1
|
Luo Q, Gao H, Xiang Y, Li J, Dong L, Wang X, Liu F, Guo Y, Shen C, Ding Q, Qin C, Liang G, Wen L. The dynamics of microbiome and virome in migratory birds of southwest China. NPJ Biofilms Microbiomes 2025; 11:64. [PMID: 40268958 PMCID: PMC12018928 DOI: 10.1038/s41522-025-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/12/2025] [Indexed: 04/25/2025] Open
Abstract
Migratory birds carry pathogens, posing a significant threat to environmental and human health. We documented the metatranscriptome and RNA virome of 896 stool samples from migratory birds and environmental samples over four consecutive years in southwest China. Our analysis identified Catellicoccus marimammalium as the predominant bacterium in the gut of black-headed gulls, with an average relative abundance of 79.3%. Strain-level analysis of C. marimammalium revealed a dominant population with some longitudinal diversity over the four years. Additionally, the gut of black-headed gulls was found to harbor numerous viruses, including a novel hepatovirus. Lysates of cells of C. marimammalium but not other bacteria derived from black-headed gulls could inhibit the replication of human hepatovirus, suggesting a potential regulatory role for gut commensal bacteria in modulating viral carriage. These findings enhance our understanding of the microbiome and RNA virome diversity in migratory birds and provide insights into the modulation of asymptomatic infections.
Collapse
Affiliation(s)
- Qingqing Luo
- Key Laboratory of Sichuan Institute for Protecting Endangered Birds in the Southwest Mountains, College of Life Sciences, Leshan Normal University, Leshan, China
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Hongyan Gao
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Yujia Xiang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jian Li
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Lin Dong
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xingran Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fangqing Liu
- Key Laboratory of Sichuan Institute for Protecting Endangered Birds in the Southwest Mountains, College of Life Sciences, Leshan Normal University, Leshan, China
| | - Yuhong Guo
- Key Laboratory of Sichuan Institute for Protecting Endangered Birds in the Southwest Mountains, College of Life Sciences, Leshan Normal University, Leshan, China
| | - Chao Shen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiang Ding
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Chengfeng Qin
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Guanxiang Liang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Longying Wen
- Key Laboratory of Sichuan Institute for Protecting Endangered Birds in the Southwest Mountains, College of Life Sciences, Leshan Normal University, Leshan, China.
| |
Collapse
|
2
|
Doing G, Shanbhag P, Bell I, Cassidy S, Motakis E, Aiken E, Oh J, Adams MD. TEAL-Seq: targeted expression analysis sequencing. mSphere 2025:e0098424. [PMID: 40261045 DOI: 10.1128/msphere.00984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Metagenome sequencing enables the genetic characterization of complex microbial communities. However, determining the activity of isolates within a community presents several challenges, including the wide range of organismal and gene expression abundances, the presence of host RNA, and low microbial biomass at many sites. To address these limitations, we developed "targeted expression analysis sequencing" or TEAL-seq, enabling sensitive species-specific analyses of gene expression using highly multiplexed custom probe pools. For proof of concept, we targeted about 1,700 core and accessory genes of Staphylococcus aureus and S. epidermidis, two key species of the skin microbiome. Two targeting methods were applied to laboratory cultures and human nasal swab specimens. Both methods showed a high degree of specificity, with >90% reads on target, even in the presence of complex microbial or human background DNA/RNA. Targeting using molecular inversion probes demonstrated excellent correlation in inferred expression levels with bulk RNA-seq. Furthermore, we show that a linear pre-amplification step to increase the number of nucleic acids for analysis yielded consistent and predictable results when applied to complex samples and enabled profiling of expression from as little as 1 ng of total RNA. TEAL-seq is much less expensive than bulk metatranscriptomic profiling, enables detection across a greater dynamic range, and uses a strategy that is readily configurable for determining the transcriptional status of organisms in any microbial community.IMPORTANCEThe gene expression patterns of bacteria in microbial communities reflect their activity and interactions with other community members. Measuring gene expression in complex microbiome contexts is challenging, however, due to the large dynamic range of microbial abundances and transcript levels. Here we describe an approach to assessing gene expression for specific species of interest using highly multiplexed pools of targeting probes. We show that an isothermal amplification step enables the profiling of low biomass samples. TEAL-seq should be widely adaptable to the study of microbial activity in natural environments.
Collapse
Affiliation(s)
- Georgia Doing
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Priya Shanbhag
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Isaac Bell
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Sara Cassidy
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Elizabeth Aiken
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Yang J, Shang P, Liu Z, Wang J, Zhang B, Zhang H. Ligilactobacillus salivarius regulating translocation of core bacteria to enrich mouse intrinsic microbiota of heart and liver in defense of heat stress. Front Immunol 2025; 16:1540548. [PMID: 40276518 PMCID: PMC12018310 DOI: 10.3389/fimmu.2025.1540548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
The aim of this study was to elucidate the intrinsic microbiota residing in the heart and liver, which was enriched with Ligilactobacillus salivarius supplementation and its roles in defending anti-oxidation of heat stress. The specific pathogen free (SPF) mice were employed to perform the study. Genomic sequencing showed that the intrinsic microbes in the heart and liver of SPF mice, which were primarily of the genera Burkholderia and Ralstonia, functioned in organic metabolism, environmental information processing, cellular processes, and genetic information processing. Lactobacillus sp. were found in the liver but not in the heart. The heart had a lower bacterial abundance than the liver. A culturomic assay of the heart flushing liquid indicated that the dominant species of bacteria were Ralstonia pickettii, Ralstonia sp._3PA37C10, Ralstonia insidiosa, Burkholderia lata, unclassified _g_ Ralstonia, and unclassified _p_ Pseudomonadota. Intrinsic bacteria exist in the heart due to their inhibitory action against pathogenic Escherichia coli. After, the mice were supplemented with Ligilactobacillus salivarius to optimize the microbiota levels. The dominant bacterial phyla in the liver and heart were Bacillota, Bacteroidota, Pseudomonadota, Thermodesulfobacteriota, andActinomycetota, which comprised 98.2% of total bacteria. The genus Lactobacillus was also abundant. Core bacteria such as Lactobacillus reuteri are translocated from the intestine to the heart and liver. The enriched bacterial composition up-regulated anti-oxidation capacities in the heart and liver. The levels of reactive oxygen species and superoxide dismutase (SOD) were significantly improved compared to those in control (P < 0.01). In conclusion, intrinsic bacteria present in the heart and liver alleviate infection by pathogens, environmental and genetic information processing, and cellular processes during heat stress exposure. Diet with Ligilactobacillus salivarius supplementation regulated the translocation of core bacteria to the heart and liver, improved bacterial composition, and induced a higher anti-oxidative capacity under heat stress.
