1
|
Pei C, Yao G, Zhao Z, Sun Y, Wang Q, Shang T, Wan Y. e g Electron Occupancy as a Descriptor for Designing Iron Single-Atom Electrocatalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2504852. [PMID: 40289849 DOI: 10.1002/adma.202504852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/11/2025] [Indexed: 04/30/2025]
Abstract
A quantitative electronic structure-performance relationship is highly desired for the design of single-atom catalysts (SACs). The Fe single-atom catalysts supported by ordered mesoporous carbon with the eg electron occupancy from 1.7 to 0.7 are synthesized. A linear relationship has been established between the eg electron occupancy of the Fe site and the catalytic activity/activation entropy of oxygen-related intermediates. Fe SAC with an eg electron occupancy of 0.7 alters the rate determining step from *OH desorption to *OOH formation. The value of the turn-over frequency is ≈28 times that of the Fe SAC site with an eg electron occupancy of 1.7 e, and the mass activity is ≈6.3 times that of commercial Pt/C. When used in a zinc-air battery, the Fe SAC gives a remarkable power density of 196.3 mW cm-2 and a long-term stability exceeding 1500 h. The discovery of eg electron occupancy descriptor provides valuable insights for designing single-atom electrocatalysts.
Collapse
Affiliation(s)
- Chun Pei
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Guohua Yao
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziguang Zhao
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Yafei Sun
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
- State Key Laboratory of Chemical Engineering and Low-Carbon Technology, East China University of Science and Technology, Shanghai, 200237, China
| | - Qin Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Tongxin Shang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Wan
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
- Shanghai Non-carbon Energy Conversion and Utilization Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Wang R, Jia S, Wu L, Zhang L, Song X, Tan X, Zheng C, Li W, Ma X, Qian Q, Kang X, Zhu Q, Sun X, Han B. Tuning the Acid Hardness Nature of Cu Catalyst for Selective Nitrate-to-Ammonia Electroreduction. Angew Chem Int Ed Engl 2025; 64:e202425262. [PMID: 39853855 DOI: 10.1002/anie.202425262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/26/2025]
Abstract
Electrocatalytic nitrate reduction reaction (NO3RR) in alkaline electrolyte presents a sustainable pathway for energy storage and green ammonia (NH3) synthesis. However, it remains challenging to obtain high activity and selectivity due to the limited protonation and/or desorption processes of key intermediates. Herein, we propose a strategy to regulate the acid hardness nature of Cu catalyst by introducing appropriate modifier. Using density functional theory calculations, we firstly identified that the BaO-modified Cu showed optimal Gibbs free energies for key NO3RR steps, including the protonation of *NO and the desorption of *NH3. Experimentally, the BaO-modified Cu catalyst exhibited 97.3 % Faradaic efficiency (FE) for NH3 with a yield rate of 356.9 mmol h-1 gcat -1. It could also maintain high activity across a wide range of applied potentials and nitrate substrate concentrations. Detailed experimental and theoretical studies revealed that the Ba species could modulate the local electronic states of Cu, enhance the electron transfer rate, and optimize the adsorption/protonation/desorption processes of the N-containing intermediates, leading to the excellent catalytic performance for NO3 --to-NH3.
Collapse
Affiliation(s)
- Ruhan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunhan Jia
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limin Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinning Song
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingxing Tan
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chaofeng Zheng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weixiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Ma
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qingli Qian
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Wang X, Peralta M, Li X, Möllers PV, Zhou D, Merz P, Burkhardt U, Borrmann H, Robredo I, Shekhar C, Zacharias H, Feng X, Felser C. Direct control of electron spin at an intrinsically chiral surface for highly efficient oxygen reduction reaction. Proc Natl Acad Sci U S A 2025; 122:e2413609122. [PMID: 39999173 DOI: 10.1073/pnas.2413609122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
The oxygen reduction reaction (ORR) in acidic media suffers from sluggish kinetics, primarily due to the spin-dependent electron transfer involved. The direct generation of spin-polarized electrons at catalytic surfaces remains elusive, and the underlying mechanisms are still controversial due to the lack of intrinsically chiral catalysts. To address this challenge, we investigate topological homochiral PdGa (TH PdGa) crystals with intrinsically chiral catalytic surfaces for ORR. Through spin-resolved photoemission spectroscopy and theoretical simulations, we show that both structural chirality and spin-orbit coupling are critical for inducing spin polarization at the surface of TH PdGa. As a result, TH PdGa achieves a kinetic current density over 100 times higher than the achiral PdGa (AC PdGa) at 0.85 V versus the reversible hydrogen electrode. This work underscores the pivotal role of spin polarization in enhancing acidic ORR activity and lays the groundwork for the rational design of chiral catalysts for spin-dependent catalysis.
