1
|
Klope M, Harris-Gavin R, Copeland S, Orr D, Young HS. Interactive Effects of Climate and Large Herbivore Assemblage Drive Plant Functional Traits and Diversity. PLANTS (BASEL, SWITZERLAND) 2025; 14:1249. [PMID: 40284137 PMCID: PMC12030475 DOI: 10.3390/plants14081249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025]
Abstract
Large herbivore communities are changing globally, with populations of wild herbivores generally declining while domestic herbivore populations are increasing, influencing ecosystem function along with the impacts of climate change. Manipulative experiments have rarely captured the interaction between patterns of large herbivore assemblage change and climatic conditions. This interaction may affect the functional traits and functional diversity of herbaceous communities; this requires investigation, as these metrics have been useful proxies for ecosystem function. We used a large herbivore exclosure experiment replicated along a topo-climatic gradient to explore the interaction between climate and herbivore assemblage on community-level functional traits and the functional diversity of herbaceous plant understories. Our findings demonstrate interacting effects between large herbivore assemblages and climate. We found a shift from drought-tolerant traits to drought-avoidant traits with increasing aridity, specifically with regard to plant leaf area and specific leaf area. We also determined that plant community responses to grazing changed from an herbivore avoidance strategy at drier sites to a more herbivore-tolerant strategy at wetter sites. We observed that the effects of herbivores on community-level traits can sometimes counteract those of climate. Finally, we found that cattle and large wild herbivores can differ in the magnitude and direction of effects on functional traits and diversity.
Collapse
Affiliation(s)
| | | | | | | | - Hillary S. Young
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA; (M.K.); (R.H.-G.); (S.C.); (D.O.)
| |
Collapse
|
2
|
Shaheen I, Malik RA, Sankaran M, Shah MA. Differential impacts of grazing on grassland plant diversity, biomass, soil C, and soil N across an elevation gradient. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e70031. [PMID: 40294914 DOI: 10.1002/eap.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/09/2024] [Accepted: 03/06/2025] [Indexed: 04/30/2025]
Abstract
Understanding how vegetation traits and soil characteristics respond to grazing in grasslands is fundamental to their restoration and management. Here, we investigated changes in species diversity, plant productivity, soil total nitrogen (STN), and soil organic carbon (SOC) storage following grazer exclusion at three grassland sites along an elevation gradient in the Kashmir Himalaya. Plant cover, aboveground and belowground biomass (AGB and BGB, respectively), SOC, and STN increased following six years of grazing exclusion, though species diversity indices declined over this period. Grazer exclusion increased the biomass of all functional groups (sedges, grasses, legumes, and forbs), with sedges, particularly Carex muricata, showing the highest increase. Grazer effects on AGB and BGB, SOC, and STN varied with elevation, with the most pronounced effect of grazing detected at the highest elevation site. Grazer effects on the vertical distribution of root biomass, SOC, and STN were restricted to topsoil (10 cm) at low-elevation sites but extended to deeper layers of soil at high-elevation sites.
Collapse
Affiliation(s)
- Ishrat Shaheen
- Department of Botany, University of Kashmir, Srinagar, India
| | - Rayees A Malik
- Department of Botany, University of Kashmir, Srinagar, India
| | - Mahesh Sankaran
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bengaluru, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, India
| |
Collapse
|
3
|
Terborgh J, Ong L, Davenport LC, Tan WH, Solana Mena A, McConkey K, Campos-Arceiz A. Release of tree species diversity follows loss of elephants .from evergreen tropical forests. Proc Biol Sci 2025; 292:20242026. [PMID: 40169019 PMCID: PMC11961250 DOI: 10.1098/rspb.2024.2026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/24/2025] [Accepted: 03/03/2025] [Indexed: 04/03/2025] Open
Abstract
We report on a decade of research on elephant impacts in equatorial evergreen forests in Gabon and Malaysia, comparing sites with (+) and without (-) elephants and documenting major differences in forest structure, tree species composition and tree species diversity. In both regions, we compared sites supporting natural densities of elephants with otherwise undisturbed sites from which elephants had been absent for several decades. Elephant (+) sites supported low densities of seedlings and saplings relative to elephant (-) sites. In Lope National Park, Gabon, 88% of saplings and small trees (<20 cm dbh) were of species avoided by elephants, implicating forest elephants as powerful filters in tree recruitment. In Malaysia, Asian elephants showed strong preferences for monocots over dicots, as we found through both indirect and direct means. Loss of elephants from both Asian and African forests releases diversity from top-down pressure, as preferred forage species increase in abundance, leading to increased density of small stems and tree species diversity. In contrast, loss of other major functional groups of animals, including top carnivores, seed predators and seed dispersers, often results in negative impacts on tree diversity.
Collapse
Affiliation(s)
- John Terborgh
- Department of Biology, University of Florida, Gainesville, FL, USA
- Tropical Environments and Societies, James Cook University Division of Tropical Environments and Societies, Cairns, Queensland, Australia
| | - Lisa Ong
- Southeast Asia Biodiversity Research Institute & Center for Integrative Conservation, Megafauna Ecology and Conservation Group, Xishuangbanna Tropical Botanical Garden, Menglun, People’s Republic of China
| | | | - Wei Harn Tan
- Chinese Academy of Sciences, Beijing, Yunnan, People’s Republic of China
- The University of Nottingham Malaysia, Semenyih, Selangor, Malaysia
| | - Alicia Solana Mena
- School of Environmental and Geographical Sciences, The University of Nottingham Semenyih, Selangor, Malaysia, Selengor, Malaysia
| | - Kim McConkey
- School of Environmental and Geographical Sciences, The University of Nottingham Semenyih, Selangor, Malaysia, Selengor, Malaysia
| | | |
Collapse
|
4
|
Yu W, Sheng L, Wang X, Tang X, Yuan J, Luo W. Soil Microbial Carbon Use Efficiency in Natural Terrestrial Ecosystems. BIOLOGY 2025; 14:348. [PMID: 40282213 PMCID: PMC12024887 DOI: 10.3390/biology14040348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Soil microbial carbon use efficiency (CUE) is the ratio of carbon allocated to microbial growth to that taken up by microorganisms. Soil microbial CUE affects terrestrial ecosystem processes such as greenhouse gas emissions, carbon turnover, and sequestration, which is an important indicator of changes in the terrestrial carbon cycle. Firstly, we summarized the three methods of soil microbial CUE, stoichiometric modeling, 13C glucose tracing, and 18O water tracing, and compared the advantages and limitations of the three methods. Then, we analyzed the single or combined effects of different environmental factors on soil microbial CUE in grassland ecosystems, forest ecosystems, and wetland ecosystems. Finally, we suggested that future research should focus on the following aspects: the influence of management patterns on CUE (such as grazing and the prohibition of grazing in grassland ecosystems, forest gap, and thinning in forest ecosystems); effects of the strategies of microorganisms for adapting to environmental changes on CUE; effects of anaerobic metabolic pathways, especially in wetland ecosystems; and effects of microbial taxonomic level. This study contributes to the investigation of the microbial mechanisms of carbon cycling in terrestrial ecosystems to mitigate the impacts of climate change.
Collapse
Affiliation(s)
- Weirui Yu
- Key Laboratory of Wetland Ecology and Vegetation Restoration, Ministry of Ecology and Environment, School of Environment, Northeast Normal University, Changchun 130117, China; (W.Y.); (X.W.); (X.T.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Lianxi Sheng
- Key Laboratory of Wetland Ecology and Vegetation Restoration, Ministry of Ecology and Environment, School of Environment, Northeast Normal University, Changchun 130117, China; (W.Y.); (X.W.); (X.T.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xue Wang
- Key Laboratory of Wetland Ecology and Vegetation Restoration, Ministry of Ecology and Environment, School of Environment, Northeast Normal University, Changchun 130117, China; (W.Y.); (X.W.); (X.T.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinyu Tang
- Key Laboratory of Wetland Ecology and Vegetation Restoration, Ministry of Ecology and Environment, School of Environment, Northeast Normal University, Changchun 130117, China; (W.Y.); (X.W.); (X.T.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Jihong Yuan
- National Ecosystem Research Station of Jiangxi Wugong Mountain Meadow, Wetland Ecological Resources Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China;
| | - Wenbo Luo
- Key Laboratory of Wetland Ecology and Vegetation Restoration, Ministry of Ecology and Environment, School of Environment, Northeast Normal University, Changchun 130117, China; (W.Y.); (X.W.); (X.T.)
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
5
|
Bayliff S, Gardner W, Singh JP, Fraser L. Mowing management favors primary productivity and carbon sequestration without changing species diversity in a temperate hayfield in Central Interior British Columbia, Canada. PLoS One 2025; 20:e0317536. [PMID: 40100844 PMCID: PMC11918441 DOI: 10.1371/journal.pone.0317536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/30/2024] [Indexed: 03/20/2025] Open
Abstract
We examined the effects of different mowing heights on the plant and soil characteristics of an irrigated and fertilized perennial cropping system in the central interior of British Columbia, Canada primarily composed of Medicago sativa, Phleum pratense, and Trifolium pratense. Mowing treatments included cutting heights of 0 cm, 5 cm, 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, and an unmowed control treatment. Mowing treatments were applied three times throughout the study duration, followed by a final harvest. Data were collected on aboveground plant productivity, plant community diversity, and levels of soil carbon, nitrogen, and organic matter. Results showed plant productivity to be greatest at lower cutting heights, decreasing as cutting height increased. M0, M5, and M10 treatments produced over 300% more cumulative biomass than the control treatment. There were no differences across mowing treatments for measures of species diversity. The ten-centimetre treatment produced highest values of soil carbon, nitrogen, and organic matter than many other mowing treatments after three treatment applications (p < 0.05). Results indicate that lower cutting heights produced higher levels of aboveground biomass, did not alter crop species composition throughout the course of the study, and have potential to contribute towards the carbon pool. These results provide insight on the use of mowing within perennial cropping systems, and the effects on aboveground productivity and levels of soil carbon. The implications of this study allow agricultural producers to make informed decisions on how to manage their land for optimum productivity and environmental sustainability.
Collapse
Affiliation(s)
- Sarah Bayliff
- Thompson Rivers University, Kamloops British Columbia, Canada
| | - Wendy Gardner
- Thompson Rivers University, Kamloops British Columbia, Canada
| | | | - Lauchlan Fraser
- Thompson Rivers University, Kamloops British Columbia, Canada
| |
Collapse
|
6
|
Nelson RA, Sullivan LL, Hersch-Green EI, Seabloom EW, Borer ET, Tognetti PM, Adler PB, Biederman L, Bugalho MN, Caldeira MC, Cancela JP, Carvalheiro LG, Catford JA, Dickman CR, Dolezal AJ, Donohue I, Ebeling A, Eisenhauer N, Elgersma KJ, Eskelinen A, Estrada C, Garbowski M, Graff P, Gruner DS, Hagenah N, Haider S, Harpole WS, Hautier Y, Jentsch A, Johanson N, Koerner SE, Lannes LS, MacDougall AS, Martinson H, Morgan JW, Olde Venterink H, Orr D, Osborne BB, Peri PL, Power SA, Raynaud X, Risch AC, Shrestha M, Smith NG, Stevens CJ, Veen GFC, Virtanen R, Wardle GM, Wolf AA, Young AL, Harrison SP. Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory. Commun Biol 2025; 8:444. [PMID: 40089613 PMCID: PMC11910660 DOI: 10.1038/s42003-025-07882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Forbs ("wildflowers") are important contributors to grassland biodiversity but are vulnerable to environmental changes. In a factorial experiment at 94 sites on 6 continents, we test the global generality of several broad predictions: (1) Forb cover and richness decline under nutrient enrichment, particularly nitrogen enrichment. (2) Forb cover and richness increase under herbivory by large mammals. (3) Forb richness and cover are less affected by nutrient enrichment and herbivory in more arid climates, because water limitation reduces the impacts of competition with grasses. (4) Forb families will respond differently to nutrient enrichment and mammalian herbivory due to differences in nutrient requirements. We find strong evidence for the first, partial support for the second, no support for the third, and support for the fourth prediction. Our results underscore that anthropogenic nitrogen addition is a major threat to grassland forbs, but grazing under high herbivore intensity can offset these nutrient effects.
Collapse
Affiliation(s)
- Rebecca A Nelson
- University of California, Davis, Department of Environmental Science & Policy, Davis, CA, USA.
