1
|
Wang J, Wang X, Peñuelas J, Hua H, Wu C. Nitrogen deposition favors later leaf senescence in woody species. Nat Commun 2025; 16:3668. [PMID: 40246886 PMCID: PMC12006394 DOI: 10.1038/s41467-025-59000-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
China has experienced an unprecedented increase in nitrogen deposition over recent decades, threatening ecosystem structure, functioning, and resilience. However, the impact of elevated nitrogen deposition on the date of foliar senescence remains widely unexplored. Using 22,780 in situ observations and long-term satellite-based date of foliar senescence measures for woody species across China, we find that increased nitrogen deposition generally delays date of foliar senescence, with strong causal evidence observed at site-to-region scales. Changes in climate conditions and nitrogen deposition levels jointly controlled the direction of date of foliar senescence trends (advance or delay). The spatial variability of nitrogen deposition effects can be related to plant traits (e.g., nitrogen resorption and use efficiencies), climatic conditions, and soil properties. Moreover, elevated nitrogen deposition delays date of foliar senescence by promoting foliar expansion and enhancing plant productivity during the growing season, while its influence on evapotranspiration may either accelerate or delay date of foliar senescence depending on local water availability. This study highlights the critical role of nitrogen deposition in regulating date of foliar senescence trends, revealing a key uncertainty in modeling date of foliar senescence driven solely by climate change and its far-reaching implications for ecosystem-climate feedbacks.
Collapse
Affiliation(s)
- Jian Wang
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyue Wang
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona, 08193, Catalonia, Spain
- CREAF, Cerdanyola del Valles, Barcelona, 08193, Catalonia, Spain
| | - Hao Hua
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoyang Wu
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Bai C, Zhao W, Klisz M, Rossi S, Shen W, Guo X. Growth Rate and Not Growing Season Explains the Increased Productivity of Masson Pine in Mixed Stands. PLANTS (BASEL, SWITZERLAND) 2025; 14:313. [PMID: 39942875 PMCID: PMC11819970 DOI: 10.3390/plants14030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 02/16/2025]
Abstract
Increased tree species diversity can promote forest production by reducing intra-specific competition and promoting an efficient unitization of resources. However, questions remain on whether and how mixed stands affect the dynamics of intra-annual xylem formation in trees, especially in subtropical forests. In this study, we randomly selected 18 trees from a monoculture of 63-year-old Masson pine (Pinus massoniana) growing in pure stands and mixed them with 39-year-old Castanopsis hystrix in Pinxiang, southern China. A total of 828 microcores were collected biweekly throughout the growing season from 2022 to 2023 to monitor the intra-annual xylem formation. Cell production started in early March and ended in late December and lasted about 281 to 284 days. Xylem phenology was similar between mixed and pure stands. During both seasons, the Masson pine in mixed stands showed higher xylem production and growth rates than those in pure stands. The Masson pine in mixed stands produced 45-51 cells in 2022 (growth rate of 0.22 cells day-1) and 35-41 cells in 2023 (0.17 cells day-1). Growth rate, and not growth seasons, determined the superior xylem growth in the mixed stands. Our study shows that after 39 years of management, Masson pine and C. hystrix unevenly aged mixed stands have a significant positive mixing effect on Masson pine xylem cell production, which demonstrates that monitoring intra-annual xylem growth dynamics can be an important tool to evaluate the effect of species composition and reveal the mechanisms to promote tree growth behind the mixing effect.
Collapse
Affiliation(s)
- Chunmei Bai
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; (C.B.); (W.Z.)
| | - Wendi Zhao
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; (C.B.); (W.Z.)
| | - Marcin Klisz
- Dendrolab IBL, Department of Silviculture and Genetics, Forest Research Institute, 05-090 Raszyn, Poland;
| | - Sergio Rossi
- Laboratoire sur les Ecosystèmes Terrestres Boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada;
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; (C.B.); (W.Z.)
| | - Xiali Guo
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China; (C.B.); (W.Z.)
| |
Collapse
|
3
|
Kang J, Jiang S, Yu B, Ma Q, Yang L, Shishov VV, Huang JG, Ding X. Limitation of summer extreme high temperatures on radial growth relieve with increasing latitude in subtropics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177400. [PMID: 39505033 DOI: 10.1016/j.scitotenv.2024.177400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Global warming has induced an increase in the intensity and frequency of summer extreme high temperature events in Chinese subtropical forest, which contributes to a large component of net primary ecological production among global forests. However, how summer extreme high temperature events would influence tree radial growth in these humid subtropical forest remains unclear. We investigated the non-linear response of tree radial growth to temperature, soil moisture and their mixed effect across broad latitude gradients in Chinese subtropical forests, using a method of modelling cambial growth kinetics of Schima superba. The results showed that radial growth was constrained by summer extreme high temperatures and this limiting effect relieved from south to north. However, we also found a growth constraint imposed by soil moisture during spring and autumn, which intensified toward northern sites. Coincidentally, the radial growth pattern showed a distinct transition from bimodal to unimodal from South to North sites, with no significant changes in cambium phenology over the time scale from 1986 to 2014 being observed. In general, we determined that limitation of extreme high temperatures on radial growth relieve with increasing latitude in subtropics. This study provides a theoretical basis for promoting the accurate assessment of carbon sink potential and for predicting future forest dynamics in subtropics.
Collapse
Affiliation(s)
- Jian Kang
- School of Life Science, Shanxi Normal University, 339, Taiyu Road, Xiaodian District, Taiyuan 030006, China
| | - Shaowei Jiang
- South China Botanical Garden, Chinese Academy of Sciences, 723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Biyun Yu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
| | - Qianqian Ma
- South China Botanical Garden, Chinese Academy of Sciences, 723, Xingke Road, Tianhe District, Guangzhou 510650, China
| | - Lihao Yang
- Guangzhou Research Institute of Environment Protection Co., Ltd., Guangzhou 510650, China
| | - Vladimir V Shishov
- Institute of Fundamental Biology and Biotechnology, Math Methods and IT Department, Institute of Trade and Services, Siberian Federal University, Svobodny pr., 70 Krasnoyarsk, Russia
| | - Jian-Guo Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiaogang Ding
- Guangdong Eco-Engineering Polytechnic, Tianhe District, Guangzhou 510520, China.
