1
|
Sigwart JD, Li Y, Chen Z, Vončina K, Sun J. Still waters run deep in large-scale genome rearrangements of morphologically conservative Polyplacophora. eLife 2025; 13:RP102542. [PMID: 40244654 PMCID: PMC12005716 DOI: 10.7554/elife.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
A major question in animal evolution is how genotypic and phenotypic changes are related, and another is when and whether ancient gene order is conserved in living clades. Chitons, the molluscan class Polyplacophora, retain a body plan and general morphology apparently little changed since the Palaeozoic. We present a comparative analysis of five reference quality genomes, including four de novo assemblies, covering all major chiton clades, and an updated phylogeny for the phylum. We constructed 20 ancient molluscan linkage groups (MLGs) and show that these are relatively conserved in bivalve karyotypes, but in chitons they are subject to re-ordering, rearrangement, fusion, or partial duplication and vary even between congeneric species. The largest number of novel fusions is in the most plesiomorphic clade Lepidopleurida, and the chitonid Liolophura japonica has a partial genome duplication, extending the occurrence of large-scale gene duplication within Mollusca. The extreme and dynamic genome rearrangements in this class stands in contrast to most other animals, demonstrating that chitons have overcome evolutionary constraints acting on other animal groups. The apparently conservative phenome of chitons belies rapid and extensive changes in genome.
Collapse
Affiliation(s)
- Julia D Sigwart
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum FrankfurtFrankfurtGermany
- Institute of Ecology, Evolution & Diversity, Goethe UniversityFrankfurtGermany
| | - Yunlong Li
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan LaboratoryQingdaoChina
| | - Zeyuan Chen
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum FrankfurtFrankfurtGermany
- Institute of Ecology, Evolution & Diversity, Goethe UniversityFrankfurtGermany
| | - Katarzyna Vončina
- Department of Marine Zoology, Senckenberg Research Institute and Natural History Museum FrankfurtFrankfurtGermany
- Institute of Ecology, Evolution & Diversity, Goethe UniversityFrankfurtGermany
| | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of ChinaQingdaoChina
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Laoshan LaboratoryQingdaoChina
| |
Collapse
|
2
|
Lewin TD, Liao IJY, Chen ME, Bishop JDD, Holland PWH, Luo YJ. Fusion, fission, and scrambling of the bilaterian genome in Bryozoa. Genome Res 2025; 35:78-92. [PMID: 39762050 PMCID: PMC11789643 DOI: 10.1101/gr.279636.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/31/2024] [Indexed: 01/24/2025]
Abstract
Groups of orthologous genes are commonly found together on the same chromosome over vast evolutionary distances. This extensive physical gene linkage, known as macrosynteny, is seen between bilaterian phyla as divergent as Chordata, Echinodermata, Mollusca, and Nemertea. Here, we report a unique pattern of genome evolution in Bryozoa, an understudied phylum of colonial invertebrates. Using comparative genomics, we reconstruct the chromosomal evolutionary history of five bryozoans. Multiple ancient chromosome fusions followed by gene mixing led to the near-complete loss of bilaterian linkage groups in the ancestor of extant bryozoans. A second wave of rearrangements, including chromosome fission, then occurred independently in two bryozoan classes, further scrambling bryozoan genomes. We also discover at least five derived chromosomal fusion events shared between bryozoans and brachiopods, supporting the traditional but highly debated Lophophorata hypothesis and suggesting macrosynteny to be a potentially powerful source of phylogenetic information. Finally, we show that genome rearrangements led to the dispersion of genes from bryozoan Hox clusters onto multiple chromosomes. Our findings demonstrate that the canonical bilaterian genome structure has been lost across all studied representatives of an entire phylum, and reveal that linkage group fission can occur very frequently in specific lineages.
