Despite tremendous progress that has been made in past decades, the synthesis of structurally well-defined complex glycans still represents one of the most challenging topics in synthetic chemistry. Chemical synthesis of glycans is a time-consuming and labor-intensive process that requires elaborate planning and skilled personnel. In contrast, glycosyltransferase-catalyzed enzymatic synthesis provides a more efficient, convenient, low-cost, and sustainable alternative to affording diverse and complex glycans. However, the existing methods are still insufficient to fulfill the increasing demand for specific synthetic glycan libraries necessary for functional glycomics research. This is mainly attributed to the inherent character of the glycan biosynthetic pathway. In nature, there are too many glycosyltransferases involved in the in vivo glycan synthesis, but only a small number of them are available for in vitro enzymatic synthesis. For instance, humans have over 200 glycosyltransferases, but only a few of them could be produced from the conventional bacterial expression system, and most of these membrane-associated enzymes could be overexpressed only in eukaryotic cells. Moreover, the glycan biosynthetic pathway is a nontemplate-driven process, which eventually ends up with heterogeneous glycan product mixtures. Therefore, it is not a practical solution for the in vitro enzymatic synthesis of complex glycans by simply copying the glycan biosynthetic pathway.In the past decade, we have tried to develop a simplified and transformable approach to the enzymatic modular assembly of a human glycan library. Despite the structural complexity of human glycans, the glycoinformatic analysis based on the known glycan structure database and the human glycosyltransferase database indicates that there are approximately 56 disaccharide patterns present in the human glycome and only 16 disaccharide linkages are required to account for over 80% of the total disaccharide fragments, while 35 disaccharide linkages are sufficient to cover over 95% of all disaccharide fragments of human glycome. Regardless of the substrate specificity, if one glycosyltransferase could be used for the synthesis of all of the same glycosidic linkages in human glycome, it will require only a few dozen glycosyltransferases for the assembly of entire human glycans. According to the glycobioinformatics analysis results, we rationally designed about two dozen enzyme modules for the synthesis of over 20 common glycosidic linkages in human glycome, in which each enzyme module contains a glycosyltransferase and a group of enzymes for the in situ generation of a nucleotide-activated sugar donor. By sequential glycosylation using orchestrated enzyme modules, we have completed the synthesis of over 200 structurally well-defined complex human glycans including blood group antigens, O-mannosyl glycans, human milk oligosaccharides, and others. To overcome the product microheterogeneity problem of enzymatic synthesis in the nontemplate-driven glycan biosynthetic pathway, we developed several substrate engineering strategies to control or manipulate the outcome of glycosyltransferase-catalyzed reactions for the precise synthesis of structurally well-defined isomeric complex glycans.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jinfeng Ye
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
29
|
Sletten ET, Fittolani G, Hribernik N, Dal Colle MCS, Seeberger PH, Delbianco M. Phosphates as Assisting Groups in Glycan Synthesis. ACS CENTRAL SCIENCE 2024; 10:138-142. [PMID: 38292611 PMCID: PMC10823511 DOI: 10.1021/acscentsci.3c00896] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
In nature, phosphates are added to and cleaved from molecules to direct biological pathways. The concept was adapted to overcome limitations in the chemical synthesis of complex oligosaccharides. Phosphates were chemically placed on synthetic glycans to ensure site-specific enzymatic elongation by sialylation. In addition, the deliberate placement of phosphates helped to solubilize and isolate aggregating glycans. Upon traceless removal of the phosphates by enzymatic treatment with alkaline phosphatase, the native glycan structure was revealed, and the assembly of glycan nanostructures was triggered.