| |
Collapse
|
4
|
Li J, Han W, Zheng J, Yu X, Tian R, Liu L, Guan J. Grassland productivity in arid Central Asia depends on the greening rate rather than the growing season length. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173155. [PMID: 38735323 DOI: 10.1016/j.scitotenv.2024.173155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Climate change has induced substantial impact on the gross primary productivity (GPP) of terrestrial ecosystems by affecting vegetation phenology. Nevertheless, it remains unclear which among the mean rates of grass greening (RG), yellowing (RY), and the length of growing season (LOS) exhibit stronger explanatory power for GPP variations, and how RG and RY affect GPP variations under warming scenarios. Here, we explored the relationship between RG, RY, LOS, and GPP in arid Central Asia (ACA) from 1982 to 2019, elucidating the response mechanisms of RG, RY, and GPP to the mean temperature (TMP), vapor pressure deficit (VPD), precipitation (PRE), and soil moisture (SM). The results showed that the multi-year average length of greening (LG) in ACA was 22.7 days shorter than that of yellowing (LY) and the multi-year average GPP during LG (GPPlg) was 38.28 g C m-2 d -1 more than that of during LY (GPPly). RG and RY were positively correlated with GPPlg and GPPly, although the degree of correlation between RG and GPPlg was higher than that between RY and GPPly. Increases in RG and RY contributed to an increase in GPPlg (55.44 % of annual GPP) and GPPly (35.44 % of annual GPP). The correlation between RG and GPPlg was the strongest (0.49), followed by RY and GPPly (0.33), and LOS and GPP was the weakest (0.21). TMP, VPD, PRE, and SM primarily affected GPP by influencing RG and RY, rather than direct effects. The positive effects of TMP during LG (TMPlg), PRE during LG (PRElg), and SM during LG (SMlg) facilitated increases in RG and GPPlg, and higher VPD during LY (VPDly) and lower PRE during LY (PREly) accelerated increases in RY. Our study elucidated the impact of vegetation growth rate on GPP, thus providing an alternate method of quantifying the relationship between vegetation phenology and GPP.
Collapse
Affiliation(s)
- Jianhao Li
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Wanqiang Han
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Jianghua Zheng
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Oasis Ecology, Xinjiang University, Urumqi 830046, China.
| | - Xiaojing Yu
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Ruikang Tian
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Liang Liu
- College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China
| | - Jingyun Guan
- College of Tourism, Xinjiang University of Finance & Economics, Urumqi 830012, China
| |
Collapse
|
5
|
Qi X, Treydte K, Saurer M, Fang K, An W, Lehmann M, Liu K, Wu Z, He HS, Du H, Li MH. Contrasting water-use strategies to climate warming in white birch and larch in a boreal permafrost region. TREE PHYSIOLOGY 2024; 44:tpae053. [PMID: 38769900 DOI: 10.1093/treephys/tpae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
The effects of rising atmospheric CO2 concentrations (Ca) with climate warming on intrinsic water-use efficiency and radial growth in boreal forests are still poorly understood. We measured tree-ring cellulose δ13C, δ18O, and tree-ring width in Larix dahurica (larch) and Betula platyphylla (white birch), and analyzed their relationships with climate variables in a boreal permafrost region of northeast China over past 68 years covering a pre-warming period (1951-1984; base period) and a warm period (1985-2018; warm period). We found that white birch but not larch significantly increased their radial growth over the warm period. The increased intrinsic water-use efficiency in both species was mainly driven by elevated Ca but not climate warming. White birch but not larch showed significantly positive correlations between tree-ring δ13C, δ18O and summer maximum temperature as well as vapor pressure deficit in the warm period, suggesting a strong stomatal response in the broad-leaved birch to temperature changes. The climate warming-induced radial growth enhancement in white birch is primarily associated with a conservative water-use strategy. In contrast, larch exhibits a profligate water-use strategy. It implies an advantage for white birch over larch in the warming permafrost regions.
Collapse
Affiliation(s)
- Xi Qi
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Kerstin Treydte
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Keyan Fang
- Key Laboratory of Humid Subtropical Eco-Geographical Process, Ministry of Education, College of Geographical Sciences, Fujian Normal University, Shangsan Road, Cangshan District, Fuzhou 350007, China
| | - Wenling An
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beitucheng West Road, Chaoyang District, Beijing 100029, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Marco Lehmann
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
| | - Kunyuan Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
| | - Zhengfang Wu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
| | - Hong S He
- School of Natural Resources, University of Missouri, 230 Jesse Hall, Columbia, MO 65211, USA
| | - Haibo Du
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
| | - Mai-He Li
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Renmin Street, Nanguan District, Changchun 130024, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, Birmensdorf CH-8903, Switzerland
- School of Life Sciences, Hebei University, Wusi East Road, Lianchi District, Baoding 071000, China
| |
Collapse
|
6
|
Reese A, Clark CM, Phelan J, Buckley J, Cajka J, Sabo RD, Van Houtven G. Geographic variation in projected US forest aboveground carbon responses to climate change and atmospheric deposition. ENVIRONMENTAL RESEARCH LETTERS : ERL [WEB SITE] 2024; 19:1-12. [PMID: 38752201 PMCID: PMC11091792 DOI: 10.1088/1748-9326/ad2739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Forest composition and ecosystem services are sensitive to anthropogenic pressures like climate change and atmospheric deposition of nitrogen (N) and sulfur (S). Here we extend recent forest projections for the current cohort of trees in the contiguous US, characterizing potential changes in aboveground tree carbon at the county level in response to varying mean annual temperature, precipitation, and N and S deposition. We found that relative to a scenario with N and S deposition reduction and no climate change, greater climate change led generally to decreasing aboveground carbon (mean -7.5% under RCP4.5, -16% under RCP8.5). Keeping climate constant, reduced N deposition tended to lessen aboveground carbon (mean -7%), whereas reduced S deposition tended to increase aboveground carbon (+3%) by 2100. Through mid-century (2050), deposition was more important for predicting carbon responses except under the extreme climate scenarios (RCP8.5); but, by 2100, climate drivers generally outweighed deposition. While more than 70% of counties showed reductions in aboveground carbon relative to the reference scenario, these were not evenly distributed across the US. Counties in the Northwest and Northern Great Plains, and the northern parts of New England and the Midwest, primarily showed positive responses, while counties in the Southeast showed negative responses. Counties with greater initial biomass showed less negative responses to climate change while those which exhibited the greatest change in composition (>15%) had a 95% chance of losing carbon relative to a no-climate change scenario. This analysis highlights that declines in forest growth and survival due to increases in mean temperature and reductions in atmospheric N deposition are likely to outweigh positive impacts of reduced S deposition and potential increases in precipitation. These effects vary at the regional and county level, however, so forest managers must consider local rather than national dynamics to maximize forest carbon sinks in the future.
Collapse
Affiliation(s)
- Aspen Reese
- American Association for the Advancement of Science (AAAS) Science and Technology Policy Fellow, at the US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States of America
| | - Christopher M Clark
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States of America
| | - Jennifer Phelan
- RTI International, Research Triangle Park, NC, United States of America
| | - John Buckley
- RTI International, Research Triangle Park, NC, United States of America
| | - James Cajka
- RTI International, Research Triangle Park, NC, United States of America
| | - Robert D Sabo
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, DC, United States of America
| | | |
Collapse
|
7
|
Li D, Li X, Li Z, Fu Y, Zhang J, Zhao Y, Wang Y, Liang E, Rossi S. Drought limits vegetation carbon sequestration by affecting photosynthetic capacity of semi-arid ecosystems on the Loess Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168778. [PMID: 38008313 DOI: 10.1016/j.scitotenv.2023.168778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Drought is the driver for ecosystem production in semi-arid areas. However, the response mechanism of ecosystem productivity to drought remains largely unknown. In particular, it is still unclear whether drought limits the production via photosynthetic capacity or phenological process. Herein, we assess the effects of maximum seasonal photosynthesis, growing season length, and climate on the annual gross primary productivity (GPP) in vegetation areas of the Loess Plateau using multi-source remote sensing and climate data from 2001 to 2021. We found that maximum seasonal photosynthesis rather than growing season length dominates annual GPP, with above 90 % of the study area showing significant and positive correlation. GPP and maximum seasonal photosynthesis were positively correlated with self-calibrating Palmer Drought Severity Index (scPDSI), standardized precipitation and evapotranspiration index (SPEI) in >95 % of the study area. Structural equation model demonstrated that both drought indices contributed to the annual GPP by promoting the maximum seasonal photosynthesis. Total annual precipitation had a positive and significant effect on two drought indices, whereas the effects of temperature and radiation were not significant. Evidence from wood formation data also confirmed that low precipitation inhibited long-term carbon sequestration by decreasing the maximum growth rate in forests. Our findings suggest that drought limits ecosystem carbon sequestration by inhibiting vegetation photosynthetic capacity rather than phenology, providing a support for assessing the future dynamics of the terrestrial carbon cycle and guiding landscape management in semi-arid ecosystems.
