1
|
Xu Y, Zhao W, Nie HJ, Wang J, Fu J, Hu H, Liu Z, Tao S, Zhang M, Zhou Y, Li J, Tan M, Chen XH. Cross-Linking Profiling of Molecular Glue Degrader-Induced E3 Ligase Interactome to Expand Target Space. Angew Chem Int Ed Engl 2025:e202505053. [PMID: 40131988 DOI: 10.1002/anie.202505053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
Molecular glue (MG) degraders, small molecules with significant therapeutic potential for targeting undruggable proteins, are emerging as new modality in drug discovery. Profiling the E3 ligase interactome induced by MG degraders provides insights into their mechanism of action and identifies clinically relevant neosubstrates for degradation, thereby offering new therapeutic opportunities. However, established methods face significant challenges in comprehensive and accurate profiling of MG degrader-induced E3 ligase interactome. Herein, we introduce the concept of globally cross-linking profiling of the MG degrader-induced E3 ligase interactome in living cells, achieved by integrating genetic code expansion technology with mass spectrometry-based proteomics. Our approach presents an efficient and robust strategy for identifying neosubstrates recruited to cereblon E3 ligase by the known degraders CC-885 and DKY709, offering valuable insights for clinical evaluation and significantly expanding their target space. Moreover, we developed two novel MG degraders with potent antiproliferative effects on cancer cells, and application of our method identified neosubstrates, revealing a previously unrecognized target landscape and advancing our understanding of E3 ligase-neosubstrate interactions. Overall, our study provides a powerful tool for neosubstrate identification and expanding target space of E3 ligase, opening new opportunities for developing next-generation MG degraders to address the clinical challenge of undruggable targets.
Collapse
Affiliation(s)
- Yali Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wensi Zhao
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, and Cancer Center, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Hui-Jun Nie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jiamin Wang
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jingjing Fu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hao Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zihao Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shengna Tao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mingya Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yubo Zhou
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Jia Li
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Xiao-Hua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
2
|
Osgood AO, Huang Z, Szalay KH, Chatterjee A. Strategies to Expand the Genetic Code of Mammalian Cells. Chem Rev 2025; 125:2474-2501. [PMID: 39937611 DOI: 10.1021/acs.chemrev.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Genetic code expansion (GCE) in mammalian cells has emerged as a powerful technology for investigating and engineering protein function. This method allows for the precise incorporation of a rapidly growing toolbox of noncanonical amino acids (ncAAs) into predefined sites of target proteins expressed in living cells. Due to the minimal size of these genetically encoded ncAAs, the wide range of functionalities they provide, and the ability to introduce them freely at virtually any site of any protein by simple mutagenesis, this technology holds immense potential for probing the complex biology of mammalian cells and engineering next-generation biotherapeutics. In this review, we provide an overview of the underlying machinery that enables ncAA mutagenesis in mammalian cells and how these are developed. We have also compiled an updated list of ncAAs that have been successfully incorporated into proteins in mammalian cells. Finally, we provide our perspectives on the current challenges that need to be addressed to fully harness the potential of this technology.
Collapse
Affiliation(s)
- Arianna O Osgood
- Department of Chemistry, Boston College, 201 Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Zeyi Huang
- Department of Chemistry, Boston College, 201 Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Kaitlyn H Szalay
- Department of Chemistry, Boston College, 201 Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 201 Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
3
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
4
|
Huang HS, Yuan Y, Wang W, Zhang SQ, Nie XK, Yang WT, Cui X, Tang Z, Li GX. Enantioselective Synthesis of Chiral Sulfonimidoyl Fluorides Facilitates Stereospecific SuFEx Click Chemistry. Angew Chem Int Ed Engl 2025; 64:e202415873. [PMID: 39496565 DOI: 10.1002/anie.202415873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Sulfur-centered electrophilic 'warheads' have emerged as key components for chemical proteomic probes through sulfur-exchange chemistry (SuFEx) with protein nucleophiles. Among these functional groups, sulfonimidoyl fluorides (SIFs) stand out for their modifiable sites, tunable electrophilicities, and chiral sulfur-center, presenting exciting possibilities for new covalent chemical probes. However, the synthetic access to chiral SIFs has been a challenge, limiting their exploration and applications. In this study, we describe a convenient route to obtain chiral SIFs from readily available sulfenamides via a series of one-pot tandem reactions with high enantiomeric excess (ees). The resulting chiral SIFs were further converted into a diverse array of chiral S(VI) derivatives under mild conditions or in buffer solutions. Most significantly, the specificity of the chiral SIFs in protein ligation experiments underscored the critical role of sulfur-center chirality in the design and screening of more-selective covalent probes and therapeutics.
Collapse
Affiliation(s)
- He-Sen Huang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Yi Yuan
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Wei Wang
- Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, 100029, China
| | - Shi-Qi Zhang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xiao-Kang Nie
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Wan-Ting Yang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Xin Cui
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Zhuo Tang
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| | - Guang-Xun Li
- Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Dakhnevich A, Kazakova A, Iliushin D, Ivanov RA. Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code. Int J Mol Sci 2025; 26:539. [PMID: 39859254 PMCID: PMC11764691 DOI: 10.3390/ijms26020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
In addition to the 20 canonical amino acids encoded in the genetic code, there are two non-canonical ones: selenocysteine and pyrrolysine. The discovery of pyrrolysine synthetases (PylRSs) was a key event in the field of genetic code expansion research. The importance of this discovery is mainly due to the fact that the translation systems involving PylRS, pyrrolysine tRNA (tRNAPyl) and pyrrolysine are orthogonal to the endogenous translation systems of organisms that do not use this amino acid in protein synthesis. In addition, pyrrolysine synthetases belonging to different groups are also mutually orthogonal. This orthogonality is based on the structural features of PylRS and tRNAPyl, which include identical elements, such as a condensed core, certain base pairs and the structural motifs of tRNAPyl. This suggests that targeted structural changes in these molecules enable changes in their specificity for the amino acid and the codon. Such modifications were successfully used to obtain different aaRS/tRNA pairs that allow the incorporation of unnatural amino acids into peptides. This review presents the results of recent studies related to the correlation between the structure and activity of PylRS and tRNAPyl and the use of pyrrolysine synthetases to extend the genetic code.