Collapse
Affiliation(s)
- Thomas D Lewin
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | | | - Mu-En Chen
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan
| | - John D D Bishop
- Marine Biological Association, Plymouth PL1 2PB, United Kingdom
| | - Peter W H Holland
- Department of Biology, University of Oxford, Oxford OX1 3SZ, United Kingdom
| | - Yi-Jyun Luo
- Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
| |
Collapse
|
3
|
de Vries J, de Vries S, Fernie AR. Current and future perspectives for enhancing our understanding of the evolution of plant metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240253. [PMID: 39343013 PMCID: PMC11439503 DOI: 10.1098/rstb.2024.0253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 10/01/2024] Open
Abstract
The special issue 'The evolution of plant metabolism' has brought together original research, reviews and opinions that cover various aspects from the full breath of plant metabolism including its interaction with the environment including other species. Here, we briefly summarize these efforts and attempts to extract a consensus opinion of the best manner in which to tackle this subject both now and in the future. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
- University of Goettingen, Campus Institute Data Science (CIDAS), Goldschmidstr.1, Goettingen37077, Germany
- Department of Applied Bioinformatics, University of Goettingen, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, Goettingen37077, Germany
| | - Sophie de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute of Microbiology and Genetics, Goldschmidtstr. 1, Goettingen37077, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm14476, Germany
| |
Collapse
|
4
|
Tolman ER, Beatty CD, Kohli MK, Abbott J, Bybee SM, Frandsen PB, Stephen Gosnell J, Guralnick R, Kalkman VJ, Newton LG, Suvorov A, Ware JL. A molecular phylogeny of the Petaluridae (Odonata: Anisoptera): A 160-Million-Year-Old story of drift and extinction. Mol Phylogenet Evol 2024; 200:108185. [PMID: 39209047 DOI: 10.1016/j.ympev.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Petaluridae (Odonata: Anisoptera) is a relict dragonfly family, having diverged from its sister family in the Jurassic, of eleven species that are notable among odonates (dragonflies and damselflies) for their exclusive use of fen and bog habitats, their burrowing behavior as nymphs, large body size as adults, and extended lifespans. To date, several nodes within this family remain unresolved, limiting the study of the evolution of this peculiar family. Using an anchored hybrid enrichment dataset of over 900 loci we reconstructed the species tree of Petaluridae. To estimate the temporal origin of the genera within this family, we used a set of well-vetted fossils and a relaxed molecular clock model in a divergence time estimation analysis. We estimate that Petaluridae originated in the early Cretaceous and confirm the existence of monophyletic Gondwanan and Laurasian clades within the family. Our relaxed molecular clock analysis estimated that these clades diverged from their MRCA approximately 160 mya. Extant lineages within this family were identified to have persisted from 6 (Uropetala) to 120 million years (Phenes). Our biogeographical analyses focusing on a set of key regions suggest that divergence within Petaluridae is largely correlated with continental drift, the exposure of land bridges, and the development of mountain ranges. Our results support the hypothesis that species within Petaluridae have persisted for tens of millions of years, with little fossil evidence to suggest widespread extinction in the family, despite optimal conditions for the fossilization of nymphs. Petaluridae appear to be a rare example of habitat specialists that have persisted for tens of millions of years.
Collapse
Affiliation(s)
- Ethan R Tolman
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024; Department of Biological Sciences, Virginia Tech, Blacksburg, VA; Conservation Connection Foundation, Boise, ID.
| | - Christopher D Beatty
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024; Program for Conservation Genomics, Department of Biology, Stanford University
| | - Manpreet K Kohli
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024; Conservation Connection Foundation, Boise, ID; Department of Natural Sciences, Baruch College, New York
| | - John Abbott
- Alabama Museum of Natural History and Department of Research and Collections, The University of Alabama
| | - Seth M Bybee
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT
| | - J Stephen Gosnell
- Department of Natural Sciences, Baruch College, New York; PhD Program in Biology, The Graduate Center of the City University of New York, 365 Fifth Avenue, Room 4315, New York, 10016
| | - Robert Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL
| | - V J Kalkman
- Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden
| | - Lacie G Newton
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024
| | - Anton Suvorov
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA
| | - Jessica L Ware