Collapse
Affiliation(s)
- Eric T. Sletten
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Giulio Fittolani
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Nives Hribernik
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Marlene C. S. Dal Colle
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Martina Delbianco
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
30
|
Vos GM, Wu Y, van der Woude R, de Vries RP, Boons GJ. Chemo-Enzymatic Synthesis of Isomeric I-branched Polylactosamines Using Traceless Blocking Groups. Chemistry 2024; 30:e202302877. [PMID: 37909475 DOI: 10.1002/chem.202302877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Poly-N-acetyl lactosamines (polyLacNAc) are common structural motifs of N- and O-linked glycan, glycosphingolipids and human milk oligosaccharides. They can be branched by the addition of β1,6-linked N-acetyl-glucosamine (GlcNAc) moieties to internal galactoside (Gal) residues by the I-branching enzyme beta-1,6-N-acetylglucosaminyltransferase 2 (GCNT2). I-branching has been implicated in many biological processes and is also associated with various diseases such as cancer progression. Currently, there is a lack of methods that can install, in a regioselective manner, I-branches and allows the preparation of isomeric poly-LacNAc derivatives. Here, we described a chemo-enzymatic strategy that addresses this deficiency and is based on the enzymatic assembly of an oligo-LacNAc chain that at specific positions is modified by a GlcNTFA moiety. Replacement of the trifluoroacetyl (TFA) moiety by tert-butyloxycarbonyl (Boc) gives compounds in which the galactoside at the proximal site is blocked from modification by GCNT2. After elaboration of the antennae, the Boc group can be removed, and the resulting amine acetylated to give natural I-branched structures. It is also shown that fucosides can function as a traceless blocking group that can provide complementary I-branched structures from a single precursor. The methodology made it possible to synthesize a library of polyLacNAc chains having various topologies.
Collapse
Affiliation(s)
- Gaёl M Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Yunfei Wu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Roosmarijn van der Woude
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA-30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
- Chemistry Department, University of Georgia, Athens, GA-30602, USA
| |
Collapse
|
31
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
32
|
Wu Y, Vos GM, Huang C, Chapla D, Kimpel ALM, Moremen KW, de Vries RP, Boons GJ. Exploiting Substrate Specificities of 6- O-Sulfotransferases to Enzymatically Synthesize Keratan Sulfate Oligosaccharides. JACS AU 2023; 3:3155-3164. [PMID: 38034954 PMCID: PMC10685434 DOI: 10.1021/jacsau.3c00488] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/02/2023]
Abstract
Keratan sulfate (KS) is a glycosaminoglycan that is widely expressed in the extracellular matrix of various tissue types, where it is involved in many biological processes. Herein, we describe a chemo-enzymatic approach to preparing well-defined KS oligosaccharides by exploiting the known and newly discovered substrate specificities of relevant sulfotransferases. The premise of the approach is that recombinant GlcNAc-6-O-sulfotransferases (CHST2) only sulfate terminal GlcNAc moieties to give GlcNAc6S that can be galactosylated by B4GalT4. Furthermore, CHST1 can modify the internal galactosides of a poly-LacNAc chain; however, it was found that a GlcNAc6S residue greatly increases the reactivity of CHST1 of a neighboring and internal galactoside. The presence of a 2,3-linked sialoside further modulates the site of modification by CHST1, and a galactoside flanked by 2,3-Neu5Ac and GlcNAc6S is preferentially sulfated over the other Gal residues. The substrate specificities of CHST1 and 2 were exploited to prepare a panel of KS oligosaccharides, including selectively sulfated N-glycans. The compounds and several other reference derivatives were used to construct a microarray that was probed for binding by several plant lectins, Siglec proteins, and hemagglutinins of influenza viruses. It was found that not only the sulfation pattern but also the presentation of epitopes as part of an O- or N-glycan determines binding properties.
Collapse
Affiliation(s)
- Yunfei Wu
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Gaël M. Vos
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Chin Huang
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Digantkumar Chapla
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Anne L. M. Kimpel
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Kelley W. Moremen
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Robert P. de Vries
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
| | - Geert-Jan Boons
- Department
of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Bijvoet
Center for Biomolecular Research, Utrecht
University, Padualaan
8, Utrecht 3584 CH, The Netherlands
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
33
|
Abstract
The structural complexity of glycans poses a serious challenge in the chemical synthesis of glycosides, oligosaccharides and glycoconjugates. Glycan complexity, determined by composition, connectivity, and configuration far exceeds what nature achieves with nucleic acids and proteins. Consequently, glycoside synthesis ranks among the most complex tasks in organic synthesis, despite involving only a simple type of bond-forming reaction. Here, we introduce the fundamental principles of glycoside bond formation and summarize recent advances in glycoside bond formation and oligosaccharide synthesis.