Collapse
Affiliation(s)
| | | | | | - Roman A. Ivanov
- Biotechnology Department, Sirius University of Science and Technology, 354349 Sirius, Russia; (A.D.); (D.I.)
| |
Collapse
|
6
|
Hu SY, Lin W, Li WJ, Ding X, Zhao RF, Hu YJ. Molecular mechanism of enhancing antitumor activity through the interaction between monosaccharides and human serum albumin. Anal Bioanal Chem 2025; 417:251-263. [PMID: 39576312 DOI: 10.1007/s00216-024-05665-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 01/04/2025]
Abstract
This study investigated the molecular mechanisms of the interactions between three antitumor active monosaccharides and human serum albumin (HSA) using spectroscopic and electrochemical analyses, supplemented by molecular docking simulations. The antitumor efficacy of these monosaccharides can be significantly enhanced by covalent drug coupling, while HSA, with its long half-life and low immunogenicity, provides new opportunities for the development of advanced antitumor drug delivery systems. The results showed that these monosaccharides effectively burst the fluorescence of HSA. Thermodynamic analysis revealed that Fucose undergoes a spontaneous, exothermic process that decreases entropy, while the binding of Mannose and Galactose is entropy-driven. Notably, the addition of these three monosaccharides slightly compacts the structure of HSA, stabilizing its transport and delivery in vivo, with the binding strength categorized as Fucose > Mannose > Galactose. These variations in binding constants explain the differences in efficacy and potential side effects in antitumor therapy. Further studies have shown that the interaction between monosaccharides and HSA improves drug stability and targeting, thereby enhancing antitumor activity. An in-depth study of these interactions may provide new insights into the design and optimization of antitumor drugs and the further development of novel antitumor therapies.
Collapse
Affiliation(s)
- Si-Yuan Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China
| | - Wen Lin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China
| | - Wen-Jie Li
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China.
| | - Ru-Fang Zhao
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, 435002, PR China.
| |
Collapse
|
7
|
Lin J, Ma Z, Zuo W, Zhu M. Triple-function porphyrin in glycopolymeric photosensitizers: from photoATRP to targeted PDT. Chem Sci 2024; 15:20388-20396. [PMID: 39583554 PMCID: PMC11579898 DOI: 10.1039/d4sc06466f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
Porphyrin derivatives serve as photocatalysts in reversible-deactivation radical polymerization and as photosensitizers in photodynamic therapy (PDT). Herein, a triple function porphyrin, ZnTPPC6Br, was synthesized as a photocatalyst and initiator for photoATRP. Oxygen-tolerant photoATRP produced fructose-based star-shaped glycopolymers as targeted photosensitizers for PDT. ZnTPPC6Br/CuII/PMDETA could synthesize polymer photosensitizers with predictable M n and low Đ. Mechanistic studies unveiled the transition of ZnTPPC6Br from a singlet excited state (1PC*) to a triplet excited state (3PC*), enabling the activator CuI/L generation and initiating photoATRP. The excess ligands facilitate return of the active species to the ground state, while the presence of DMSO assists in oxygen depletion. Three fructose-based monomers with different polymerizable groups (acrylated, methacrylated, and p-vinylbenzoated) were employed to scale up polymerization, yielding glycopolymeric photosensitizers post-deprotection. In vitro cellular studies showed enhanced PDT efficacy of glycopolymeric photosensitizers against MCF-7 cells, attributed to specific GLUT5 binding for targeted endocytosis, highlighting their potential for precise cancer treatment compared to L929 cells. The multifunctional capabilities of ZnTPPC6Br are anticipated to serve as a strategic avenue for the advancement of polymer photosensitizers with potential PDT applications.
Collapse
Affiliation(s)
- Jiahui Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Zhiyuan Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University 2999 North Renmin Road Shanghai 201620 China
| |
Collapse
|
8
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
9
|
Cao L, Yu B, Klauser PC, Zhang P, Li S, Wang L. Arginine Accelerates Sulfur Fluoride Exchange and Phosphorus Fluoride Exchange Reactions between Proteins. Angew Chem Int Ed Engl 2024; 63:e202412843. [PMID: 39113386 PMCID: PMC11560669 DOI: 10.1002/anie.202412843] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Indexed: 10/17/2024]
Abstract
Sulfur fluoride exchange (SuFEx) and phosphorus fluoride exchange (PFEx) click chemistries are advancing research across multiple disciplines. By genetically incorporating latent bioreactive unnatural amino acids (Uaas), these chemistries have been integrated into proteins, enabling precise covalent linkages with biological macromolecules and paving the way for new applications. However, their suboptimal reaction rates in proteins limit effectiveness, and traditional catalytic methods for small molecules are often incompatible with biological systems or in vivo applications. We demonstrated that introducing an arginine adjacent to the latent bioreactive Uaa significantly boosts SuFEx and PFEx reaction rates between proteins. This method is effective across various Uaas, target residues, and protein environments. Notably, it also enables efficient SuFEx reactions in acidic conditions, common in certain cellular compartments and tumor microenvironments, which typically hinder SuFEx reactions. Furthermore, we developed the first covalent cell engager that substantially enhances natural killer cell activation through improved covalent interaction facilitated by arginine. These findings provide mechanistic insights and offer a biocompatible strategy to harness these robust chemistries for advancing biological research and developing new biotherapeutics.