- American Museum of Natural History, Department of Invertebrate Zoology, New York, 10024
| |
Collapse
|
5
|
Zhu C, Li S, Zhang D, Zhang J, Wang G, Zhou B, Zheng J, Xu W, Wang Z, Gao X, Liu Q, Xue T, Zhang H, Li C, Ge B, Liu Y, Qiu Q, Zhang H, Huang J, Tang B, Wang K. Convergent Degenerated Regulatory Elements Associated with Limb Loss in Limbless Amphibians and Reptiles. Mol Biol Evol 2024; 41:msae239. [PMID: 39530343 PMCID: PMC11600591 DOI: 10.1093/molbev/msae239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/17/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Limbs are a defining characteristic of tetrapods, yet numerous taxa, primarily among amphibians and reptiles, have independently lost limbs as an adaptation to new ecological niches. To elucidate the genetic factors contributing to this convergent limb loss, we present a 12 Gb chromosome-level assembly of the Banna caecilian (Ichthyophis bannanicus), a limbless amphibian. Our comparative analysis, which includes the reconstruction of amphibian karyotype evolution, reveals constrained gene length evolution in a subset of developmental genes across 3 large genomes. Investigation of limb development genes uncovered the loss of Grem1 in caecilians and Tulp3 in snakes. Interestingly, caecilians and snakes share a significantly larger number of convergent degenerated conserved noncoding elements than limbless lizards, which have a shorter evolutionary history of limb loss. These convergent degenerated conserved noncoding elements overlap significantly with active genomic regions during mouse limb development and are conserved in limbed species, suggesting their essential role in limb patterning in the tetrapod common ancestor. While most convergent degenerated conserved noncoding elements emerged in the jawed vertebrate ancestor, coinciding with the origin of paired appendage, more recent degenerated conserved noncoding elements also contribute to limb development, as demonstrated through functional experiments. Our study provides novel insights into the regulatory elements associated with limb development and loss, offering an evolutionary perspective on the genetic basis of morphological specialization.
Collapse
Affiliation(s)
- Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Shengyou Li
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Daizhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Jinjin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Botong Zhou
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhengfei Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Xueli Gao
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiuning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Tingfeng Xue
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huabin Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Chunhui Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Baoming Ge
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huixian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, China
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Yancheng Teachers University, Yancheng City 224002, China
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
6
|
Schartl M, Woltering JM, Irisarri I, Du K, Kneitz S, Pippel M, Brown T, Franchini P, Li J, Li M, Adolfi M, Winkler S, de Freitas Sousa J, Chen Z, Jacinto S, Kvon EZ, Correa de Oliveira LR, Monteiro E, Baia Amaral D, Burmester T, Chalopin D, Suh A, Myers E, Simakov O, Schneider I, Meyer A. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 2024; 634:96-103. [PMID: 39143221 PMCID: PMC11514621 DOI: 10.1038/s41586-024-07830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The genomes of living lungfishes can inform on the molecular-developmental basis of the Devonian sarcopterygian fish-tetrapod transition. We de novo sequenced the genomes of the African (Protopterus annectens) and South American lungfishes (Lepidosiren paradoxa). The Lepidosiren genome (about 91 Gb, roughly 30 times the human genome) is the largest animal genome sequenced so far and more than twice the size of the Australian (Neoceratodus forsteri)1 and African2 lungfishes owing to enlarged intergenic regions and introns with high repeat content (about 90%). All lungfish genomes continue to expand as some transposable elements (TEs) are still active today. In particular, Lepidosiren's genome grew extremely fast during the past 100 million years (Myr), adding the equivalent of one human genome every 10 Myr. This massive genome expansion seems to be related to a reduction of PIWI-interacting RNAs and C2H2 zinc-finger and Krüppel-associated box (KRAB)-domain protein genes that suppress TE expansions. Although TE abundance facilitates chromosomal rearrangements, lungfish chromosomes still conservatively reflect the ur-tetrapod karyotype. Neoceratodus' limb-like fins still resemble those of their extinct relatives and remained phenotypically static for about 100 Myr. We show that the secondary loss of limb-like appendages in the Lepidosiren-Protopterus ancestor was probably due to loss of sonic hedgehog limb-specific enhancers.
Collapse
Affiliation(s)
- Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria.