Collapse
Affiliation(s)
- Jiajun Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Peng Shang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China
| | - Zongliang Liu
- College of Animal Science and Technology, Aihui Agricultural University, Hefei, Anhui, China
| | - Jing Wang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, Jiangsu, China
| | - Bo Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hao Zhang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Wang Q, Mei SQ, Dong TY, Su J, Pan YF, Zhu Y, Wu K, Zhang LB, Shi M, Zhou P. WITHDRAWN: Comparative metatranscriptome analysis in gut reveals insignificant host or microbiota changes in SARS-related coronavirus naturally infected bats. Virol Sin 2025:S1995-820X(25)00037-9. [PMID: 40204156 DOI: 10.1016/j.virs.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
The publisher regrets that this article has withdrawn. The full Elsevier Policy on Article Withdrawal can be found athttps://www.elsevier.com/about/policies-and-standards/article-withdrawal.
Collapse
Affiliation(s)
- Qi Wang
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Shi-Qiang Mei
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian-Yi Dong
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Jia Su
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Yuan-Fei Pan
- Ministry of Education Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Yan Zhu
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Ke Wu
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China
| | - Li-Biao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| | - Mang Shi
- School of Medicine, Shenzhen campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China.
| | - Peng Zhou
- Guangzhou National Laboratory, No.9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, China; State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical School, Guangzhou 510005, China.
| |
Collapse
|
5
|
Sinha AK, Laursen MF, Licht TR. Regulation of microbial gene expression: the key to understanding our gut microbiome. Trends Microbiol 2025; 33:397-407. [PMID: 39095208 DOI: 10.1016/j.tim.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/04/2024]
Abstract
During the past two decades, gut microbiome studies have established the significant impact of the gut microbiota and its metabolites on host health. However, the molecular mechanisms governing the production of microbial metabolites in the gut environment remain insufficiently investigated and thus are poorly understood. Here, we propose that an enhanced understanding of gut microbial gene regulation, which is responsive to dietary components and gut environmental conditions, is needed in the research field and essential for our ability to effectively promote host health and prevent diseases through interventions targeting the gut microbiome.
Collapse
Affiliation(s)
- Anurag Kumar Sinha
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
6
|
Zhang J, Zhang D, Xu Y, Zhang J, Liu R, Gao Y, Shi Y, Cai P, Zhong Z, He B, Li X, Zhou H, Chen M, Li YX. Large-scale biosynthetic analysis of human microbiomes reveals diverse protective ribosomal peptides. Nat Commun 2025; 16:3054. [PMID: 40155374 PMCID: PMC11953309 DOI: 10.1038/s41467-025-58280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
The human microbiome produces diverse metabolites that influence host health, yet the chemical landscape of ribosomally synthesized and post-translationally modified peptides (RiPPs)-a versatile class of bioactive compounds-remains underexplored. Here, we conduct a large-scale biosynthetic analysis of 306,481 microbial genomes from human-associated microbiomes, uncovering a broad array of yet-to-be-discovered RiPPs. These RiPPs are distributed across various body sites but show a specific enrichment in the gut and oral microbiome. Big data omics analysis reveals that numerous RiPP families are inversely related to various diseases, suggesting their potential protective effects on health. For a proof of principle study, we apply the synthetic-bioinformatic natural product (syn-BNP) approach to RiPPs and chemically synthesize nine autoinducing peptides (AIPs) for in vitro and ex vivo assay. Our findings reveal that five AIPs effectively inhibit the biofilm formation of disease-associated pathogens. Furthermore, when ex vivo testing gut microbiota from mice with inflammatory bowel disease, we observe that two AIPs can regulate the microbial community and reduce harmful species. These findings highlight the vast potential of human microbial RiPPs in regulating microbial communities and maintaining human health, emphasizing their potential for therapeutic development.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Dengwei Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junliang Zhang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Runze Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ying Gao
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yuqi Shi
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Peiyan Cai
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zheng Zhong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Beibei He
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xuechen Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Muxuan Chen
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yong-Xin Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
7
|
Yang SY, Han SM, Lee JY, Kim KS, Lee JE, Lee DW. Advancing Gut Microbiome Research: The Shift from Metagenomics to Multi-Omics and Future Perspectives. J Microbiol Biotechnol 2025; 35:e2412001. [PMID: 40223273 PMCID: PMC12010094 DOI: 10.4014/jmb.2412.12001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/14/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025]
Abstract
The gut microbiome, a dynamic and integral component of human health, has co-evolved with its host, playing essential roles in metabolism, immunity, and disease prevention. Traditional microbiome studies, primarily focused on microbial composition, have provided limited insights into the functional and mechanistic interactions between microbiota and their host. The advent of multi-omics technologies has transformed microbiome research by integrating genomics, transcriptomics, proteomics, and metabolomics, offering a comprehensive, systems-level understanding of microbial ecology and host-microbiome interactions. These advances have propelled innovations in personalized medicine, enabling more precise diagnostics and targeted therapeutic strategies. This review highlights recent breakthroughs in microbiome research, demonstrating how these approaches have elucidated microbial functions and their implications for health and disease. Additionally, it underscores the necessity of standardizing multi-omics methodologies, conducting large-scale cohort studies, and developing novel platforms for mechanistic studies, which are critical steps toward translating microbiome research into clinical applications and advancing precision medicine.
Collapse
Affiliation(s)
- So-Yeon Yang
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung Min Han
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Young Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoung Su Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jae-Eun Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Pitt N, Morrissette M, Gates MF, Bargabos R, Krumpoch M, Hawkins B, Lewis K. Bacterial membrane vesicles restore gut anaerobiosis. NPJ Biofilms Microbiomes 2025; 11:48. [PMID: 40121189 PMCID: PMC11929906 DOI: 10.1038/s41522-025-00676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Inflammation damages the epithelial cell barrier, allowing oxygen to leak into the lumen of the gut. Respiring E. coli and other Enterobacteriaceae produce proinflammatory lipopolysaccharide, exacerbating inflammatory bowel disease. Here we show that respiring membrane vesicles (MV) from E. coli ameliorate symptoms in a mouse model of gut inflammation. Membrane vesicle treatment diminished weight loss and limited shortening of the colon. Notably, oxygenation of the colonic epithelium was significantly decreased in animals receiving wild type MVs, but not MVs from an E. coli mutant lacking cytochromes. Metatranscriptomic analysis of the microbiome shows an increase in anaerobic Lactobacillaceae and a decrease in Enterobacteriaceae, as well as a general shift towards fermentation in MV-treated mice. This is accompanied by a decrease in proinflammatory TNF-α. We report that MVs may lead to the development of a novel type of a therapeutic for dysbiosis, and for treating IBD.