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA.
| | - Lauren L Sullivan
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- W K Kellogg Biological Station, Michigan State University, Hickory Corners, East Lansing, MI, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Erika I Hersch-Green
- Michigan Technological University, Dept. of Biological Sciences, Houghton, MI, USA
| | - Eric W Seabloom
- Dept. of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Elizabeth T Borer
- Dept. of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Pedro M Tognetti
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires y CONICET, Buenos Aires, Argentina
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| | | | - Miguel N Bugalho
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria C Caldeira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Juan P Cancela
- Centre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group & University of Azores, Departamento de Ciências e Engenharia do Ambiente, Angra do Heroísmo, Azores, Portugal
| | | | - Jane A Catford
- Department of Geography, King's College London, London, United Kingdom
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Chris R Dickman
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Ian Donohue
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Anne Ebeling
- Institute for Biodiversity, Ecology and Evolution, University Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Kenneth J Elgersma
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - Anu Eskelinen
- Ecology and Genetics Unit, University of Oulu, Oulu, Finland
| | - Catalina Estrada
- Department of Life Sciences, Imperial College London, Silwood Park, London, United Kingdom
| | - Magda Garbowski
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Pamela Graff
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires y CONICET, Buenos Aires, Argentina
- Agencia de Extensión Rural Coronel Suárez, EEA Cesáreo Naredo, Instituto Nacional de Tecnología Agropecuaria (INTA), Coronel Suárez, Buenos Aires, Argentina
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Nicole Hagenah
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Sylvia Haider
- Institute of Ecology, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - W Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Helmholtz Center for Environmental Research Ð UFZ, Department of Physiological Diversity, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, CH, The Netherlands
| | - Anke Jentsch
- Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | | | - Sally E Koerner
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Lucíola S Lannes
- Department of Biology and Animal Sciences, São Paulo State University - UNESP, Ilha Solteira, SP, Brazil
| | | | - Holly Martinson
- Department of Biology, McDaniel College, Westminster, MD, USA
| | - John W Morgan
- Department of Environment & Genetics, La Trobe University, Bundoora, Melbourne, VIC, Australia
| | | | - Devyn Orr
- USDA ARS, Eastern Oregon Ag Research Center, Burns, OR, USA
| | - Brooke B Osborne
- Department of Environmental and Society, Utah State University, Moab, UT, USA
| | - Pablo L Peri
- Instituto Nacional de Tecnologia Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Rio Gallegos, Argentina
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Xavier Raynaud
- Sorbonne Université, CNRS, IRD, INRA, Université Paris Cité, UPEC, Institute of Ecology and Environmental Sciences-Paris, Paris, France
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mani Shrestha
- Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - G F Ciska Veen
- Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Risto Virtanen
- Ecology and Genetics Unit, University of Oulu, Oulu, Finland
| | - Glenda M Wardle
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Amelia A Wolf
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Alyssa L Young
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Susan P Harrison
- University of California, Davis, Department of Environmental Science & Policy, Davis, CA, USA
| |
Collapse
|
7
|
Hu Y, Wang ML, Yang RL, Shao ZK, Du YH, Kang Y, Zhu YX, Xue XF. Symbiotic bacteria play crucial roles in a herbivorous mite host suitability. PEST MANAGEMENT SCIENCE 2025; 81:1657-1668. [PMID: 39623774 DOI: 10.1002/ps.8571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND The tomato russet mite (TRM), Aculops lycopersici, is a strictly herbivorous and economically significant pest that infests Solanaceae plants, but its host suitability varies, showing high performance on tomatoes. Although symbiotic bacteria have been suggested to play crucial roles in the host adaptation of herbivores, their effects on TRM remain unclear. RESULTS In this study, using next generation high-throughput sequencing of the bacterial 16S rRNA data, we identified the bacterial diversity and community composition of TRM feeding on tomato, eggplant, and chili. Our results show no significant difference in the bacterial community composition of TRM across three host plants. However, the relative density of Escherichia coli (TRM_Escherichia) showed 9.36-fold higher on tomato than on eggplant and chili. These results align with the observed TRM performance among three host plants. When TRM_Escherichia was reduced using antibiotics, the treated TRM decreased the population density on tomato. However, when we transferred TRM from eggplant to tomato, the population density of TRM increased, coinciding with an increase of the TRM_Escherichia density. These results indicate that TRM_Escherichia may affect the host suitability of TRM. Our fluorescence in situ hybridization (FISH) results further showed that TRM_Escherichia is primarily distributed in the salivary glands. Metagenomic data results suggest that TRM_Escherichia functions in food digestion and energy metabolism. CONCLUSION We provided the first comprehensive analysis of TRM bacterial communities. Our findings demonstrate that the symbiotic bacterium TRM_Escherichia may play crucial roles in the suitability of TRM feeding on different Solanaceae hosts. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Mei-Ling Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ruo-Lan Yang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Zi-Kai Shao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yun-Hao Du
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yi Kang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yu-Xi Zhu
- Department of Entomology, College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Zhang X, Yang G, Ning Y, Jiang L, Han X, Lü XT. Dominant species drove the balance between biodiversity and productivity in mown grasslands under nitrogen fertilization. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e70009. [PMID: 39930595 DOI: 10.1002/eap.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 12/06/2024] [Accepted: 12/27/2024] [Indexed: 05/08/2025]
Abstract
Annual mowing, a main management strategy of grasslands, would reduce primary productivity, though might increase plant diversity. Nitrogen (N) fertilization is widely used to raise productivity in global pastures, but always results in biodiversity losses. It is thus a challenge to balance the divergent impacts of mowing and N fertilization on biodiversity and productivity. Here, we examine 9-year responses of aboveground net primary productivity (ANPP) and species richness to mowing across a N addition gradient (0, 2, 5, 10, 20, and 50 g N m-2 year-1) in a temperate steppe. The negative impacts of mowing on ANPP were exacerbated over time under N fertilization with rates at or lower than 10 g N m-2 year-1 but were reversed by higher N fertilization rates. Such responses of community-level ANPP were largely driven by the dominant grass, Leymus chinensis (L.c.), instead of species richness. Nitrogen fertilization reversed the negative impacts of mowing on the contribution of L.c. to community-level production over time, with less time being needed for the critical reverse under higher fertilization rates. A "win-win" pattern of biodiversity and production could be reached in the mown grasslands under the N fertilization rate of 5 g N m-2 year-1, as evidenced by no temporal variation in both production and biodiversity over time in comparison with grasslands under ambient conditions (unmown and non-fertilization). Our results highlight the role of dominant species instead of species diversity in driving the fundamental functioning of mown grasslands and thus facilitate adaptive grassland management.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Erguna Forest-Steppe Ecotone Research Station, Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guojiao Yang
- Erguna Forest-Steppe Ecotone Research Station, Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, China
| | - Yu Ning
- Erguna Forest-Steppe Ecotone Research Station, Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | | | - Xingguo Han
- College of Life Sciences, Hebei University, Baoding, China
| | - Xiao-Tao Lü
- Erguna Forest-Steppe Ecotone Research Station, Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
9
|
Baidya P, Roy S, Karapurkar J, Bagchi S. Replacing native grazers with livestock influences arthropods to have implications for ecosystem functions and disease. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3091. [PMID: 39888220 DOI: 10.1002/eap.3091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025]
Abstract
Grazing by large mammalian herbivores influences ecosystem structure and functions through its impacts on vegetation and soil, as well as by the influence on other animals such as arthropods. As livestock progressively replace native grazers around the world, it is pertinent to ask whether they have comparable influence over arthropods, or not. We use a replicated landscape-level, long-term grazer-exclusion experiment (14 years) to address how ground-dwelling arthropods respond to such a change in grazing regime where livestock replace native grazers in the cold deserts of the Trans-Himalayan ecosystem of northern India. We analyze spatial and temporal variation in the abundance of 25,604 arthropods sampled using pitfall traps across 2765 trap-days through the duration of the growing season spanning spring, summer, and autumn. These were from 88 operational taxonomic units covering six orders from 33 families (ants, wasps, bees, ticks and mites, spiders, grasshoppers, and beetles). We find that grazer assemblage-whether livestock or native herbivores-had a strong influence on both vegetation and arthropods. Partial redundancy analysis (RDA) showed that 53.6% of the spatial and temporal variation in arthropod communities could be explained by grazing and by grazer assemblage identity, alongside covariation with vegetation composition and soil variables. Structural equation models revealed that grazing and grazer assemblage identity have direct effects on arthropods, as well as indirect effects that are mediated through vegetation. Importantly, spiders (predators) were less abundant under livestock, whereas grasshoppers (leaf eaters) and ticks and mites (parasitic disease vectors) were more abundant, compared with native grazers. Reduction in spiders can fundamentally alter material and energy flow through the cascading effects of losing predators, and an abundance of grasshoppers may even contribute to vegetation degradation that is often associated with livestock. Parallelly, increases in ticks and mites lead to concerns over vector-borne disease that require planned interventions to align animal husbandry with One Health. Thus, losing native grazers to livestock expansion can have wide-ranging repercussions via arthropods. This may not only affect ecosystem structure and functions, but also offer challenges and opportunities to mitigate risks from vector-borne disease.
Collapse
Affiliation(s)
- Pronoy Baidya
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Arannya Environment Research Organisation, Sattari, Goa, India
| | - Shamik Roy
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Technische Universität Dresden, Forest Zoology, Tharandt, Germany
| | - Jalmesh Karapurkar
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Arannya Environment Research Organisation, Sattari, Goa, India
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
10
|
Pal S, Banerjee M, Melnik R. The role of soil surface in a sustainable semiarid ecosystem. PLoS One 2024; 19:e0314910. [PMID: 39666676 PMCID: PMC11637397 DOI: 10.1371/journal.pone.0314910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Patterns in a semiarid ecosystem are important because they directly and indirectly affect ecological processes, biodiversity, and ecosystem resilience. Understanding the causes and effects of these patterns is critical for long-term land surface management and conservation efforts in semiarid regions, which are especially sensitive to climate change and human-caused disturbances. In addition, developing mathematical models is challenging because of the involvement of several interacting components within an ecosystem. It is known that there is a regular connection between the vegetation and the living species in a habitat since some animals evolved to live in a semiarid ecosystem and rely on plants for food. In this work, we have constructed a coupled mathematical model to connect the water resource, vegetation, and living organisms and have investigated how the soil surface affects the resulting patterns in the long term. This study contributes to a better understanding of ecological patterns and processes in semiarid environments by shedding light on the complex interaction mechanisms that depend on the structure of semiarid ecosystems. For example, the impact of intensive rainfall on ecosystem dynamics can be profound, triggering critical transitions and leading to significant yield loss. The energy lost as it moves from one trophic level to the next, the potential for diversity to exacerbate species extinction rates, and the role of water flow in driving the system towards more robust stripe pattern formations are all significant factors. Despite these complexities, the findings offer critical insights into the influence of efforts to enhance ecosystem resilience and adapt to the challenges of climate change and human activities.
Collapse
Affiliation(s)
- Swadesh Pal
- MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Canada
| | - Malay Banerjee
- Department of Mathematics and Statistics, IIT Kanpur, Kanpur, India
| | - Roderick Melnik
- MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Canada
- BCAM - Basque Center for Applied Mathematics, Bilbao, Spain
| |
Collapse
|
11
|
Young ML, Dobson KC, Hammond MD, Zarnetske PL. Plant community responses to the individual and interactive effects of warming and herbivory across multiple years. Ecology 2024; 105:e4441. [PMID: 39363508 DOI: 10.1002/ecy.4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 10/05/2024]
Abstract
Anthropogenic climate warming affects plant communities by changing community structure and function. Studies on climate warming have primarily focused on individual effects of warming, but the interactive effects of warming with biotic factors could be at least as important in community responses to climate change. In addition, climate change experiments spanning multiple years are necessary to capture interannual variability and detect the influence of these effects within ecological communities. Our study explores the individual and interactive effects of warming and insect herbivory on plant traits and community responses within a 7-year warming and herbivory manipulation experiment in two early successional plant communities in Michigan, USA. We find stronger support for the individual effects of both warming and herbivory on multiple plant morphological and phenological traits; only the timing of plant green-up and seed set demonstrated an interactive effect between warming and herbivory. With herbivory, warming advanced green-up, but with reduced herbivory, there was no significant effect of warming. In contrast, warming increased plant biomass, but the effect of warming on biomass did not depend upon the level of insect herbivores. We found that these treatments had stronger effects in some years than others, highlighting the need for multiyear experiments. This study demonstrates that warming and herbivory can have strong direct effects on plant communities, but that their interactive effects are limited in these early successional systems. Because the strength and direction of these effects can vary by ecological context, it is still advisable to include levels of biotic interactions, multiple traits and years, and community type when studying climate change effects on plants and their communities.
Collapse
Affiliation(s)
- Moriah L Young
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Hickory Corners, Michigan, USA
| | - Kara C Dobson
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Hickory Corners, Michigan, USA
| | - Mark D Hammond
- W. K. Kellogg Biological Station, Hickory Corners, Michigan, USA
| | - Phoebe L Zarnetske
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Hickory Corners, Michigan, USA
- Institute for Biodiversity, Ecology, Evolution, and Macrosystems, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Nie Y, Xu L, Xin X, Ye L. Long-term grassland diversity-productivity relationship regulated by management regimes in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175084. [PMID: 39074747 DOI: 10.1016/j.scitotenv.2024.175084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Grasslands are the most extensively distributed terrestrial ecosystems on Earth, providing a range of ecosystem services that are vital for sustaining human life and critical for sustainable development at the global scale. However, the relationship between the two most important attributes of grassland, plant diversity, and productivity, remains controversial even after many years of research. Here, we develop an analysis of covariance (ANCOVA) model based on decadal-scale experimental data from a degraded meadow steppe in northeastern Inner Mongolia, China to quantify the response of aboveground biomass (AGB) to plant species diversity under varying management regimes. We report that AGB responds negatively to the plant diversity in fallow grasslands and positively in grazing grasslands, transiting from negative to positive in mowing grasslands as mowing became more frequent. We show that the changing diversity-productivity relationships are driven by changes in species composition of the plant community, given the significant productivity gap between rare and non-rare species. This highlights the role of management in regulating the diversity-productivity relationships in grasslands. These results not only provide provocative insights into the relationships between plant diversity and productivity but also support more sustainable use and management of grassland resources.
Collapse
Affiliation(s)
- Yingying Nie
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.
| | - Lijun Xu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.
| | - Xiaoping Xin
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China.
| | - Liming Ye
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China; Ghent University, Department of Geology, Krijgslaan 281, 9000 Gent, Belgium.
| |
Collapse
|
13
|
Li L, He XZ, Zhang J, Bryant R, Hu A, Hou F. Concurrent and legacy effects of sheep trampling on soil organic carbon stocks in a typical steppe, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122121. [PMID: 39121623 DOI: 10.1016/j.jenvman.2024.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Grazing plays a key role in ecosystem biogeochemistry, particularly soil carbon (C) pools. The non-trophic interactions between herbivores and soil processes through herbivore trampling have recently attracted extensive attention. However, their concurrent and legacy effects on the ecosystem properties and processes are still not clear, due to their effects being hard to separate via field experiments. In this study, we conducted a 2-year simulated-sheep-trampling experiment with four trampling intensity treatments (i.e., T0, T40, T80, and T120 for 0, 40, 80, and 120 hoofprints m-2, respectively) in a typical steppe to explore the concurrent and legacy effects of trampling on grassland ecosystem properties and processing. In 2017 (trampling treatment year), we found that trampling decreased aboveground biomass (AGB) of plant community and community-weighted mean shoot C concentration (CWM C), soil available nitrogen (N) and available phosphorus (P), but did not affect plant species diversity and belowground biomass (BGB). We show that compared with T0, trampling increased soil bulk density (BD) at T80, and decreased soil organic carbon (SOC) stocks. After the cessation of trampling for two years (i.e., in 2019), previous trampling increased plant diversity and BGB, reaching the highest values at T80, but decreased soil available N and available P. Compared with T0, previous trampling significantly increased soil BD at T120, while significantly decreased CWM C at T80 and T120, and reduced SOC stocks at T80. Compared with 2017, the trampling negative legacy effects amplified at T80 but weakened at T40 and T120. We also show that trampling-induced decreases in soil available N, AGB of Fabaceae and CWM C were the main predictors of decreasing SOC stocks in 2017, while previous trampling-induced legacy effects on soil available P, AGB of Poaceae and CWM C contributed to the variations of SOC stocks in 2019. Taken together, short-term trampling with low intensity could maintain most plant functions, while previous trampling with low intensity was beneficial to most plant and soil functions. The results of this study show that T40 caused by sheep managed at a stocking rate of 2.7 sheep ha-1 is most suitable for grassland adaptive management in the typical steppe. The ecosystem functions can be maintained under a high stocking rate through the process of providing enough time to rebuild sufficient vegetation cover and restore soil through measures such as regional rotational grazing and seasonal grazing.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiong Zhao He
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Jing Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Racheal Bryant
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - An Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
14
|
Magnusson A, Jabbari Shiadeh SM, Ardalan M, Swolin-Eide D, Elfvin A. Gut microbiota differences in five-year-old children that were born preterm with a history of necrotizing enterocolitis: A pilot trial. iScience 2024; 27:110325. [PMID: 39055941 PMCID: PMC11269947 DOI: 10.1016/j.isci.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
The study explores the long-term effects of necrotizing enterocolitis (NEC) on gut microbiota in preterm infants by analyzing stool samples from 5-year-old children using shotgun metagenomic sequencing. It compares children with a history of NEC, treated surgically or medically, to preterm controls without NEC. Findings reveal persistent gut microbiota dysbiosis in NEC children, with reduced species diversity and evenness, especially in those treated surgically. The surgical NEC group had a lower Shannon index, indicating less microbial diversity. Significant differences in taxonomic profiles were observed, mainly influenced by surgical treatment. These results underscore the lasting impact of NEC and its treatment on gut microbiota, suggesting a need for strategies addressing long-term dysbiosis.