Collapse
Affiliation(s)
- Conor J Crawford
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute for Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| |
Collapse
|
34
|
Ma S, Liu L, Eggink D, Herfst S, Fouchier RAM, de Vries RP, Boons GJ. Asymmetrical Bi-antennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566285. [PMID: 37986780 PMCID: PMC10659364 DOI: 10.1101/2023.11.08.566285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biological relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical bi-antennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH2 at one of the antennae that temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans is critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses agglutinate erythrocytes again, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicates that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses.
Collapse
Affiliation(s)
- Shengzhou Ma
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Dirk Eggink
- Amsterdam UMC location University of Amsterdam, Department of Medical Microbiology and Infection prevention, Laboratory of Applied Evolutionary Biology, Amsterdam, The Netherlands
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert P de Vries
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Department of Chemistry, University of Georgia, Athens, GA, USA
| |
Collapse
|
35
|
Spruit CM, Sweet IR, Maliepaard JCL, Bestebroer T, Lexmond P, Qiu B, Damen MJA, Fouchier RAM, Reiding KR, Snijder J, Herfst S, Boons GJ, de Vries RP. Contemporary human H3N2 influenza A viruses require a low threshold of suitable glycan receptors for efficient infection. Glycobiology 2023; 33:784-800. [PMID: 37471650 PMCID: PMC10629718 DOI: 10.1093/glycob/cwad060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023] Open
Abstract
Recent human H3N2 influenza A viruses have evolved to employ elongated glycans terminating in α2,6-linked sialic acid as their receptors. These glycans are displayed in low abundancies by (humanized) Madin-Darby Canine Kidney cells, which are commonly employed to propagate influenza A virus, resulting in low or no viral propagation. Here, we examined whether the overexpression of the glycosyltransferases β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1, which are responsible for the elongation of poly-N-acetyllactosamines (LacNAcs), would result in improved A/H3N2 propagation. Stable overexpression of β-1,3-N-acetylglucosaminyltransferase and β-1,4-galactosyltransferase 1 in Madin-Darby Canine Kidney and "humanized" Madin-Darby Canine Kidney cells was achieved by lentiviral integration and subsequent antibiotic selection and confirmed by qPCR and protein mass spectrometry experiments. Flow cytometry and glycan mass spectrometry experiments using the β-1,3-N-acetylglucosaminyltransferase and/or β-1,4-galactosyltransferase 1 knock-in cells demonstrated increased binding of viral hemagglutinins and the presence of a larger number of LacNAc repeating units, especially on "humanized" Madin-Darby Canine Kidney-β-1,3-N-acetylglucosaminyltransferase cells. An increase in the number of glycan receptors did, however, not result in a greater infection efficiency of recent human H3N2 viruses. Based on these results, we propose that H3N2 influenza A viruses require a low number of suitable glycan receptors to infect cells and that an increase in the glycan receptor display above this threshold does not result in improved infection efficiency.
Collapse
Affiliation(s)
- Cindy M Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Igor R Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Theo Bestebroer
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Boning Qiu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| | - Mirjam J A Damen
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Dr. Molewaterplein 50, 3015GE Rotterdam, The Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, United States
| | - Robert P de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584CG Utrecht, The Netherlands
| |
Collapse
|
36
|
Anggara K, Sršan L, Jaroentomeechai T, Wu X, Rauschenbach S, Narimatsu Y, Clausen H, Ziegler T, Miller RL, Kern K. Direct observation of glycans bonded to proteins and lipids at the single-molecule level. Science 2023; 382:219-223. [PMID: 37824645 PMCID: PMC7615228 DOI: 10.1126/science.adh3856] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
Proteins and lipids decorated with glycans are found throughout biological entities, playing roles in biological functions and dysfunctions. Current analytical strategies for these glycan-decorated biomolecules, termed glycoconjugates, rely on ensemble-averaged methods that do not provide a full view of positions and structures of glycans attached at individual sites in a given molecule, especially for glycoproteins. We show single-molecule analysis of glycoconjugates by direct imaging of individual glycoconjugate molecules using low-temperature scanning tunneling microscopy. Intact glycoconjugate ions from electrospray are soft-landed on a surface for their direct single-molecule imaging. The submolecular imaging resolution corroborated by quantum mechanical modeling unveils whole structures and attachment sites of glycans in glycopeptides, glycolipids, N-glycoproteins, and O-glycoproteins densely decorated with glycans.