Collapse
Affiliation(s)
- Xia Wang
- Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Mayra Peralta
- Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Xiaodong Li
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01062, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Paul V Möllers
- Center for Soft Nanoscience, University of Münster, Münster 48149, Germany
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Patrick Merz
- Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Ulrich Burkhardt
- Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Horst Borrmann
- Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Iñigo Robredo
- Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany
- Donostia International Physics Center, Donostia-San Sebastian 20018, Spain
| | - Chandra Shekhar
- Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany
| | - Helmut Zacharias
- Center for Soft Nanoscience, University of Münster, Münster 48149, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01062, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, Halle 06120, Germany
| | - Claudia Felser
- Department of Topological Quantum Chemistry, Max-Planck-Institute for Chemical Physics of Solids, Dresden 01187, Germany
| |
Collapse
|
4
|
Wan C, Ager JW, Huang Y. Hydrogen transfer pathway controls selectivity in electrocatalytic CO 2 reduction. Nat Chem 2025; 17:307-308. [PMID: 39994488 DOI: 10.1038/s41557-025-01761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Affiliation(s)
- Chengzhang Wan
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Joel W Ager
- Liquid Sunlight Alliance, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA.
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Zhang J, Zhang C, Wang M, Mao Y, Wu B, Yang Q, Wang B, Mi Z, Zhang M, Ling N, Leow WR, Wang Z, Lum Y. Isotopic labelling of water reveals the hydrogen transfer route in electrochemical CO 2 reduction. Nat Chem 2025; 17:334-343. [PMID: 39915658 DOI: 10.1038/s41557-024-01721-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/11/2024] [Indexed: 02/20/2025]
Abstract
Understanding the hydrogenation pathway in electrochemical CO2 reduction is important for controlling product selectivity. The Eley-Rideal mechanism involving proton-coupled electron transfer directly from solvent water is often considered to be the primary hydrogen transfer route. However, in principle, hydrogenation can also occur via the Langmuir-Hinshelwood mechanism using surface-adsorbed *H. Here, by performing CO2 reduction with Cu in H2O-D2O mixtures, we present evidence that the Langmuir-Hinshelwood mechanism is probably the dominant hydrogenation route. From this, we estimate the extent to which each mechanism contributes towards the formation of six important CO2 reduction products. Through computational simulations, we find that the formation of C-H bonds and O-H bonds is governed by the Langmuir-Hinshelwood and Eley-Rideal mechanism, respectively. We also show that promoting the Eley-Rideal pathway could be crucial towards selective multicarbon product formation and suppressing hydrogen evolution. These findings introduce important considerations for the theoretical modelling of CO2 reduction pathways and electrocatalyst design.
Collapse
Affiliation(s)
- Jiguang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Chengyi Zhang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yu Mao
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Bo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Qin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Bingqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Ziyu Mi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ning Ling
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Republic of Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
| |
Collapse
|
6
|
Afsahi N, Zhang Z, Faez S, Noël JM, Panda MR, Majumder M, Naseri N, Lemineur JF, Kanoufi F. Seeing nanoscale electrocatalytic reactions at individual MoS 2 particles under an optical microscope: probing sub-mM oxygen reduction reaction. Faraday Discuss 2025; 257:107-125. [PMID: 39451059 PMCID: PMC11504976 DOI: 10.1039/d4fd00132j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/09/2024] [Indexed: 10/26/2024]
Abstract
MoS2 is a promising electrocatalytic material for replacing noble metals. Nanoelectrochemistry studies, such as using nanoelectrochemical cell confinement, have particularly helped in demonstrating the preferential electrocatalytic activity of MoS2 edges. These findings have been accompanied by considerable research efforts to synthesize edge-abundant nanomaterials. However, to fully apprehend their electrocatalytic performance, at the single particle level, new instrumental developments are also needed. Here, we feature a highly sensitive refractive index based optical microscopy technique, namely interferometric scattering microscopy (iSCAT), for monitoring local electrochemistry at single MoS2 petal-like sub-microparticles. This work focuses on the oxygen reduction reaction (ORR), which operates at low current densities and thus requires high-sensitivity imaging techniques. By employing a precipitation reaction to reveal the ORR activity and utilizing the high spatial resolution and contrast of iSCAT, we achieve the sensitivity required to evaluate the ORR activity at single MoS2 particles.