Collapse
Affiliation(s)
- Dou Li
- College of Ecology, Lanzhou University, Lanzhou 730000, China; Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zongshan Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yang Fu
- Center for Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China; College of Earth and Environment Science, Lanzhou University, Lanzhou 730000, China
| | - Jingtian Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yijin Zhao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yafeng Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| |
Collapse
|
8
|
Arend M, Hoch G, Kahmen A. Stem growth phenology, not canopy greening, constrains deciduous tree growth. TREE PHYSIOLOGY 2024; 44:tpad160. [PMID: 38159107 DOI: 10.1093/treephys/tpad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Canopy phenology is a widely used proxy for deciduous forest growth with various applications in terrestrial ecosystem modeling. Its use relies on common assumptions that canopy greening and stem growth are tightly coordinated processes, enabling predictions on the timing and the quantity of annual tree growth. Here, we present parallel observations of canopy and stem growth phenology and annual stem increment in around 90 deciduous forest trees with diffuse-porous (Fagus sylvatica, Acer pseudoplatanus, Carpinus betulus) or ring-porous (Quercus robur × petraea) wood anatomy. These data were collected in a mixed temperate forest at the Swiss-Canopy-Crane II site, in 4 years with strongly contrasting weather conditions. We found that stem growth resumption lagged several weeks behind spring canopy greening in diffuse-porous but not in ring-porous trees. Canopy greening and stem growth resumption showed no or only weak signs of temporal coordination across the observation years. Within the assessed species, the seasonal timing of stem growth varied strongly among individuals, as trees with high annual increments resumed growth earlier and also completed their main growth earlier. The length of main growth activity had no influence on annual increments. Our findings not only challenge tight temporal coordination of canopy and stem growth phenology but also demonstrate that longer main growth activity does not translate into higher annual increments. This may compromise approaches modeling tree growth and forest productivity with canopy phenology and growth length.
Collapse
Affiliation(s)
- Matthias Arend
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
- Department of Environmental Sciences, Plant Ecology, University of Trier, Behringstraße 21, Trier 54296, Germany
| | - Günter Hoch
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences, Physiological Plant Ecology, University of Basel, Bernoullistrasse 32, Basel 4056, Switzerland
| |
Collapse
|
9
|
Shi L, Liu H, Wang L, Peng R, He H, Liang B, Cao J. Transitional responses of tree growth to climate warming at the southernmost margin of high latitudinal permafrost distribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168503. [PMID: 37952654 DOI: 10.1016/j.scitotenv.2023.168503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
The marked increase in temperature warming and permafrost degradation has raised apprehensions about the fate of forests of boreal forests in permafrost regions. However, the impact of climate on tree growth is not limited to direct effects but also involves complex interactions with permafrost. The degradation of permafrost poses a threat to forest growth that has received insufficient attention thus far, after analyzing the impact of permafrost degradation and climate on Dahurican larch (Larix gmelinii) growth from six forest sites with two maximum active layer thickness (ALT) classifications (more and less than tree root length) across the southern margin of the permafrost region. We found that accompanying the continued degradation of permafrost, tree growth was inhibited (slope = -0.67, p < 0.05) by the degradation of permafrost and the growth-climate relationship was shifted from positive to negative at maximum ALT less than tree root length sites. However, the growth rate of trees significantly accelerated (slope = 5.46, p < 0.05) at maximum ALT more than tree root length sites. Path analysis indicated that tree growth did not benefit from temperature warming and more stress could be caused by waterlogging due to permafrost degradation at maximum ALT less than tree root length sites, however, enhanced tree growth primarily by reducing the physical spatial constraints and root layer additional water source with permafrost degradation at maximum ALT more than tree root length sites. It also implies that the matchiness between tree root and maximum active layer depth is critical to the effect of permafrost degradation on tree growth. The transitional response to climate warming and the opposite trend of tree growth at two ALT classification sites suggest that future tree growth responds to the different stages of permafrost degradation differently. Our study provides a new insight on permafrost degradation impact on tree growth.
Collapse
Affiliation(s)
- Liang Shi
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; College of Urban and Environmental Sciences, Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Hongyan Liu
- College of Urban and Environmental Sciences, Institute of Carbon Neutrality, Peking University, Beijing, China.
| | - Lu Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Ruonan Peng
- College of Urban and Environmental Sciences, Institute of Carbon Neutrality, Peking University, Beijing, China
| | - Honglin He
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Boyi Liang
- College of Forestry, Precision Forestry Key Laboratory of Beijing, Beijing Forestry University, Beijing, China
| | - Jing Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Regional Eco-process and Function Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
10
|
Unterholzner L, Castagneri D, Cerrato R, Știrbu MI, Roibu CC, Carrer M. Climate response of a glacial relict conifer across its distribution range is invariant in space but not in time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167512. [PMID: 37813259 DOI: 10.1016/j.scitotenv.2023.167512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/22/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
Climate change impacts on forest trees will be particularly severe for relict species endemic to the subalpine forest, such as Pinus cembra in the Alps and Carpathians. Most current knowledge about the response of this species to climate comes from tree-ring width analysis. However, this approach cannot perform in-depth and highly time-resolved analysis on the climate influence on specific growth processes and xylem functions. We analyzed xylem anatomical traits from six sites covering most of the longitudinal range of this species. Associations between climate and cell number, lumen area and cell wall thickness were computed for the 1920-2010 period using climate records aligned to degree-day temperature sum thresholds. The anatomical chronologies were clearly distinct between the Alps and Carpathians. However, climate responses were similar for all sites, suggesting common species-specific response mechanisms. Temperature showed a positive correlation with both cell number and cell wall thickness. Cell lumen size exhibited an early positive association, followed by strong negative association with temperature and a positive one with precipitation. This highlights that the cell enlargement process was negatively related to high temperature at high elevation, where meristematic processes are rather supposed to be constrained by low temperatures. Therefore, long-term climate warming can have negative consequences on the xylem potential to transport water at all investigated sites. Moreover, in the last 30 years, we observed a slight anticipation of some responses and a decrease in climate sensitivity of some xylem parameters. Our findings provide evidence of temporally unstable but spatially consistent climate response of Pinus cembra from the Alps to the Carpathians. The low diversity in xylem phenotypic responses to climate suggests that future warming could extensively and evenly affect the species throughout its entire distribution.