Collapse
Affiliation(s)
- Norman Pitt
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Madeleine Morrissette
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Michael F Gates
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Rachel Bargabos
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Megan Krumpoch
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Bryson Hawkins
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
9
|
Wu H, Forslund S, Wang Z, Zhao G. Human Gut Microbiome Researches Over the Last Decade: Current Challenges and Future Directions. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:1-7. [PMID: 40313604 PMCID: PMC12040780 DOI: 10.1007/s43657-023-00131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- Hao Wu
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, 201203 China
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13092 Germany
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 USA
| | - Guoping Zhao
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
10
|
Zhang G, Du J, Zhang C, Zhao Z, Chen Y, Liu M, Chen J, Fan G, Ma L, Li S, Liu K. Identification of a PET hydrolytic enzyme from the human gut microbiome unveils potential plastic biodegradation in human digestive tract. Int J Biol Macromol 2024; 283:137732. [PMID: 39551294 DOI: 10.1016/j.ijbiomac.2024.137732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Widespread use of polyethylene terephthalate (PET) plastics and their recycling challenges have led to substantial accumulation of PET wastes in global environments, with inevitable consequences for their entry into the food chains. Recent studies have increasingly documented the ingestion of microplastics by humans through food and beverages. However, the fate of these microplastics within the gastrointestinal tract, particularly the role of the human gut microbiota, remains inadequately understood. To address this knowledge gap, we employed a bioinformatics workflow integrated with functional verification to investigate the PET digestion/degradation capabilities of intestinal microorganisms. This approach identified a novel PET hydrolase-HGMP01 from the human gut metagenome, which exhibits the capacity to hydrolyze PET nanoparticles. Moreover, comprehensive exploration for HGMP01 homologues in the human gut metagenome and metatranscriptome unveil their distribution in diverse intestinal microorganisms. This study provides biochemical evidence for an unforeseen role of human gut microbiome in plastic digestion, thus holding substantial implications for human health.
Collapse
Affiliation(s)
- Guoqiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jieke Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chengsong Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Zhiyi Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuexing Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Mingyu Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | | | | | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Kun Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
11
|
Dora D, Revisnyei P, Mihucz A, Kiraly P, Szklenarik G, Dulka E, Galffy G, Lohinai Z. Metabolic pathways from the gut metatranscriptome are associated with COPD and respiratory function in lung cancer patients. Front Cell Infect Microbiol 2024; 14:1381170. [PMID: 39635041 PMCID: PMC11616033 DOI: 10.3389/fcimb.2024.1381170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/22/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Changes in the human gut microbiome have been linked to various chronic diseases, including chronic obstructive pulmonary disease (COPD). While substantial knowledge is available on the genomic features of fecal communities, little is known about the microbiome's transcriptional activity. Here, we analyzed the metatranscriptomic (MTR) abundance of MetaCyc pathways, SuperPathways, and protein domain families (PFAM) represented by the gut microbiome in a cohort of non-small cell lung cancer (NSCLC) patients with- or without COPD comorbidity. Methods Fecal samples of 40 NSCLC patients with- or without COPD comorbidity were collected at the time of diagnosis. Data was preprocessed using the Metaphlan3/Humann3 pipeline and BioCyc© to identify metabolic SuperPathways. LEfSe analysis was conducted on Pathway- and PFAM abundance data to determine COPD- and non-COPD-related clusters. Results Key genera Streptococcus, Escherichia, Gemella, and Lactobacillus were significantly more active transcriptionally compared to their metagenomic presence. LEfSe analysis identified 11 MetaCyc pathways that were significantly overrepresented in patients with- and without COPD comorbidity. According to Spearman's rank correlation, Smoking PY showed a significant negative correlation with Glycolysis IV, Purine Ribonucleoside Degradation and Glycogen Biosynthesis I, and a significant positive correlation with Superpathway of Ac-CoA Biosynthesis and Glyoxylate cycle, whereas forced expiratory volume in the first second (FEV1) showed a significant negative correlation with Glycolysis IV and a significant positive correlation with Glycogen Biosynthesis I. Furthermore, COPD patients showed a significantly increased MTR abundance in ~60% of SuperPathways, indicating a universally increased MTR activity in this condition. FEV1 showed a significant correlation with SuperPathways Carbohydrate degradation, Glycan biosynthesis, and Glycolysis. Taxonomic analysis suggested a more prominent MTR activity from multiple Streptococcus species, Enterococcus (E.) faecalis, E. faecium and Escherichia (E.) coli than expected from their metagenomic abundance. Multiple protein domain families (PFAMs) were identified as more associated with COPD, E. faecium, E.coli, and Streptococcus salivarius, contributing the most to these PFAMs. Conclusion Metatranscriptome analysis identified COPD-related subsets of lung cancer with potential therapeutic relevance.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Peter Revisnyei
- Department of Telecommunications and Media Informatics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Anna Mihucz
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Peter Kiraly
- County Hospital of Torokbalint, Torokbalint, Hungary
| | - György Szklenarik
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| | - Edit Dulka
- County Hospital of Torokbalint, Torokbalint, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Budapest, Hungary
| |
Collapse
|
12
|
Dora D, Kiraly P, Somodi C, Ligeti B, Dulka E, Galffy G, Lohinai Z. Gut metatranscriptomics based de novo assembly reveals microbial signatures predicting immunotherapy outcomes in non-small cell lung cancer. J Transl Med 2024; 22:1044. [PMID: 39563352 DOI: 10.1186/s12967-024-05835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/31/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Advanced-stage non-small cell lung cancer (NSCLC) poses treatment challenges, with immune checkpoint inhibitors (ICIs) as the main therapy. Emerging evidence suggests the gut microbiome significantly influences ICI efficacy. This study explores the link between the gut microbiome and ICI outcomes in NSCLC patients, using metatranscriptomic (MTR) signatures. METHODS We utilized a de novo assembly-based MTR analysis on fecal samples from 29 NSCLC patients undergoing ICI therapy, segmented according to progression-free survival (PFS) into long (> 6 months) and short (≤ 6 months) PFS groups. Through RNA sequencing, we employed the Trinity pipeline for assembly, MMSeqs2 for taxonomic classification, DESeq2 for differential expression (DE) analysis. We constructed Random Forest (RF), Support Vector Machine (SVM), and Extreme Gradient Boosting (XGBoost) machine learning (ML) algorithms and comprehensive microbial profiles. RESULTS We detected no significant differences concerning alpha-diversity, but we revealed a biologically relevant separation between the two patient groups in beta-diversity. Actinomycetota was significantly overrepresented in patients with short PFS (vs long PFS, 36.7% vs. 5.4%, p < 0.001), as was Euryarchaeota (1.3% vs. 0.002%, p = 0.009), while Bacillota showed higher prevalence in the long PFS group (66.2% vs. 42.3%, p = 0.007), when comparing the abundance of corresponding RNA reads. Among the 120 significant DEGs identified, cluster analysis clearly separated a large set of genes more active in patients with short PFS and a smaller set of genes more active in long PFS patients. Protein Domain Families (PFAMs) were analyzed to identify pathways enriched in patient groups. Pathways related to DNA synthesis and Translesion were more enriched in short PFS patients, while metabolism-related pathways were more enriched in long PFS patients. E. coli-derived PFAMs dominated in patients with long PFS. RF, SVM and XGBoost ML models all confirmed the predictive power of our selected RNA-based microbial signature, with ROC AUCs all greater than 0.84. Multivariate Cox regression tested with clinical confounders PD-L1 expression and chemotherapy history underscored the influence of n = 6 key RNA biomarkers on PFS. CONCLUSION According to ML models specific gut microbiome MTR signatures' associate with ICI treated NSCLC outcomes. Specific gene clusters and taxa MTR gene expression might differentiate long vs short PFS.