Collapse
Affiliation(s)
- Amanda Magnusson
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Maryam Ardalan
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Aarhus, Denmark
| | - Diana Swolin-Eide
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anders Elfvin
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Pediatrics, The Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
15
|
Komatsu KJ, Avolio ML, Padullés Cubino J, Schrodt F, Auge H, Cavender-Bares J, Clark AT, Flores-Moreno H, Grman E, Harpole WS, Kattge J, Kimmel K, Koerner SE, Korell L, Langley JA, Münkemüller T, Ohlert T, Onstein RE, Roscher C, Soudzilovskaia NA, Taylor BN, Tedersoo L, Terry RS, Wilcox K. CoRRE Trait Data: A dataset of 17 categorical and continuous traits for 4079 grassland species worldwide. Sci Data 2024; 11:795. [PMID: 39025901 PMCID: PMC11258227 DOI: 10.1038/s41597-024-03637-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
In our changing world, understanding plant community responses to global change drivers is critical for predicting future ecosystem composition and function. Plant functional traits promise to be a key predictive tool for many ecosystems, including grasslands; however, their use requires both complete plant community and functional trait data. Yet, representation of these data in global databases is sparse, particularly beyond a handful of most used traits and common species. Here we present the CoRRE Trait Data, spanning 17 traits (9 categorical, 8 continuous) anticipated to predict species' responses to global change for 4,079 vascular plant species across 173 plant families present in 390 grassland experiments from around the world. The dataset contains complete categorical trait records for all 4,079 plant species obtained from a comprehensive literature search, as well as nearly complete coverage (99.97%) of imputed continuous trait values for a subset of 2,927 plant species. These data will shed light on mechanisms underlying population, community, and ecosystem responses to global change in grasslands worldwide.
Collapse
Affiliation(s)
- Kimberly J Komatsu
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Meghan L Avolio
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA.
| | | | | | - Harald Auge
- UFZ, Helmholtz Centre for Environmental Research, Community Ecology, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - Jeannine Cavender-Bares
- Department of Ecology, Evolution and Behaviour, University of Minnesota, Saint Paul, MN, USA
| | - Adam T Clark
- University of Graz, Institute of Biology, Holteigasse 6, 8010, Graz, Austria
| | | | - Emily Grman
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, USA
| | - W Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | | | - Sally E Koerner
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Lotte Korell
- UFZ, Helmholtz Centre for Environmental Research, Community Ecology, Theodor-Lieser-Strasse 4, 06120, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
| | - J Adam Langley
- Department of Biology, Center for Biodiversity and Ecosystem Stewardship, Villanova University, Villanova, PA, USA
| | - Tamara Münkemüller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Timothy Ohlert
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Renske E Onstein
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Christiane Roscher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- UFZ, Helmholtz Centre for Environmental Research, Physiological Diversity, Permoserstrasse 15, 04318, Leipzig, Germany
| | | | - Benton N Taylor
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Rosalie S Terry
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Kevin Wilcox
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, USA
| |
Collapse
|
16
|
Asefa A, Reuber VM, Miehe G, Wraase L, Wube T, Farwig N, Schabo DG. Giant root-rat engineering and livestock grazing activities regulate plant functional trait diversity of an Afroalpine vegetation community in the Bale Mountains, Ethiopia. Oecologia 2024; 205:281-293. [PMID: 38822898 PMCID: PMC11281956 DOI: 10.1007/s00442-024-05563-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Disturbances from rodent engineering and human activities profoundly impact ecosystem structure and functioning. Whilst we know that disturbances modulate plant communities, comprehending the mechanisms through which rodent and human disturbances influence the functional trait diversity and trait composition of plant communities is important to allow projecting future changes and to enable informed decisions in response to changing intensity of the disturbances. Here, we evaluated the changes in functional trait diversity and composition of Afroalpine plant communities in the Bale Mountains of Ethiopia along gradients of engineering disturbances of a subterranean endemic rodent, the giant root-rat (Tachyoryctes macrocephalus Rüppell 1842) and human activities (settlement establishment and livestock grazing). We conducted RLQ (co-inertia analysis) and fourth-corner analyses to test for trait-disturbance (rodent engineering/human activities) covariation. Overall, our results show an increase in plant functional trait diversity with increasing root-rat engineering and increasing human activities. We found disturbance specific association with traits. Specifically, we found strong positive association of larger seed mass with increasing root-rat fresh burrow density, rhizomatous vegetative propagation negatively associated with increasing root-rat old burrow, and stolonifereous vegetative propagation positively associated with presence of root-rat mima mound. Moreover, both leaf size and leaf nitrogen content were positively associated with livestock dung abundance but negatively with distance from settlement. Overall, our results suggest that disturbances by rodents filter plant traits related to survival and reproduction strategies, whereas human activities such as livestock grazing act as filters for traits related to leaf economics spectrum along acquisitive resource-use strategy.
Collapse
Affiliation(s)
- Addisu Asefa
- Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Karl-Von-Frisch-Straße 8, 35043, Marburg, Germany.
| | - Victoria M Reuber
- Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Karl-Von-Frisch-Straße 8, 35043, Marburg, Germany
| | - Georg Miehe
- Vegetation Geography, Department of Geography, Philipps-Universität Marburg, Deutschhausstraße 10, 35032, Marburg, Germany
| | - Luise Wraase
- Environmental Informatics, Department of Geography, Philipps-Universität Marburg, Deutschhausstraße 12, 35032, Marburg, Germany
| | - Tilaye Wube
- Department of Zoology, College of Natural and Computational Sciences, Addis Ababa University, Po Box 1176, Addis Ababa, Ethiopia
| | - Nina Farwig
- Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Karl-Von-Frisch-Straße 8, 35043, Marburg, Germany
| | - Dana G Schabo
- Conservation Ecology, Department of Biology, Philipps-Universität Marburg, Karl-Von-Frisch-Straße 8, 35043, Marburg, Germany
| |
Collapse
|
17
|
Karp AT, Koerner SE, Hempson GP, Abraham JO, Anderson TM, Bond WJ, Burkepile DE, Fillion EN, Goheen JR, Guyton JA, Kartzinel TR, Kimuyu DM, Mohanbabu N, Palmer TM, Porensky LM, Pringle RM, Ritchie ME, Smith MD, Thompson DI, Young TP, Staver AC. Grazing herbivores reduce herbaceous biomass and fire activity across African savannas. Ecol Lett 2024; 27:e14450. [PMID: 38857323 DOI: 10.1111/ele.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/12/2024]
Abstract
Fire and herbivory interact to alter ecosystems and carbon cycling. In savannas, herbivores can reduce fire activity by removing grass biomass, but the size of these effects and what regulates them remain uncertain. To examine grazing effects on fuels and fire regimes across African savannas, we combined data from herbivore exclosure experiments with remotely sensed data on fire activity and herbivore density. We show that, broadly across African savannas, grazing herbivores substantially reduce both herbaceous biomass and fire activity. The size of these effects was strongly associated with grazing herbivore densities, and surprisingly, was mostly consistent across different environments. A one-zebra increase in herbivore biomass density (~100 kg/km2 of metabolic biomass) resulted in a ~53 kg/ha reduction in standing herbaceous biomass and a ~0.43 percentage point reduction in burned area. Our results indicate that fire models can be improved by incorporating grazing effects on grass biomass.
Collapse
Affiliation(s)
- Allison Tyler Karp
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, Rhode Island, USA
| | - Sally E Koerner
- Department of Biology, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Gareth P Hempson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Joel O Abraham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - William J Bond
- Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Deron E Burkepile
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California, USA
- South African Environmental Observation Network, Ndlovu Node, Scientific Services, Kruger National Park, Phalaborwa, South Africa
| | - Elizabeth N Fillion
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Jacob R Goheen
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
- Mpala Research Centre, Nanyuki, Kenya
| | - Jennifer A Guyton
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Tyler R Kartzinel
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Duncan M Kimuyu
- Mpala Research Centre, Nanyuki, Kenya
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Neha Mohanbabu
- Department of Biology, Syracuse University, Syracuse, New York, USA
- University of Minnesota, Twin Cities, Minnesota, USA
| | - Todd M Palmer
- Biological Sciences, University of Cape Town, Cape Town, South Africa
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Lauren M Porensky
- Rangeland Resources and Systems Research Unit, USDA Agricultural Research Service, Fort Collins, Colorado, USA
| | - Robert M Pringle
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Mark E Ritchie
- Department of Wildland Resources, Utah State University, Logan, Utah, USA
| | - Melinda D Smith
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Dave I Thompson
- Centre for African Ecology, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Environmental Observation Network, Ndlovu Node, Scientific Services, Kruger National Park, Phalaborwa, South Africa
| | - Truman P Young
- Mpala Research Centre, Nanyuki, Kenya
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - A Carla Staver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Yale Institute for Biospheric Studies, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Svenning JC, Lemoine RT, Bergman J, Buitenwerf R, Le Roux E, Lundgren E, Mungi N, Pedersen RØ. The late-Quaternary megafauna extinctions: Patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. CAMBRIDGE PRISMS. EXTINCTION 2024; 2:e5. [PMID: 40078803 PMCID: PMC11895740 DOI: 10.1017/ext.2024.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2025]
Abstract
Across the last ~50,000 years (the late Quaternary) terrestrial vertebrate faunas have experienced severe losses of large species (megafauna), with most extinctions occurring in the Late Pleistocene and Early to Middle Holocene. Debate on the causes has been ongoing for over 200 years, intensifying from the 1960s onward. Here, we outline criteria that any causal hypothesis needs to account for. Importantly, this extinction event is unique relative to other Cenozoic (the last 66 million years) extinctions in its strong size bias. For example, only 11 out of 57 species of megaherbivores (body mass ≥1,000 kg) survived to the present. In addition to mammalian megafauna, certain other groups also experienced substantial extinctions, mainly large non-mammalian vertebrates and smaller but megafauna-associated taxa. Further, extinction severity and dates varied among continents, but severely affected all biomes, from the Arctic to the tropics. We synthesise the evidence for and against climatic or modern human (Homo sapiens) causation, the only existing tenable hypotheses. Our review shows that there is little support for any major influence of climate, neither in global extinction patterns nor in fine-scale spatiotemporal and mechanistic evidence. Conversely, there is strong and increasing support for human pressures as the key driver of these extinctions, with emerging evidence for an initial onset linked to pre-sapiens hominins prior to the Late Pleistocene. Subsequently, we synthesize the evidence for ecosystem consequences of megafauna extinctions and discuss the implications for conservation and restoration. A broad range of evidence indicates that the megafauna extinctions have elicited profound changes to ecosystem structure and functioning. The late-Quaternary megafauna extinctions thereby represent an early, large-scale human-driven environmental transformation, constituting a progenitor of the Anthropocene, where humans are now a major player in planetary functioning. Finally, we conclude that megafauna restoration via trophic rewilding can be expected to have positive effects on biodiversity across varied Anthropocene settings.
Collapse
Affiliation(s)
- Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rhys T. Lemoine
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Robert Buitenwerf
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Elizabeth Le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Erick Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Ninad Mungi
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Rasmus Ø. Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
19
|
Wu Y, Li H, Cui J, Han Y, Li H, Miao B, Tang Y, Li Z, Zhang J, Wang L, Liang C. Precipitation variation: a key factor regulating plant diversity in semi-arid livestock grazing lands. FRONTIERS IN PLANT SCIENCE 2024; 15:1294895. [PMID: 38645388 PMCID: PMC11027165 DOI: 10.3389/fpls.2024.1294895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/06/2024] [Indexed: 04/23/2024]
Abstract
Livestock presence impacts plant biodiversity (species richness) in grassland ecosystems, yet extent and direction of grazing impacts on biodiversity vary greatly across inter-annual periods. In this study, an 8-year (2014-2021) grazing gradient experiment with sheep was conducted in a semi-arid grassland to investigate the impact of grazing under different precipitation variability on biodiversity. The results suggest no direct impact of grazing on species richness in semi-arid Stipa grassland. However, increased grazing indirectly enhanced species richness by elevating community dominance (increasing the sheltering effect of Stipa grass). Importantly, intensified grazing also regulates excessive community biomass resulting from increased inter-annual wetness (SPEI), amplifying the positive influence of annual humidity index on species richness. Lastly, we emphasize that, in water-constrained grassland ecosystems, intra-annual precipitation variability (PCI) was the most crucial factor driving species richness. Therefore, the water-heat synchrony during the growing season may alleviate physiological constraints on plants, significantly enhancing species richness as a result of multifactorial interactions. Our study provides strong evidence for how to regulate grazing intensity to increase biodiversity under future variable climate patterns. We suggest adapting grazing intensity according to local climate variability to achieve grassland biodiversity conservation.