Collapse
Affiliation(s)
- Nikan Afsahi
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Zhu Zhang
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Sanli Faez
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Jean-Marc Noël
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France.
| | - Manas Ranjan Panda
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Mainak Majumder
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
| | - Naimeh Naseri
- Nanoscale Science and Engineering Laboratory (NSEL), Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia
- ARC Research Hub for Advanced Manufacturing with 2D Materials (AM2D), Monash University, Clayton, VIC, 3800, Australia
- Department of Physics, Sharif University of Technology, Tehran 11365-9161, Iran
| | | | | |
Collapse
|
7
|
Cui Z, Wong AJW, Janik MJ, Co AC. Cation effects on CO 2 reduction catalyzed by single-crystal and polycrystalline gold under well-defined mass transport conditions. SCIENCE ADVANCES 2025; 11:eadr6465. [PMID: 39919184 PMCID: PMC11804923 DOI: 10.1126/sciadv.adr6465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
The presence of alkali metal cations in the electrolyte substantially affects the reactivity and selectivity of electrochemical carbon dioxide (CO2) reduction (CO2R). This study examines the role of cations in CO2R on single-crystal and polycrystalline Au under controlled mass-transport conditions. It establishes that CO2 adsorption is the rate-determining step regardless of cation type or surface structure. Density functional theory calculations show that electron transfer occurs to a solvated CO2-cation complex. A more positive potential of zero charge enhances CO2R activity only on Au with similar surface coordination. The symmetry factor (β) of the rate-determining step varies with surface structure and cation identity, with density functional theory calculations indicating β's sensitivity to surface and double-layer structures. These findings emphasize the importance of both surface and double-layer structures in understanding cation effects on CO2R.
Collapse
Affiliation(s)
- Zhihao Cui
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| | - Andrew Jark-Wah Wong
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Michael J. Janik
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Anne C. Co
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Wu T, Dhaka K, Luo M, Wang B, Wang M, Xi S, Zhang M, Huang F, Exner KS, Lum Y. Cooperative Active Sites on Ag 2Pt 3TiS 6 for Enhanced Low-Temperature Ammonia Fuel Cell Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202418691. [PMID: 39587937 PMCID: PMC11796334 DOI: 10.1002/anie.202418691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/29/2024] [Accepted: 11/24/2024] [Indexed: 11/27/2024]
Abstract
Ammonia has attracted considerable interest as a hydrogen carrier that can help decarbonize global energy networks. Key to realizing this is the development of low temperature ammonia fuel cells for the on-demand generation of electricity. However, the efficiency of such systems is significantly impaired by the sluggish ammonia oxidation reaction (AOR) and oxygen reduction reaction (ORR). Here, we report the design of a bifunctional Ag2Pt3TiS6 electrocatalyst that facilitates both reactions at mass activities exceeding that of commercial Pt/C. Through comprehensive density functional theory calculations, we identify that active site motifs composed of Pt and Ti atoms work cooperatively to catalyze ORR and AOR. Notably, in situ shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) experiments indicate a decreased propensity for *NOx formation and hence an increased resistance toward catalyst poisoning for AOR. Employing Ag2Pt3TiS6 as both the cathode and anode, we constructed a low temperature ammonia fuel cell with a high peak power density of 8.71 mW cm-2 and low Pt loading of 0.45 mg cm-2. Our findings demonstrate a pathway towards the rational design of effective electrocatalysts with multi-element active sites that work cooperatively.
Collapse
Affiliation(s)
- Tong Wu
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Republic of Singapore
- Centre for Hydrogen InnovationsNational University of SingaporeSingapore117580Republic of Singapore
| | - Kapil Dhaka
- Faculty of ChemistryTheoretical Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 545141EssenGermany
| | - Mengjia Luo
- Nanchang Key Laboratory of Photoelectric Conversion and Energy Storage MaterialsNanchang Institute of TechnologyNanchang330099China
| | - Bingqing Wang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Republic of Singapore
| | - Meng Wang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Republic of Singapore
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08-03Singapore138634Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for ChemicalsEnergy and Environment (ISCE2)Agency for ScienceTechnology and Research (A*STAR)1 Pesek RoadSingapore627833Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08-03Singapore138634Republic of Singapore
| | - Fuqiang Huang
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Kai S. Exner
- Faculty of ChemistryTheoretical Inorganic ChemistryUniversity of Duisburg-EssenUniversitätsstraße 545141EssenGermany
- Cluster of Excellence RESOLV44801BochumGermany
- Center for Nanointegration (CENIDE) Duisburg-Essen47057DuisburgGermany
| | - Yanwei Lum
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Republic of Singapore
- Centre for Hydrogen InnovationsNational University of SingaporeSingapore117580Republic of Singapore
- Institute of Materials Research and EngineeringAgency for ScienceTechnology and Research (A*STAR)2 Fusionopolis Way, Innovis #08-03Singapore138634Republic of Singapore
| |
Collapse
|
9
|
Wei N, Zhang S, Yao X, Li Q, Li N, Li J, Pan D, Liu Q, Chen S, Renneckar S. In Situ Modulation of NiFeOOH Coordination Environment for Enhanced Electrocatalytic-Conversion of Glucose and Energy-Efficient Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412872. [PMID: 39661714 PMCID: PMC11792028 DOI: 10.1002/advs.202412872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Indexed: 12/13/2024]
Abstract
Glucose electrocatalytic-conversion reaction (GCR) is a promising anode reaction to replace the slow oxygen evolution reaction (OER), thus promoting the development of hydrogen production by electrochemical water splitting. Herein, NiFe-based metal-organic framework (MOF) is used as a precursor to prepare W-doped nickel-iron phosphide (W-NiFeP) nanosheet arrays by ion exchange and phosphorylation, which exhibit a high electrocatalytic activity toward the hydrogen evolution reaction (HER), featuring an overpotential of only -179 mV to achieve the current density of 100 mA cm-2 in alkaline media. Notably, electrochemical activation of W-NiFeP facilitates the in situ formation of phosphate groups producing W,P-NiFeOOH, which, in conjunction with the W co-doped amorphous layers, leads to a high electrocatalytic performance toward GCR, due to enhanced proton transfer and adsorption of reaction intermediates, as confirmed in experimental and theoretical studies. Thus, the two-electrode electrolyzer of the W-NiFeP/NF||W,P-NiFeOOH/NF for HER||GCR needs only a low cell voltage of 1.56 V to deliver 100 mA cm-2 at a remarkable hydrogen production efficiency of 1.86 mmol h-1, with a high glucose conversion (98.0%) and formic acid yields (85.2%). Results from this work highlight the significance of the development of effective electrocatalysts for biomass electrocatalytic-conversion in the construction of high-efficiency electrolyzers for green hydrogen production.