Collapse
Affiliation(s)
- David Dora
- Department of Anatomy, Histology, and Embryology, Semmelweis University, Budapest, Hungary
| | - Peter Kiraly
- Pulmonology Hospital of Torokbalint, Torokbalint, Hungary
| | - Csenge Somodi
- Translational Medicine Institute, Semmelweis University, Tűzoltó Utca 37-47, 1094, Budapest, Hungary
| | - Balazs Ligeti
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Edit Dulka
- Pulmonology Hospital of Torokbalint, Torokbalint, Hungary
| | | | - Zoltan Lohinai
- Translational Medicine Institute, Semmelweis University, Tűzoltó Utca 37-47, 1094, Budapest, Hungary.
| |
Collapse
|
13
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. Cell 2024; 187:6521-6536.e18. [PMID: 39481381 PMCID: PMC11949080 DOI: 10.1016/j.cell.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/03/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
Here, we describe "obelisks," a class of heritable RNA elements sharing several properties: (1) apparently circular RNA ∼1 kb genome assemblies, (2) predicted rod-like genome-wide secondary structures, and (3) open reading frames encoding a novel "Oblin" protein superfamily. A subset of obelisks includes a variant hammerhead self-cleaving ribozyme. Obelisks form their own phylogenetic group without detectable similarity to known biological agents. Surveying globally, we identified 29,959 distinct obelisks (clustered at 90% sequence identity) from diverse ecological niches. Obelisks are prevalent in human microbiomes, with detection in ∼7% (29/440) and ∼50% (17/32) of queried stool and oral metatranscriptomes, respectively. We establish Streptococcus sanguinis as a cellular host of a specific obelisk and find that this obelisk's maintenance is not essential for bacterial growth. Our observations identify obelisks as a class of diverse RNAs of yet-to-be-determined impact that have colonized and gone unnoticed in human and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA.
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada; University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Pathology, Stanford, CA, USA.
| |
Collapse
|
14
|
El Mouali Y, Tawk C, Huang KD, Amend L, Lesker TR, Ponath F, Vogel J, Strowig T. The RNA landscape of the human commensal Segatella copri reveals a small RNA essential for gut colonization. Cell Host Microbe 2024; 32:1910-1926.e6. [PMID: 39368472 DOI: 10.1016/j.chom.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/19/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
The bacterium Segatella copri is a prevalent member of the human gut microbiota associated with health and disease states. However, the intrinsic factors that determine its ability to colonize the gut effectively remain largely unknown. By extensive transcriptome mapping of S. copri and examining human-derived samples, we discover a small RNA, which we name Segatella RNA colonization factor (SrcF), and show that SrcF is essential for S. copri gut colonization in gnotobiotic mice. SrcF regulates genes involved in nutrient acquisition, and complex carbohydrates, particularly fructans, control its expression. Furthermore, SrcF expression is strongly influenced by human microbiome composition and by the breakdown of fructans by cohabitating commensals, suggesting that the breakdown of complex carbohydrates mediates interspecies signaling among commensals beyond its established function in generating energy. Together, this study highlights the contribution of a small RNA as a critical regulator in gut colonization.
Collapse
Affiliation(s)
- Youssef El Mouali
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany.
| | - Caroline Tawk
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Falk Ponath
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
15
|
Monzel E, Desai MS. Bacterial small RNA makes a big impact for gut colonization. Cell Host Microbe 2024; 32:1875-1877. [PMID: 39541940 DOI: 10.1016/j.chom.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
The functions of non-coding small RNAs (sRNAs) within the human microbiome remain largely unexplored. In this Cell Host & Microbe issue, El Mouali et al. identify Segatella RNA colonization factor (SrcF), a sRNA from a prevalent gut bacterium Segatella copri. SrcF promotes colonization of S. copri by regulating bacterial degradation of complex dietary carbohydrates.