Collapse
Affiliation(s)
- Kelvin Anggara
- Max-Planck Institute for Solid-State Research; Stuttgart, DE-70569, Germany
| | - Laura Sršan
- Institute of Organic Chemistry, University of Tübingen; Tübingen, DE-72076, Germany
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen; Copenhagen, DK-2200, Denmark
| | - Xu Wu
- Max-Planck Institute for Solid-State Research; Stuttgart, DE-70569, Germany
| | - Stephan Rauschenbach
- Max-Planck Institute for Solid-State Research; Stuttgart, DE-70569, Germany
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford; Oxford, OX1 3TA, United Kingdom
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen; Copenhagen, DK-2200, Denmark
- GlycoDisplay ApS, Copenhagen, DK-2200, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen; Copenhagen, DK-2200, Denmark
| | - Thomas Ziegler
- Institute of Organic Chemistry, University of Tübingen; Tübingen, DE-72076, Germany
| | - Rebecca L. Miller
- Copenhagen Center for Glycomics, Department of Cellular & Molecular Medicine, University of Copenhagen; Copenhagen, DK-2200, Denmark
| | - Klaus Kern
- Max-Planck Institute for Solid-State Research; Stuttgart, DE-70569, Germany
- Institut de Physique, École Polytechnique Fédérale de Lausanne; Lausanne, CH-1015, Switzerland
| |
Collapse
|
37
|
Ma W, Xu Z, Jiang Y, Liu J, Xu D, Huang W, Li T. Divergent Enzymatic Assembly of a Comprehensive 64-Membered IgG N-Glycan Library for Functional Glycomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303832. [PMID: 37632720 PMCID: PMC10602528 DOI: 10.1002/advs.202303832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Indexed: 08/28/2023]
Abstract
N-Glycosylation, a main post-translational modification of Immunoglobulin G (IgG), plays a significant role in modulating the immune functions of IgG. However, the precise function elucidation of IgG N-glycosylation remains impeded due to the obstacles in obtaining comprehensive and well-defined N-glycans. Here, an easy-to-implement divergent approach is described to synthesize a 64-membered IgG N-glycan library covering all possible biantennary and bisected N-glycans by reprogramming biosynthetic assembly lines based on the inherent branch selectivity and substrate specificity of enzymes. The unique binding specificities of 64 N-glycans with different proteins are deciphered by glycan microarray technology. This unprecedented collection of synthetic IgG N-glycans can serve as standards for N-glycan structure identification in complex biological samples and the microarray data enrich N-glycan glycomics to facilitate biomedical applications.
Collapse
Affiliation(s)
- Wenjing Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhuojia Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhan Jiang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jialin Liu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Dandan Xu
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Wei Huang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
| | - Tiehai Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Scheper AF, Schofield J, Bohara R, Ritter T, Pandit A. Understanding glycosylation: Regulation through the metabolic flux of precursor pathways. Biotechnol Adv 2023; 67:108184. [PMID: 37290585 DOI: 10.1016/j.biotechadv.2023.108184] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Glycosylation is how proteins and lipids are modified with complex carbohydrates known as glycans. The post-translational modification of proteins with glycans is not a template-driven process in the same way as genetic transcription or protein translation. Glycosylation is instead dynamically regulated by metabolic flux. This metabolic flux is determined by the concentrations and activities of the glycotransferase enzymes, which synthesise glycans, the metabolites that act as their precursors and transporter proteins. This review provides an overview of the metabolic pathways underlying glycan synthesis. Pathological dysregulation of glycosylation, particularly increased glycosylation occurring during inflammation, is also elucidated. The resulting inflammatory hyperglycosylation acts as a glycosignature of disease, and we report on the changes in the metabolic pathways which feed into glycan synthesis, revealing alterations to key enzymes. Finally, we examine studies in developing metabolic inhibitors targeting these critical enzymes. These results provide the tools for researchers investigating the role of glycan metabolism in inflammation and have helped to identify promising glycotherapeutic approaches to inflammation.