Collapse
Affiliation(s)
- Yantao Wu
- College of Life Sciences, Inner Mongolia University, Hohhot, China
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Hao Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jiahe Cui
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
- College of Resources Environment and Tourism, Capital Normal University, Beijing, China
| | - Ying Han
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Hangyu Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Bailing Miao
- Inner Mongolia Meteorological Institute, Hohhot, China
| | | | - Zhiyong Li
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Jinghui Zhang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Lixin Wang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Cunzhu Liang
- Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Ministry of Education of China, Collaborative Innovation Center for Grassland Ecological Security, School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, China
| |
Collapse
|
20
|
Wang X, Wang Z, Miao H, Zhang C, Zou H, Yang Y, Zhang Z, Liu J. Appropriate livestock grazing alleviates the loss of plant diversity and maintains community resistance in alpine meadows. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119850. [PMID: 38141346 DOI: 10.1016/j.jenvman.2023.119850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
Alpine meadows constitute one of the major ecosystems on the Qinghai-Tibetan Plateau, with livestock grazing exerting a considerable impact on their biodiversity. However, the degree to which plant diversity influences community stability under different grazing intensities remains unclear in this region. This study conducted controlled grazing experiments across four levels of grazing intensity (no-, low-, medium-, and high-grazing) based on herbage utilization rate to assess the influence of grazing intensities on plant community structure and diversity-stability relationships. We discovered that high-grazing reduced plant diversity and attenuated the temporal stability and resistance of above-ground biomass. No- and low-grazing could alleviate plant biomass loss, with community resistance being optimal under low-grazing. The direct effects of livestock grazing on temporal stability were found to be negligible. Plant characteristics and diversity accounted for a substantial proportion of livestock grazing effects on community resistance (R2 = 0.46), as revealed by piecewise structural equation model analysis. The presence of plant diversity enhances the resistance of alpine meadows against disturbance and accelerates the recovery after grazing. Our results suggest that low-grazing intensity may represent a judicious option for preserving species diversity and community stability on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
- Xiaofang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zaiwei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Haitao Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chunping Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Hao Zou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| | - Zhenghua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
21
|
Mekhrovar O, Li YM, Abdullo M, Sino Y, Fan L. Nutrient addition alters plant community productivity but not the species diversity of a mountain meadow in Tajikistan. FRONTIERS IN PLANT SCIENCE 2024; 14:1235388. [PMID: 38288411 PMCID: PMC10822985 DOI: 10.3389/fpls.2023.1235388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/21/2023] [Indexed: 01/31/2024]
Abstract
Introduction Tajikistan is a typical mountainous country covered by different mountain grasslands that are important pasture resources. Recently, grassland degradation has become widespread due to climate change and human activities and fertilization has been used to improve grassland production. However, fertilizer inputs can substantially alter species diversity, but it is uncl\ear how productivity and species diversity respond to nutrient enrichment in the mountain meadows of Tajikistan. Methods Therefore, a 5-year (2018-2022) continuous in-situ mineral fertilizer experiment was conducted to examine the effects of three nitrogen (N) levels (0, 30, and 90 kg N ha-1 year-1), two phosphorus (P) levels (0 and 30 kg P ha-1 year-1), and their combinations on above-ground biomass (AGB) and species diversity in a mountain meadow grassland in Ziddi, Varzob region, Tajikistan. Five species diversity metrics-Margalef's species richness (Dma), the Shannon-Wiener index (H), the Simpson index (C), Pielou's equitability index (Epi), and the Evar Species Evenness index (Evar)-were used to measure species diversity. Results and discussions The results indicated that the addition of different N and P amounts and their various combinations considerably increased both total and dominant species AGB, with the highest increase occurring in the N90P30 (90 kg N ha-1 year-1 combined with 30 kg P ha-1 year-1) treatment in 2022; during the experiment, the importance value of Prangos pabularia (dominant species) first decreased and then increased, but its dominant status did not change or fluctuate among the years. Furthermore, N, P, and their different combinations had no significant effect on species diversity (Dma, H, C, Epi, and Evar). All the species diversity indexes fluctuated among years, but there was no interaction with mineral fertilizer addition. Total AGB had a negative relationship with species diversity and low concentration N fertilizer addition (N30; P30) strengthened this negative trend. However, this trend decreased under the high N fertilizer condition (N90P30). Overall, nutrient addition to the natural mountain grassland of the Varzob region improved AGB, which meant that there was more forage for local animals. Mineral fertilizers had no significant effect on species diversity, but may enhance P. pabularia dominance in the future, which will help maintain the stability of the plant community and improve the quality of the forage because P. pabularia is an excellent and important winter fodder. Our study suggests that scientific nutrient management could effectively promote grassland production, conserve plant variety, and regenerate degraded grassland, which will counteract the desertification process in northwest Tajikistan mountain meadows.
Collapse
Affiliation(s)
- Okhonniyozov Mekhrovar
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Dushanbe, Tajikistan
- University of Chinese Academy of Sciences, Beijing, China
| | - Yao-ming Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Dushanbe, Tajikistan
- University of Chinese Academy of Sciences, Beijing, China
| | - Madaminov Abdullo
- Institute of Botany, Physiology and Plant Genetics of the Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Yusupov Sino
- Institute of Botany, Physiology and Plant Genetics of the Academy of Sciences of the Republic of Tajikistan, Dushanbe, Tajikistan
| | - Lianlian Fan
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Headrick KC, Juenger TE, Heckman RW. Plant physical defenses contribute to a latitudinal gradient in resistance to insect herbivory within a widespread perennial grass. AMERICAN JOURNAL OF BOTANY 2024; 111:e16260. [PMID: 38031482 DOI: 10.1002/ajb2.16260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
PREMISE Herbivore pressure can vary across the range of a species, resulting in different defensive strategies. If herbivory is greater at lower latitudes, plants may be better defended there, potentially driving a latitudinal gradient in defense. However, relationships that manifest across the entire range of a species may be confounded by differences within genetic subpopulations, which may obscure the drivers of these latitudinal gradients. METHODS We grew plants of the widespread perennial grass Panicum virgatum in a common garden that included genotypes from three genetic subpopulations spanning an 18.5° latitudinal gradient. We then assessed defensive strategies of these plants by measuring two physical resistance traits-leaf mass per area (LMA) and leaf ash, a proxy for silica-and multiple measures of herbivory by caterpillars of the generalist herbivore fall armyworm (Spodoptera frugiperda). RESULTS Across all genetic subpopulations, low-latitude plants experienced less herbivory than high-latitude plants. Within genetic subpopulations, however, this relationship was inconsistent-the most widely distributed and phenotypically variable subpopulation (Atlantic) exhibited more consistent latitudinal trends than either of the other two subpopulations. The two physical resistance traits, LMA and leaf ash, were both highly heritable and positively associated with resistance to different measures of herbivory across all subpopulations, indicating their importance in defense against herbivores. Again, however, these relationships were inconsistent within subpopulations. CONCLUSIONS Defensive gradients that occur across the entire species range may not arise within localized subpopulations. Thus, identifying the drivers of latitudinal gradients in herbivory defense may depend on adequately sampling the diversity within a species.
Collapse
Affiliation(s)
- Kevin C Headrick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
23
|
Furey GN, Tilman D. Trade-offs between deer herbivory and nitrogen competition alter grassland forb composition. Oecologia 2024; 204:47-58. [PMID: 38091102 PMCID: PMC10830730 DOI: 10.1007/s00442-023-05485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer, Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; -45 ± 19 g m-2) with no interaction with N addition. N addition at 5.44 and 9.52 g N m-2 year-1 led to increases in biomass. There were weak increases in species richness associated with deer presence, but only for no or low added N (1 and 2 g N m-2 year-1). However, the presence of deer greatly impacted the abundances of some of the dominant perennial forb species, but not the dominant grasses. Deer presence increased the abundance of the forb Artemisia ludoviciana by 34 ± 12 SE g m-2 (94%) and decreased the forb Solidago rigida by 32 ± 13 SE g m-2 (79%). We suggest that these changes may have resulted from trade-offs in plant competitive ability for soil N versus resistance to deer herbivory. Field observations suggest deer acted as florivores, mainly consuming the flowers of susceptible forb species. The preferential consumption of flowers of forbs that seem to be superior N competitors appears to create an axis of interspecific niche differentiation. The overpopulation of white-tailed deer in many tallgrass reserves likely structures the abundance of forb species.
Collapse
Affiliation(s)
- George N Furey
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway.
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA.
| | - David Tilman
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| |
Collapse
|
24
|
Huang X, He M, Li L, Wang Z, Shi L, Zhao X, Hou F. Grazing and precipitation addition reduces the temporal stability of aboveground biomass in a typical steppe of Chinese Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167156. [PMID: 37751835 DOI: 10.1016/j.scitotenv.2023.167156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023]
Abstract
Few studies on the effects of human activities and global climate change on temporal stability have considered either grazing or precipitation addition (PA). How community stability responds to the interaction between PA and grazing in a single experiment remains unknown. We studied the impact of grazing and PA on the temporal stability of communities in four years field experiment conducted in a typical steppe, adopting a randomized complete block design with grazing was the main block factor and PA was the split block factor. Grazing and PA had negative impacts on the temporal stability of communities. PA reduced the community stability through decreasing the stability of subordinate and community species richness (SR), whereas grazing reduced the community stability through decreasing the stability of the SR and dominant species. In contrast, grazing and PA maintained community stability through increasing species asynchronism and promoting the decoupling of asynchronism and stability. Our results revealed the different mechanisms of grazing and PA on community stability. Exploring the response characteristics of population dynamics to global climate change and pasture management is key to understanding future climate scenarios and changes in community stability under grazing.
Collapse
Affiliation(s)
- Xiaojuan Huang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China
| | - Meiyue He
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Lan Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Zhen Wang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Liyuan Shi
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xinzhou Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
25
|
Tulloch AIT, Healy A, Silcock J, Wardle GM, Dickman CR, Frank ASK, Aubault H, Barton K, Greenville AC. Long-term livestock exclusion increases plant richness and reproductive capacity in arid woodlands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2909. [PMID: 37602895 DOI: 10.1002/eap.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 08/22/2023]
Abstract
Herbivore exclusion is implemented globally to recover ecosystems from grazing by introduced and native herbivores, but evidence for large-scale biodiversity benefits is inconsistent in arid ecosystems. We examined the effects of livestock exclusion on dryland plant richness and reproductive capacity. We collected data on plant species richness and seeding (reproductive capacity), rainfall, vegetation productivity and cover, soil strength and herbivore grazing intensity from 68 sites across 6500 km2 of arid Georgina gidgee (Acacia georginae) woodlands in central Australia between 2018 and 2020. Sites were on an actively grazed cattle station and two destocked conservation reserves. We used structural equation modeling to examine indirect (via soil or vegetation modification) versus direct (herbivory) effects of grazing intensity by two introduced herbivores (cattle, camels) and a native herbivore (red kangaroo), on seasonal plant species richness and seeding of all plants, and the richness and seeding of four plant groups (native grasses, forbs, annual chenopod shrubs, and palatable perennial shrubs). Non-native herbivores had a strong indirect effect on plant richness and seeding by reducing vegetative ground cover, resulting in decreased richness and seeding of native grasses and forbs. Herbivores also had small but negative direct impacts on plant richness and seeding. This direct effect was explained by reductions in annual chenopod and palatable perennial shrub richness under grazing activity. Responses to grazing were herbivore-dependent; introduced herbivore grazing reduced native plant richness and seeding, while native herbivore grazing had no significant effect on richness or seeding of different plant functional groups. Soil strength decreased under grazing by cattle but not camels or kangaroos. Cattle had direct effects on palatable perennial shrub richness and seeding, whereas camels had indirect effects, reducing richness and seeding by reducing the abundance of shrubs. We show that considering indirect pathways improves evaluations of the effects of disturbances on biodiversity, as focusing only on direct effects can mask critical mechanisms of change. Our results indicate substantial biodiversity benefits from excluding livestock and controlling camels in drylands. Reducing introduced herbivore impacts will improve soil and vegetation condition, ensure reproduction and seasonal persistence of species, and protect native plant diversity.
Collapse
Affiliation(s)
- Ayesha I T Tulloch
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Al Healy
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jennifer Silcock
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Glenda M Wardle
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Dickman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Anke S K Frank
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Pilungah Reserve, Bush Heritage Australia, Boulia, Queensland, Australia
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Port Macquarie, New South Wales, Australia
| | - Helene Aubault
- Ethabuka Reserve, Bush Heritage Australia, Bedourie, Queensland, Australia
| | - Kyle Barton
- Ethabuka Reserve, Bush Heritage Australia, Bedourie, Queensland, Australia
| | - Aaron C Greenville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
26
|
Jiang S, Zhang J, Tang Y, Li Z, Liu H, Wang L, Wu Y, Liang C. Plant functional traits and biodiversity can reveal the response of ecosystem functions to grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165636. [PMID: 37487897 DOI: 10.1016/j.scitotenv.2023.165636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Plant functional traits can elucidate the response of plant communities and ecosystems to biotic and abiotic disturbances. However, whether livestock consume more aboveground biomass (AGB) in communities dominated by species with 'acquisitive' traits or in communities where biodiversity is high is not well known. Here, we measured 22 functional traits of the grazing communities and control communities in a Mongolian Plateau desert steppe. The effects of grazing on AGB, CWM traits, species diversity, and functional diversity (FD) were analysed, furthermore, we estimated the grazing impact by using the log response ratio (LRR, an increasing value shows a higher grazing impact) and investigated the correlations between the LRR, plant growth, and community-weighted mean (CWM) traits and diversity indices. We found that grazing significantly increased the CWM dry matter content and carbon-to‑nitrogen ratio and decreased the CWM height, specific leaf area (SLA), and nitrogen and phosphorus contents. The AGB decreased, while species diversity and FD increased under grazing treatments. Additionally, we found that plant traits and biodiversity could predict the response of AGB to grazing, the LRR was higher in patches dominated by species with 'acquisitive' foliage and in patches with higher biodiversity; in these patches, plant growth was lower. In the study area, the response of CWM traits to grazing suggests an avoidance strategy, which may be more conducive for adapting to low resource utilization environments. Also, the relationship between the CWM traits and the LRR indicated that the effect of grazing on AGB was mainly related to the selective foraging of herbivores. In addition, patches preferred by livestock may not recover quickly, leading to slow growth and thus reduced biomass under grazing treatments after prolonged grazing.