| | | | - Iker Irisarri
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Pippel
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Thomas Brown
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jing Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ming Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mateus Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Zhuoxin Chen
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Sandra Jacinto
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | | | - Erika Monteiro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Domitille Chalopin
- Institute of Cellular Biochemistry and Genetics, CNRS, University of Bordeaux, Bordeaux, France
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Eugene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center of Systems Biology Dresden, Dresden, Germany
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Igor Schneider
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
7
|
Thomas WJW, Amas JC, Dolatabadian A, Huang S, Zhang F, Zandberg JD, Neik TX, Edwards D, Batley J. Recent advances in the improvement of genetic resistance against disease in vegetable crops. PLANT PHYSIOLOGY 2024; 196:32-46. [PMID: 38796840 PMCID: PMC11376385 DOI: 10.1093/plphys/kiae302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/10/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Affiliation(s)
- William J W Thomas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Junrey C Amas
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Aria Dolatabadian
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Shuanglong Huang
- Department of Plant Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Jaco D Zandberg
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| | - Ting Xiang Neik
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
- NUS Agritech Centre, National University of Singapore, Singapore, 118258, Republic of Singapore
| | - David Edwards
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
- Centre for Applied Bioinformatics, The University of Western Australia, Perth, 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, The University of Western Australia, Perth, 6009, Australia
| |
Collapse
|
8
|
Nagao K, Mochizuki K. Genome organization: Raison d'être of ancestral linkage groups. Curr Biol 2024; 34:R544-R546. [PMID: 38834029 DOI: 10.1016/j.cub.2024.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The genomes of extant organisms contain conserved blocks of regions that can be traced back to ancient ancestors, yet the evolutionary pressures that maintained such genomic segments remain unclear. New research on a curious organism with two different genomes sheds light on why our genomes are organized as they are.
Collapse
Affiliation(s)
- Kohei Nagao
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France
| | - Kazufumi Mochizuki
- Institute of Human Genetics (IGH), CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
9
|
Lin CY, Marlétaz F, Pérez-Posada A, Martínez-García PM, Schloissnig S, Peluso P, Conception GT, Bump P, Chen YC, Chou C, Lin CY, Fan TP, Tsai CT, Gómez Skarmeta JL, Tena JJ, Lowe CJ, Rank DR, Rokhsar DS, Yu JK, Su YH. Chromosome-level genome assemblies of 2 hemichordates provide new insights into deuterostome origin and chromosome evolution. PLoS Biol 2024; 22:e3002661. [PMID: 38829909 PMCID: PMC11175523 DOI: 10.1371/journal.pbio.3002661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Deuterostomes are a monophyletic group of animals that includes Hemichordata, Echinodermata (together called Ambulacraria), and Chordata. The diversity of deuterostome body plans has made it challenging to reconstruct their ancestral condition and to decipher the genetic changes that drove the diversification of deuterostome lineages. Here, we generate chromosome-level genome assemblies of 2 hemichordate species, Ptychodera flava and Schizocardium californicum, and use comparative genomic approaches to infer the chromosomal architecture of the deuterostome common ancestor and delineate lineage-specific chromosomal modifications. We show that hemichordate chromosomes (1N = 23) exhibit remarkable chromosome-scale macrosynteny when compared to other deuterostomes and can be derived from 24 deuterostome ancestral linkage groups (ALGs). These deuterostome ALGs in turn match previously inferred bilaterian ALGs, consistent with a relatively short transition from the last common bilaterian ancestor to the origin of deuterostomes. Based on this deuterostome ALG complement, we deduced chromosomal rearrangement events that occurred in different lineages. For example, a fusion-with-mixing event produced an Ambulacraria-specific ALG that subsequently split into 2 chromosomes in extant hemichordates, while this homologous ALG further fused with another chromosome in sea urchins. Orthologous genes distributed in these rearranged chromosomes are enriched for functions in various developmental processes. We found that the deeply conserved Hox clusters are located in highly rearranged chromosomes and that maintenance of the clusters are likely due to lower densities of transposable elements within the clusters. We also provide evidence that the deuterostome-specific pharyngeal gene cluster was established via the combination of 3 pre-assembled microsyntenic blocks. We suggest that since chromosomal rearrangement events and formation of new gene clusters may change the regulatory controls of developmental genes, these events may have contributed to the evolution of diverse body plans among deuterostomes.