Collapse
Affiliation(s)
- Lucrezia Unterholzner
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, via dell'Università 16, 35020 Legnaro, Italy; Chair of Forest Growth and Woody Biomass Production, Technische Universität Dresden, Pienner Straße 8, 01737 Tharandt, Germany
| | - Daniele Castagneri
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, via dell'Università 16, 35020 Legnaro, Italy.
| | - Riccardo Cerrato
- Department of Earth Sciences (DST), University of Pisa, via S. Maria 53, 56124 Pisa, Italy
| | - Marian-Ionuț Știrbu
- Forest Biometrics Laboratory, Faculty of Forestry, "Ștefan cel Mare" University of Suceava, Universității street, no. 13, 720229 Suceava, Romania
| | - Cătălin-Constantin Roibu
- Forest Biometrics Laboratory, Faculty of Forestry, "Ștefan cel Mare" University of Suceava, Universității street, no. 13, 720229 Suceava, Romania
| | - Marco Carrer
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, via dell'Università 16, 35020 Legnaro, Italy
| |
Collapse
|
11
|
Matula R, Knířová S, Vítámvás J, Šrámek M, Kníř T, Ulbrichová I, Svoboda M, Plichta R. Shifts in intra-annual growth dynamics drive a decline in productivity of temperate trees in Central European forest under warmer climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166906. [PMID: 37689186 DOI: 10.1016/j.scitotenv.2023.166906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Climate change shifts tree growth phenology and dynamics in temperate forests. However, there is still little information on how warming climate changes intra-annual growth patterns and how these changes affect the productivity and carbon uptake of temperate trees. To address this knowledge gap, we used high-precision growth data from automatic dendrometers to quantify the impacts of unusually warm weather in 2022 (hot year) on growth phenology, dynamics and aboveground biomass (AGB) production in eight common temperate species (both conifers and broadleaved) in the Czech Republic. Mixed-effect models were used to investigate inter-annual changes in the start, end, and length of the growing season and intra-annual growth dynamics. We also modelled how changes in growth phenology, growth rates, and tree size affected yearly AGB production of individual trees. In the hot year, the growth started 5 days earlier, peaked 22 days earlier and ended 20 days earlier than in the climatically normal year, resulting in a shorter growing season with fewer growing days. AGB production decreased 36 % in the hot year, mainly due to fewer growing days and lower maximum growth rates, but with significant variation among tested species. The decline in AGB production in the hot year was most significant in the most productive species, which were also the species with the greatest reduction in the number of growing days. Tree size strongly enhanced AGB production, but its effect did not change with climate variation. Our findings suggest that climate change is likely to advance but also shorten the growing season of temperate trees, resulting in lower biomass production and carbon uptake. The results also indicate that the fast-growing and highly productive temperate tree species will have their growth reduced most by climate change, which will increasingly limit their high carbon sequestration potential.
Collapse
Affiliation(s)
- Radim Matula
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic.
| | - Soňa Knířová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Jan Vítámvás
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Martin Šrámek
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| | - Tomáš Kníř
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Iva Ulbrichová
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| | - Roman Plichta
- Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Zemědělská 3, 61300 Brno, Czech Republic
| |
Collapse
|
12
|
Xu S, Su H, Ren S, Hou J, Zhu Y. Functional traits and habitat heterogeneity explain tree growth in a warm temperate forest. Oecologia 2023; 203:371-381. [PMID: 37910255 DOI: 10.1007/s00442-023-05471-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
To explore how traits determine demographic performance is an important goal of plant community ecology in explaining the assembly and dynamics of ecological communities. However, whether the prediction of individual-level trait data is more precise compared to species average trait data is questioned. Here, we analyzed the growth and trait data for 11 species collected from October 2018 to October 2020 in a temperate forest, Donglingshan, Beijing. To quantify the relationships between traits and growth rate, we conducted linear regression models at both the species and individual levels, as well as developed structural equation models at both levels. We found there was a clear difference in growth between the warm and cold seasons, with tree growth mainly concentrated in the warm season. Growth rate was positively correlated with the specific leaf area, while negatively correlated with leaf thickness and wood density without considering environmental information. Adding important contextual information in the analysis of species-level structural equation modeling, growth rates were positively correlated with specific leaf area and leaf thickness. However, in the individual-level, there was a negative correlation between growth rate and wood density. Our study showed that individual-level trait data have better predictions for individual growth than species-level data. When we use multiple traits and establish links between traits and tree size, we generated strong predictive relationships between traits and growth rates. Furthermore, our study highlighted that the importance of incorporating topographical factors and considering different seasons to assess the relationship between tree growth and functional traits.
Collapse
Affiliation(s)
- Shuaiwei Xu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongxin Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, 530001, China
| | - Siyuan Ren
- China Aero Geophysical Survey & Remote Sensing Center for Natural Resources, Beijing, 100083, China
| | - Jihua Hou
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083, China.
| | - Yan Zhu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| |
Collapse
|
13
|
Yu B, Rossi S, Su H, Zhao P, Zhang S, Hu B, Li X, Chen L, Liang H, Huang JG. Mismatch between primary and secondary growth and its consequences on wood formation in Qinghai spruce. TREE PHYSIOLOGY 2023; 43:1886-1902. [PMID: 37584475 DOI: 10.1093/treephys/tpad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023]
Abstract
The connections between the primary and secondary growth of trees allows better understanding of the dynamics of carbon sequestration in forest ecosystems. The relationship between primary and secondary growth of trees could change due to the diverging responses of meristems to climate warming. In this study, the bud phenology and radial growth dynamics of Qinghai spruce (Picea crassifolia) in arid and semi-arid areas of China in 2019 and 2020 were weekly monitored to analyze their response to different weather conditions and their links with carbon sink. Xylem anatomical traits (i.e. lumen radial diameter and cell wall thickness) were quantified along cell radial files after the end of xylem lignification to calculate the early-to-latewood transition date. Winter and early spring (January-March) were warmer in 2020 with a colder April compared with 2019. Precipitation in April-June was lower in 2020 than in 2019. In 2019, bud phenology occurred earlier, while the onset of xylem formation and the early-to-latewood transition date were delayed. The duration from the beginning of split bud and exposed shoot to the early-to-latewood transition date was positively correlated with the radial width of earlywood (accounting for ~80% of xylem width) and total xylem width. The longer duration of xylem cell division did not increase xylem cell production and radial width. Moreover, the duration from bud burst to the early-to-latewood transition date in 2020 was negatively linked with early phloem cell production as compared with 2019. Our findings suggest that warm conditions in winter and early spring promote the xylogenesis of Qinghai spruce, but might delay bud burst. However, the xylem width increments largely depend on the duration from bud burst to the start of latewood cell division rather than on the earlier xylogenesis and longer duration of xylem cell differentiation induced by warm conditions.