Collapse
Affiliation(s)
- Shan Jiang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jinghui Zhang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Yiwei Tang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhiyong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Huamin Liu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Lixin Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Ministry of Education of China and Inner Mongolia Autonomous Region, Collaborative Innovation Centre for Grassland Ecological Security, Hohhot 010021, China
| | - Yantao Wu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Cunzhu Liang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
27
|
Sturchio MA, Knapp AK. Ecovoltaic principles for a more sustainable, ecologically informed solar energy future. Nat Ecol Evol 2023; 7:1746-1749. [PMID: 37563466 DOI: 10.1038/s41559-023-02174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Affiliation(s)
- Matthew A Sturchio
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Alan K Knapp
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
28
|
Ren S, Cao Y, Li J. Nitrogen availability constrains grassland plant diversity in response to grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165273. [PMID: 37406710 DOI: 10.1016/j.scitotenv.2023.165273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Grassland plant diversity has been observed with divergent responses in grazing experiments around the world. However, the dominant role of nitrogen (N) availability in controlling this global variation has not been well explored, impeding our capacity to formulate effective strategies for preserving grassland plant diversity. Here, we synthesized data from 306 grazing experiments that measured plant diversity and soil N content across global grasslands. Overall, grazing reduced plant diversity by 7.63 %, with substantial variations observed across the dataset. Our study revealed that these contrasting effects were best explained by soil N change. Plant diversity under enhanced soil N showed a strong increase in response to grazing. We found that lower grazing intensity and higher background N deposition could collectively enhance soil N, thereby promoting diversity. These results suggest that while avoiding high grazing intensity is crucial in maintaining biodiversity of grazed grasslands, it alone is not sufficient. In regions with lower N deposition (< 500 mg N m-2 yr-1), additional management strategies that target improving soil fertility are needed. Our analysis propounds that local environmental conditions should be incorporated into decision-making of grassland biodiversity conservation, or ignoring this may lead to counterproductive impacts.
Collapse
Affiliation(s)
- Shuai Ren
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yingfang Cao
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| |
Collapse
|
29
|
Mungi NA, Jhala YV, Qureshi Q, le Roux E, Svenning JC. Megaherbivores provide biotic resistance against alien plant dominance. Nat Ecol Evol 2023; 7:1645-1653. [PMID: 37652995 DOI: 10.1038/s41559-023-02181-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 07/26/2023] [Indexed: 09/02/2023]
Abstract
While human-driven biological invasions are rapidly spreading, finding scalable and effective control methods poses an unresolved challenge. Here, we assess whether megaherbivores-herbivores reaching ≥1,000 kg of body mass-offer a nature-based solution to plant invasions. Invasive plants are generally adapted to maximize vegetative growth. Megaherbivores, with broad dietary tolerances, could remove large biomass of established plants, facilitating new plant growth. We used a massive dataset obtained from 26,838 camera stations and 158,979 vegetation plots to assess the relationships between megaherbivores, native plants and alien plants across India (~121,330 km2). We found a positive relationship between megaherbivore abundance and native plant richness and abundance, and a concomitant reduction in alien plant abundance. This relationship was strongest in protected areas with midproductive ecosystem and high megaherbivore density but it was lost in areas where thicket-forming alien plants predominated (>40% cover). By incorporating the role of ecosystem productivity, plants traits and densities of megaherbivores on megaherbivore-vegetation relationships, our study highlights a function of megaherbivores in controlling alien plant proliferation and facilitating diverse native plants in invaded ecosystems. The study shows great potential for megafauna-based trophic rewilding as a nature-based solution to counteract dominance of plant invasions.
Collapse
Affiliation(s)
- Ninad Avinash Mungi
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark.
- Wildlife Institute of India, Dehradun, India.
| | | | | | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
30
|
Tian Z, Li W, Kou Y, Dong X, Liu H, Yang X, Dong Q, Chen T. Effects of Different Livestock Grazing on Foliar Fungal Diseases in an Alpine Grassland on the Qinghai-Tibet Plateau. J Fungi (Basel) 2023; 9:949. [PMID: 37755057 PMCID: PMC10533196 DOI: 10.3390/jof9090949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
In grassland ecosystems, the occurrence and transmission of foliar fungal diseases are largely dependent on grazing by large herbivores. However, whether herbivores that have different body sizes differentially impact foliar fungal diseases remains largely unexplored. Thus, we conducted an 8-year grazing experiment in an alpine grassland on the Qinghai-Tibet Plateau in China and tested how different types of livestock (sheep (Ovis aries), yak (Bos grunniens), or both)) affected foliar fungal diseases at the levels of both plant population and community. At the population level, grazing by a single species (yak or sheep) or mixed species (sheep and yak) significantly decreased the severity of eight leaf spot diseases. Similarly, at the community level, both single species (yak or sheep) and mixed grazing by both sheep and yak significantly decreased the community pathogen load. However, we did not find a significant difference in the community pathogen load among different types of livestock. These results suggest that grazing by large herbivores, independently of livestock type, consistently decreased the prevalence of foliar fungal diseases at both the plant population and community levels. We suggest that moderate grazing by sheep or yak is effective to control the occurrence of foliar fungal diseases in alpine grasslands. This study advances our knowledge of the interface between disease ecology, large herbivores, and grassland science.
Collapse
Affiliation(s)
- Zhen Tian
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.T.); (W.L.); (Y.K.); (X.D.); (H.L.)
| | - Wenjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.T.); (W.L.); (Y.K.); (X.D.); (H.L.)
| | - Yixin Kou
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.T.); (W.L.); (Y.K.); (X.D.); (H.L.)
| | - Xin Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.T.); (W.L.); (Y.K.); (X.D.); (H.L.)
| | - Huining Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.T.); (W.L.); (Y.K.); (X.D.); (H.L.)
| | - Xiaoxia Yang
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (X.Y.); (Q.D.)
| | - Quanmin Dong
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China; (X.Y.); (Q.D.)
| | - Tao Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China; (Z.T.); (W.L.); (Y.K.); (X.D.); (H.L.)
| |
Collapse
|
31
|
Qiqige B, Wei B, Wei Y, Liu M, Bi Y, Xu R, Liu N, Yang G, Zhang Y. Climate, not grazing, influences soil microbial diversity through changes in vegetation and abiotic factors on geographical patterns in the Eurasian steppe. FRONTIERS IN PLANT SCIENCE 2023; 14:1238077. [PMID: 37745991 PMCID: PMC10511900 DOI: 10.3389/fpls.2023.1238077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/26/2023] [Indexed: 09/26/2023]
Abstract
Livestock grazing has a significant impact on the biodiversity of nature grassland ecosystems, which is mainly regulated by climate factors. Soil microbes are essential components of biogeochemical cycles. However, the coupling effects of grazing with MAT (mean annual temperature) and MAP (mean annual precipitation) on soil microbial communities remain inconsistent. Our study considered the various climates in four grasslands as natural temperature and precipitation gradients combined with grazing intensity (GI). We collected and analyzed vegetation and soil physiochemical properties from four grasslands. Our results showed that climate factors (CF) changed β diversity of soil bacteria and fungi while grazing intensity and their interaction merely affected fungi β diversity. Furthermore, climate factors and grazing intensity impacted changes in vegetation and soil physiochemical properties, with their interaction leading to changes in EC and MBC. Our analysis revealed that climate factors contributed 13.1% to bacteria community variation while grazing intensity contributed 3.01% to fungi community variation. Piecewise SEM analysis demonstrated that MAT and MAP were essential predictors of bacteria β diversity, which was significantly affected by vegetation and soil carbon and nitrogen. At the same time, MAP was an essential factor of fungi β diversity and was mainly affected by soil nitrogen. Our study indicated that bacteria and fungi β diversity was affected by different environmental processes and can adapt to specific grazing intensities over time.
Collapse
Affiliation(s)
- Bademu Qiqige
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Bin Wei
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuqi Wei
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mohan Liu
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yixian Bi
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruixuan Xu
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Nan Liu
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Gaowen Yang
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yingjun Zhang
- Department of Grassland Science, College of Grassland Science & Technology, China Agricultural University, Beijing, China
- Key Laboratory of Grasslands Management and Utilization, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
32
|
Li T, Zhong Z, Pearson DE, Ortega YK, Li W, Li Y, Zhu H, Risch AC, Wang D. Parasites as ecosystem modulators: foliar pathogens suppress top-down effects of large herbivores. THE NEW PHYTOLOGIST 2023; 239:340-349. [PMID: 36978282 DOI: 10.1111/nph.18912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 06/02/2023]
Abstract
Parasites can catalyze or inhibit interactions between their hosts and other species, but the ecosystem-level effects of such interaction modifications are poorly understood. We conducted a large-scale field experiment in temperate grasslands of China to understand how foliar fungal pathogens influenced top-down effects of cattle on plant diversity and productivity. When foliar pathogens were suppressed, cattle grazing strongly reduced biomass of the dominant grass, Leymus chinensis, generating competitive release that significantly increased community-level species richness and evenness. In the absence of grazing, pathogen attack on L. chinensis had no measurable effect on host biomass. However, pathogens disrupted top-down effects of herbivory by inhibiting grazing effects on plant biomass and species richness. Mechanistically, fungal pathogens were linked to increased alkaloid and reduced nitrogen levels in leaf tissue, which appeared to deter cattle grazing on L. chinensis. In conclusion, foliar pathogens can suppress top-down effects of large herbivores on grassland community composition and ecosystem function by modifying the strength of their host's interactions with dominant consumers. Parasites may act as modulators of ecosystem function when their direct effects on host abundance are overshadowed by powerful influences on host traits that modify their interactions with competitors, herbivores, or predators.
Collapse
Affiliation(s)
- Tianyun Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Zhiwei Zhong
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Dean E Pearson
- Rocky Mountain Research Station, USDA Forest Service, 800 E. Beckwith Avenue, Missoula, MT, 59801, USA
- Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
| | - Yvette K Ortega
- Rocky Mountain Research Station, USDA Forest Service, 800 E. Beckwith Avenue, Missoula, MT, 59801, USA
| | - Wenjun Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Yanan Li
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Hui Zhu
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Deli Wang
- Institute of Grassland Science, Key Laboratory of Vegetation Ecology, Ministry of Education/Jilin Songnen Grassland Ecosystem National Observation and Research Station, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
33
|
Pringle RM, Abraham JO, Anderson TM, Coverdale TC, Davies AB, Dutton CL, Gaylard A, Goheen JR, Holdo RM, Hutchinson MC, Kimuyu DM, Long RA, Subalusky AL, Veldhuis MP. Impacts of large herbivores on terrestrial ecosystems. Curr Biol 2023; 33:R584-R610. [PMID: 37279691 DOI: 10.1016/j.cub.2023.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity, research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard to discern general principles. Here, we review what is known about the ecosystem impacts of large herbivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are generalizable across ecosystems: large herbivores consistently exert top-down control of plant demography, species composition, and biomass, thereby suppressing fires and the abundance of smaller animals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the greatest relevance for conservation and management are among the least certain, including effects on carbon storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroductions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot fully substitute for large ones, and large-herbivore species are not functionally redundant - losing any, especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how large-herbivore traits and environmental context interactively govern the ecological impacts of these animals.
Collapse
Affiliation(s)
- Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Joel O Abraham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston Salem, NC 27109, USA
| | - Tyler C Coverdale
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew B Davies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | - Jacob R Goheen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82072, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Matthew C Hutchinson
- Department of Life & Environmental Sciences, University of California Merced, Merced, CA 95343, USA
| | - Duncan M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amanda L Subalusky
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Michiel P Veldhuis
- Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|
34
|
Liu H, Zhang J, Wang B. Contrasting seed traits of co-existing seeds lead to a complex neighbor effect in a seed-rodent interaction. Oecologia 2023; 201:1017-1024. [PMID: 36971820 DOI: 10.1007/s00442-023-05365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Scatter-hoarding rodents play important roles in seed dispersal and predation in many forest ecosystems. Existing studies have shown that the seed foraging preference of rodents is directly affected by seed traits and indirectly affected by the traits of other co-existing seeds nearby (i.e., neighbor effect). Plant seeds exhibit a combination of diverse seed traits, including seed size, chemical defense, and nutrient content. Therefore, it is difficult to evaluate the influence of each single seed trait on such neighbor effects. Here, by using artificial seeds, we investigated the impacts of contrasts in seed size, tannin content, and nutrient content on neighbor effects. We tracked 9000 tagged artificial seeds from 30 seed-seed paired treatments in a subtropical forest in southwest China. The contrast in seed size between paired seeds created obvious neighbor effects measured through three seed dispersal related indicators: the proportion of seeds being removed, the proportion of seeds cached, and the distance transported by rodents. However, the magnitudes and the signs of the neighbor effects differed among pairs, including both apparent mutualism and apparent competition, depending on the contrast in seed size between paired seeds. The contrasts of tannin and nutrient content between paired seeds showed relatively few neighbor effects. Our results suggest that the contrast in seed traits between the target seed and its neighboring seeds should be considered when studying rodent-seed interactions. Furthermore, we expect that similar complex neighbor effects may also exist in other plant-animal interactions, such as pollination and herbivory.
Collapse
Affiliation(s)
- Hui Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Jinyu Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Bo Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration (Anhui University), Hefei, 230601, China.
- Anhui Shengjin Lake Wetland Ecology National Long-Term Scientific Research Base, Dongzhi, Chizhou, 247230, China.
| |
Collapse
|
35
|
Bröcher M, Ebeling A, Hertzog L, Roscher C, Weisser W, Meyer ST. Effects of plant diversity on species-specific herbivory: patterns and mechanisms. Oecologia 2023; 201:1053-1066. [PMID: 36964400 PMCID: PMC10113292 DOI: 10.1007/s00442-023-05361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/12/2023] [Indexed: 03/26/2023]
Abstract
Invertebrate herbivory can shape plant communities when impacting growth and fitness of some plant species more than other species. Previous studies showed that herbivory varies among plant species and that species-specific herbivory is affected by the diversity of the surrounding plant community. However, mechanisms underlying this variation are still poorly understood. In this study, we investigate how plant traits and plant apparency explain differences in herbivory among plant species and we explore the effect of plant community diversity on these species-specific relationships. We found that species differed in the herbivory they experienced. Forbs were three times more damaged by herbivores than grasses. Variability within grasses was caused by differences in leaf dry matter content (LDMC). Furthermore, higher plant diversity increased herbivory on 15 plant species and decreased herbivory on nine species. Variation within forb and grass species in their response to changing plant diversity was best explained by species' physical resistance (LDMC, forbs) and biomass (grasses). Overall, our results show that herbivory and diversity effects on herbivory differ among species, and that, depending on the plant functional group, either species-specific traits or apparency are driving those differences. Thus, herbivores might selectively consume palatable forbs or abundant grasses with contrasting consequences for plant community composition in grasslands dominated by either forbs or grasses.