Collapse
Affiliation(s)
- Ning Wei
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
- Advanced Renewable Materials LabFaculty of ForestryThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Sufeng Zhang
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Xue Yao
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
- Advanced Renewable Materials LabFaculty of ForestryThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Qinglu Li
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Nan Li
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Jinrui Li
- National Demonstration Center for Experimental Light Chemistry Engineering EducationShaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper DevelopmentCollege of Bioresources Chemical and Materials EngineeringShaanxi University of Science and TechnologyXi'anShaanxi710021China
| | - Dingjie Pan
- Department of Chemistry and BiochemistryUniversity of California1156 High StreetSanta CruzCA96064USA
| | - Qiming Liu
- Department of ChemistryRice UniversityHoustonTX77005USA
| | - Shaowei Chen
- Department of Chemistry and BiochemistryUniversity of California1156 High StreetSanta CruzCA96064USA
| | - Scott Renneckar
- Advanced Renewable Materials LabFaculty of ForestryThe University of British ColumbiaVancouverBCV6T 1Z4Canada
| |
Collapse
|
10
|
Gentry N, Gibson NJ, Lee JL, Peper JL, Mayer JM. Trap States in Reduced Colloidal Titanium Dioxide Nanoparticles Have Different Proton Stoichiometries. ACS CENTRAL SCIENCE 2024; 10:2266-2273. [PMID: 39735308 PMCID: PMC11672544 DOI: 10.1021/acscentsci.4c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/31/2024]
Abstract
Added electrons and holes in semiconducting (nano)materials typically occupy "trap states," which often determine their photophysical properties and chemical reactivity. However, trap states are usually ill-defined, with few insights into their stoichiometry or structure. Our laboratory previously reported that aqueous colloidal TiO2 nanoparticles prepared from TiCl4 + H2O have two classes of electron trap states, termed Blue and Red. Herein, we show that the formation of Red from oxidized TiO2 requires 1e - + 1H+, while Blue requires 1e - + 2H+. The two states are in a protic equilibrium, Blue ⇌ Red + H+, with K eq = 2.65 mM. The Blue states in the TiO2 NPs behave just like a soluble molecular acid with this K eq as their K a, as supported by solvent isotope studies. Because the trap states have different compositions, their population and depopulation occur with the making and breaking of chemical bonds and not (as commonly assumed) just by the movement of electrons. In addition, the direct observation of a 2H+/1e - trap state contradicts the emerging H atom transfer (1H+/1e -) paradigm for oxide/solution interfaces. Finally, this work emphasizes the importance of chemical stoichiometries, not just electronic energies, in understanding and directing the reactivity at solid/solution interfaces.