Collapse
Affiliation(s)
| | | | - Paul C. Klauser
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Liu X, Yi L, Lin Z, Chen S, Wang S, Sheng Y, Lebrilla CB, Garcia BA, Xie Y. Metabolic Control of Glycosylation Forms for Establishing Glycan-Dependent Protein Interaction Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621210. [PMID: 39554187 PMCID: PMC11565926 DOI: 10.1101/2024.10.30.621210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein-protein interactions (PPIs) provide essential insights into the complex molecular mechanisms and signaling pathways within cells that regulate development and disease-related phenotypes. However, for membrane proteins, the impact of various forms of glycosylation has often been overlooked in PPI studies. In this study, we introduce a novel approach, glycan-dependent affinity purification followed by mass spectrometry (GAP-MS), to assess variations in PPIs for any glycoprotein of interest under different glycosylation conditions. As a proof of principle, we selected four glycoproteins-BSG, CD44, EGFR, and SLC3A2-as baits to compare their co-purified partners across five metabolically controlled glycan conditions. The findings demonstrate the capability of GAP-MS to identify PPIs influenced by altered glycosylation states, establishing a foundation for systematically exploring the Glycan-Dependent Protein Interactome (GDPI) for other glycoproteins of interest.
Collapse
Affiliation(s)
- Xingyu Liu
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Li Yi
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Siyu Chen
- Department of Chemistry, University of California, Davis, Davis, California, United States
| | - Shunyang Wang
- Department of Chemistry, University of California, Davis, Davis, California, United States
| | - Ying Sheng
- Department of Chemistry, University of California, Davis, Davis, California, United States
| | - Carlito B. Lebrilla
- Department of Chemistry, University of California, Davis, Davis, California, United States
- Department of Biochemistry, University of California, Davis, Davis, California, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Yixuan Xie
- State Key Laboratory of Genetic Engineering, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Chemistry, University of California, Davis, Davis, California, United States
- Lead contact
| |
Collapse
|
11
|
Yu J, Ge W, Wang K, Hao W, Yang S, Xu Y, Feng T, Han P, Sun X. Crosslinking ability of hydrolyzed distarch phosphate and its stabilizing effect on rehydrated sea cucumber. Food Chem 2024; 456:139866. [PMID: 38852446 DOI: 10.1016/j.foodchem.2024.139866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Effective crosslinking among food constituents has the potential to enhance their overall quality. Distarch phosphate (DSP), a common food additive employed as a thickening agent, bears a pre-crosslinked oligosaccharide (PCO) moiety within its molecular structure. Once this moiety is released, its double reducing end has the potential to undergo crosslinking with amino-rich macromolecules through Maillard reaction. In this study, hydrolyzed distarch phosphate (HDSP) was synthesized, and spectroscopic analysis verified the presence of PCO within HDSP. Preliminary validation experiment showed that HDSP could crosslink chitosan to form a hydrogel and significant browning was also observed during the process. Furthermore, rehydrated sea cucumber (RSC) crosslinked with HDSP exhibited a more intact appearance, higher mechanical strength, better color profile, and increased water-holding capacity. This series of results have confirmed that HDSP is capable to crosslink amino-rich macromolecules and form more stable three-dimensional network.
Collapse
Affiliation(s)
- Jiaqi Yu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Wenhao Ge
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Kaifeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenhui Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shangju Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Tingyu Feng
- Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Ocean University of China, Qingdao 266109, China
| | - Peng Han
- Dalian Municipal central hospital, Dalian 116021, China
| | - Xun Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
12
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
13
|
Furuhata Y, Rix G, Van Deventer JA, Liu CC. Directed evolution of aminoacyl-tRNA synthetases through in vivo hypermutation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615507. [PMID: 39386665 PMCID: PMC11463400 DOI: 10.1101/2024.09.27.615507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Genetic code expansion (GCE) has become a critical tool in biology by enabling the site-specific incorporation of non-canonical amino acids (ncAAs) into proteins. Central to GCE is the development of orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs wherein engineered aaRSs recognize chosen ncAAs and charge them onto tRNAs that decode blank codons ( e.g ., the amber stop codon). Many orthogonal aaRS/tRNA pairs covering a wide range of ncAAs have been generated by directed evolution, yet the evolution of new aaRS/tRNA pairs by standard strategies remains a labor-intensive process that often produces aaRS/tRNA pairs with suboptimal ncAA incorporation efficiencies. In this study, we present a strategy for evolving aaRSs that leverages OrthoRep to drive their continuous hypermutation in yeast. We demonstrate our strategy in 8 independent aaRS evolution campaigns starting from 4 different aaRS/tRNA parents targeting 7 distinct ncAAs. We observed the rapid evolution of multiple novel aaRSs capable of incorporating an overall range of 13 ncAAs tested into proteins in response to the amber codon. Some evolved systems reached efficiencies for amber codon-specified ncAA-dependent translation comparable to translation with natural amino acids specified by sense codons in yeast. Additionally, we discovered a surprising aaRS that evolved to self-regulate its own expression for greater dependency on ncAAs for translation. These findings demonstrate the potential of OrthoRep-driven aaRS evolution platforms in supporting the continued growth of GCE technologies.