Collapse
Affiliation(s)
- Biyun Yu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, Québec G7H2B1, Canada
| | - Hongxin Su
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Ping Zhao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shaokang Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Baoqing Hu
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning 530001, China
- Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation, Nanning Normal University, Nanning 530001, China
| | - Xuebin Li
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Ministry of Education, Yinchuan 750021, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Lin Chen
- Key Laboratory of Restoration and Reconstruction of Degraded Ecosystem in Northwest China, Ningxia University, Ministry of Education, Yinchuan 750021, China
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwest China, Ningxia University, Yinchuan 750021, China
- College of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Hanxue Liang
- Key Laboratory of Ecological Restoration of Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jian-Guo Huang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Gao S, Camarero JJ, Babst F, Liang E. Global tree growth resilience to cold extremes following the Tambora volcanic eruption. Nat Commun 2023; 14:6616. [PMID: 37857605 PMCID: PMC10587176 DOI: 10.1038/s41467-023-42409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Although the global climate is warming, external forcing driven by explosive volcanic eruptions may still cause abrupt cooling. The 1809 and 1815 Tambora eruptions caused lasting cold extremes worldwide, providing a unique lens that allows us to investigate the magnitude of global forest resilience to and recovery from volcanic cooling. Here, we show that growth resilience inferred from tree-ring data was severely impacted by cooling in high latitudes and elevations: the average tree growth decreased substantially (up to 31.8%), especially in larch forests, and regional-scale probabilities of severe growth reduction (below -2σ) increased up to 1390%. The influence of the eruptions extended longer (beyond the year 1824) in mid- than in high-latitudes, presumably due to the combined impacts of cold and drought stress. As Tambora-size eruptions statistically occur every 200-400 years, assessing their influences on ecosystems can help humankind mitigate adverse impacts on natural resources through improved management, especially in high latitude and elevation regions.
Collapse
Affiliation(s)
- Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, Beijing, China
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), 50059, Zaragoza, Spain
| | - Flurin Babst
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, 85721, USA
- Laboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, 85721, USA
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
15
|
Li X, Liang E, Camarero JJ, Rossi S, Zhang J, Zhu H, Fu YH, Sun J, Wang T, Piao S, Peñuelas J. Warming-induced phenological mismatch between trees and shrubs explains high-elevation forest expansion. Natl Sci Rev 2023; 10:nwad182. [PMID: 37671321 PMCID: PMC10476895 DOI: 10.1093/nsr/nwad182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Despite the importance of species interaction in modulating the range shifts of plants, little is known about the responses of coexisting life forms to a warmer climate. Here, we combine long-term monitoring of cambial phenology in sympatric trees and shrubs at two treelines of the Tibetan Plateau, with a meta-analysis of ring-width series from 344 shrubs and 575 trees paired across 11 alpine treelines in the Northern Hemisphere. Under a spring warming of +1°C, xylem resumption advances by 2-4 days in trees, but delays by 3-8 days in shrubs. The divergent phenological response to warming was due to shrubs being 3.2 times more sensitive than trees to chilling accumulation. Warmer winters increased the thermal requirement for cambial reactivation in shrubs, leading to a delayed response to warmer springs. Our meta-analysis confirmed such a mechanism across continental scales. The warming-induced phenological mismatch may give a competitive advantage to trees over shrubs, which would provide a new explanation for increasing alpine treeline shifts under the context of climate change.
Collapse
Affiliation(s)
- Xiaoxia Li
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - J Julio Camarero
- InstitutoPirenaico de Ecología (IPE-CSIC), Zaragoza 50059, Spain
| | - Sergio Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi G7H2B1, Canada
| | - Jingtian Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongshuo H Fu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Valles, Barcelona 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
16
|
Cabon A, DeRose RJ, Shaw JD, Anderegg WRL. Declining tree growth resilience mediates subsequent forest mortality in the US Mountain West. GLOBAL CHANGE BIOLOGY 2023; 29:4826-4841. [PMID: 37344959 DOI: 10.1111/gcb.16826] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
Climate change-triggered forest die-off is an increasing threat to global forests and carbon sequestration but remains extremely challenging to predict. Tree growth resilience metrics have been proposed as measurable proxies of tree susceptibility to mortality. However, it remains unclear whether tree growth resilience can improve predictions of stand-level mortality. Here, we use an extensive tree-ring dataset collected at ~3000 permanent forest inventory plots, spanning 13 dominant species across the US Mountain West, where forests have experienced strong drought and extensive die-off has been observed in the past two decades, to test the hypothesis that tree growth resilience to drought can explain and improve predictions of observed stand-level mortality. We found substantial increases in growth variability and temporal autocorrelation as well declining drought resistance and resilience for a number of species over the second half of the 20th century. Declining resilience and low tree growth were strongly associated with cross- and within-species patterns of mortality. Resilience metrics had similar explicative power compared to climate and stand structure, but the covariance structure among predictors implied that the effect of tree resilience on mortality could partially be explained by stand and climate variables. We conclude that tree growth resilience offers highly valuable insights on tree physiology by integrating the effect of stressors on forest mortality but may have only moderate potential to improve large-scale projections of forest die-off under climate change.
Collapse
Affiliation(s)
- Antoine Cabon
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - R Justin DeRose
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, USA
| | - John D Shaw
- USDA Forest Service, Rocky Mountain Research Station, Logan, Utah, USA
| | - William R L Anderegg
- Wilkes Center for Climate Science and Policy, University of Utah, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
17
|
Zheng J, Sun N, Yan J, Liu C, Yin S. Decoupling between carbon source and sink induced by responses of daily stem growth to water availability in subtropical urban forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162802. [PMID: 36924954 DOI: 10.1016/j.scitotenv.2023.162802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 05/06/2023]
Abstract
Urban forests are anticipated to offer sustainable ecosystem services, necessitating a comprehensive understanding of the ways in which trees respond to environmental changes. This study monitored stem radius fluctuations in Cinnamomum camphora and Taxodium distichum var. imbricatum trees using high-resolution dendrometers at two sites, respectively. Gross primary production (GPP) was measured using eddy-covariance techniques and aggregated to daily sums. Hourly and daily stem radius fluctuations were estimated across both species, and the responses of stems to radiation (Rg), air temperature (Tair), vapor pressure deficit (VPD), and soil humidity (SoilH) were quantified using Bayesian linear models. The diel growth patterns of the monitored trees showed similar characteristics at the species level. Results revealed that trees growth occurred primarily at night, with the lowest hourly contribution to total growth and probability for growth occurring in the afternoon. Furthermore, the Bayesian models indicated that VPD was the most important driver of daily growth and growth probability. After considering the potential constraints imposed by VPD, a modified Gompertz equation showed good performance, with R2 ranging from 0.94 to 0.99 for the relationship between accumulative growth and time. Bayes-based model-independent data assimilation using advanced Markov chain Monte Carlo (MCMC) algorithms provided deeper insights into nonlinear model parameterization. Finally, the quantified relationship between GPP and stem daily growth revealed that the decoupling between carbon source and sink increased with VPD. These findings provided direct empirical evidence for VPD as a key driver of daily growth patterns and raise questions about carbon neutrality accounting under future climate change given the uncertainties induced by increased water stress limitations on carbon utilization.