Collapse
Affiliation(s)
- Elena Monzel
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Mahesh S Desai
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
16
|
Katayama YA, Kamikawa R, Yoshida T. Phylogenetic diversity of putative nickel-containing carbon monoxide dehydrogenase-encoding prokaryotes in the human gut microbiome. Microb Genom 2024; 10:001285. [PMID: 39166974 PMCID: PMC11338639 DOI: 10.1099/mgen.0.001285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Although the production of carbon monoxide (CO) within the human body has been detected, only two CO-utilizing prokaryotes (CO utilizers) have been reported in the human gut. Therefore, the phylogenetic diversity of the human gut CO-utilizing prokaryotes remains unclear. Here, we unveiled more than a thousand representative genomes containing genes for putative nickel-containing CO dehydrogenase (pCODH), an essential enzyme for CO utilization. The taxonomy of genomes encoding pCODH was expanded to include 8 phyla, comprising 82 genera and 248 species. In contrast, putative molybdenum-containing CODH genes were not detected in the human gut microbial genomes. pCODH transcripts were detected in 97.3 % (n=110) of public metatranscriptome datasets derived from healthy human faeces, suggesting the ubiquitous presence of prokaryotes bearing transcriptionally active pCODH genes in the human gut. More than half of the pCODH-encoding genomes contain a set of genes for the autotrophic Wood-Ljungdahl pathway (WLP). However, 79 % of these genomes commonly lack a key gene for the WLP, which encodes the enzyme that synthesizes formate from CO2, suggesting that potential human gut CO-utilizing prokaryotes share a degenerated gene set for WLP. In the other half of the pCODH-encoding genomes, seven genes, including putative genes for flavin adenine dinucleotide-dependent NAD(P) oxidoreductase (FNOR), ABC transporter and Fe-hydrogenase, were found adjacent to the pCODH gene. None of the putative genes associated with CO-oxidizing respiratory machinery, such as energy-converting hydrogenase genes, were found in pCODH-encoding genomes. This suggests that the human gut CO utilization is not for CO removal, but potentially for fixation and/or biosynthesis, consistent with the harmless yet continuous production of CO in the human gut. Our findings reveal the diversity and distribution of prokaryotes with pCODH in the human gut microbiome, suggesting their potential contribution to microbial ecosystems in human gut environments.
Collapse
Affiliation(s)
- Yuka Adachi Katayama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryoma Kamikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takashi Yoshida
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
17
|
Tyagi S, Katara P. Metatranscriptomics: A Tool for Clinical Metagenomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:394-407. [PMID: 39029911 DOI: 10.1089/omi.2024.0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
In the field of bioinformatics, amplicon sequencing of 16S rRNA genes has long been used to investigate community membership and taxonomic abundance in microbiome studies. As we can observe, shotgun metagenomics has become the dominant method in this field. This is largely owing to advancements in sequencing technology, which now allow for random sequencing of the entire genetic content of a microbiome. Furthermore, this method allows profiling both genes and the microbiome's membership. Although these methods have provided extensive insights into various microbiomes, they solely assess the existence of organisms or genes, without determining their active role within the microbiome. Microbiome scholarship now includes metatranscriptomics to decipher how a community of microorganisms responds to changing environmental conditions over a period of time. Metagenomic studies identify the microbes that make up a community but metatranscriptomics explores the diversity of active genes within that community, understanding their expression profile and observing how these genes respond to changes in environmental conditions. This expert review article offers a critical examination of the computational metatranscriptomics tools for studying the transcriptomes of microbial communities. First, we unpack the reasons behind the need for community transcriptomics. Second, we explore the prospects and challenges of metatranscriptomic workflows, starting with isolation and sequencing of the RNA community, then moving on to bioinformatics approaches for quantifying RNA features, and statistical techniques for detecting differential expression in a community. Finally, we discuss strengths and shortcomings in relation to other microbiome analysis approaches, pipelines, use cases and limitations, and contextualize metatranscriptomics as a tool for clinical metagenomics.
Collapse
Affiliation(s)
- Shivani Tyagi
- Computational Omics Lab, Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, IIDS, University of Allahabad, Prayagraj, India
| |
Collapse
|
18
|
Kim H, Nzabarushimana E, Huttenhower C, Chan AT, Nguyen LH. Altered Microbial Transcription in Long-term Proton Pump Inhibitor Use: Findings From a United States Cohort Study. Gastroenterology 2024; 167:405-408.e3. [PMID: 38521094 PMCID: PMC11193639 DOI: 10.1053/j.gastro.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Affiliation(s)
- Hanseul Kim
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Etienne Nzabarushimana
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Broad Institute of MIT and Harvard University, Cambridge, Massachusetts; The Harvard Chan Microbiome in Public Health Center, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; Department of Immunology and Infectious Diseases, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Long H Nguyen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
19
|
Tanca A, Palomba A, Fiorito G, Abbondio M, Pagnozzi D, Uzzau S. Metaproteomic portrait of the healthy human gut microbiota. NPJ Biofilms Microbiomes 2024; 10:54. [PMID: 38944645 PMCID: PMC11214629 DOI: 10.1038/s41522-024-00526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024] Open
Abstract
Gut metaproteomics can provide direct evidence of microbial functions actively expressed in the colonic environments, contributing to clarify the role of the gut microbiota in human physiology. In this study, we re-analyzed 10 fecal metaproteomics datasets of healthy individuals from different continents and countries, with the aim of identifying stable and variable gut microbial functions and defining the contribution of specific bacterial taxa to the main metabolic pathways. The "core" metaproteome included 182 microbial functions and 83 pathways that were identified in all individuals analyzed. Several enzymes involved in glucose and pyruvate metabolism, along with glutamate dehydrogenase, acetate kinase, elongation factors G and Tu and DnaK, were the proteins with the lowest abundance variability in the cohorts under study. On the contrary, proteins involved in chemotaxis, response to stress and cell adhesion were among the most variable functions. Random-effect meta-analysis of correlation trends between taxa, functions and pathways revealed key ecological and molecular associations within the gut microbiota. The contribution of specific bacterial taxa to the main biological processes was also investigated, finding that Faecalibacterium is the most stable genus and the top contributor to anti-inflammatory butyrate production in the healthy gut microbiota. Active production of other mucosal immunomodulators facilitating host tolerance was observed, including Roseburia flagellin and lipopolysaccharide biosynthetic enzymes expressed by members of Bacteroidota. Our study provides a detailed picture of the healthy human gut microbiota, contributing to unveil its functional mechanisms and its relationship with nutrition, immunity, and environmental stressors.