Collapse
|
14
|
Kim NH, Shim G, Park GH, Yu YG. A nondestructive membrane engineering method using an amphiphilic polymer. Protein Sci 2024; 33:e5143. [PMID: 39150080 PMCID: PMC11328118 DOI: 10.1002/pro.5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/09/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
The cellular signaling process or ion transport is mediated by membrane proteins (MPs) located on the cell surface, and functional studies of MPs have mainly been conducted using cells endogenously or transiently expressing target proteins. Reconstitution of purified MPs in the surface of live cells would have advantages of short manipulation time and ability to target cells in which gene transfection is difficult. However, direct reconstitution of MPs in live cells has not been established. The traditional detergent-mediated reconstitution method of MPs into a lipid bilayer cannot be applied to live cells because this disrupts and reforms the lipid bilayer structure, which is detrimental to cell viability. In this study, we demonstrated that GPCRs (prostaglandin E2 receptor 4 [EP4] and glucagon-like peptide-1 receptor [GLP1R]) or serotonin receptor 3A (5HT3A), a ligand-gated ion channel, stabilized with amphiphilic poly-γ-glutamate (APG), can be reconstituted into mammalian cell plasma membranes without affecting cell viability. Furthermore, 5HT3A reconstituted in mammalian cells showed ligand-dependent Ca2+ ion transport activity. APG-mediated reconstitution of GPCR in synthetic liposomes showed that electrostatic interaction between APG and membrane surface charge contributed to the reconstitution process. This APG-mediated membrane engineering method could be applied to the functional modification of cell membranes with MPs in live cells.
Collapse
Affiliation(s)
- Nam Hyuk Kim
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
| | - Goeun Shim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Ga Hyeon Park
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| | - Yeon Gyu Yu
- Department of Chemistry, Kookmin University, Seoul, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul, Republic of Korea
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Peiffer AL, Dugan AE, Kiessling LL. Soluble Human Lectins at the Host-Microbe Interface. Annu Rev Biochem 2024; 93:565-601. [PMID: 38640018 PMCID: PMC11296910 DOI: 10.1146/annurev-biochem-062917-012322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Human lectins are integral to maintaining microbial homeostasis on the skin, in the blood, and at mucosal barriers. These proteins can recognize microbial glycans and inform the host about its microbial status. In accordance with their roles, their production can vary with tissue type. They also can have unique structural and biochemical properties, and they can influence microbial colonization at sites proximal and distal to their tissue of origin. In line with their classification as innate immune proteins, soluble lectins have long been studied in the context of acute infectious disease, but only recently have we begun to appreciate their roles in maintaining commensal microbial communities (i.e., the human microbiota). This review provides an overview of soluble lectins that operate at host-microbe interfaces, their glycan recognition properties, and their roles in physiological and pathological mechanisms.
Collapse
Affiliation(s)
- Amanda L Peiffer
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - A E Dugan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - L L Kiessling
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
16
|
Cao L, Wang L. Biospecific Chemistry for Covalent Linking of Biomacromolecules. Chem Rev 2024; 124:8516-8549. [PMID: 38913432 PMCID: PMC11240265 DOI: 10.1021/acs.chemrev.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Interactions among biomacromolecules, predominantly noncovalent, underpin biological processes. However, recent advancements in biospecific chemistry have enabled the creation of specific covalent bonds between biomolecules, both in vitro and in vivo. This Review traces the evolution of biospecific chemistry in proteins, emphasizing the role of genetically encoded latent bioreactive amino acids. These amino acids react selectively with adjacent natural groups through proximity-enabled bioreactivity, enabling targeted covalent linkages. We explore various latent bioreactive amino acids designed to target different protein residues, ribonucleic acids, and carbohydrates. We then discuss how these novel covalent linkages can drive challenging protein properties and capture transient protein-protein and protein-RNA interactions in vivo. Additionally, we examine the application of covalent peptides as potential therapeutic agents and site-specific conjugates for native antibodies, highlighting their capacity to form stable linkages with target molecules. A significant focus is placed on proximity-enabled reactive therapeutics (PERx), a pioneering technology in covalent protein therapeutics. We detail its wide-ranging applications in immunotherapy, viral neutralization, and targeted radionuclide therapy. Finally, we present a perspective on the existing challenges within biospecific chemistry and discuss the potential avenues for future exploration and advancement in this rapidly evolving field.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
17
|
Liu DD, Ding W, Cheng JT, Wei Q, Lin Y, Zhu TY, Tian J, Sun K, Zhang L, Lu P, Yang F, Liu C, Tang S, Yang B. Characterize direct protein interactions with enrichable, cleavable and latent bioreactive unnatural amino acids. Nat Commun 2024; 15:5221. [PMID: 38890329 PMCID: PMC11189575 DOI: 10.1038/s41467-024-49517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Latent bioreactive unnatural amino acids (Uaas) have been widely used in the development of covalent drugs and identification of protein interactors, such as proteins, DNA, RNA and carbohydrates. However, it is challenging to perform high-throughput identification of Uaa cross-linking products due to the complexities of protein samples and the data analysis processes. Enrichable Uaas can effectively reduce the complexities of protein samples and simplify data analysis, but few cross-linked peptides were identified from mammalian cell samples with these Uaas. Here we develop an enrichable and multiple amino acids reactive Uaa, eFSY, and demonstrate that eFSY is MS cleavable when eFSY-Lys and eFSY-His are the cross-linking products. An identification software, AixUaa is developed to decipher eFSY mass cleavable data. We systematically identify direct interactomes of Thioredoxin 1 (Trx1) and Selenoprotein M (SELM) with eFSY and AixUaa.