Collapse
Affiliation(s)
- M Bröcher
- Institute of Ecology and Evolution, University of Jena, Jena, Germany.
| | - A Ebeling
- Institute of Ecology and Evolution, University of Jena, Jena, Germany
| | - L Hertzog
- Thünen Institute of Biodiversity, Brunswick, Germany
| | - C Roscher
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - W Weisser
- Terrestrial Ecology Research Group, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - S T Meyer
- Terrestrial Ecology Research Group, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
36
|
Macroevolutionary analyses point to a key role of hosts in diversification of the highly speciose eriophyoid mite superfamily. Mol Phylogenet Evol 2023; 179:107676. [PMID: 36535519 DOI: 10.1016/j.ympev.2022.107676] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The superfamily Eriophyoidea includes >5000 named species of very small phytophagous mites. As for many groups of phytophagous invertebrates, factors responsible for diversification of eriophyoid mites are unclear. Here, we used an inferred phylogeny of 566 putative species of eriophyoid mites based on fragments of two mitochondrial genes and two nuclear genes to examine factors associated with their massive evolutionary diversification through time. Our dated phylogeny indicates a Carboniferous origin for gymnosperm-associated Eriophyoidea with subsequent diversification involving multiple host shifts to angiosperms-first to dicots, and then to monocots or shifts back to gymnosperms-beginning in the Cretaceous period when angiosperms diverged. Speciation rates increased more rapidly in the Eriophyidae + Diptilomiopidae (mostly infesting angiosperms) than in the Phytoptidae (mostly infesting gymnosperms). Phylogenetic signal, speciation rates, dispersal and vicariance results combined with inferred topologies show that hosts played a key role in the evolution of eriophyoid mites. Speciation constrained by hosts was probably the main driver behind eriophyoid mite diversification worldwide. We demonstrate monophyly of the Eriophyoidea, whereas all three families, most subfamilies, tribes, and most genera are not monophyletic. Our time-calibrated tree provides a framework for further evolutionary studies of eriophyoid mites and their interactions with host plants as well as taxonomic revisions above the species level.
Collapse
|
37
|
Sonnier G, Boughton EH, Whittington R. Long-term response of wetland plant communities to management intensity, grazing abandonment, and prescribed fire. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2732. [PMID: 36054269 PMCID: PMC10078234 DOI: 10.1002/eap.2732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 05/12/2023]
Abstract
Isolated, seasonal wetlands within agricultural landscapes are important ecosystems. However, they are currently experiencing direct and indirect effects of agricultural management surrounding them. Because wetlands provide important ecosystem services, it is crucial to determine how these factors affect ecological communities. Here, we studied the long-term effects of land-use intensification, cattle grazing, prescribed fires, and their interactions on wetland plant diversity, community dynamics, and functional diversity. To do this, we used vegetation and trait data from a 14-year-old experiment on 40 seasonal wetlands located within seminatural and intensively managed pastures in Florida. These wetlands were allocated different grazing and prescribed fire treatments (grazed vs. ungrazed, burned vs. unburned). Our results showed that wetlands within intensively managed pastures have lower native plant diversity, floristic quality, evenness, and higher nonnative species diversity and exhibited the most resource-acquisitive traits. Wetlands embedded in intensively managed pastures were also characterized by lower species turnover over time. We found that 14 years of cattle exclusion reduced species diversity in both pasture management intensities and had no effect on floristic quality. Fenced wetlands exhibited lower functional diversity and experienced a higher rate of community change, both due to an increase in tall, clonal, and palatable grasses. The effects of prescribed fires were often dependent on grazing treatment. For instance, prescribed fires increased functional diversity in fenced wetlands but not in grazed wetlands. Our study suggests that cattle exclusion and prescribed fires are not enough to restore wetlands in intensively managed pastures and further highlights the importance of not converting seminatural pastures to intensively managed pastures. Our study also suggests that grazing levels applied in seminatural pastures maintained high plant diversity and prevented tree and shrub encroachment and that in the absence of grazing, prescribed fire became crucial to maintaining higher species evenness.
Collapse
Affiliation(s)
| | | | - Ruth Whittington
- Archbold Biological StationVenusFloridaUSA
- Colorado Natural Heritage ProgramColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
38
|
Abstract
Ungulate populations are increasing across Europe with important implications for forest plant communities. Concurrently, atmospheric nitrogen (N) deposition continues to eutrophicate forests, threatening many rare, often more nutrient-efficient, plant species. These pressures may critically interact to shape biodiversity as in grassland and tundra systems, yet any potential interactions in forests remain poorly understood. Here, we combined vegetation resurveys from 52 sites across 13 European countries to test how changes in ungulate herbivory and eutrophication drive long-term changes in forest understorey communities. Increases in herbivory were associated with elevated temporal species turnover, however, identities of winner and loser species depended on N levels. Under low levels of N-deposition, herbivory favored threatened and small-ranged species while reducing the proportion of non-native and nutrient-demanding species. Yet all these trends were reversed under high levels of N-deposition. Herbivores also reduced shrub cover, likely exacerbating N effects by increasing light levels in the understorey. Eutrophication levels may therefore determine whether herbivory acts as a catalyst for the "N time bomb" or as a conservation tool in temperate forests.
Collapse
|
39
|
Maestre FT, Le Bagousse-Pinguet Y, Delgado-Baquerizo M, Eldridge DJ, Saiz H, Berdugo M, Gozalo B, Ochoa V, Guirado E, García-Gómez M, Valencia E, Gaitán JJ, Asensio S, Mendoza BJ, Plaza C, Díaz-Martínez P, Rey A, Hu HW, He JZ, Wang JT, Lehmann A, Rillig MC, Cesarz S, Eisenhauer N, Martínez-Valderrama J, Moreno-Jiménez E, Sala O, Abedi M, Ahmadian N, Alados CL, Aramayo V, Amghar F, Arredondo T, Ahumada RJ, Bahalkeh K, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Bran D, Bu C, Canessa R, Castillo-Monroy AP, Castro H, Castro I, Castro-Quezada P, Chibani R, Conceição AA, Currier CM, Darrouzet-Nardi A, Deák B, Donoso DA, Dougill AJ, Durán J, Erdenetsetseg B, Espinosa CI, Fajardo A, Farzam M, Ferrante D, Frank ASK, Fraser LH, Gherardi LA, Greenville AC, Guerra CA, Gusmán-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Hughes FM, Jadán-Maza O, Jeltsch F, Jentsch A, Kaseke KF, Köbel M, Koopman JE, Leder CV, Linstädter A, le Roux PC, Li X, Liancourt P, Liu J, Louw MA, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pivari MOD, Pueyo Y, Quiroga RE, Rahmanian S, Reed SC, Rey PJ, et alMaestre FT, Le Bagousse-Pinguet Y, Delgado-Baquerizo M, Eldridge DJ, Saiz H, Berdugo M, Gozalo B, Ochoa V, Guirado E, García-Gómez M, Valencia E, Gaitán JJ, Asensio S, Mendoza BJ, Plaza C, Díaz-Martínez P, Rey A, Hu HW, He JZ, Wang JT, Lehmann A, Rillig MC, Cesarz S, Eisenhauer N, Martínez-Valderrama J, Moreno-Jiménez E, Sala O, Abedi M, Ahmadian N, Alados CL, Aramayo V, Amghar F, Arredondo T, Ahumada RJ, Bahalkeh K, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Bran D, Bu C, Canessa R, Castillo-Monroy AP, Castro H, Castro I, Castro-Quezada P, Chibani R, Conceição AA, Currier CM, Darrouzet-Nardi A, Deák B, Donoso DA, Dougill AJ, Durán J, Erdenetsetseg B, Espinosa CI, Fajardo A, Farzam M, Ferrante D, Frank ASK, Fraser LH, Gherardi LA, Greenville AC, Guerra CA, Gusmán-Montalvan E, Hernández-Hernández RM, Hölzel N, Huber-Sannwald E, Hughes FM, Jadán-Maza O, Jeltsch F, Jentsch A, Kaseke KF, Köbel M, Koopman JE, Leder CV, Linstädter A, le Roux PC, Li X, Liancourt P, Liu J, Louw MA, Maggs-Kölling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Oñatibia GR, Peter G, Pivari MOD, Pueyo Y, Quiroga RE, Rahmanian S, Reed SC, Rey PJ, Richard B, Rodríguez A, Rolo V, Rubalcaba JG, Ruppert JC, Salah A, Schuchardt MA, Spann S, Stavi I, Stephens CRA, Swemmer AM, Teixido AL, Thomas AD, Throop HL, Tielbörger K, Travers S, Val J, Valkó O, van den Brink L, Ayuso SV, Velbert F, Wamiti W, Wang D, Wang L, Wardle GM, Yahdjian L, Zaady E, Zhang Y, Zhou X, Singh BK, Gross N. Grazing and ecosystem service delivery in global drylands. Science 2022; 378:915-920. [DOI: 10.1126/science.abq4062] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.
Collapse
Affiliation(s)
- Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
- Departamento de Ecología, Universidad de Alicante, Alicante, Spain
| | | | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Sevilla, Spain
| | - David J. Eldridge
- Department of Planning and Environment, c/o Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hugo Saiz
- Departamento de Ciencias Agrarias y Medio Natural, Escuela Politécnica Superior, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Huesca, Spain
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Miguel Berdugo
- Institut de Biología Evolutiva (UPF-CSIC), Barcelona, Spain
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Beatriz Gozalo
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
| | - Victoria Ochoa
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Emilio Guirado
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
| | - Miguel García-Gómez
- Departamento de Ingeniería y Morfología del Terreno, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Universidad Politécnica de Madrid, Madrid, Spain
| | - Enrique Valencia
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
- Departamento de Biodiversidad, Ecología y Evolución, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan J. Gaitán
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Suelos-CNIA, Buenos Aires, Argentina
- Universidad Nacional de Luján, Departamento de Tecnología, Luján, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
| | - Sergio Asensio
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
| | - Betty J. Mendoza
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles, Spain
| | - César Plaza
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Paloma Díaz-Martínez
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Ana Rey
- Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Hang-Wei Hu
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Science, Fujian Normal University, Fuzhou, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ji-Zheng He
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education, School of Geographical Science, Fujian Normal University, Fuzhou, China
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jun-Tao Wang
- Global Centre for Land-Based Innovation, Western Sydney University, Sydney, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Anika Lehmann
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Institute of Biology, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Leipzig University, Institute of Biology, Leipzig, Germany
| | - Jaime Martínez-Valderrama
- Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef,” Universidad de Alicante, Alicante, Spain
| | - Eduardo Moreno-Jiménez
- Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autónoma de Madrid, Madrid, Spain
| | - Osvaldo Sala
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- School of Sustainability, Arizona State University, Tempe, AZ, USA
- Global Drylands Center, Arizona State University, Tempe, AZ, USA
| | - Mehdi Abedi
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
| | - Negar Ahmadian
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
| | | | - Valeria Aramayo
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Bariloche, Bariloche, Río Negro, Argentina
| | - Fateh Amghar
- Laboratoire de Recherche: Biodiversité, Biotechnologie, Environnement et Développement Durable (BioDev), Faculté des Sciences, Université M’hamed Bougara de Boumerdès, Boumerdès, Algérie
| | - Tulio Arredondo
- Instituto Potosino de Investigación Científica y Tecnológica, A.C., San Luis Potosí, Mexico
| | - Rodrigo J. Ahumada
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Catamarca, Catamarca, Argentina
| | - Khadijeh Bahalkeh
- Department of Range Management, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran Province, Iran
| | - Farah Ben Salem
- Laboratory of Range Ecology, Institut des Régions Arides (IRA), Médenine, Tunisia
| | - Niels Blaum
- University of Potsdam, Plant Ecology and Conservation Biology, Potsdam, Germany
| | - Bazartseren Boldgiv
- Laboratory of Ecological and Evolutionary Synthesis, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Matthew A. Bowker
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Donaldo Bran
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Bariloche, Bariloche, Río Negro, Argentina
| | - Chongfeng Bu
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Rafaella Canessa
- Ecological Plant Geography, Faculty of Geography, University of Marburg, Marburg, Germany
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | | | - Helena Castro
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ignacio Castro
- Universidad Nacional Experimental Simón Rodríguez (UNESR), Instituto de Estudios Científicos y Tecnológicos (IDECYT), Centro de Estudios de Agroecología Tropical (CEDAT), Miranda, Venezuela
| | - Patricio Castro-Quezada
- Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Grupo de Agroforestería, Manejo y Conservación del paisaje, Cuenca, Ecuador
| | - Roukaya Chibani
- Laboratory of Range Ecology, Institut des Régions Arides (IRA), Médenine, Tunisia
| | - Abel A. Conceição
- Universidade Estadual de Feira de Santana (UEFS), Departamento de Ciências Biológicas, Bahia, Brazil
| | - Courtney M. Currier
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Global Drylands Center, Arizona State University, Tempe, AZ, USA
| | | | - Balázs Deák
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | - David A. Donoso
- Departamento de Biología, Escuela Politécnica Nacional, Quito, Ecuador
- Centro de Investigación de la Biodiversidad y Cambio Climático, Universidad Tecnológica Indoamérica, Quito, Ecuador
| | - Andrew J. Dougill
- Department of Environment and Geography, University of York, York, UK
| | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Misión Biolóxica de Galicia, CSIC, Pontevedra, Spain
| | - Batdelger Erdenetsetseg
- Laboratory of Ecological and Evolutionary Synthesis, Department of Biology, School of Arts and Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Carlos I. Espinosa
- Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador
| | - Alex Fajardo
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Talca, Chile
| | - Mohammad Farzam
- Department of Range and Watershed Management, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Daniela Ferrante
- Instituto Nacional de Tecnología Agropecuaria EEA Santa Cruz, Río Gallegos, Santa Cruz, Argentina
- Universidad Nacional de la Patagonia Austral, Río Gallegos, Santa Cruz, Argentina
| | - Anke S. K. Frank
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Port Macquarie, New South Wales, Australia
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Lauchlan H. Fraser
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Laureano A. Gherardi
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Aaron C. Greenville
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carlos A. Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Martin-Luther University Halle Wittenberg, Halle (Saale), Germany
| | | | - Rosa M. Hernández-Hernández
- Universidad Nacional Experimental Simón Rodríguez (UNESR), Instituto de Estudios Científicos y Tecnológicos (IDECYT), Centro de Estudios de Agroecología Tropical (CEDAT), Miranda, Venezuela
| | - Norbert Hölzel