Collapse
Affiliation(s)
- Noreen
E. Gentry
- Department of Chemistry, Yale
University, New Haven, Connecticut 06520-8107, United States
| | - Noah J. Gibson
- Department of Chemistry, Yale
University, New Haven, Connecticut 06520-8107, United States
| | - Justin L. Lee
- Department of Chemistry, Yale
University, New Haven, Connecticut 06520-8107, United States
| | - Jennifer L. Peper
- Department of Chemistry, Yale
University, New Haven, Connecticut 06520-8107, United States
| | - James M. Mayer
- Department of Chemistry, Yale
University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
11
|
Sun YL, Ji X, Wang X, He QF, Dong JC, Le JB, Li JF. Visualization of Electrooxidation on Palladium Single Crystal Surfaces via In Situ Raman Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202408736. [PMID: 39107260 DOI: 10.1002/anie.202408736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/14/2024] [Accepted: 08/06/2024] [Indexed: 08/09/2024]
Abstract
The electrooxidation of catalyst surfaces is across various electrocatalytic reactions, directly impacting their activity, stability and selectivity. Precisely characterizing the electrooxidation on well-defined surfaces is essential to understanding electrocatalytic reactions comprehensively. Herein, we employed in situ Raman spectroscopy to monitor the electrooxidation process of palladium single crystal. Our findings reveal that the Pd surface's initial electrooxidation process involves forming *OH intermediate and ClO4 - ions facilitate the deprotonation process, leading to the formation of PdOx. Subsequently, under deep electrooxidation potential range, the oxygen atoms within PdOx contribute to creating surface-bound peroxide species, ultimately resulting in oxygen generation. The adsorption strength of *OH and the coverage of ClO4 - can be adjusted by the controllable electronic effect, resulting in different oxidation rates. This study offers valuable insights into elucidating the electrooxidation mechanisms underlying a range of electrocatalytic reactions, thereby contributing to the rational design of catalysts.
Collapse
Affiliation(s)
- Yu-Lin Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, 361005, Xiamen, China
| | - Xu Ji
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
| | - Xue Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
| | - Quan-Feng He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, 361005, Xiamen, China
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, 361005, Xiamen, China
| | - Jia-Bo Le
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 315201, Ningbo, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, College of Materials, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
12
|
Zhang S, Dou M, Liu M, Yi J, Chen M, Wu L. Electrosynthesis of Ammonia from Nitrate Using a Self-Activated Carbon Fiber Paper. Inorg Chem 2024; 63:14736-14745. [PMID: 39028929 DOI: 10.1021/acs.inorgchem.4c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
While electrochemically upcycling nitrate wastes to valuable ammonia is considered a very promising pathway for tackling the environmental and energy challenges underlying the nitrogen cycle, the effective catalysts involved are mainly limited to metal-based materials. Here, we report that commercial carbon fiber paper, which is a classical current collector and is typically assumed to be electrochemically inert, can be significantly activated during the reaction. As a result, it shows a high NH3 Faradaic efficiency of 87.39% at an industrial-level current density of 300 mA cm-2 for over 90 h of continuous operation, with a NH3 production rate of as high as 1.22 mmol cm-2 h-1. Through experimental and theoretical analysis, the in situ-formed oxygen functional groups are demonstrated to be responsible for the NO3RR performance. Among them, the C-O-C group is finally identified as the active center, which lowers the thermodynamic energy barrier and simultaneously improves the hydrogenation kinetics. Moreover, high-purity NH4Cl and NH3·H2O were obtained by coupling the NO3RR with an air-stripping approach, providing an effective way for converting nitrate waste into high-value-added NH3 products.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Mengheng Dou
- Key Laboratory of Computational Physical Sciences, Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, P.R. China
| | - Mengdi Liu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Jianjian Yi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
13
|
Wei S, Yang R, Wang Z, Zhang J, Bu XH. Planar Chlorination Engineering: A Strategy of Completely Breaking the Geometric Symmetry of Fe-N 4 Site for Boosting Oxygen Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404692. [PMID: 38752852 DOI: 10.1002/adma.202404692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/09/2024] [Indexed: 05/28/2024]
Abstract
Introducing asymmetric elements and breaking the geometric symmetry of traditional metal-N4 site for boosting oxygen reduction reaction (ORR) are meaningful and challenging. Herein, the planar chlorination engineering of Fe-N4 site is first proposed for remarkably improving the ORR activity. The Fe-N4/CNCl catalyst with broken symmetry exhibits a half-wave potential (E1/2) of 0.917 V versus RHE, 49 and 72 mV higher than those of traditional Fe-N4/CN and commercial 20 wt% Pt/C catalysts. The Fe-N4/CNCl catalyst also has excellent stability for 25 000 cycles and good methanol tolerance ability. For Zn-air battery test, the Fe-N4/CNCl catalyst has the maximum power density of 228 mW cm-2 and outstanding stability during 150 h charge-discharge test, as the promising substitute of Pt-based catalysts in energy storage and conversion devices. The density functional theory calculation demonstrates that the adjacent C─Cl bond effectively breaks the symmetry of Fe-N4 site, downward shifts the d-band center of Fe, facilitates the reduction and release of OH*, and remarkably lowers the energy barrier of rate-determining step. This work reveals the enormous potential of planar chlorination engineering for boosting the ORR activity of traditional metal-N4 site by thoroughly breaking their geometric symmetry.