Collapse
Affiliation(s)
- Aert F Scheper
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Jack Schofield
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland
| | - Thomas Ritter
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland; School of Medicine, University of Galway, Ireland; Regenerative Medicine Institute (REMEDI), University of Galway, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Ireland.
| |
Collapse
|
39
|
Lin CL, Sojitra M, Carpenter EJ, Hayhoe ES, Sarkar S, Volker EA, Wang C, Bui DT, Yang L, Klassen JS, Wu P, Macauley MS, Lowary TL, Derda R. Chemoenzymatic synthesis of genetically-encoded multivalent liquid N-glycan arrays. Nat Commun 2023; 14:5237. [PMID: 37640713 PMCID: PMC10462762 DOI: 10.1038/s41467-023-40900-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Cellular glycosylation is characterized by chemical complexity and heterogeneity, which is challenging to reproduce synthetically. Here we show chemoenzymatic synthesis on phage to produce a genetically-encoded liquid glycan array (LiGA) of complex type N-glycans. Implementing the approach involved by ligating an azide-containing sialylglycosyl-asparagine to phage functionalized with 50-1000 copies of dibenzocyclooctyne. The resulting intermediate can be trimmed by glycosidases and extended by glycosyltransferases yielding a phage library with different N-glycans. Post-reaction analysis by MALDI-TOF MS allows rigorous characterization of N-glycan structure and mean density, which are both encoded in the phage DNA. Use of this LiGA with fifteen glycan-binding proteins, including CD22 or DC-SIGN on cells, reveals optimal structure/density combinations for recognition. Injection of the LiGA into mice identifies glycoconjugates with structures and avidity necessary for enrichment in specific organs. This work provides a quantitative evaluation of the interaction of complex N-glycans with GBPs in vitro and in vivo.
Collapse
Affiliation(s)
- Chih-Lan Lin
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mirat Sojitra
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ellen S Hayhoe
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chao Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Duong T Bui
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Loretta Yang
- Lectenz Bio, 111 Riverbend Rd, Athens, GA, 30602, USA
| | - John S Klassen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
40
|
Maliepaard JCL, Damen JMA, Boons GJPH, Reiding KR. Glycoproteomics-Compatible MS/MS-Based Quantification of Glycopeptide Isomers. Anal Chem 2023. [PMID: 37319314 DOI: 10.1021/acs.analchem.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glycosylation is an essential protein modification occurring on the majority of extracellular human proteins, with mass spectrometry (MS) being an indispensable tool for its analysis, that not only determines glycan compositions, but also the position of the glycan at specific sites via glycoproteomics. However, glycans are complex branching structures with monosaccharides interconnected in a variety of biologically relevant linkages, isomeric properties that are invisible when the readout is mass alone. Here, we developed an LC-MS/MS-based workflow for determining glycopeptide isomer ratios. Making use of isomerically defined glyco(peptide) standards, we observed marked differences in fragmentation behavior between isomer pairs when subjected to collision energy gradients, specifically in terms of the galactosylation/sialylation branching and linkage. These behaviors were developed into component variables that allowed for relative quantification of isomerism within mixtures. Importantly, at least for small peptides, the isomer quantification appeared to be largely independent from the peptide portion of the conjugate, allowing a broad application of the method.