Collapse
Affiliation(s)
- Dan-Dan Liu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wenlong Ding
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jin-Tao Cheng
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Qiushi Wei
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Yinuo Lin
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Tian-Yi Zhu
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Jing Tian
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Long Zhang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, China
| | - Fan Yang
- Department of Biophysics, Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Chao Liu
- School of Biological Science and Medical Engineering & School of Engineering Medicine, Beihang University, Beijing, 100191, China.
| | - Shibing Tang
- State Key Laboratory of Respiratory Disease, Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China.
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou, 510530, China.
| | - Bing Yang
- Life Sciences Institute, Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
18
|
Cao L, Yu B, Li S, Zhang P, Li Q, Wang L. Genetically Enabling Phosphorus Fluoride Exchange Click Chemistry in Proteins. Chem 2024; 10:1868-1884. [PMID: 38975291 PMCID: PMC11225796 DOI: 10.1016/j.chempr.2024.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Phosphorus Fluoride Exchange (PFEx), recently debuted in small molecules, represents the forefront of click chemistry. To explore PFEx's potential in biological settings, we developed amino acids PFY and PFK featuring phosphoramidofluoridates and incorporated them into proteins through genetic code expansion. PFY/PFK selectively reacted with nearby His, Tyr, Lys, or Cys in proteins, both in vitro and in living cells, demonstrating that proximity enabled PFEx reactivity without external reagents. The reaction with His showed unique pH-dependent properties and created thermally sensitive linkages. Additionally, Na2SiO3 enhanced PFEx reactions with Tyr and Cys. PFEx, by generating defined covalent P-N/O linkages, extends the utility of phosphorus linkages in proteins, aligning with nature's use of phosphate connectors in other biomolecules. More versatile and durable than SuFEx, PFEx in proteins expands the latent bioreactive arsenal for covalent protein engineering and will facilitate the broad application of this potent click chemistry in biological and biomedical fields.
Collapse
Affiliation(s)
- Li Cao
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- These authors contributed equally
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Pan Zhang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qingke Li
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, the Cardiovascular Research Institute, and Hellen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
19
|
Zhang J, Wang X, Huang Q, Ye J, Wang J. Genetically Encoded Epoxide Warhead for Precise and Versatile Covalent Targeting of Proteins. J Am Chem Soc 2024; 146:16173-16183. [PMID: 38819260 PMCID: PMC11177858 DOI: 10.1021/jacs.4c03974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Genetically encoding a proximal reactive warhead into the protein binder/drug has emerged as an efficient strategy for covalently binding to protein targets, enabling broad applications. To expand the reactivity scope for targeting the diverse natural residues under physiological conditions, the development of a genetically encoded reactive warhead with excellent stability and broad reactivity is highly desired. Herein, we reported the genetic encoding of epoxide-containing tyrosine (EPOY) for developing covalent protein drugs. Our study demonstrates that EPOY, when incorporated into a nanobody (KN035), can cross-link with different side chains (mutations) at the same position of PD-L1 protein. Significantly, a single genetically encoded reactive warhead that is capable of covalent and site-specific targeting to 10 different nucleophilic residues was achieved for the first time. This would largely expand the scope of covalent warhead and inspire the development of covalent warheads for both small-molecule drugs and protein drugs. Furthermore, we incorporate the EPOY into a designed ankyrin repeat protein (DarpinK13) to create the covalent binders of KRAS. This covalent KRAS binder holds the potential to achieve pan-covalent targeting of KRAS based on the structural similarity among all oncogenic KRAS mutants while avoiding off-target binding to NRAS/HRAS through a covalent interaction with KRAS-specific residues (H95 and E107). We envision that covalently targeting to H95 will be a promising strategy for the development of covalent pan-KRAS inhibitors in the future.
Collapse
Affiliation(s)
| | | | | | - Jinsong Ye
- Department of Chemistry,
Research Center for Chemical Biology and Omics Analysis, College of
Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jie Wang
- Department of Chemistry,
Research Center for Chemical Biology and Omics Analysis, College of
Science, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
21
|
Cui XY, Li Z, Kong Z, Liu Y, Meng H, Wen Z, Wang C, Chen J, Xu M, Li Y, Gao J, Zhu W, Hao Z, Huo L, Liu S, Yang Z, Liu Z. Covalent targeted radioligands potentiate radionuclide therapy. Nature 2024; 630:206-213. [PMID: 38778111 DOI: 10.1038/s41586-024-07461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Targeted radionuclide therapy, in which radiopharmaceuticals deliver potent radionuclides to tumours for localized irradiation, has addressed unmet clinical needs and improved outcomes for patients with cancer1-4. A therapeutic radiopharmaceutical must achieve both sustainable tumour targeting and fast clearance from healthy tissue, which remains a major challenge5,6. A targeted ligation strategy that selectively fixes the radiopharmaceutical to the target protein in the tumour would be an ideal solution. Here we installed a sulfur (VI) fluoride exchange (SuFEx) chemistry-based linker on radiopharmaceuticals to prevent excessively fast tumour clearance. When the engineered radiopharmaceutical binds to the tumour-specific protein, the system undergoes a binding-to-ligation transition and readily conjugates to the tyrosine residues through the 'click' SuFEx reaction. The application of this strategy to a fibroblast activation protein (FAP) inhibitor (FAPI) triggered more than 80% covalent binding to the protein and almost no dissociation for six days. In mice, SuFEx-engineered FAPI showed 257% greater tumour uptake than did the original FAPI, and increased tumour retention by 13-fold. The uptake in healthy tissues was rapidly cleared. In a pilot imaging study, this strategy identified more tumour lesions in patients with cancer than did other methods. SuFEx-engineered FAPI also successfully achieved targeted β- and α-radionuclide therapy, causing nearly complete tumour regression in mice. Another SuFEx-engineered radioligand that targets prostate-specific membrane antigen (PSMA) also showed enhanced therapeutic efficacy. Considering the broad scope of proteins that can potentially be ligated to SuFEx warheads, it might be possible to adapt this strategy to other cancer targets.