Collapse
Affiliation(s)
- Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ferdinand Marlétaz
- Center for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Alberto Pérez-Posada
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Pedro Manuel Martínez-García
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | | | - Paul Peluso
- Pacific Biosciences, Menlo Park, California, United States of America
| | | | - Paul Bump
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California, United States of America
| | - Yi-Chih Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Cindy Chou
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ching-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tzu-Pei Fan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Chang-Tai Tsai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - José Luis Gómez Skarmeta
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Juan J. Tena
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Christopher J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California, United States of America
- Chan-Zuckerberg Biohub, San Francisco, California, United States of America
| | - David R. Rank
- Pacific Biosciences, Menlo Park, California, United States of America
| | - Daniel S. Rokhsar
- Chan-Zuckerberg Biohub, San Francisco, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Molecular Genetics Unit, Okinawa Institute for Science and Technology, Onna, Japan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
10
|
Ghosh M, Basak S, Dutta S. Evolutionary divergence of TLR9 through ancestral sequence reconstruction. Immunogenetics 2024; 76:203-211. [PMID: 38441635 DOI: 10.1007/s00251-024-01338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/24/2024] [Indexed: 05/12/2024]
Abstract
The transmembrane pattern recognition receptor, Toll-like receptor (TLR), are best known for their roles in innate immunity via recognition of pathogen and initiation of signaling response. Mammalian TLRs recognize molecular patterns associated with pathogens and initiate innate immune response. We have studied the evolutionary diversity of mammalian TLR genes for differences in immunological response. Reconstruction of ancestral sequences is a key aspect of the molecular evolution of TLR to track changes across the TLR genes. The comprehensive analysis of mammalian TLRs revealed a distinct pattern of evolution of TLR9. Various sequence-based features such as amino acid usage, hydrophobicity, GC content, and evolutionary constraints are found to influence the divergence of TLR9 from other TLRs. Ancestral sequence reconstruction analysis also revealed that the gradual evolution of TLR genes in several ancestral lineages leads to the distinct pattern of TLR9. It demonstrates evolutionary divergence with the progressive accumulation of mutations results in the distinct pattern of TLR9.
Collapse
Affiliation(s)
- Manisha Ghosh
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T Road, Scheme-XM, Beliaghata Kolkata, 700010, India
| | - Surajit Basak
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, P-33, C.I.T Road, Scheme-XM, Beliaghata Kolkata, 700010, India.
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
11
|
Yu H, Li Y, Han W, Bao L, Liu F, Ma Y, Pu Z, Zeng Q, Zhang L, Bao Z, Wang S. Pan-evolutionary and regulatory genome architecture delineated by an integrated macro- and microsynteny approach. Nat Protoc 2024; 19:1623-1678. [PMID: 38514839 DOI: 10.1038/s41596-024-00966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 12/20/2023] [Indexed: 03/23/2024]
Abstract
The forthcoming massive genome data generated by the Earth BioGenome Project will open up a new era of comparative genomics, for which genome synteny analysis provides an important framework. Profiling genome synteny represents an essential step in elucidating genome architecture, regulatory blocks/elements and their evolutionary history. Here we describe PanSyn, ( https://github.com/yhw320/PanSyn ), the most comprehensive and up-to-date genome synteny pipeline, providing step-by-step instructions and application examples to demonstrate its usage. PanSyn inherits both basic and advanced functions from existing popular tools, offering a user-friendly, highly customized approach for genome macrosynteny analysis and integrated pan-evolutionary and regulatory analysis of genome architecture, which are not yet available in public synteny software or tools. The advantages of PanSyn include: (i) advanced microsynteny analysis by functional profiling of microsynteny genes and associated regulatory elements; (ii) comprehensive macrosynteny analysis, including the inference of karyotype evolution from ancestors to extant species; and (iii) functional integration of microsynteny and macrosynteny for pan-evolutionary profiling of genome architecture and regulatory blocks, as well as integration with external functional genomics datasets from three- or four-dimensional genome and ENCODE projects. PanSyn requires basic knowledge of the Linux environment and Perl programming language and the ability to access a computer cluster, especially for large-scale genomic comparisons. Our protocol can be easily implemented by a competent graduate student or postdoc and takes several days to weeks to execute for dozens to hundreds of genomes. PanSyn provides yet the most comprehensive and powerful tool for integrated evolutionary and functional genomics.
Collapse
Affiliation(s)
- Hongwei Yu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuli Li
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
| | - Wentao Han
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fuyun Liu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yuanting Ma
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhongqi Pu
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Qifan Zeng
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lingling Zhang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Zhenmin Bao
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Laboratory for Marine Fisheries and Aquaculture, Laoshan Laboratory, Qingdao, China
| | - Shi Wang
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China.