Collapse
Affiliation(s)
- Joshua C L Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| | - J Mirjam A Damen
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| | - Geert-Jan P H Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CG, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Karli R Reiding
- Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, University of Utrecht, Utrecht, 3584 CH, The Netherlands
- Netherlands Proteomics Center, Utrecht, 3584 CH, The Netherlands
| |
Collapse
|
41
|
Xie J, Lan F, Liu X, Weng W, Ding N. The Synthesis of Fluorinated Carbohydrates Using Sulfuryl Fluoride as the Deoxyfluorination Reagent. Org Lett 2023; 25:3796-3799. [PMID: 37191445 DOI: 10.1021/acs.orglett.3c01305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Fluorination of carbohydrates has been one of the strategies to increase their enzymatic and chemical stabilities and reduce their hydrophilicities, making this modification attractive for drug discovery purposes. The synthesis of monofluorinated carbohydrates was achieved under mild conditions by using SO2F2 as the deoxyfluorination reagent in the presence of a base without extra fluoride additives. This method features low toxicity, easy availability, low cost, and high efficiency and can be subjected to diverse sugar units.
Collapse
Affiliation(s)
- Jiahao Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Fangzhou Lan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xuyuan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Weizhao Weng
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Ning Ding
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
42
|
Čaval T, Alisson-Silva F, Schwarz F. Roles of glycosylation at the cancer cell surface: opportunities for large scale glycoproteomics. Theranostics 2023; 13:2605-2615. [PMID: 37215580 PMCID: PMC10196828 DOI: 10.7150/thno.81760] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Cell surface glycosylation has a variety of functions, and its dysregulation in cancer contributes to impaired signaling, metastasis and the evasion of the immune responses. Recently, a number of glycosyltransferases that lead to altered glycosylation have been linked to reduced anti-tumor immune responses: B3GNT3, which is implicated in PD-L1 glycosylation in triple negative breast cancer, FUT8, through fucosylation of B7H3, and B3GNT2, which confers cancer resistance to T cell cytotoxicity. Given the increased appreciation of the relevance of protein glycosylation, there is a critical need for the development of methods that allow for an unbiased interrogation of cell surface glycosylation status. Here we provide an overview of the broad changes in glycosylation at the surface of cancer cell and describe selected examples of receptors with aberrant glycosylation leading to functional changes, with emphasis on immune checkpoint inhibitors, growth-promoting and growth-arresting receptors. Finally, we posit that the field of glycoproteomics has matured to an extent where large-scale profiling of intact glycopeptides from the cell surface is feasible and is poised for discovery of new actionable targets against cancer.
Collapse
|
43
|
Manuel LL, de los Ángeles César F, Pérez-Silva Nancy B, Celia PL, Elizabeth BR, Gonzalez Rosa O, Antonio GBJ, Jose S. Low-scale production and purification of a biologically active optimized form of the antitumor protein growth arrest specific 1 (GAS1) in a mammalian system for post-translational analysis. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
44
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
45
|
Lageveen‐Kammeijer GSM, Kuster B, Reusch D, Wuhrer M. High sensitivity glycomics in biomedicine. MASS SPECTROMETRY REVIEWS 2022; 41:1014-1039. [PMID: 34494287 PMCID: PMC9788051 DOI: 10.1002/mas.21730] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 05/15/2023]
Abstract
Many analytical challenges in biomedicine arise from the generally high heterogeneity and complexity of glycan- and glycoconjugate-containing samples, which are often only available in minute amounts. Therefore, highly sensitive workflows and detection methods are required. In this review mass spectrometric workflows and detection methods are evaluated for glycans and glycoproteins. Furthermore, glycomic methodologies and innovations that are tailored for enzymatic treatments, chemical derivatization, purification, separation, and detection at high sensitivity are highlighted. The discussion is focused on the analysis of mammalian N-linked and GalNAc-type O-linked glycans.