Collapse
Affiliation(s)
- Alessandro Tanca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonio Palomba
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Giovanni Fiorito
- Clinical Bioinformatic Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Abbondio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, Science and Technology Park of Sardinia, Tramariglio, Alghero, Italy
| | - Sergio Uzzau
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
- Unit of Microbiology and Virology, University Hospital of Sassari, Sassari, Italy.
| |
Collapse
|
20
|
Yadegar A, Bar-Yoseph H, Monaghan TM, Pakpour S, Severino A, Kuijper EJ, Smits WK, Terveer EM, Neupane S, Nabavi-Rad A, Sadeghi J, Cammarota G, Ianiro G, Nap-Hill E, Leung D, Wong K, Kao D. Fecal microbiota transplantation: current challenges and future landscapes. Clin Microbiol Rev 2024; 37:e0006022. [PMID: 38717124 PMCID: PMC11325845 DOI: 10.1128/cmr.00060-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
SUMMARYGiven the importance of gut microbial homeostasis in maintaining health, there has been considerable interest in developing innovative therapeutic strategies for restoring gut microbiota. One such approach, fecal microbiota transplantation (FMT), is the main "whole gut microbiome replacement" strategy and has been integrated into clinical practice guidelines for treating recurrent Clostridioides difficile infection (rCDI). Furthermore, the potential application of FMT in other indications such as inflammatory bowel disease (IBD), metabolic syndrome, and solid tumor malignancies is an area of intense interest and active research. However, the complex and variable nature of FMT makes it challenging to address its precise functionality and to assess clinical efficacy and safety in different disease contexts. In this review, we outline clinical applications, efficacy, durability, and safety of FMT and provide a comprehensive assessment of its procedural and administration aspects. The clinical applications of FMT in children and cancer immunotherapy are also described. We focus on data from human studies in IBD in contrast with rCDI to delineate the putative mechanisms of this treatment in IBD as a model, including colonization resistance and functional restoration through bacterial engraftment, modulating effects of virome/phageome, gut metabolome and host interactions, and immunoregulatory actions of FMT. Furthermore, we comprehensively review omics technologies, metagenomic approaches, and bioinformatics pipelines to characterize complex microbial communities and discuss their limitations. FMT regulatory challenges, ethical considerations, and pharmacomicrobiomics are also highlighted to shed light on future development of tailored microbiome-based therapeutics.
Collapse
Affiliation(s)
- Abbas Yadegar
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Haggai Bar-Yoseph
- Department of
Gastroenterology, Rambam Health Care
Campus, Haifa,
Israel
- Rappaport Faculty of
Medicine, Technion-Israel Institute of
Technology, Haifa,
Israel
| | - Tanya Marie Monaghan
- National Institute for
Health Research Nottingham Biomedical Research Centre, University of
Nottingham, Nottingham,
United Kingdom
- Nottingham Digestive
Diseases Centre, School of Medicine, University of
Nottingham, Nottingham,
United Kingdom
| | - Sepideh Pakpour
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Andrea Severino
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Ed J. Kuijper
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Wiep Klaas Smits
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Elisabeth M. Terveer
- Center for
Microbiota Analysis and Therapeutics (CMAT), Leiden University Center
for Infectious Diseases, Leiden University Medical
Center, Leiden, The
Netherlands
| | - Sukanya Neupane
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Ali Nabavi-Rad
- Foodborne and
Waterborne Diseases Research Center, Research Institute for
Gastroenterology and Liver Diseases, Shahid Beheshti University of
Medical Sciences, Tehran,
Iran
| | - Javad Sadeghi
- School of Engineering,
Faculty of Applied Sciences, UBC, Okanagan
Campus, Kelowna,
British Columbia, Canada
| | - Giovanni Cammarota
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Gianluca Ianiro
- Department of
Translational Medicine and Surgery, Università Cattolica del
Sacro Cuore, Rome,
Italy
- Department of Medical
and Surgical Sciences, UOC CEMAD Centro Malattie dell'Apparato
Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico
Universitario Gemelli IRCCS,
Rome, Italy
- Department of Medical
and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS,
Rome, Italy
| | - Estello Nap-Hill
- Department of
Medicine, Division of Gastroenterology, St Paul’s Hospital,
University of British Columbia,
Vancouver, British Columbia, Canada
| | - Dickson Leung
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Karen Wong
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| | - Dina Kao
- Division of
Gastroenterology, Department of Medicine, University of
Alberta, Edmonton,
Alberta, Canada
| |
Collapse
|
21
|
Schmidtke DT, Hickey AS, Liachko I, Sherlock G, Bhatt AS. Analysis and culturing of the prototypic crAssphage reveals a phage-plasmid lifestyle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585998. [PMID: 38562748 PMCID: PMC10983915 DOI: 10.1101/2024.03.20.585998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The prototypic crAssphage (Carjivirus communis) is one of the most abundant, prevalent, and persistent gut bacteriophages, yet it remains uncultured and its lifestyle uncharacterized. For the last decade, crAssphage has escaped plaque-dependent culturing efforts, leading us to investigate alternative lifestyles that might explain its widespread success. Through genomic analyses and culturing, we find that crAssphage uses a phage-plasmid lifestyle to persist extrachromosomally. Plasmid-related genes are more highly expressed than those implicated in phage maintenance. Leveraging this finding, we use a plaque-free culturing approach to measure crAssphage replication in culture with Phocaeicola vulgatus, Phocaeicola dorei, and Bacteroides stercoris, revealing a broad host range. We demonstrate that crAssphage persists with its hosts in culture without causing major cell lysis events or integrating into host chromosomes. The ability to switch between phage and plasmid lifestyles within a wide range of hosts contributes to the prolific nature of crAssphage in the human gut microbiome.
Collapse
Affiliation(s)
- Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | | | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, CA, USA
- Senior author
| | - Ami S. Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine (Division of Hematology), Stanford University, Stanford, CA, USA
- Lead corresponding author
- Senior author
| |
Collapse
|
22
|
Moraïs S, Winkler S, Zorea A, Levin L, Nagies FSP, Kapust N, Lamed E, Artan-Furman A, Bolam DN, Yadav MP, Bayer EA, Martin WF, Mizrahi I. Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science 2024; 383:eadj9223. [PMID: 38484069 PMCID: PMC7615765 DOI: 10.1126/science.adj9223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
Humans, like all mammals, depend on the gut microbiome for digestion of cellulose, the main component of plant fiber. However, evidence for cellulose fermentation in the human gut is scarce. We have identified ruminococcal species in the gut microbiota of human populations that assemble functional multienzymatic cellulosome structures capable of degrading plant cell wall polysaccharides. One of these species, which is strongly associated with humans, likely originated in the ruminant gut and was subsequently transferred to the human gut, potentially during domestication where it underwent diversification and diet-related adaptation through the acquisition of genes from other gut microbes. Collectively, these species are abundant and widespread among ancient humans, hunter-gatherers, and rural populations but are rare in populations from industrialized societies thus indicating potential disappearance in response to the westernized lifestyle.