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China.
| |
Collapse
|
12
|
Zhang Z, Zhang X, Tian Y, Wang L, Cao J, Feng H, Li K, Wang Y, Dong S, Ye W, Wang Y. Complete telomere-to-telomere genomes uncover virulence evolution conferred by chromosome fusion in oomycete plant pathogens. Nat Commun 2024; 15:4624. [PMID: 38816389 PMCID: PMC11139960 DOI: 10.1038/s41467-024-49061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.
Collapse
Affiliation(s)
- Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaoyi Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yuan Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Liyuan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingting Cao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hui Feng
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Kainan Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
13
|
Julian AT, Pombert JF. SYNY: a pipeline to investigate and visualize collinearity between genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593317. [PMID: 38798446 PMCID: PMC11118330 DOI: 10.1101/2024.05.09.593317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Investigating collinearity between chromosomes is often used in comparative genomics to help identify gene orthologs, pinpoint genes that might have been overlooked as part of annotation processes and/or perform various evolutionary inferences. Collinear segments, also known as syntenic blocks, can be inferred from sequence alignments and/or from the identification of genes arrayed in the same order and relative orientations between investigated genomes. To help perform these analyses and assess their outcomes, we built a simple pipeline called SYNY (for synteny) that implements the two distinct approaches and produces different visualizations. The SYNY pipeline was built with ease of use in mind and runs on modest hardware. The pipeline is written in Perl and Python and is available on GitHub (https://github.com/PombertLab/SYNY) under the permissive MIT license.
Collapse
|
14
|
Najer T, Doña J, Buček A, Sweet AD, Sychra O, Johnson KP. Mitochondrial genome fragmentation is correlated with increased rates of molecular evolution. PLoS Genet 2024; 20:e1011266. [PMID: 38701107 PMCID: PMC11095710 DOI: 10.1371/journal.pgen.1011266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/15/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
While mitochondrial genome content and organization is quite diverse across all Eukaryotes, most bilaterian animal mitochondrial genomes (mitogenomes) exhibit highly conserved gene content and organisation, with genes typically encoded on a single circular chromosome. However, many species of parasitic lice (Insecta: Phthiraptera) are among the notable exceptions, having mitogenomes fragmented into multiple circular chromosomes. To better understand the process of mitogenome fragmentation, we conducted a large-scale genomic study of a major group of lice, Amblycera, with extensive taxon sampling. Analyses of the evolution of mitogenome structure across a phylogenomic tree of 90 samples from 53 genera revealed evidence for multiple independent origins of mitogenome fragmentation, some inferred to have occurred less than five million years ago. We leveraged these many independent origins of fragmentation to compare the rates of DNA substitution and gene rearrangement, specifically contrasting branches with fragmented and non-fragmented mitogenomes. We found that lineages with fragmented mitochondrial genomes had significantly higher rates of mitochondrial sequence evolution. In addition, lineages with fragmented mitochondrial genomes were more likely to have mitogenome gene rearrangements than those with single-chromosome mitochondrial genomes. By combining phylogenomics and mitochondrial genomics we provide a detailed portrait of mitogenome evolution across this group of insects with a remarkably unstable mitogenome structure, identifying processes of molecular evolution that are correlated with mitogenome fragmentation.
Collapse
Affiliation(s)
- Tomáš Najer
- Department of Veterinary Sciences, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| | - Jorge Doña
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
- Departamento de Biología Animal, Universidad de Granada, Granada, Spain
| | - Aleš Buček
- Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Okinawa Institute of Science & Technology Graduate University, Onna-son, Okinawa, Japan
| | - Andrew D. Sweet
- Department of Biological Sciences, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Oldřich Sychra
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Kevin P. Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, Illinois, United States of America
| |
Collapse
|
15
|
Wright CJ, Stevens L, Mackintosh A, Lawniczak M, Blaxter M. Comparative genomics reveals the dynamics of chromosome evolution in Lepidoptera. Nat Ecol Evol 2024; 8:777-790. [PMID: 38383850 PMCID: PMC11009112 DOI: 10.1038/s41559-024-02329-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
Chromosomes are a central unit of genome organization. One-tenth of all described species on Earth are butterflies and moths, the Lepidoptera, which generally possess 31 chromosomes. However, some species display dramatic variation in chromosome number. Here we analyse 210 chromosomally complete lepidopteran genomes and show that the chromosomes of extant lepidopterans are derived from 32 ancestral linkage groups, which we term Merian elements. Merian elements have remained largely intact through 250 million years of evolution and diversification. Against this stable background, eight lineages have undergone extensive reorganization either through numerous fissions or a combination of fusion and fission events. Outside these lineages, fusions are rare and fissions are rarer still. Fusions often involve small, repeat-rich Merian elements and the sex-linked element. Our results reveal the constraints on genome architecture in Lepidoptera and provide a deeper understanding of chromosomal rearrangements in eukaryotic genome evolution.