Collapse
Affiliation(s)
- Xi-Yang Cui
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yu Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Hao Meng
- Changping Laboratory, Beijing, P. R. China
| | - Zihao Wen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Changlun Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
- Changping Laboratory, Beijing, P. R. China
| | - Yiyan Li
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Jingyue Gao
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China
| | - Wenjia Zhu
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhixin Hao
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Li Huo
- Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine and State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shaoyan Liu
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, P. R. China.
- Changping Laboratory, Beijing, P. R. China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Peking University Cancer Hospital and Institute, Beijing, P. R. China.
- Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing, P. R. China.
| |
Collapse
|
22
|
Jame-Chenarboo Z, Gray TE, Macauley MS. Advances in understanding and exploiting Siglec-glycan interactions. Curr Opin Chem Biol 2024; 80:102454. [PMID: 38631213 DOI: 10.1016/j.cbpa.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Sialic-acid-binding immunoglobulin-type lectins (Siglecs) are a family of cell-surface immunomodulatory receptors that recognize sialic-acid-containing glycans. The majority of Siglecs have an inhibitory motif in their intercellular domain and can regulate the cellular activation of immune cells. Importantly, the immunomodulatory role of Siglecs is regulated by engagement with distinct sialoglycan ligands. However, there are still many unanswered questions about the precise ligand(s) recognized by individual Siglec family members. New tools and approaches to study Siglec-ligand interactions are rapidly filling this knowledge gap. This review provides an overview of recent advances in discovering Siglec ligands as well as the development of approaches to modulate the function of Siglecs. In both aspects, chemical biology approaches are emphasized with a discussion on how these are complementing biochemical and genetic strategies.
Collapse
Affiliation(s)
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Canada.
| |
Collapse
|
23
|
Huang W, Laughlin ST. Cell-selective bioorthogonal labeling. Cell Chem Biol 2024; 31:409-427. [PMID: 37837964 DOI: 10.1016/j.chembiol.2023.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 10/16/2023]
Abstract
In classic bioorthogonal labeling experiments, the cell's biosynthetic machinery incorporates bioorthogonal tags, creating tagged biomolecules that are subsequently reacted with a corresponding bioorthogonal partner. This two-step approach labels biomolecules throughout the organism indiscriminate of cell type, which can produce background in applications focused on specific cell populations. In this review, we cover advances in bioorthogonal chemistry that enable targeting of bioorthogonal labeling to a desired cell type. Such cell-selective bioorthogonal labeling is achieved in one of three ways. The first approach restricts labeling to specific cells by cell-selective expression of engineered enzymes that enable the bioorthogonal tag's incorporation. The second approach preferentially localizes the bioorthogonal reagents to the desired cell types to restrict their uptake to the desired cells. Finally, the third approach cages the reactivity of the bioorthogonal reagents, allowing activation of the reaction in specific cells by uncaging the reagents selectively in those cell populations.
Collapse
Affiliation(s)
- Wei Huang
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | - Scott T Laughlin
- Department of Chemistry and Institute for Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
24
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
25
|
Borrel G, Fadhlaoui K, Ben Hania W, Gaci N, Pehau-Arnaudet G, Chaudhary PP, Vandekerckove P, Ballet N, Alric M, O’Toole PW, Fardeau ML, Ollivier B, Brugère JF. Methanomethylophilus alvi gen. nov., sp. nov., a Novel Hydrogenotrophic Methyl-Reducing Methanogenic Archaea of the Order Methanomassiliicoccales Isolated from the Human Gut and Proposal of the Novel Family Methanomethylophilaceae fam. nov. Microorganisms 2023; 11:2794. [PMID: 38004804 PMCID: PMC10673518 DOI: 10.3390/microorganisms11112794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The methanogenic strain Mx-05T was isolated from the human fecal microbiome. A phylogenetic analysis based on the 16S rRNA gene and protein marker genes indicated that the strain is affiliated with the order Methanomassiliicoccales. It shares 86.9% 16S rRNA gene sequence identity with Methanomassiliicoccus luminyensis, the only member of this order previously isolated. The cells of Mx-05T were non-motile cocci, with a diameter range of 0.4-0.7 μm. They grew anaerobically and reduced methanol, monomethylamine, dimethylamine, and trimethylamine into methane, using H2 as an electron donor. H2/CO2, formate, ethanol, and acetate were not used as energy sources. The growth of Mx-05T required an unknown medium factor(s) provided by Eggerthella lenta and present in rumen fluid. Mx-05T grew between 30 °C and 40 °C (optimum 37 °C), over a pH range of 6.9-8.3 (optimum pH 7.5), and between 0.02 and 0.34 mol.L-1 NaCl (optimum 0.12 mol.L-1 NaCl). The genome is 1.67 Mbp with a G+C content of 55.5 mol%. Genome sequence annotation confirmed the absence of the methyl branch of the H4MPT Wood-Ljungdahl pathway, as described for other Methanomassiliicoccales members. Based on an average nucleotide identity analysis, we propose strain Mx-05T as being a novel representative of the order Methanomassiliicoccales, within the novel family Methanomethylophilaceae, for which the name Methanomethylophilus alvi gen. nov, sp. nov. is proposed. The type strain is Mx-05T (JCM 31474T).