Collapse
Affiliation(s)
- Sarah Moraïs
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Sarah Winkler
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alvah Zorea
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Liron Levin
- Bioinformatics Core Facility, llse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Falk S. P. Nagies
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Nils Kapust
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Eva Lamed
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - Avital Artan-Furman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - David N. Bolam
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Madhav P. Yadav
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Edward A. Bayer
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001 Israel
| | - William F. Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, D-40225, Düsseldorf, Germany
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
23
|
Fang S, Cao W, Wu Q, Cheng S, Jin H, Pang H, Zhou A, Feng L, Cao J, Luo J. Dynamic microbiome disassembly and evolution induced by antimicrobial methylisothiazolinone in sludge anaerobic fermentation for volatile fatty acids generation. WATER RESEARCH 2024; 251:121139. [PMID: 38237458 DOI: 10.1016/j.watres.2024.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 02/12/2024]
Abstract
In the post-COVID-19 pandemic era, various antimicrobials have emerged and concentrated in waste-activated sludge (WAS), affecting the biological treatment of WAS. However, there is still a knowledge gap in the dynamic response and adaptive mechanism of anaerobic microbiome under exogenous antimicrobial stress. This study found that methylisothiazolinone (MIT, as a typic antimicrobial) caused an interesting lag effect on the volatile fatty acids (VFAs) promotion in the WAS anaerobic fermentation process. MIT was effective to disintegrate the extracellular polymeric substances (EPS), and those functional anaerobic microorganisms were easily exposed and negatively impacted by the MIT interference after the loss of protective barriers. Correspondingly, the ecological interactions and microbial metabolic functions related to VFA biosynthesis (e.g., pyruvate metabolism) were downregulated at the initial stage. The syntrophic consortia gradually adapted to the interference and attenuated the MIT stress by activating chemotaxis and resistance genes (e.g., excreting, binding, and inactivating). Due to the increased bioavailable substrates in the fermentation systems, the dominant microorganisms (i.e., Clostridium and Caloramator) with both VFAs production and MIT-tolerance functions have been domesticated. Moreover, MIT disrupted the syntrophic interaction between acetogens and methanogens and totally suppressed methanogens' metabolic activities. The VFA production derived from WAS anaerobic fermentation was therefore enhanced due to the interference of antimicrobial MIT stress. This work deciphered dynamic changes and adaptive evolution of anaerobic syntrophic consortia in response to antimicrobial stress and provided guidance on the evaluation and control of the ecological risks of exogenous pollutants in WAS treatment.
Collapse
Affiliation(s)
- Shiyu Fang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Wangbei Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Qian Wu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Song Cheng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hongqi Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Heliang Pang
- School of Environmental and Municipal Engineering, Xi 'an University of Architecture and Technology, Xi 'an 710055, China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Leiyu Feng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| |
Collapse
|
24
|
Elmassry MM, Sugihara K, Chankhamjon P, Camacho FR, Wang S, Sugimoto Y, Chatterjee S, Chen LA, Kamada N, Donia MS. A meta-analysis of the gut microbiome in inflammatory bowel disease patients identifies disease-associated small molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579278. [PMID: 38370680 PMCID: PMC10871352 DOI: 10.1101/2024.02.07.579278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Changes in the gut microbiome have been associated with several human diseases, but the molecular and functional details underlying these associations remain largely unknown. Here, we performed a multi-cohort analysis of small molecule biosynthetic gene clusters (BGCs) in 5,306 metagenomic samples of the gut microbiome from 2,033 Inflammatory Bowel Disease (IBD) patients and 833 matched healthy subjects and identified a group of Clostridia-derived BGCs that are significantly associated with IBD. Using synthetic biology, we discovered and solved the structures of six fatty acid amides as the products of the IBD-enriched BGCs. Using two mouse models of colitis, we show that the discovered small molecules disrupt gut permeability and exacerbate inflammation in chemically and genetically susceptible mice. These findings suggest that microbiome-derived small molecules may play a role in the etiology of IBD and represent a generalizable approach for discovering molecular mediators of microbiome-host interactions in the context of microbiome-associated diseases.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
| | - Kohei Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Francine R Camacho
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, 08544, USA
| | - Shuo Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, USA
| | - Yuki Sugimoto
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
| | - Seema Chatterjee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
| | - Lea Ann Chen
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, 08901, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, USA
- Lead Contact
| |
Collapse
|
25
|
Rodríguez Del Río Á, Giner-Lamia J, Cantalapiedra CP, Botas J, Deng Z, Hernández-Plaza A, Munar-Palmer M, Santamaría-Hernando S, Rodríguez-Herva JJ, Ruscheweyh HJ, Paoli L, Schmidt TSB, Sunagawa S, Bork P, López-Solanilla E, Coelho LP, Huerta-Cepas J. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 2024; 626:377-384. [PMID: 38109938 PMCID: PMC10849945 DOI: 10.1038/s41586-023-06955-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
Many of the Earth's microbes remain uncultured and understudied, limiting our understanding of the functional and evolutionary aspects of their genetic material, which remain largely overlooked in most metagenomic studies1. Here we analysed 149,842 environmental genomes from multiple habitats2-6 and compiled a curated catalogue of 404,085 functionally and evolutionarily significant novel (FESNov) gene families exclusive to uncultivated prokaryotic taxa. All FESNov families span multiple species, exhibit strong signals of purifying selection and qualify as new orthologous groups, thus nearly tripling the number of bacterial and archaeal gene families described to date. The FESNov catalogue is enriched in clade-specific traits, including 1,034 novel families that can distinguish entire uncultivated phyla, classes and orders, probably representing synapomorphies that facilitated their evolutionary divergence. Using genomic context analysis and structural alignments we predicted functional associations for 32.4% of FESNov families, including 4,349 high-confidence associations with important biological processes. These predictions provide a valuable hypothesis-driven framework that we used for experimental validatation of a new gene family involved in cell motility and a novel set of antimicrobial peptides. We also demonstrate that the relative abundance profiles of novel families can discriminate between environments and clinical conditions, leading to the discovery of potentially new biomarkers associated with colorectal cancer. We expect this work to enhance future metagenomics studies and expand our knowledge of the genetic repertory of uncultivated organisms.