Collapse
Affiliation(s)
- Ji Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| | - Ningxiao Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, China
| | - Jingli Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, China
| | - Chunjiang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, China
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai 200240, China; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai 200240, China; Key Laboratory for Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China.
| |
Collapse
|
18
|
Li W, Manzanedo RD, Jiang Y, Ma W, Du E, Zhao S, Rademacher T, Dong M, Xu H, Kang X, Wang J, Wu F, Cui X, Pederson N. Reassessment of growth-climate relations indicates the potential for decline across Eurasian boreal larch forests. Nat Commun 2023; 14:3358. [PMID: 37291110 PMCID: PMC10250375 DOI: 10.1038/s41467-023-39057-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
Larch, a widely distributed tree in boreal Eurasia, is experiencing rapid warming across much of its distribution. A comprehensive assessment of growth on warming is needed to comprehend the potential impact of climate change. Most studies, relying on rigid calendar-based temperature series, have detected monotonic responses at the margins of boreal Eurasia, but not across the region. Here, we developed a method for constructing temporally flexible and physiologically relevant temperature series to reassess growth-temperature relations of larch across boreal Eurasia. Our method appears more effective in assessing the impact of warming on growth than previous methods. Our approach indicates widespread and spatially heterogeneous growth-temperature responses that are driven by local climate. Models quantifying these results project that the negative responses of growth to temperature will spread northward and upward throughout this century. If true, the risks of warming to boreal Eurasia could be more widespread than conveyed from previous works.
Collapse
Affiliation(s)
- Wenqing Li
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, Zhuhai, 519087, China
- Key Laboratory of Land Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing, 100035, China
| | - Rubén D Manzanedo
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
- Plant Ecology, Institute of Integrative Biology, D-USYS, ETH Zürich, 8006, Zürich, Switzerland
| | - Yuan Jiang
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, Zhuhai, 519087, China.
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China.
| | - Wenqiu Ma
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Enzai Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Shoudong Zhao
- State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Tim Rademacher
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, J0V 1V0, QC, Canada
| | - Manyu Dong
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, Zhuhai, 519087, China
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Hui Xu
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Xinyu Kang
- Department of Mathematics and Statistics, Boston University, 111 Cummington Mall, Boston, MA, 02215, USA
| | - Jun Wang
- Key Laboratory of Land Consolidation and Rehabilitation, Land Consolidation and Rehabilitation Center, Ministry of Natural Resources, Beijing, 100035, China
| | - Fang Wu
- Beijing Key Laboratory of Traditional Chinese Medicine Protection and Utilization, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, Zhuhai, 519087, China
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Xuefeng Cui
- School of Systems Science, Beijing Normal University, Beijing, 100875, China
| | - Neil Pederson
- Harvard Forest, Harvard University, Petersham, MA, 01366, USA
| |
Collapse
|
19
|
Yin R, Qin W, Wang X, Xie D, Wang H, Zhao H, Zhang Z, He JS, Schädler M, Kardol P, Eisenhauer N, Zhu B. Experimental warming causes mismatches in alpine plant-microbe-fauna phenology. Nat Commun 2023; 14:2159. [PMID: 37061533 PMCID: PMC10105701 DOI: 10.1038/s41467-023-37938-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 04/06/2023] [Indexed: 04/17/2023] Open
Abstract
Long-term observations have shown that many plants and aboveground animals have changed their phenology patterns due to warmer temperatures over the past decades. However, empirical evidence for phenological shifts in alpine organisms, particularly belowground organisms, is scarce. Here, we investigate how the activities and phenology of plants, soil microbes, and soil fauna will respond to warming in an alpine meadow on the Tibetan Plateau, and whether their potential phenological changes will be synchronized. We experimentally simulate an increase in soil temperature by 2-4 °C according to future projections for this region. We find that warming promotes plant growth, soil microbial respiration, and soil fauna feeding by 8%, 57%, and 20%, respectively, but causes dissimilar changes in their phenology during the growing season. Specifically, warming advances soil faunal feeding activity in spring and delays it in autumn, while their peak activity does not change; whereas warming increases the peak activity of plant growth and soil microbial respiration but with only minor shifts in their phenology. Such phenological asynchrony in alpine organisms may alter ecosystem functioning and stability.
Collapse
Affiliation(s)
- Rui Yin
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Wenkuan Qin
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Xudong Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Dong Xie
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Ecology, Lanzhou University, Lanzhou, China
| | - Hongyang Zhao
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, and Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Jin-Sheng He
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Martin Schädler
- Helmholtz Centre for Environmental Research-UFZ, Department of Community Ecology, Theodor-Lieder-Strasse 4, 06110, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
| | - Paul Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 901-83, Umeå, Sweden
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstr. 4, 04103, Leipzig, Germany
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China.
| |
Collapse
|
20
|
Yang L, Zhao S. A stronger advance of urban spring vegetation phenology narrows vegetation productivity difference between urban settings and natural environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161649. [PMID: 36657668 DOI: 10.1016/j.scitotenv.2023.161649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Climate change is posing dramatic effects on terrestrial vegetation dynamics. The links between vegetation phenology or vegetation activity (growth) and climate change have been widely reported, yet, less is known about the impacts of phenological shifts on vegetation growth. Urban settings characterized by urban heat island and CO2 dome are often used as ideal natural laboratories to understand how vegetation responds to global climate change. Here we assessed the impacts of phenology changes on vegetation growth in China using satellite phenology metrics and gross primary production (GPP) data from 2003 to 2018 and urban-natural contrast analysis. Compared with natural environments, phenological metrics (e.g., start/end of growing season (SOS/EOS), and the length of growing season (GSL), etc.) were observed to change more dramatically in urban environments. Furthermore, we found that GPP in both settings increased over time but with a higher increment in the urban environments, and the urban-natural vegetation productivity gap had been diminishing at a rate of 16.9 ± 6.76 g C m-2 y-1. The narrowing of the urban-natural GPP difference over time can be attributed to a more advanced SOS and extended GSL in urban settings than their natural counterparts, particularly SOS shift. These findings suggested that the distinct urban phenological shifts would become increasingly important in offsetting the loss of vegetation productivity induced by urbanization.
Collapse
Affiliation(s)
- Lu Yang
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Shuqing Zhao
- College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
21
|
Silvestro R, Zeng Q, Buttò V, Sylvain JD, Drolet G, Mencuccini M, Thiffault N, Yuan S, Rossi S. A longer wood growing season does not lead to higher carbon sequestration. Sci Rep 2023; 13:4059. [PMID: 36906726 PMCID: PMC10008533 DOI: 10.1038/s41598-023-31336-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/09/2023] [Indexed: 03/13/2023] Open
Abstract
A reliable assessment of forest carbon sequestration depends on our understanding of wood ecophysiology. Within a forest, trees exhibit different timings and rates of growth during wood formation. However, their relationships with wood anatomical traits remain partially unresolved. This study evaluated the intra-annual individual variability in growth traits in balsam fir [Abies balsamea (L.) Mill.]. We collected wood microcores weekly from April to October 2018 from 27 individuals in Quebec (Canada) and prepared anatomical sections to assess wood formation dynamics and their relationships with the anatomical traits of the wood cells. Xylem developed in a time window ranging from 44 to 118 days, producing between 8 and 79 cells. Trees with larger cell production experienced a longer growing season, with an earlier onset and later ending of wood formation. On average, each additional xylem cell lengthened the growing season by 1 day. Earlywood production explained 95% of the variability in xylem production. More productive individuals generated a higher proportion of earlywood and cells with larger sizes. Trees with a longer growing season produced more cells but not more biomass in the wood. Lengthening the growing season driven by climate change may not lead to enhanced carbon sequestration from wood production.