Collapse
Affiliation(s)
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK.
| |
Collapse
|
16
|
Cepeda AS, Mello B, Pacheco MA, Luo Z, Sullivan SA, Carlton JM, Escalante AA. The Genome of Plasmodium gonderi: Insights into the Evolution of Human Malaria Parasites. Genome Biol Evol 2024; 16:evae027. [PMID: 38376987 PMCID: PMC10901558 DOI: 10.1093/gbe/evae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.
Collapse
Affiliation(s)
- Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Beatriz Mello
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Zunping Luo
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Steven A Sullivan
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jane M Carlton
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| |
Collapse
|
17
|
Altenhoff AM, Warwick Vesztrocy A, Bernard C, Train CM, Nicheperovich A, Prieto Baños S, Julca I, Moi D, Nevers Y, Majidian S, Dessimoz C, Glover NM. OMA orthology in 2024: improved prokaryote coverage, ancestral and extant GO enrichment, a revamped synteny viewer and more in the OMA Ecosystem. Nucleic Acids Res 2024; 52:D513-D521. [PMID: 37962356 PMCID: PMC10767875 DOI: 10.1093/nar/gkad1020] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In this update paper, we present the latest developments in the OMA browser knowledgebase, which aims to provide high-quality orthology inferences and facilitate the study of gene families, genomes and their evolution. First, we discuss the addition of new species in the database, particularly an expanded representation of prokaryotic species. The OMA browser now offers Ancestral Genome pages and an Ancestral Gene Order viewer, allowing users to explore the evolutionary history and gene content of ancestral genomes. We also introduce a revamped Local Synteny Viewer to compare genomic neighborhoods across both extant and ancestral genomes. Hierarchical Orthologous Groups (HOGs) are now annotated with Gene Ontology annotations, and users can easily perform extant or ancestral GO enrichments. Finally, we recap new tools in the OMA Ecosystem, including OMAmer for proteome mapping, OMArk for proteome quality assessment, OMAMO for model organism selection and Read2Tree for phylogenetic species tree construction from reads. These new features provide exciting opportunities for orthology analysis and comparative genomics. OMA is accessible at https://omabrowser.org.
Collapse
Affiliation(s)
- Adrian M Altenhoff
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- ETH Zurich, Computer Science, Universitätstr. 6, 8092 Zurich, Switzerland
| | - Alex Warwick Vesztrocy
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Charles Bernard
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Clement-Marie Train
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Alina Nicheperovich
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Silvia Prieto Baños
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Irene Julca
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - David Moi
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Yannis Nevers
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sina Majidian
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Christophe Dessimoz
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Natasha M Glover
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
18
|
Aase-Remedios ME, Janssen R, Leite DJ, Sumner-Rooney L, McGregor AP. Evolution of the Spider Homeobox Gene Repertoire by Tandem and Whole Genome Duplication. Mol Biol Evol 2023; 40:msad239. [PMID: 37935059 PMCID: PMC10726417 DOI: 10.1093/molbev/msad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/02/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023] Open
Abstract
Gene duplication generates new genetic material that can contribute to the evolution of gene regulatory networks and phenotypes. Duplicated genes can undergo subfunctionalization to partition ancestral functions and/or neofunctionalization to assume a new function. We previously found there had been a whole genome duplication (WGD) in an ancestor of arachnopulmonates, the lineage including spiders and scorpions but excluding other arachnids like mites, ticks, and harvestmen. This WGD was evidenced by many duplicated homeobox genes, including two Hox clusters, in spiders. However, it was unclear which homeobox paralogues originated by WGD versus smaller-scale events such as tandem duplications. Understanding this is a key to determining the contribution of the WGD to arachnopulmonate genome evolution. Here we characterized the distribution of duplicated homeobox genes across eight chromosome-level spider genomes. We found that most duplicated homeobox genes in spiders are consistent with an origin by WGD. We also found two copies of conserved homeobox gene clusters, including the Hox, NK, HRO, Irx, and SINE clusters, in all eight species. Consistently, we observed one copy of each cluster was degenerated in terms of gene content and organization while the other remained more intact. Focussing on the NK cluster, we found evidence for regulatory subfunctionalization between the duplicated NK genes in the spider Parasteatoda tepidariorum compared to their single-copy orthologues in the harvestman Phalangium opilio. Our study provides new insights into the relative contributions of multiple modes of duplication to the homeobox gene repertoire during the evolution of spiders and the function of NK genes.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Uppsala University, Uppsala, 752 36, Sweden