Collapse
Affiliation(s)
| | - Bernhard Kuster
- Chair for Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Dietmar Reusch
- Pharma Technical Development EuropeRoche Diagnostics GmbHPenzbergGermany
| | - Manfred Wuhrer
- Leiden University Medical CenterCenter for Proteomics and MetabolomicsLeidenThe Netherlands
| |
Collapse
|
46
|
Tsouka A, Dallabernardina P, Mende M, Sletten ET, Leichnitz S, Bienert K, Le Mai Hoang K, Seeberger PH, Loeffler FF. VaporSPOT: Parallel Synthesis of Oligosaccharides on Membranes. J Am Chem Soc 2022; 144:19832-19837. [PMID: 36269942 DOI: 10.1021/jacs.2c07285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Automated chemical synthesis has revolutionized synthetic access to biopolymers in terms of simplicity and speed. While automated oligosaccharide synthesis has become faster and more versatile, the parallel synthesis of oligosaccharides is not yet possible. Here, a chemical vapor glycosylation strategy (VaporSPOT) is described that enables the simultaneous synthesis of oligosaccharides on a cellulose membrane solid support. Different linkers allow for flexible and straightforward cleavage, purification, and characterization of the target oligosaccharides. This method is the basis for the development of parallel automated glycan synthesis platforms.
Collapse
Affiliation(s)
- Alexandra Tsouka
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Pietro Dallabernardina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Marco Mende
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Eric T Sletten
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Sabrina Leichnitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Klaus Bienert
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Kim Le Mai Hoang
- GlycoUniverse GmbH & Co. KGaA, Am Muehlenberg 11, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Felix F Loeffler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
47
|
Doelman W, van Kasteren SI. Synthesis of glycopeptides and glycopeptide conjugates. Org Biomol Chem 2022; 20:6487-6507. [PMID: 35903971 PMCID: PMC9400947 DOI: 10.1039/d2ob00829g] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is a key post-translational modification important to many facets of biology. Glycosylation can have critical effects on protein conformation, uptake and intracellular routing. In immunology, glycosylation of antigens has been shown to play a role in self/non-self distinction and the effective uptake of antigens. Improperly glycosylated proteins and peptide fragments, for instance those produced by cancerous cells, are also prime candidates for vaccine design. To study these processes, access to peptides bearing well-defined glycans is of critical importance. In this review, the key approaches towards synthetic, well-defined glycopeptides, are described, with a focus on peptides useful for and used in immunological studies. Special attention is given to the glycoconjugation approaches that have been developed in recent years, as these enable rapid synthesis of various (unnatural) glycopeptides, enabling powerful carbohydrate structure/activity studies. These techniques, combined with more traditional total synthesis and chemoenzymatic methods for the production of glycopeptides, should help unravel some of the complexities of glycobiology in the near future.
Collapse
Affiliation(s)
- Ward Doelman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
48
|
Anwar MT, Adak AK, Kawade SK, Wu HR, Angata T, Lin CC. Combining CuAAC reaction enables sialylated Bi- and triantennary pseudo mannose N-glycans for investigating Siglec-7 interactions. Bioorg Med Chem 2022; 67:116839. [PMID: 35640379 DOI: 10.1016/j.bmc.2022.116839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/02/2022]
Abstract
Naturally occurring N-glycans display much diversity in modifications, linkages, and peripheral presentation of the oligosaccharide chain. Despite continued advancements in oligosaccharide synthesis, synthetic access to these natural glycans remains challenging. Biologically relevant complex N-glycan mimetics with various natural and unnatural modifications are an alternate way for investigating glycan-protein interactions. Further supporting this pattern, we report here a new class of sialylated bi- and triantennary pseudo mannose N-glycans reproducing orientation of the underlying glycan chain and branching patterns and replacing the two inner mannopyranosyl units with 1,2,3-triazole rings. Such mimetics are straightforwardly generated by implementing multiple intermolecular Cu(I)-catalyzed azide-alkyne cycloaddition between chemoenzymatically synthesized azido sialosides and rationally designed C-3 and C-6 di-O- or C-2, C-3, and C-6 tri-O-alkynylated mannoside. Human recombinant Siglec-7-Fc fusion protein recognizes almost all sialylated pseudo mannose N-glycans in the microarray. However, a differential Sia-binding pattern was also observed. Given the library size, comparison of pairwise mannose N-glycan combinations showed that biantennary linear α(2,3)α(2,8)- and α(2,6)α(2,8)- or branched α(2,3)α(2,6)-, and triantennary branched α(2,3)α(2,6)-sialyl pseudo N-glycans possess similar binding capabilities and affinity to recombinant Siglec-7-Fc. While the full range of topological mannose arms remain elusive, the bi- and triantennary mimics are simpler structures for interrogating Siglec interactions.