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | | | - Frederic M. Hughes
- Universidade Estadual de Feira de Santana (UEFS), Departamento de Ciências Biológicas, Bahia, Brazil
- Instituto Nacional da Mata Atlântica (INMA), Espírito Santo, Brazil
| | - Oswaldo Jadán-Maza
- Universidad de Cuenca, Facultad de Ciencias Agropecuarias, Carrera de Ingeniería Agronómica, Grupo de Agroforestería, Manejo y Conservación del paisaje, Cuenca, Ecuador
| | - Florian Jeltsch
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- University of Potsdam, Plant Ecology and Conservation Biology, Potsdam, Germany
| | - Anke Jentsch
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Kudzai F. Kaseke
- Earth Research Institute, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Melanie Köbel
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Jessica E. Koopman
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Cintia V. Leder
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
- Universidad Nacional de Río Negro, Sede Atlántica, CEANPa, Río Negro, Argentina
| | - Anja Linstädter
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
- Biodiversity Research/Systematic Botany Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Peter C. le Roux
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Xinkai Li
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi, China
| | - Pierre Liancourt
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
- Institute of Botany, Czech Academy of Sciences, Pruhonice, Czech Republic
- Botany Department, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Jushan Liu
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Michelle A. Louw
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Thulani P. Makhalanyane
- Microbiome@UP, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Oumarou Malam Issa
- Institut d’Écologie et des Sciences de l’Environnement de Paris (iEES-Paris), Sorbonne Université, IRD, CNRS, INRAE, Université Paris Est Creteil, Université de Paris, Centre IRD de France Nord, Bondy, France
| | - Antonio J. Manzaneda
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía, Universidad de Jaén, Jaén, Spain
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | - Eugene Marais
- Gobabeb-Namib Research Institute, Walvis Bay, Namibia
| | - Juan P. Mora
- Instituto de Investigación Interdisciplinaria (I3), Vicerrectoría Académica, Universidad de Talca, Talca, Chile
| | - Gerardo Moreno
- Forestry School, INDEHESA, Universidad de Extremadura, Plasencia, Spain
| | - Seth M. Munson
- US Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USA
| | - Alice Nunes
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Gabriel Oliva
- Instituto Nacional de Tecnología Agropecuaria EEA Santa Cruz, Río Gallegos, Santa Cruz, Argentina
- Universidad Nacional de la Patagonia Austral, Río Gallegos, Santa Cruz, Argentina
| | - Gastón R. Oñatibia
- Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Guadalupe Peter
- Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires, Argentina
- Universidad Nacional de Río Negro, Sede Atlántica, CEANPa, Río Negro, Argentina
| | - Marco O. D. Pivari
- Departamento de Botânica, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Yolanda Pueyo
- Instituto Pirenaico de Ecología (IPE, CSIC), Zaragoza, Spain
| | - R. Emiliano Quiroga
- Instituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Catamarca, Catamarca, Argentina
- Cátedra de Manejo de Pastizales Naturales, Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca, Argentina
| | - Soroor Rahmanian
- Department of Range and Watershed Management, Ferdowsi University of Mashhad, Mashhad, Iran
- Department of Forest Engineering, Forest Management Planning and Terrestrial Measurements, Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Brasov, Romania
| | - Sasha C. Reed
- US Geological Survey, Southwest Biological Science Center, Moab, UT, USA
| | - Pedro J. Rey
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía, Universidad de Jaén, Jaén, Spain
- Departamento de Biología Animal, Biología Vegetal y Ecología, Universidad de Jaén, Jaén, Spain
| | | | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Víctor Rolo
- Forestry School, INDEHESA, Universidad de Extremadura, Plasencia, Spain
| | | | - Jan C. Ruppert
- Plant Ecology Group, University of Tübingen, Tübingen, Germany
| | | | - Max A. Schuchardt
- Department of Disturbance Ecology, Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Sedona Spann
- School of Forestry, Northern Arizona University, Flagstaff, AZ, USA
| | - Ilan Stavi
- Dead Sea and Arava Science Center, Yotvata, Israel
| | - Colton R. A. Stephens
- Department of Natural Resource Science, Thompson Rivers University, Kamloops, British Columbia, Canada
| | - Anthony M. Swemmer
- South African Environmental Observation Network (SAEON), Phalaborwa, Kruger National Park, South Africa
| | - Alberto L. Teixido
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Mato Grosso, Brazil
| | - Andrew D. Thomas
- Department of Geography and Earth Sciences, Aberystwyth University, Wales, UK
| | - Heather L. Throop
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Samantha Travers
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - James Val
- Science Division, Department of Planning, Industry and Environment, New South Wales Government, Buronga, New South Wales, Australia
| | - Orsolya Valkó
- Lendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Vácrátót, Hungary
| | | | - Sergio Velasco Ayuso
- Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Frederike Velbert
- Institute of Landscape Ecology, University of Münster, Münster, Germany
| | - Wanyoike Wamiti
- Zoology Department, National Museums of Kenya, Nairobi, Kenya
| | - Deli Wang
- Key Laboratory of Vegetation Ecology of the Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Lixin Wang
- Department of Earth Sciences, Indiana University–Purdue University Indianapolis (IUPUI), Indianapolis, IN, USA
| | - Glenda M. Wardle
- Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura Yahdjian
- Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Eli Zaady
- Department of Natural Resources, Agricultural Research Organization, Institute of Plant Sciences, Gilat Research Center, Mobile Post Negev, Israel
| | - Yuanming Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiaobing Zhou
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Brajesh K. Singh
- Global Centre for Land-Based Innovation, Western Sydney University, Sydney, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, New South Wales, Australia
| | - Nicolas Gross
- Université Clermont Auvergne, INRAE, VetAgro Sup, Unité Mixte de Recherche Ecosystème Prairial, Clermont-Ferrand, France
| |
Collapse
|
40
|
Allan E. Shedding light on declines in diversity of grassland plants. Nature 2022; 611:240-241. [DOI: 10.1038/d41586-022-03458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Loss of grazing by large mammalian herbivores can destabilize the soil carbon pool. Proc Natl Acad Sci U S A 2022; 119:e2211317119. [PMID: 36252005 PMCID: PMC9618051 DOI: 10.1073/pnas.2211317119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grazing by mammalian herbivores can be a climate mitigation strategy as it influences the size and stability of a large soil carbon (soil-C) pool (more than 500 Pg C in the world's grasslands, steppes, and savannas). With continuing declines in the numbers of large mammalian herbivores, the resultant loss in grazer functions can be consequential for this soil-C pool and ultimately for the global carbon cycle. While herbivore effects on the size of the soil-C pool and the conditions under which they lead to gain or loss in soil-C are becoming increasingly clear, their effect on the equally important aspect of stability of soil-C remains unknown. We used a replicated long-term field experiment in the Trans-Himalayan grazing ecosystem to evaluate the consequences of herbivore exclusion on interannual fluctuations in soil-C (2006 to 2021). Interannual fluctuations in soil-C and soil-N were 30 to 40% higher after herbivore exclusion than under grazing. Structural equation modeling suggested that grazing appears to mediate the stabilizing versus destabilizing influences of nitrogen (N) on soil-C. This may explain why N addition stimulates soil-C loss in the absence of herbivores around the world. Herbivore loss, and the consequent decline in grazer functions, can therefore undermine the stability of soil-C. Soil-C is not inert but a very dynamic pool. It can provide nature-based climate solutions by conserving and restoring a functional role of large mammalian herbivores that extends to the stoichiometric coupling between soil-C and soil-N.
Collapse
|
42
|
Reintroducing bison results in long-running and resilient increases in grassland diversity. Proc Natl Acad Sci U S A 2022; 119:e2210433119. [PMID: 36037376 PMCID: PMC9457053 DOI: 10.1073/pnas.2210433119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The widespread extirpation of megafauna may have destabilized ecosystems and altered biodiversity globally. Most megafauna extinctions occurred before the modern record, leaving it unclear how their loss impacts current biodiversity. We report the long-term effects of reintroducing plains bison (Bison bison) in a tallgrass prairie versus two land uses that commonly occur in many North American grasslands: 1) no grazing and 2) intensive growing-season grazing by domesticated cattle (Bos taurus). Compared to ungrazed areas, reintroducing bison increased native plant species richness by 103% at local scales (10 m2) and 86% at the catchment scale. Gains in richness continued for 29 y and were resilient to the most extreme drought in four decades. These gains are now among the largest recorded increases in species richness due to grazing in grasslands globally. Grazing by domestic cattle also increased native plant species richness, but by less than half as much as bison. This study indicates that some ecosystems maintain a latent potential for increased native plant species richness following the reintroduction of native herbivores, which was unmatched by domesticated grazers. Native-grazer gains in richness were resilient to an extreme drought, a pressure likely to become more common under future global environmental change.
Collapse
|
43
|
Price JN, Sitters J, Ohlert T, Tognetti PM, Brown CS, Seabloom EW, Borer ET, Prober SM, Bakker ES, MacDougall AS, Yahdjian L, Gruner DS, Olde Venterink H, Barrio IC, Graff P, Bagchi S, Arnillas CA, Bakker JD, Blumenthal DM, Boughton EH, Brudvig LA, Bugalho MN, Cadotte MW, Caldeira MC, Dickman CR, Donohue I, Grégory S, Hautier Y, Jónsdóttir IS, Lannes LS, McCulley RL, Moore JL, Power SA, Risch AC, Schütz M, Standish R, Stevens CJ, Veen GF, Virtanen R, Wardle GM. Evolutionary history of grazing and resources determine herbivore exclusion effects on plant diversity. Nat Ecol Evol 2022; 6:1290-1298. [PMID: 35879541 DOI: 10.1038/s41559-022-01809-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/19/2022] [Indexed: 11/09/2022]
Abstract
Ecological models predict that the effects of mammalian herbivore exclusion on plant diversity depend on resource availability and plant exposure to ungulate grazing over evolutionary time. Using an experiment replicated in 57 grasslands on six continents, with contrasting evolutionary history of grazing, we tested how resources (mean annual precipitation and soil nutrients) determine herbivore exclusion effects on plant diversity, richness and evenness. Here we show that at sites with a long history of ungulate grazing, herbivore exclusion reduced plant diversity by reducing both richness and evenness and the responses of richness and diversity to herbivore exclusion decreased with mean annual precipitation. At sites with a short history of grazing, the effects of herbivore exclusion were not related to precipitation but differed for native and exotic plant richness. Thus, plant species' evolutionary history of grazing continues to shape the response of the world's grasslands to changing mammalian herbivory.
Collapse
Affiliation(s)
- Jodi N Price
- Gulbali Institute, Charles Sturt University, Albury, New South Wales, Australia.
| | - Judith Sitters
- Ecology and Biodiversity, Department Biology, Vrije Universiteit Brussel, Brussels, Belgium. .,Wageningen Environmental Research, Wageningen University and Research, Wageningen, the Netherlands.
| | - Timothy Ohlert
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Pedro M Tognetti
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cynthia S Brown
- Department of Agricultural Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | | | - Elisabeth S Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura Yahdjian
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Harry Olde Venterink
- Ecology and Biodiversity, Department Biology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Isabel C Barrio
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Reykjavik, Iceland
| | - Pamela Graff
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Carlos Alberto Arnillas
- Department of Physical and Environmental Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Dana M Blumenthal
- Rangeland Resources & Systems Research Unit, USDA Agricultural Research Service, Fort Collins, CO, USA
| | | | - Lars A Brudvig
- Department of Plant Biology and Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI, USA
| | - Miguel N Bugalho
- Centre for Applied Ecology 'Prof. Baeta Neves' (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, Ontario, Canada
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Chris R Dickman
- Desert Ecology Research Group, School of Life & Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Sonnier Grégory
- Archbold Biological Station, Buck Island Ranch, Lake Placid, FL, USA
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | | | - Luciola S Lannes
- Department of Biology and Animal Sciences, São Paulo State University-UNESP, Ilha Solteira, Brazil
| | - Rebecca L McCulley
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, USA
| | - Joslin L Moore
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Anita C Risch
- Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Community Ecology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Rachel Standish
- Environmental and Conservation Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - G F Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, Wageningen, the Netherlands
| | | | - Glenda M Wardle
- Desert Ecology Research Group, School of Life & Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
Richness, not evenness, varies across water availability gradients in grassy biomes on five continents. Oecologia 2022; 199:649-659. [PMID: 35833986 DOI: 10.1007/s00442-022-05208-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 06/10/2022] [Indexed: 10/17/2022]
Abstract
We sought to understand the role that water availability (expressed as an aridity index) plays in determining regional and global patterns of richness and evenness, and in turn how these water availability-diversity relationships may result in different richness-evenness relationships at regional and global scales. We examined relationships between water availability, richness and evenness for eight grassy biomes spanning broad water availability gradients on five continents. Our study found that relationships between richness and water availability switched from positive for drier (South Africa, Tibet and USA) vs. negative for wetter (India) biomes, though were not significant for the remaining biomes. In contrast, only the India biome showed a significant relationship between water availability and evenness, which was negative. Globally, the richness-water availability relationship was hump-shaped, however, not significant for evenness. At the regional scale, a positive richness-evenness relationship was found for grassy biomes in India and Inner Mongolia, China. In contrast, this relationship was weakly concave-up globally. These results suggest that different, independent factors are determining patterns of species richness and evenness in grassy biomes, resulting in differing richness-evenness relationships at regional and global scales. As a consequence, richness and evenness may respond very differently across spatial gradients to anthropogenic changes, such as climate change.