| | - Daniel J Leite
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Lauren Sumner-Rooney
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, 10115, Germany
| | - Alistair P McGregor
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
19
|
Chen X, Wang Z, Zhang C, Hu J, Lu Y, Zhou H, Mei Y, Cong Y, Guo F, Wang Y, He K, Liu Y, Li F. Unraveling the complex evolutionary history of lepidopteran chromosomes through ancestral chromosome reconstruction and novel chromosome nomenclature. BMC Biol 2023; 21:265. [PMID: 37981687 PMCID: PMC10658929 DOI: 10.1186/s12915-023-01762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Lepidoptera is one of the most species-rich animal groups, with substantial karyotype variations among species due to chromosomal rearrangements. Knowledge of the evolutionary patterns of lepidopteran chromosomes still needs to be improved. RESULTS Here, we used chromosome-level genome assemblies of 185 lepidopteran insects to reconstruct an ancestral reference genome and proposed a new chromosome nomenclature. Thus, we renamed over 5000 extant chromosomes with this system, revealing the historical events of chromosomal rearrangements and their features. Additionally, our findings indicate that, compared with autosomes, the Z chromosome in Lepidoptera underwent a fast loss of conserved genes, rapid acquisition of lineage-specific genes, and a low rate of gene duplication. Moreover, we presented evidence that all available 67 W chromosomes originated from a common ancestor chromosome, with four neo-W chromosomes identified, including one generated by fusion with an autosome and three derived through horizontal gene transfer. We also detected nearly 4000 inter-chromosomal gene movement events. Notably, Geminin is transferred from the autosome to the Z chromosome. When located on the autosome, Geminin shows female-biased expression, but on the Z chromosome, it exhibits male-biased expression. This contributes to the sexual dimorphism of body size in silkworms. CONCLUSIONS Our study sheds light on the complex evolutionary history of lepidopteran chromosomes based on ancestral chromosome reconstruction and novel chromosome nomenclature.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zuoqi Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Chaowei Zhang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jingheng Hu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yueqi Lu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yang Mei
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yuyang Cong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fangyuan Guo
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ying Liu
- Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province and Agricultural Environment/ Agriculture Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
20
|
Stabile AM, Pistilli A, Mariangela R, Rende M, Bartolini D, Di Sante G. New Challenges for Anatomists in the Era of Omics. Diagnostics (Basel) 2023; 13:2963. [PMID: 37761332 PMCID: PMC10529314 DOI: 10.3390/diagnostics13182963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023] Open
Abstract
Anatomic studies have traditionally relied on macroscopic, microscopic, and histological techniques to investigate the structure of tissues and organs. Anatomic studies are essential in many fields, including medicine, biology, and veterinary science. Advances in technology, such as imaging techniques and molecular biology, continue to provide new insights into the anatomy of living organisms. Therefore, anatomy remains an active and important area in the scientific field. The consolidation in recent years of some omics technologies such as genomics, transcriptomics, proteomics, and metabolomics allows for a more complete and detailed understanding of the structure and function of cells, tissues, and organs. These have been joined more recently by "omics" such as radiomics, pathomics, and connectomics, supported by computer-assisted technologies such as neural networks, 3D bioprinting, and artificial intelligence. All these new tools, although some are still in the early stages of development, have the potential to strongly contribute to the macroscopic and microscopic characterization in medicine. For anatomists, it is time to hitch a ride and get on board omics technologies to sail to new frontiers and to explore novel scenarios in anatomy.
Collapse
Affiliation(s)
- Anna Maria Stabile
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Alessandra Pistilli
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Ruggirello Mariangela
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| | - Desirée Bartolini
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132 Perugia, Italy; (A.M.S.); (A.P.); (R.M.); (M.R.)
| |
Collapse
|