Collapse
Affiliation(s)
- Roberto Silvestro
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada.
| | - Qiao Zeng
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Valentina Buttò
- Forest Research Institute, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC, Canada
| | - Jean-Daniel Sylvain
- Direction de la recherche forestiere Ministère des Forêts, de la Faune et des Parcs, Québec, QC, G1P3W8, Canada
| | - Guillaume Drolet
- Direction de la recherche forestiere Ministère des Forêts, de la Faune et des Parcs, Québec, QC, G1P3W8, Canada
| | - Maurizio Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Bellaterra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - Nelson Thiffault
- Canadian Wood Fibre Centre, Canadian Forest Service, Natural Resources Canada, 1055, du P.E.P.S., Sainte-Foy Stn., P.O. Box 10380, Quebec, QC, G1V 4C7, Canada.,Centre for Forest Research, Faculty of Forestry, Geography and Geomatics, Université Laval, 2405 rue de la Terrasse, Quebec, QC, G1V 0A6, Canada
| | - Shaoxiong Yuan
- Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, People's Republic of China
| | - Sergio Rossi
- Laboratoire sur les écosystemes terrestres boreaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
22
|
Yan Z, Xu J, Wang X, Yang Z, Liu D, Li G, Huang H. Continued spring phenological advance under global warming hiatus over the Pan-Third Pole. FRONTIERS IN PLANT SCIENCE 2022; 13:1071858. [PMID: 36507380 PMCID: PMC9729745 DOI: 10.3389/fpls.2022.1071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The global surface temperature has witnessed a warming hiatus in the first decade of this century, but how this slowing down of warming will impact spring phenology over Pan-Third Pole remains unclear. Here, we combined multiple satellite-derived vegetation indices with eddy covariance datasets to evaluate the spatiotemporal changes in spring phenological changes over the Pan-Third Pole. We found that the spring phenology over Pan-Third Pole continues to advance at the rate of 4.8 days decade-1 during the warming hiatus period, which is contrasted to a non-significant change over the northern hemisphere. Such a significant and continued advance in spring phenology was mainly attributed to an increase in preseason minimum temperature and water availability. Moreover, there is an overall increasing importance of precipitation on changes in spring phenology during the last four decades. We further demonstrated that this increasingly negative correlation was also found across more than two-thirds of the dryland region, tentatively suggesting that spring phenological changes might shift from temperature to precipitation-controlled over the Pan-Third Pole in a warmer world.
Collapse
Affiliation(s)
- Zhengjie Yan
- College of Ecology, Lanzhou University, Lanzhou, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Jinfeng Xu
- College of Ecology, Lanzhou University, Lanzhou, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyi Wang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Yang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Dan Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Guoshuai Li
- Heihe Remote Sensing Experimental Research Station, Key Laboratory of Remote Sensing of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Huabing Huang
- School of Geospatial Engineering and Science, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
23
|
Cong Y, Saurer M, Bai E, Siegwolf R, Gessler A, Liu K, Han H, Dang Y, Xu W, He HS, Li MH. In situ 13CO2 labeling reveals that alpine treeline trees allocate less photoassimilates to roots compared with low-elevation trees. TREE PHYSIOLOGY 2022; 42:1943-1956. [PMID: 35535565 DOI: 10.1093/treephys/tpac048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Carbon (C) allocation plays a crucial role for survival and growth of alpine treeline trees, however it is still poorly understood. Using in situ 13CO2 labeling, we investigated the leaf photosynthesis and the allocation of 13C labeled photoassimilates in various tissues (leaves, twigs and fine roots) in treeline trees and low-elevation trees. Non-structural carbohydrate concentrations were also determined. The alpine treeline trees (2000 m. a.s.l.), compared with low-elevation trees (1700 m a.s.l.), did not show any disadvantage in photosynthesis, but the former allocated proportionally less newly assimilated C belowground than the latter. Carbon residence time in leaves was longer in treeline trees (19 days) than that in low-elevation ones (10 days). We found an overall lower density of newly assimilated C in treeline trees. The alpine treeline trees may have a photosynthetic compensatory mechanism to counteract the negative effects of the harsh treeline environment (e.g., lower temperature and shorter growing season) on C gain. Lower temperature at treeline may limit the sink activity and C downward transport via phloem, and shorter treeline growing season may result in early cessation of root growth, decreases sink strength, which all together lead to lower density of new C in the sink tissues and finally limit the growth of the alpine treeline trees.
Collapse
Affiliation(s)
- Yu Cong
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, 4888 Shengbei Street, Kuancheng District, Changchun 130102, China
| | - Matthias Saurer
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse111, Birmensdorf CH-8903, Switzerland
| | - Edith Bai
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
| | - Rolf Siegwolf
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse111, Birmensdorf CH-8903, Switzerland
| | - Arthur Gessler
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse111, Birmensdorf CH-8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitaetsstrasse 16, Zurich 8092, Switzerland
| | - Kai Liu
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
| | - Hudong Han
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
| | - Yongcai Dang
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
| | - Wenhua Xu
- Institute of Agricultural Resource and Environment, Jilin Academy of Agricultural Sciences, 1363 Shengtai Street, Nanguan District, Changchun 130033, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Hong S He
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Mai-He Li
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, 5268 Renmin Street, Nanguan District, Changchun 130024, China
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse111, Birmensdorf CH-8903, Switzerland
| |
Collapse
|
24
|
Ganjurjav H, Hu G, Gornish E, Zhang Y, Li Y, Yan Y, Wu H, Yan J, He S, Danjiu L, Gao Q. Warming and spring precipitation addition change plant growth pattern but have minor effects on growing season mean gross ecosystem productivity in an alpine meadow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156712. [PMID: 35709997 DOI: 10.1016/j.scitotenv.2022.156712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Gross ecosystem productivity (GEP) plays an important role in global carbon cycling. However, how plant phenology and growth rate regulate GEP under climate change is unclear. Based on an in situ manipulative experiment using open top chambers from 2015 to 2018, we measured whole year warming and spring precipitation addition effects on plant phenology, plant growth rate and GEP. Our results showed that warming delayed plant green up (4 days) and withering (5 days), while spring precipitation addition advanced green up 13 days and did not change withering. Warming delayed the timing of the fast-growing phase 7 days, shortened length of the fast-growing phase 7 days and marginally increased the growth rate. Spring precipitation addition advanced the timing of the fast-growing phase 6 days, but did not change the length of the fast-growing phase or the growth rate. Both whole year warming and spring precipitation addition have not significantly affected growing season mean GEP. GEP is positively correlated with plant growth rate and negatively correlated with the length of the fast-growing phase. We provide an evidence that although warming did not change growing season mean productivity, it delayed plant fast-growing phase. Our findings suggest that management approaches for increasing water availability before the fast-growing phase should be intensified to increase ecosystem carbon uptake and grass supply for animal husbandry in spring.