Collapse
Affiliation(s)
| | - Avijit K Adak
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Sachin Kisan Kawade
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Hsin-Ru Wu
- Instrumentation Center, National Tsing Hua University, Hsinchu 30044, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chun-Cheng Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30044, Taiwan; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
49
|
Sheikh MO, Capicciotti CJ, Liu L, Praissman J, Ding D, Mead DG, Brindley MA, Willer T, Campbell KP, Moremen KW, Wells L, Boons GJ. Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function. Nat Commun 2022; 13:3617. [PMID: 35750689 PMCID: PMC9232514 DOI: 10.1038/s41467-022-31205-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/07/2022] [Indexed: 12/29/2022] Open
Abstract
α-Dystroglycan (α-DG) is uniquely modified on O-mannose sites by a repeating disaccharide (-Xylα1,3-GlcAβ1,3-)n termed matriglycan, which is a receptor for laminin-G domain-containing proteins and employed by old-world arenaviruses for infection. Using chemoenzymatically synthesized matriglycans printed as a microarray, we demonstrate length-dependent binding to Laminin, Lassa virus GP1, and the clinically-important antibody IIH6. Utilizing an enzymatic engineering approach, an N-linked glycoprotein was converted into a IIH6-positive Laminin-binding glycoprotein. Engineering of the surface of cells deficient for either α-DG or O-mannosylation with matriglycans of sufficient length recovers infection with a Lassa-pseudovirus. Finally, free matriglycan in a dose and length dependent manner inhibits viral infection of wildtype cells. These results indicate that matriglycan alone is necessary and sufficient for IIH6 staining, Laminin and LASV GP1 binding, and Lassa-pseudovirus infection and support a model in which it is a tunable receptor for which increasing chain length enhances ligand-binding capacity.
Collapse
Affiliation(s)
- M Osman Sheikh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Chantelle J Capicciotti
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Departments of Chemistry, Biomedical and Molecular Sciences, and Surgery, Queen's University, Kingston, ON, Canada
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeremy Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Dahai Ding
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Daniel G Mead
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - Tobias Willer
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Kevin P Campbell
- Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Department of Molecular Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
- Department of Neurology, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, USA.
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Department of Chemistry, University of Georgia, Athens, GA, USA.
- Department of Chemical Biology and Drug Discovery, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Melo Diaz JM, Moran AB, Peel SR, Hendel JL, Spencer DIR. Egg yolk sialylglycopeptide: purification, isolation and characterization of N-glycans from minor glycopeptide species. Org Biomol Chem 2022; 20:4905-4914. [PMID: 35593095 DOI: 10.1039/d2ob00615d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sialylglycopeptide (SGP) is a readily available naturally occurring glycopeptide obtained from hen egg yolk which is now commercially available. During SGP extraction, other minor glycopeptide species are identified, bearing N-glycan structures that might be of interest, such as asymmetrically branched and triantennary glycans. As the scale of SGP production increases, recovery of minor glycopeptides and their N-glycans can become more feasible. In this paper, we aim to provide structural characterization of the N-glycans derived from these minor glycopeptides.
Collapse
Affiliation(s)
- Javier Mauricio Melo Diaz
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Department of Chemistry Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin, Ireland
| | - Alan B Moran
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
- Leiden University Medical Center, Center for Proteomics and Metabolomics, 2300 RC Leiden, the Netherlands
| | - Simon R Peel
- Ludger Ltd, Culham Science Centre, Oxfordshire, Abingdon, UK.
| | | | | |
Collapse
|