Collapse
|
45
|
Nugent DT, Baker-Gabb DJ, Leonard SWJ, Morgan JW. Livestock grazing to maintain habitat of a critically endangered grassland bird: Is grazer species important? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2587. [PMID: 35333422 DOI: 10.1002/eap.2587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/29/2021] [Accepted: 09/03/2021] [Indexed: 06/14/2023]
Abstract
Livestock grazing is an important management tool for biodiversity conservation in many native grasslands across the globe. Understanding how different grazing species interact with their environment is integral to achieving conservation goals. In the semiarid grasslands of Australia, grazing by sheep or cattle is used to manipulate vegetation structure to suit the habitat needs of a globally unique, critically endangered grassland bird, the plains-wanderer Pedionomus torquatus. However, there has been no investigation of whether sheep and cattle differ in their effects on plains-wanderer habitat and, therefore, it is unknown if these grazers are substitutable as a management tool. Using a grazing experiment in native grasslands over 3 years, we determined the effects of grazer type (sheep, cattle) on occurrence and vocal activity of plains-wanderer, vegetation structure and composition, and food availability. We also examined grazer effects on encounter rates of other grassland birds. Plains-wanderer breeding activity was inferred from vocalization rates captured by bioacoustic recorders. Spotlighting was used to measure encounter rates of other grassland birds. We found that different grazers altered the structure of the habitat. Grasslands grazed by cattle were typically more open, less variable, and lacked patches of dense vegetation relative to those grazed by sheep. Grazer type did not influence the likelihood of plains-wanderer occurrence, but it did interact with year of survey to affect breeding activity. The number of days with one or more calls significantly increased at sheep grazed sites in year-3, which coincided with enduring drought conditions. Similarly, grazer effects on encounter rate of all birds, bird species richness, and Australasian pipit Anthus novaeseelandiae were different between years. Dense vegetation specialists (such as stubble quail Coturnix pectoralis) were positively associated with grasslands grazed by sheep. As a habitat management tool, sheep or cattle grazing are useful when the goal is to support an open grassland structure for the plains-wanderer. However, their substitutability is likely to be dependent upon climate. We caution that a loss of dense vegetation in grasslands grazed by cattle during drought could limit the availability of optimal habitat for the plains-wanderer and habitat for other grassland birds.
Collapse
Affiliation(s)
- Daniel T Nugent
- Department of Ecology, Environment, and Evolution, La Trobe University, Melbourne, Victoria, Australia
| | | | - Steve W J Leonard
- Department of Primary Industries, Parks, Water and Environment, Tasmanian Government, Hobart, Tasmania, Australia
| | - John W Morgan
- Department of Ecology, Environment, and Evolution, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Ebel CR, Case MF, Werner CM, Porensky LM, Veblen KE, Wells HBM, Kimuyu DM, Langendorf RE, Young TP, Hallett LM. Herbivory and Drought Reduce the Temporal Stability of Herbaceous Cover by Increasing Synchrony in a Semi-arid Savanna. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.867051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ecological stability in plant communities is shaped by bottom-up processes like environmental resource fluctuations and top-down controls such as herbivory, each of which have demonstrated direct effects but may also act indirectly by altering plant community dynamics. These indirect effects, called biotic stability mechanisms, have been studied across environmental gradients, but few studies have assessed the importance of top-down controls on biotic stability mechanisms in conjunction with bottom-up processes. Here we use a long-term herbivore exclusion experiment in central Kenya to explore the joint effects of drought and herbivory (bottom-up and top-down limitation, respectively) on three biotic stability mechanisms: (1) species asynchrony, in which a decline in one species is compensated for by a rise in another, (2) stable dominant species driving overall stability, and (3) the portfolio effect, in which a community property is distributed among multiple species. We calculated the temporal stability of herbaceous cover and biotic stability mechanisms over a 22-year time series and with a moving window to examine changes through time. Both drought and herbivory additively reduced asynchronous dynamics, leading to lower stability during droughts and under high herbivore pressure. This effect is likely attributed to a reduction in palatable dominant species under higher herbivory, which creates space for subordinate species to fluctuate synchronously in response to rainfall variability. Dominant species population stability promoted community stability, an effect that did not vary with precipitation but depended on herbivory. The portfolio effect was not important for stability in this system. Our results demonstrate that this system is naturally dynamic, and a future of increasing drought may reduce its stability. However, these effects will in turn be amplified or buffered depending on changes in herbivore communities and their direct and indirect impacts on plant community dynamics.
Collapse
|
47
|
Campana S, Tognetti PM, Yahdjian L. Livestock exclusion reduces the temporal stability of grassland productivity regardless of eutrophication. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152707. [PMID: 34986422 DOI: 10.1016/j.scitotenv.2021.152707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Changes in livestock loads and eutrophication associated with human activities can modify the stability of grassland's aboveground net primary productivity (ANPP), by modifying the mean (μ) and/or standard deviation (σ) of ANPP. The changes in attributes of the plant community (i.e., species richness, species asynchrony, dominance) might in turn explain the ecosystem temporal (inter-annual) stability of grassland production. Here, we evaluated the interactive effects of changes in livestock loads and chronic nutrient addition on the temporal stability of ANPP (estimated as μ/σ) in temperate grasslands. We also assessed the role of different attributes of the plant community on ecosystem stability. We carried out a factorial experiment of domestic livestock exclusion and nutrient addition (10 g.m-2.year-1 of nitrogen, phosphorus, and potassium; n = 6 blocks) during five consecutive years in a natural grassland devoted to cattle production (Flooding Pampa, Argentina). Domestic livestock exclusion reduced ANPP stability by 65%, regardless of nutrient load, mainly by the increase of ANPP standard deviation. This reduction in ANPP stability after livestock exclusion was associated mostly with higher plant species dominance and also with reductions in plant effective richness and in the asynchrony of grassland's species. Despite not finding direct negative effects of eutrophication on ANPP stability, chronic nutrient addition decreased effective species richness and asynchrony, which may translate into reductions in ANPP stability in the future. Our findings highlight that the presence of livestock maintains the temporal stability of ANPP mainly by lowering the dominance of the plant community. However, increases in nutrient loads in grasslands devoted to livestock production may threaten grassland's stability.
Collapse
Affiliation(s)
- Sofía Campana
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Argentina; Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Argentina.
| | - Pedro M Tognetti
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Argentina; Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| | - Laura Yahdjian
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Argentina; Departamento de Recursos Naturales y Ambiente, Cátedra de Ecología, Facultad de Agronomía, Universidad de Buenos Aires, Argentina
| |
Collapse
|
48
|
Wells HBM, Porensky LM, Veblen KE, Riginos C, Stringer LC, Dougill AJ, Namoni M, Ekadeli J, Young TP. At high stocking rates, cattle do not functionally replace wild herbivores in shaping understory community composition. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2520. [PMID: 34918420 DOI: 10.1002/eap.2520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Accepted: 09/09/2021] [Indexed: 06/14/2023]
Abstract
Over a quarter of the world's land surface is grazed by cattle and other livestock, which are replacing wild herbivores, potentially impairing ecosystem structure, and functions. Previous research suggests that cattle at moderate stocking rates can functionally replace wild herbivores in shaping understory communities. However, it is uncertain whether this is also true under high stocking rates and the effects of wild herbivore on plant communities are moderate, enhanced, or simply additive to the effects of cattle at high stocking rates. To evaluate the influence of cattle stocking rates on the ability of cattle to functionally replace wild herbivores and test for interactive effects between cattle and wild herbivores in shaping understory vegetation, we assessed herbaceous vegetation in a long-term exclosure experiment in a semi-arid savanna in central Kenya that selectively excludes wild mesoherbivores (50-1000 kg) and megaherbivores (elephant and giraffe). We tested the effects of cattle stocking rate (zero/moderate/high) on herbaceous vegetation (diversity, composition, leafiness). We also tested how those effects depend on the presence of wild mesoherbivores and megaherbivores. We found that herbaceous community composition (primary ordination axis) was better explained by the presence/absence of herbivore types than by total herbivory, suggesting that herbivore identity is a more important determinant of community composition than total herbivory at high cattle stocking rates. The combination of wild mesoherbivores and cattle stocked at high rates led to increased bare ground and annual grass cover, reduced perennial grass cover and understory leafiness, and enhanced understory diversity. These shifts were weaker or absent when cattle were stocked at high stocking rates in the absence of wild mesoherbivores. Megaherbivores tempered the effects of cattle stocked at high rates on herbaceous community composition but amplified the effects of high cattle stocking rate on bare ground and understory diversity. Our results show that cattle at high stocking rates do not functionally replace wild herbivores in shaping savanna herbaceous communities contrary to previous findings at moderate stocking rates. In mixed-use rangelands, interactions between cattle stocking rate and wild herbivore presence can lead to non-additive vegetation responses with important implications for both wildlife conservation and livestock production.
Collapse
Affiliation(s)
- Harry B M Wells
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK
- Lolldaiga Hills Research Programme, Nanyuki, Kenya
- Space for Giants, Nanyuki, Kenya
| | - Lauren M Porensky
- Mpala Research Centre, Nanyuki, Kenya
- USDA-ARS Rangeland Resources Research Unit, Fort Collins, Colorado, USA
| | - Kari E Veblen
- Mpala Research Centre, Nanyuki, Kenya
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, USA
| | - Corinna Riginos
- Mpala Research Centre, Nanyuki, Kenya
- The Nature Conservancy, Lander, Wyoming, USA
| | - Lindsay C Stringer
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK
- Department of Environment and Geography, University of York, York, UK
| | - Andrew J Dougill
- Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds, UK
| | | | | | - Truman P Young
- Mpala Research Centre, Nanyuki, Kenya
- Department of Plant Sciences and Ecology Graduate Group, University of California, Davis, California, USA
| |
Collapse
|
49
|
Chevaux L, Mårell A, Baltzinger C, Boulanger V, Cadet S, Chevalier R, Debaive N, Dumas Y, Gosselin M, Gosselin F, Rocquencourt A, Paillet Y. Effects of stand structure and ungulates on understory vegetation in managed and unmanaged forests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2531. [PMID: 35019181 DOI: 10.1002/eap.2531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/01/2021] [Accepted: 06/24/2021] [Indexed: 06/14/2023]
Abstract
Conventional conservation policies in Europe notably rely on the passive restoration of natural forest dynamics by setting aside forest areas to preserve forest biodiversity. However, since forest reserves cover only a small proportion of the territory, conservation policies also require complementary conservation efforts in managed forests in order to achieve the biodiversity targets set up in the Convention on Biological Diversity. Conservation measures also raise the question of large herbivore management in and around set-asides, particularly regarding their impact on understory vegetation. Although many studies have separately analyzed the effects of forest management, management abandonment, and ungulate pressure on forest biodiversity, their joint effects have rarely been studied in a correlative framework. We studied 212 plots located in 15 strict forest reserves paired with adjacent managed forests in European France. We applied structural equation models to test the effects of management abandonment, stand structure, and ungulate pressure on the abundance, species richness, and diversity of herbaceous vascular plants and terricolous bryophytes. We showed that stand structure indices and plot-level browsing pressure had direct and opposite effects on herbaceous vascular plant species diversity; these effects were linked with the light tolerance of the different species groups. Increasing canopy cover had an overall negative effect on herbaceous vascular plant abundance and species diversity. The effect was two to three times greater in magnitude than the positive effects of browsing pressure on herbaceous plants diversity. On the other hand, a high stand density index had a positive effect on the species richness and diversity of bryophytes, while browsing had no effect. Forest management abandonment had few direct effects on understory plant communities, and mainly indirectly affected herbaceous vascular plant and bryophyte abundance and species richness and diversity through changes in vertical stand structure. Our results show that conservation biologists should rely on foresters and hunters to lead the preservation of understory vegetation communities in managed forests since, respectively, they manipulate stand structure and regulate ungulate pressure. Their management actions should be adapted to the taxa at stake, since bryophytes and vascular plants respond differently to stand and ungulate factors.
Collapse
Affiliation(s)
| | | | | | - Vincent Boulanger
- Département Recherche et Développement, Office National des Forêts, Fontainebleau, France
| | - Serge Cadet
- Office National des Forêts (ONF), Réseau Flore-Habitats, Aix-en-Provence, France
| | | | | | - Yann Dumas
- INRAE, UR EFNO, Nogent-sur-Vernisson, France
| | | | | | | | - Yoan Paillet
- INRAE, UR EFNO, Nogent-sur-Vernisson, France
- Universitè Grenoble Alpes, INRAE, Saint Martin d'Hères, France
| |
Collapse
|
50
|
Chen Q, Wang S, Seabloom EW, MacDougall AS, Borer ET, Bakker JD, Donohue I, Knops JMH, Morgan JW, Carroll O, Crawley M, Bugalho MN, Power SA, Eskelinen A, Virtanen R, Risch AC, Schütz M, Stevens C, Caldeira MC, Bagchi S, Alberti J, Hautier Y. Nutrients and herbivores impact grassland stability across spatial scales through different pathways. GLOBAL CHANGE BIOLOGY 2022; 28:2678-2688. [PMID: 35038782 DOI: 10.1111/gcb.16086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 01/01/2022] [Indexed: 06/14/2023]
Abstract
Nutrients and herbivores are well-known drivers of grassland diversity and stability in local communities. However, whether they interact to impact the stability of aboveground biomass and whether these effects depend on spatial scales remain unknown. It is also unclear whether nutrients and herbivores impact stability via different facets of plant diversity including species richness, evenness, and changes in community composition through time and space. We used a replicated experiment adding nutrients and excluding herbivores for 5 years in 34 global grasslands to explore these questions. We found that both nutrient addition and herbivore exclusion alone reduced stability at the larger spatial scale (aggregated local communities; gamma stability), but through different pathways. Nutrient addition reduced gamma stability primarily by increasing changes in local community composition over time, which was mainly driven by species replacement. Herbivore exclusion reduced gamma stability primarily by decreasing asynchronous dynamics among local communities (spatial asynchrony). Their interaction weakly increased gamma stability by increasing spatial asynchrony. Our findings indicate that disentangling the processes operating at different spatial scales may improve conservation and management aiming at maintaining the ability of ecosystems to reliably provide functions and services for humanity.
Collapse
Affiliation(s)
- Qingqing Chen
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Ian Donohue
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Johannes M H Knops
- Department of Health and Environmental Sciences, Xi'an Jiaotong liverpool University, Suzhou, China
| | - John W Morgan
- Department of Ecology, Environment & Evolution, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Carroll
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Mick Crawley
- Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Miguel N Bugalho
- Centre for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Anu Eskelinen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Risto Virtanen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Martin Schütz
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Maria C Caldeira
- Forest Research Centre, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Juan Alberti
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, Mar del Plata, Argentina
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|