Collapse
Affiliation(s)
- Guillaume Borrel
- Institut Pasteur, Université Paris Cité, Evolutionary Biology of the Microbial Cell, 75015 Paris, France
| | - Khaled Fadhlaoui
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France; (K.F.); (B.O.)
- Université Clermont Auvergne, INRA, MEDIS, 63000 Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, UMR 6023 CNRS-UCA, Laboratoire Microorganismes: Génome et Environnement LMGE, 63000 Clermont-Ferrand, France
| | - Wajdi Ben Hania
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France; (K.F.); (B.O.)
- Université d’Auvergne, EA CIDAM, 63000 Clermont-Ferrand, France (J.-F.B.)
| | - Nadia Gaci
- Université d’Auvergne, EA CIDAM, 63000 Clermont-Ferrand, France (J.-F.B.)
| | - Gérard Pehau-Arnaudet
- Institut Pasteur, Université Paris Cité, Ultrastructural Bioimaging, 75015 Paris, France
| | - Prem Prashant Chaudhary
- Université d’Auvergne, EA CIDAM, 63000 Clermont-Ferrand, France (J.-F.B.)
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Nathalie Ballet
- Lesaffre International, Lesaffre Group, 59700 Marcq-en-Barœul, France
| | - Monique Alric
- Université d’Auvergne, EA CIDAM, 63000 Clermont-Ferrand, France (J.-F.B.)
| | | | - Marie-Laure Fardeau
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France; (K.F.); (B.O.)
| | - Bernard Ollivier
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, 13288 Marseille, France; (K.F.); (B.O.)
| | | |
Collapse
|
26
|
Homer JA, Xu L, Kayambu N, Zheng Q, Choi EJ, Kim BM, Sharpless KB, Zuilhof H, Dong J, Moses JE. Sulfur fluoride exchange. NATURE REVIEWS. METHODS PRIMERS 2023; 3:58. [PMID: 38873592 PMCID: PMC11171465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Sulfur Fluoride Exchange (SuFEx) is a click reaction par excellence that has revolutionized multiple research fields. In this Primer, we delve into the essential elements of SuFEx operation, catalysis, and SuFExable connective hubs. We also explore the cutting-edge applications of SuFEx in drug development, polymer science, and biochemistry. Additionally, we examine the potential limitations and promising prospects for this versatile click reaction.
Collapse
Affiliation(s)
- Joshua A. Homer
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, NY 11724, USA
| | - Long Xu
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Namitharan Kayambu
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Qinheng Zheng
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
- Current affiliation: Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Eun Joung Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - Byeong Moon Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, South Korea
| | - K. Barry Sharpless
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- School of Pharmaceutical Science & Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jiajia Dong
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Artificial Intelligence Laboratory, Shanghai 200232, China
| | - John E. Moses
- Cancer Center, Cold Spring Harbor Laboratory, 1 Bungtown Road, NY 11724, USA
| |
Collapse
|
27
|
Yu B, Cao L, Li S, Klauser PC, Wang L. The proximity-enabled sulfur fluoride exchange reaction in the protein context. Chem Sci 2023; 14:7913-7921. [PMID: 37502323 PMCID: PMC10370592 DOI: 10.1039/d3sc01921g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The proximity-enabled sulfur(vi) fluoride exchange (SuFEx) reaction generates specific covalent linkages between proteins in cells and in vivo, which opens innovative avenues for studying elusive protein-protein interactions and developing potent covalent protein drugs. To exploit the power and expand the applications of covalent proteins, covalent linkage formation between proteins is the critical step, for which fundamental kinetic and essential properties remain unexplored. Herein, we systematically studied SuFEx kinetics in different proteins and conditions. In contrast to in small molecules, SuFEx in interacting proteins conformed with a two-step mechanism involving noncovalent binding, followed by covalent bond formation, exhibiting nonlinear rate dependence on protein concentration. The protein SuFEx rate consistently changed with protein binding affinity as well as chemical reactivity of the functional group and was impacted by target residue identity and solution pH. In addition, kinetic analyses of nanobody SR4 binding with SARS-CoV-2 spike protein revealed that viral target mutations did not abolish covalent binding but decreased the SuFEx rate with affinity decrease. Moreover, off-target cross-linking of a SuFEx-capable nanobody in human serum was not detected, and the SuFEx-generated protein linkage was stable at cellular acidic pHs, suggesting SuFEx suitability for in vivo usage. These results advanced our understanding of SuFEx reactivity and kinetics in proteins, which is invaluable for ongoing exploration of SuFEx-enabled covalent proteins for basic biological research and creative biotherapeutics.
Collapse
Affiliation(s)
- Bingchen Yu
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Li Cao
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Shanshan Li
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco 555 Mission Bay Blvd. South San Francisco California 94158 USA
| |
Collapse
|
28
|
Abstract
A SuFEx linkage reaction between sulfonimidoyl fluoride and allyltrimethylsilane was achieved for the construction of N-modified allylsulfoximines in minutes with BF3 as a nonmetal difunctional activator enabling the activation of both S-F and C-Si bonds to forge the S-Callyl (sp3) bond swiftly. Mechanistic studies and DFT calculations indicated that the linkage was initiated with the activation of sulfonimidoyl fluoride and then followed with the transfer of the fluoride anion to the TMS group.