Collapse
Affiliation(s)
- Shengjie Wei
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Rongyan Yang
- Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering of Nankai University, Tianjin, 300350, P. R. China
| | - Ziyi Wang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jijie Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
14
|
Zhou B, Yu L, Zhang W, Liu X, Zhang H, Cheng J, Chen Z, Zhang H, Li M, Shi Y, Jia F, Huang Y, Zhang L, Ai Z. Cu 1-Fe Dual Sites for Superior Neutral Ammonia Electrosynthesis from Nitrate. Angew Chem Int Ed Engl 2024; 63:e202406046. [PMID: 38771293 DOI: 10.1002/anie.202406046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is able to convert nitrate (NO3 -) into reusable ammonia (NH3), offering a green treatment and resource utilization strategy of nitrate wastewater and ammonia synthesis. The conversion of NO3 - to NH3 undergoes water dissociation to generate active hydrogen atoms and nitrogen-containing intermediates hydrogenation tandemly. The two relay processes compete for the same active sites, especially under pH-neutral condition, resulting in the suboptimal efficiency and selectivity in the electrosynthesis of NH3 from NO3 -. Herein, we constructed a Cu1-Fe dual-site catalyst by anchoring Cu single atoms on amorphous iron oxide shell of nanoscale zero-valent iron (nZVI) for the electrochemical NO3RR, achieving an impressive NO3 - removal efficiency of 94.8 % and NH3 selectivity of 99.2 % under neutral pH and nitrate concentration of 50 mg L-1 NO3 --N conditions, greatly surpassing the performance of nZVI counterpart. This superior performance can be attributed to the synergistic effect of enhanced NO3 - adsorption on Fe sites and strengthened water activation on single-atom Cu sites, decreasing the energy barrier for the rate-determining step of *NO-to-*NOH. This work develops a novel strategy of fabricating dual-site catalysts to enhance the electrosynthesis of NH3 from NO3 -, and presents an environmentally sustainable approach for neutral nitrate wastewater treatment.
Collapse
Affiliation(s)
- Biao Zhou
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Linghao Yu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Weixing Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xupeng Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jundi Cheng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ziyue Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Hao Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Meiqi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Falong Jia
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yi Huang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Lizhi Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhihui Ai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, Institute of Applied & Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
15
|
Lin L, Xu Y, Han Y, Xu R, Wang T, Sun Z, Yan Z. Spin-Magnetic Effect of d-π Conjugation Polymer Enhanced O-H Cleavage in Water Oxidation. J Am Chem Soc 2024; 146:7363-7372. [PMID: 38452363 DOI: 10.1021/jacs.3c11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A deep understanding of the mechanism for the spin-magnetic effect on O-H cleavage is crucial for the development of new catalysts for water oxidation. Herein, we designed and synthesized the crystalline Fe-DABDT and Co-DABDT (DABDT = 2,5-diaminobenzene-1,4-dithiol) and optimized an effective magnetic moment to explore the role of the spin-magnetic effect in the regulation of water oxidation activity. It can be found that the OER activity of the catalyst is positively correlated with its effective magnetic moment. Under the external magnetic field, Fe-DABDT with more spin single electrons has a stronger spin-magnetic response to water oxidation than Fe/Co-DABDT and Co-DABDT. The increase in OER current of Fe-DABDT is nearly 2 times higher than that of Co-DABDT. Experimental and density functional theory studies show that magnetized Fe sites could realize nucleophilic reaction, accelerate the polarization of electron spin states, and promote the polar decomposition of O-H and the formation of the O-O bond. This study provides mechanistic insight into the spin-magnetic effect of oxygen evolution reaction and further understanding of the spin origin of catalytic activity, which is expected to improve the energy efficiency of hydrogen production.
Collapse
Affiliation(s)
- Liu Lin
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yunming Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yiting Han
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Ruikun Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Tongyue Wang
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zemin Sun
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
16
|
Colin-Molina A, Nematiaram T, Cheung AMH, Troisi A, Frisbie CD. The Conductance Isotope Effect in Oligophenylene Imine Molecular Wires Depends on the Number and Spacing of 13C-Labeled Phenylene Rings. ACS NANO 2024; 18:7444-7454. [PMID: 38411123 DOI: 10.1021/acsnano.3c11327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We report a strong and structurally sensitive 13C intramolecular conductance isotope effect (CIE) for oligophenyleneimine (OPI) molecular wires connected to Au electrodes. Wires were built from Au surfaces beginning with the formation of 4-aminothiophenol self-assembled monolayers (SAMs) followed by subsequent condensation reactions with 13C-labeled terephthalaldehyde and phenylenediamine; in these monomers the phenylene rings were either completely 13C-labeled or the naturally abundant 12C isotopologues. Alternatively, perdeuterated versions of terephthalaldehyde and phenylenediamine were employed to make 2H(D)-labeled OPI wires. For 13C-isotopologues of short OPI wires (<4 nm) in length where the charge transport mechanism is tunneling, there was no measurable effect, i.e., 13C CIE ≈ 1, where CIE is defined as the ratio of labeled and unlabeled wire resistances, i.e., CIE = Rheavy/Rlight. However, for long OPI wires >4 nm, in which the transport mechanism is polaron hopping, a strong 13C CIE = 4-5 was observed. A much weaker inverse CIE < 1 was evident for the longest D-labeled wires. Importantly, the magnitude of the 13C CIE was sensitive to the number and spacing of 13C-labeled rings, i.e., the CIE was structurally sensitive. The structural sensitivity is intriguing because it may be employed to understand polaron hopping mechanisms and charge localization/delocalization in molecular wires. A preliminary theoretical analysis explored several possible explanations for the CIE, but so far a fully satisfactory explanation has not been identified. Nevertheless, the latest results unambiguously demonstrate structural sensitivity of the heavy atom CIE, offering directions for further utilization of this interesting effect.