Collapse
Affiliation(s)
- Hasbagan Ganjurjav
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Guozheng Hu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China
| | - Elise Gornish
- School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
| | - Yong Zhang
- National Plateau Wetlands Research Center, College of Wetlands, Southwest Forestry University, Kunming, China
| | - Yu Li
- School of Tourism and Land Resource, Chongqing Technology and Business University, Chongqing, China
| | - Yulong Yan
- CECEP Engineering Technology Research Institute, Beijing, China
| | - Hongbao Wu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Jun Yan
- Nagqu Grassland Station, Nagqu, China
| | | | | | - Qingzhu Gao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China; National Agricultural Experimental Station for Agricultural Environment, Nagqu, China.
| |
Collapse
|
25
|
Dow C, Kim AY, D'Orangeville L, Gonzalez-Akre EB, Helcoski R, Herrmann V, Harley GL, Maxwell JT, McGregor IR, McShea WJ, McMahon SM, Pederson N, Tepley AJ, Anderson-Teixeira KJ. Warm springs alter timing but not total growth of temperate deciduous trees. Nature 2022; 608:552-557. [PMID: 35948636 DOI: 10.1038/s41586-022-05092-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/08/2022] [Indexed: 11/09/2022]
Abstract
As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.
Collapse
Affiliation(s)
- Cameron Dow
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA.,Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Albert Y Kim
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA.,Statistical & Data Sciences, Smith College, Northampton, MA, USA
| | - Loïc D'Orangeville
- Harvard Forest, Petersham, MA, USA.,Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Erika B Gonzalez-Akre
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Ryan Helcoski
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Valentine Herrmann
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Grant L Harley
- Department of Earth and Spatial Sciences, University of Idaho, Moscow, ID, USA
| | - Justin T Maxwell
- Department of Geography, Indiana University, Bloomington, IN, USA
| | - Ian R McGregor
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA.,Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
| | - William J McShea
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Sean M McMahon
- Smithsonian Environmental Research Center, Edgewater, MD, USA.,Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | | | - Alan J Tepley
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA.,Canadian Forest Service, Northern Forestry Centre, Edmonton, Alberta, Canada.,Department of Forestry and Wildland Resources, Cal Poly Humboldt University, Arcata, CA, USA
| | - Kristina J Anderson-Teixeira
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA. .,Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama, Republic of Panama.
| |
Collapse
|
26
|
Distinguishing the Impacts of Human Activities and Climate Change on the Livelihood Environment of Pastoralists in the Qinghai Lake Basin. SUSTAINABILITY 2022. [DOI: 10.3390/su14148402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Grassland vegetation is the largest terrestrial ecosystem in the Qinghai Lake Basin (QLB), and it is also the most important means of production for herders’ livelihoods. Quantifying the impact of climate change and human activities on grassland vegetation changes is an essential task for ensuring the sustainable livelihood of pastoralists. To this end, we investigated vegetation cover changes in the QLB from 2000 to 2020 using the normalized difference vegetation index (NDVI), meteorological raster data, and digital elevation and used residual analysis of multiple linear regression to evaluate the residuals of human activities. The residual analysis of partial derivatives was used to quantify the contribution of climate change and human activities to changes in vegetation cover. The results showed that: (1) The vegetation coverage of the QLB increased significantly (0.002/a, p < 0.01), with 91.38% of the area showing a greening trend, and 8.62% of the area suffering a degrading trend. The NDVI decreased substantially along the altitude gradient (−0.02/a, p < 0.01), with the highest vegetation coverage at 3600–3700 m (0.37/a). The vegetation degraded from 3200–3300 m, vegetation greening accelerated from 3300–3500 m, and vegetation greening slowed above 3500 m. (2) The contribution of climate change, temperature (T), and precipitation (P) to vegetation cover change were 1.62/a, 0.005/a, and 1.615/a, respectively. Below 3500 m, the vegetation greening was more limited by P. Above 3500 m, the vegetation greening was mainly limited by T. (3) Residual analysis showed that the contribution of human activities to vegetation cover was −1.618/a. Regarding the altitude gradient, at 3300–3500 m, human activities had the highest negative contribution to vegetation coverage (−2.389/a), and at 3200–3300 m, they had the highest positive contribution (0.389/a). In the past 21 years, the impact of human activities on vegetation coverage changed from negative to positive. Before 2009, the annual average NDVIres value was negative; after 2010, the average yearly NDVIres value turned positive. In general, the vegetation greening of the QLB depends on climate warming and humidification. The positive impact of human activities over the past decade was also essential for vegetation greening. These findings deepen our understanding of the QLB vegetation changes under climate change and human activities.
Collapse
|
27
|
Dyola N, Sigdel SR, Liang E, Babst F, Camarero JJ, Aryal S, Chettri N, Gao S, Lu X, Sun J, Wang T, Zhang G, Zhu H, Piao S, Peñuelas J. Species richness is a strong driver of forest biomass along broad bioclimatic gradients in the Himalayas. Ecosphere 2022. [DOI: 10.1002/ecs2.4107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nita Dyola
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Shalik Ram Sigdel
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Eryuan Liang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Flurin Babst
- School of Natural Resources and the Environment University of Arizona Tucson Arizona USA
- Laboratory of Tree‐Ring Research University of Arizona Tucson Arizona USA
| | | | - Sugam Aryal
- Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Institut für Geographie Erlangen Germany
| | - Nakul Chettri
- International Centre for Integrated Mountain Development (ICIMOD) Kathmandu Nepal
| | - Shan Gao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Xiaoming Lu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Jian Sun
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Tao Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Gengxin Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Haifeng Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Shilong Piao
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
| | - Josep Peñuelas
- CREAF Barcelona Spain
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Barcelona Spain
| |
Collapse
|
28
|
Heterogeneous Responses of Alpine Treelines to Climate Warming across the Tibetan Plateau. FORESTS 2022. [DOI: 10.3390/f13050788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The Tibetan Plateau hosts a continuous distribution of alpine treelines from the Qilian Mountains to the Hengduan Mountains and the Himalaya Mountains. However, not much is known about the broadscale alpine treeline dynamics and their responses to climate warming across the Tibetan Plateau. Herein, we collected a total of 59 treeline sites across different forest regions of the Tibetan Plateau and the related field data (i.e., upward advance magnitude, tree recruitment and height growth), expansion potential (i.e., elevational difference between the current treeline and the tree species line (EP)) and vegetation TI (an index of species interactions) from the published references. Site characteristics (e.g., elevation, slope and aspect) and the related environmental factors were used to analyze the relationships between treeline shifts and environmental variables. Despite increases in the recruitment and growth of trees at most treeline sites, alpine treeline positions showed heterogeneous responses to climate warming. Most treelines advanced over the last century, while some treelines showed long-term stability. EP was significantly and positively linked to the summer warming rate and treeline shifts, suggesting that the position of current tree species line is of crucial importance in evaluating treeline dynamics under climate change. In addition, warming-induced treeline advances were modulated by plant–plant interactions. Overall, this study highlighted the heterogeneous responses of regional-scale alpine treelines to climate warming on the Tibetan Plateau.
Collapse
|