Collapse
Affiliation(s)
- Daming Zeng
- State Key Laboratory of Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Suqin Zhao
- State Key Laboratory of Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Wei-Ping Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xuefeng Jiang
- State Key Laboratory of Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
- State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
29
|
Liu J, Yang B, Wang L. Residue selective crosslinking of proteins through photoactivatable or proximity-enabled reactivity. Curr Opin Chem Biol 2023; 74:102285. [PMID: 36913752 PMCID: PMC10225350 DOI: 10.1016/j.cbpa.2023.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/12/2023] [Indexed: 03/13/2023]
Abstract
Photo- and chemical crosslinking of proteins have offered various avenues for studying protein structure and protein interactions with biomolecules. Conventional photoactivatable groups generally lack reaction selectivity toward amino acid residues. New photoactivatable groups reacting with selected residues have emerged recently, increasing crosslinking efficiency and facilitating crosslink identification. Traditional chemical crosslinking usually employs highly reactive functional groups, while recent advance has developed latent reactive groups with reactivity triggered by proximity, which reduce spurious crosslinks and improve biocompatibility. The employment of these residue selective chemical functional groups, activated by light or proximity, in small molecule crosslinkers and in genetically encoded unnatural amino acids is summarized. Together with new software development in identifying protein crosslinks, residue selective crosslinking has enhanced the research of elusive protein-protein interactions in vitro, in cell lysate, and in live cells. Residue selective crosslinking is expected to expand to other methods for the investigation of various protein-biomolecule interactions.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bing Yang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Lei Wang
- Department of Pharmaceutical Chemistry, The Cardiovascular Research Institute, and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
30
|
Liu Z, Chen X, Yang S, Tian R, Wang F. Integrated mass spectrometry strategy for functional protein complex discovery and structural characterization. Curr Opin Chem Biol 2023; 74:102305. [PMID: 37071953 DOI: 10.1016/j.cbpa.2023.102305] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 04/20/2023]
Abstract
The discovery of functional protein complex and the interrogation of the complex structure-function relationship (SFR) play crucial roles in the understanding and intervention of biological processes. Affinity purification-mass spectrometry (AP-MS) has been proved as a powerful tool in the discovery of protein complexes. However, validation of these novel protein complexes as well as elucidation of their molecular interaction mechanisms are still challenging. Recently, native top-down MS (nTDMS) is rapidly developed for the structural analysis of protein complexes. In this review, we discuss the integration of AP-MS and nTDMS in the discovery and structural characterization of functional protein complexes. Further, we think the emerging artificial intelligence (AI)-based protein structure prediction is highly complementary to nTDMS and can promote each other. We expect the hybridization of integrated structural MS with AI prediction to be a powerful workflow in the discovery and SFR investigation of functional protein complexes.
Collapse
Affiliation(s)
- Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiong Chen
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shirui Yang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
31
|
Gong X, Zhang H, Shen Y, Fu X. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pyl Pair and Derivatives for Genetic Code Expansion. J Bacteriol 2023; 205:e0038522. [PMID: 36695595 PMCID: PMC9945579 DOI: 10.1128/jb.00385-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNAPyl. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNAPyl-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNAPyl-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNAPyl pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNAPyl pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNAPyl-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.
Collapse
Affiliation(s)
- Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| |
Collapse
|
32
|
Wang D, Zhang J, huang Z, Yang Y, Fu T, Yang Y, Lyu Y, Jiang J, Qiu L, Cao Z, Zhang X, You Q, Lin Y, Zhao Z, Tan W. Robust Covalent Aptamer Strategy Enables Sensitive Detection and Enhanced Inhibition of SARS-CoV-2 Proteins. ACS CENTRAL SCIENCE 2023; 9:72-83. [PMID: 36712483 PMCID: PMC9881204 DOI: 10.1021/acscentsci.2c01263] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Indexed: 06/18/2023]
Abstract
Aptamer-based detection and therapy have made substantial progress with cost control and easy modification. However, the conformation lability of an aptamer typically causes the dissociation of aptamer-target complexes during harsh washes and other environmental stresses, resulting in only moderate detection sensitivity and a decreasing therapeutic effect. Herein, we report a robust covalent aptamer strategy to sensitively detect nucleocapsid protein and potently neutralize spike protein receptor binding domain (RBD), two of the most important proteins of SARS-CoV-2, after testing different cross-link electrophilic groups via integrating the specificity and efficiency. Covalent aptamers can specifically convert aptamer-protein complexes from the dynamic equilibrium state to stable and irreversible covalent complexes even in harsh environments. Covalent aptamer-based ELISA detection of nucleocapsid protein can surpass the gold standard, antibody-based sandwich ELISA. Further, covalent aptamer performs enhanced functional inhibition to RBD protein even in a blood vessel-mimicking flowing circulation system. The robust covalent aptamer-based strategy is expected to inspire more applications in accurate molecular modification, disease biomarker discovery, and other theranostic fields.
Collapse
Affiliation(s)
- Dan Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- LIMES
Chemical Biology Unit, Universität
Bonn, 53121 Bonn, Germany
| | - Jing Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zhiyong huang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yuhang Yang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Fu
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yu Yang
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifan Lyu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jianhui Jiang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zehui Cao
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobing Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Qimin You
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Ustar
Biotechnologies (Hangzhou) Ltd., Hangzhou, Zhejiang 310053, China
| | - Yuankui Lin
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Ustar
Biotechnologies (Hangzhou) Ltd., Hangzhou, Zhejiang 310053, China
| | - Zilong Zhao
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Zhejiang
Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
A (cross)link in the chains. Nat Chem 2023; 15:5-6. [PMID: 36609645 DOI: 10.1038/s41557-022-01116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|