Collapse
Affiliation(s)
- Abraham Colin-Molina
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Tahereh Nematiaram
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G11XL, United Kingdom
| | - Andy Man Hong Cheung
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alessandro Troisi
- Department of Chemistry, University of Liverpool, Liverpool L697ZD, United Kingdom
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Xu Y, Zhang L, Chen W, Cui H, Cai J, Chen Y, Feliu JM, Herrero E. Boosting Oxygen Reduction at Pt(111)|Proton Exchange Ionomer Interfaces through Tuning the Microenvironment Water Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4540-4549. [PMID: 38227931 DOI: 10.1021/acsami.3c14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
A proton exchange ionomer is one of the most important components in membrane electrode assemblies (MEAs) of polymer electrolyte membrane fuel cells (PEMFCs). It acts as both a proton conductor and a binder for nanocatalysts and carbon supports. The structure and the wetting conditions of the MEAs have a great impact on the microenvironment at the three-phase interphases in the MEAs, which can significantly influence the electrode kinetics such as the oxygen reduction reaction (ORR) at the cathode. Herein, by using the Pt(111)|X ionomer interface as a model system (X = Nafion, Aciplex, D72), we find that higher drying temperature lowers the onset potential for sulfonate adsorption and reduces apparent ORR current, while the current wave for OHad formation drops and shifts positively. Surprisingly, the intrinsic ORR activity is higher after properly correcting the blocking effect of Pt active sites by sulfonate adsorption and the poly(tetrafluoroethylene) (PTFE) skeleton. These results are well explained by the reduced water activity at the interfaces induced by the ionomer/PTFE, according to the mixed potential effect. Implications for how to prepare MEAs with improved ORR activity are provided.
Collapse
Affiliation(s)
- Yujun Xu
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lulu Zhang
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Haowen Cui
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jun Cai
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yanxia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Juan M Feliu
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, Alicante E-03080, Spain
| | - Enrique Herrero
- Instituto de Electroquímica, Universidad de Alicante, Apdo. 99, Alicante E-03080, Spain
| |
Collapse
|
18
|
Yin S, Zhou Y, Liu Z, Wang H, Zhao X, Zhu Z, Yan Y, Huo P. Elucidating protonation pathways in CO 2 photoreduction using the kinetic isotope effect. Nat Commun 2024; 15:437. [PMID: 38200030 PMCID: PMC10781958 DOI: 10.1038/s41467-024-44753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
The surge in anthropogenic CO2 emissions from fossil fuel dependence demands innovative solutions, such as artificial photosynthesis, to convert CO2 into value-added products. Unraveling the CO2 photoreduction mechanism at the molecular level is vital for developing high-performance photocatalysts. Here we show kinetic isotope effect evidence for the contested protonation pathway for CO2 photoreduction on TiO2 nanoparticles, which challenges the long-held assumption of electron-initiated activation. Employing isotopically labeled H2O/D2O and in-situ diffuse reflectance infrared Fourier transform spectroscopy, we observe H+/D+-protonated intermediates on TiO2 nanoparticles and capture their inverse decay kinetic isotope effect. Our findings significantly broaden our understanding of the CO2 uptake mechanism in semiconductor photocatalysts.
Collapse
Affiliation(s)
- Shikang Yin
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yiying Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhonghuan Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huijie Wang
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xiaoxue Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Zhi Zhu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yan Yan
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
19
|
Guo W, Yang R, Fan J, Xiang X, Du X, Shi N, Bao J, Han M. Component-controlled synthesis of Pd xSn y nanocrystals on carbon nanotubes as advanced electrocatalysts for oxygen reduction reaction. RSC Adv 2024; 14:771-778. [PMID: 38174283 PMCID: PMC10759278 DOI: 10.1039/d3ra07657a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
Pd-based bimetallic or multimetallic nanocrystals are considered to be potential electrocatalysts for cathodic oxygen reduction reaction (ORR) in fuel cells. Although much advance has been made, the synthesis of component-controlled Pd-Sn alloy nanocrystals or corresponding nanohybrids is still challenging, and the electrocatalytic ORR properties are not fully explored. Herein, component-controlled synthesis of PdxSny nanocrystals (including Pd3Sn, Pd2Sn, Pd3Sn2, and PdSn) has been realized, which are in situ grown or deposited on pre-treated multi-walled carbon nanotubes (CNTs) to form well-coupled nanohybrids (NHs) by a facile one-pot non-hydrolytic system thermolysis method. In alkaline media, all the resultant PdxSny/CNTs NHs are effective at catalyzing ORR. Among them, the Pd3Sn/CNTs NHs exhibit the best catalytic activity with the half-wave potential of 0.85 V (vs. RHE), good cyclic stability, and excellent methanol-tolerant capability due to the suited Pd-Sn alloy component and its strong interaction or efficient electronic coupling with CNTs. This work is conducive to the advancement of Pd-based nanoalloy catalysts by combining component engineering and a hybridization strategy and promoting their application in clean energy devices.
Collapse
Affiliation(s)
- Weibin Guo
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Rui Yang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications Nanjing 210023 P. R. China
| | - Jiayao Fan
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Xing Xiang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Xuehui Du
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
| | - Naien Shi
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications Nanjing 210023 P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| | - Min Han
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University Fuzhou 350117 P. R. China
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 P. R. China
| |
Collapse
|
20
|
Kumeda T, Laverdure L, Honkala K, Melander MM, Sakaushi K. Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111). Angew Chem Int Ed Engl 2023:e202312841. [PMID: 37983729 DOI: 10.1002/anie.202312841] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 11/22/2023]
Abstract
The proton-coupled electron transfer (PCET) mechanism of the oxygen reduction reaction (ORR) is a long-standing enigma in electrocatalysis. Despite decades of research, the factors determining the microscopic mechanism of ORR-PCET as a function of pH, electrolyte, and electrode potential remain unresolved, even on the prototypical Pt(111) surface. Herein, we integrate advanced experiments, simulations, and theory to uncover the mechanism of the cation effects on alkaline ORR on well-defined Pt(111). We unveil a dual-cation effect where cations simultaneously determine i) the active electrode surface by controlling the formation of Pt-O and Pt-OH overlayers and ii) the competition between inner- and outer-sphere PCET steps. The cation-dependent transition from Pt-O to Pt-OH determines the ORR mechanism, activity, and selectivity. These findings provide direct evidence that the electrolyte affects the ORR mechanism and performance, with important consequences for the practical design of electrochemical systems and computational catalyst screening studies. Our work highlights the importance of complementary insight from experiments and simulations to understand how different components of the electrochemical interface contribute to electrocatalytic processes.
Collapse
Affiliation(s)
- Tomoaki Kumeda
- Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Laura Laverdure
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Ken Sakaushi
- Research Center for Energy and Environmental Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
21
|
Jia S, Tan X, Wu L, Feng J, Zhang L, Xu L, Wang R, Sun X, Han B. Defective PrOx for Efficient Electrochemical NO2−-to-NH3 in a Wide Potential Range. CHEMISTRY 2023. [DOI: 10.3390/chemistry5020053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Electrocatalytic reduction of nitrite (NO2−) is a sustainable and carbon-neutral approach to producing green ammonia (NH3). We herein report the first work on building defects on PrOx for electrochemical NO2− reduction to NH3, and demonstrate a high NH3 yield of 2870 μg h−1 cm−2 at the optimal potential of –0.7 V with a faradaic efficiency (FE) of 97.6% and excellent FEs of >94% at a wide given potential range (−0.5 to −0.8 V). The kinetic isotope effect (KIE) study suggested that the reaction involved promoted hydrogenation. Theoretical calculations clarified that there was an accelerated rate-determining step of NO2− reduction on PrOx. The results also indicated that PrOx could be durable for long-term electrosynthesis and cycling tests.
Collapse
|
22
|
Chen MY, Li Y, Wu HR, Lu BA, Zhang JN. Highly Stable Pt-Based Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2590. [PMID: 37048882 PMCID: PMC10095566 DOI: 10.3390/ma16072590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The high cost and poor reliability of cathodic electrocatalysts for the oxygen reduction reaction (ORR), which requires significant amounts of expensive and scarce platinum, obstructs the broad applications of proton exchange membrane fuel cells (PEMFCs). The principles of ORR and the reasons for the poor stability of Pt-based catalysts are reviewed. Moreover, this paper discusses and categorizes the strategies for enhancing the stability of Pt-based catalysts in fuel cells. More importantly, it highlights the recent progress of Pt-based stability toward ORR, including surface-doping, intermetallic structures, 1D/2D structures, rational design of support, etc. Finally, for atomic-level in-depth information on ORR catalysts in fuel cells, potential perspectives are suggested, such as large-scale preparation, advanced interpretation techniques, and advanced simulation. This review aims to provide valuable insights into the fundamental science and technical engineering for practical Pt-based ORR electrocatalysts in fuel cells.
Collapse
|