Collapse
Affiliation(s)
- Álvaro Rodríguez Del Río
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Joaquín Giner-Lamia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Universidad de Sevilla-CSIC, Seville, Spain
| | - Carlos P Cantalapiedra
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Jorge Botas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ziqi Deng
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Ana Hernández-Plaza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Martí Munar-Palmer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - José J Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Shanghai, China
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain.
| |
Collapse
|
26
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576352. [PMID: 38293115 PMCID: PMC10827157 DOI: 10.1101/2024.01.20.576352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Here, we describe the "Obelisks," a previously unrecognised class of viroid-like elements that we first identified in human gut metatranscriptomic data. "Obelisks" share several properties: (i) apparently circular RNA ~1kb genome assemblies, (ii) predicted rod-like secondary structures encompassing the entire genome, and (iii) open reading frames coding for a novel protein superfamily, which we call the "Oblins". We find that Obelisks form their own distinct phylogenetic group with no detectable sequence or structural similarity to known biological agents. Further, Obelisks are prevalent in tested human microbiome metatranscriptomes with representatives detected in ~7% of analysed stool metatranscriptomes (29/440) and in ~50% of analysed oral metatranscriptomes (17/32). Obelisk compositions appear to differ between the anatomic sites and are capable of persisting in individuals, with continued presence over >300 days observed in one case. Large scale searches identified 29,959 Obelisks (clustered at 90% nucleotide identity), with examples from all seven continents and in diverse ecological niches. From this search, a subset of Obelisks are identified to code for Obelisk-specific variants of the hammerhead type-III self-cleaving ribozyme. Lastly, we identified one case of a bacterial species (Streptococcus sanguinis) in which a subset of defined laboratory strains harboured a specific Obelisk RNA population. As such, Obelisks comprise a class of diverse RNAs that have colonised, and gone unnoticed in, human, and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Ontario, Canada
- University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Ontario, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA
- Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA
- Stanford University, Department of Pathology, Stanford, CA, USA
| |
Collapse
|
27
|
Aroniadis OC, Grinspan AM. The Gut Microbiome: A Primer for the Clinician. Am J Gastroenterol 2024; 119:S2-S6. [PMID: 38153219 DOI: 10.14309/ajg.0000000000002583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/23/2023] [Indexed: 12/29/2023]
Affiliation(s)
- Olga C Aroniadis
- Division of Gastroenterology and Hepatology, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York, USA
| | - Ari M Grinspan
- The Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
28
|
Pereira-Marques J, Ferreira RM, Figueiredo C. A metatranscriptomics strategy for efficient characterization of the microbiome in human tissues with low microbial biomass. Gut Microbes 2024; 16:2323235. [PMID: 38425025 PMCID: PMC10913719 DOI: 10.1080/19490976.2024.2323235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The high background of host RNA poses a major challenge to metatranscriptome analysis of human samples. Hence, metatranscriptomics has been mainly applied to microbe-rich samples, while its application in human tissues with low ratio of microbial to host cells has yet to be explored. Since there is no computational workflow specifically designed for the taxonomic and functional analysis of this type of samples, we propose an effective metatranscriptomics strategy to accurately characterize the microbiome in human tissues with a low ratio of microbial to host content. We experimentally generated synthetic samples with well-characterized bacterial and host cell compositions, and mimicking human samples with high and low microbial loads. These synthetic samples were used for optimizing and establishing the workflow in a controlled setting. Our results show that the integration of the taxonomic analysis of optimized Kraken 2/Bracken with the functional analysis of HUMAnN 3 in samples with low microbial content, enables the accurate identification of a large number of microbial species with a low false-positive rate, while improving the detection of microbial functions. The effectiveness of our metatranscriptomics workflow was demonstrated in synthetic samples, simulated datasets, and most importantly, human gastric tissue specimens, thus providing a proof of concept for its applicability on mucosal tissues of the gastrointestinal tract. The use of an accurate and reliable metatranscriptomics approach for human tissues with low microbial content will expand our understanding of the functional activity of the mucosal microbiome, uncovering critical interactions between the microbiome and the host in health and disease.
Collapse
Affiliation(s)
- Joana Pereira-Marques
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Rui M. Ferreira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ceu Figueiredo
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Ipatimup – Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
29
|
Deng ZL, Pieper DH, Stallmach A, Steube A, Vital M, Reck M, Wagner-Döbler I. Engraftment of essential functions through multiple fecal microbiota transplants in chronic antibiotic-resistant pouchitis-a case study using metatranscriptomics. MICROBIOME 2023; 11:269. [PMID: 38037086 PMCID: PMC10691019 DOI: 10.1186/s40168-023-01713-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Ileal pouch-anal anastomosis (IPAA) is the standard of care after total proctocolectomy for ulcerative colitis (UC). Around 50% of patients will experience pouchitis, an idiopathic inflammatory condition. Antibiotics are the backbone of treatment of pouchitis; however, antibiotic-resistant pouchitis develops in 5-10% of those patients. It has been shown that fecal microbiota transplantation (FMT) is an effective treatment for UC, but results for FMT antibiotic-resistant pouchitis are inconsistent. METHODS To uncover which metabolic activities were transferred to the recipients during FMT and helped the remission, we performed a longitudinal case study of the gut metatranscriptomes from three patients and their donors. The patients were treated by two to three FMTs, and stool samples were analyzed for up to 140 days. RESULTS Reduced expression in pouchitis patients compared to healthy donors was observed for genes involved in biosynthesis of amino acids, cofactors, and B vitamins. An independent metatranscriptome dataset of UC patients showed a similar result. Other functions including biosynthesis of butyrate, metabolism of bile acids, and tryptophan were also much lower expressed in pouchitis. After FMT, these activities transiently increased, and the overall metatranscriptome profiles closely mirrored those of the respective donors with notable fluctuations during the subsequent weeks. The levels of the clinical marker fecal calprotectin were concordant with the metatranscriptome data. Faecalibacterium prausnitzii represented the most active species contributing to butyrate synthesis via the acetyl-CoA pathway. Remission occurred after the last FMT in all patients and was characterized by a microbiota activity profile distinct from donors in two of the patients. CONCLUSIONS Our study demonstrates the clear but short-lived activity engraftment of donor microbiota, particularly the butyrate biosynthesis after each FMT. The data suggest that FMT triggers shifts in the activity of patient microbiota towards health which need to be repeated to reach critical thresholds. As a case study, these insights warrant cautious interpretation, and validation in larger cohorts is necessary for generalized applications. In the long run, probiotics with high taxonomic diversity consisting of well characterized strains could replace FMT to avoid the costly screening of donors and the risk of transferring unwanted genetic material. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Luo Deng
- Group Computational Biology for Infection Research, Helmholtz Center for Infection Research, Brunswick, Germany.
| | - Dietmar H Pieper
- Group Microbial Interactions and Processes, Helmholtz Center for Infection Research, Brunswick, Germany
| | - Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Arndt Steube
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Reck
- Group Microbial Communication, Helmholtz Center for Infection Research, Brunswick, Germany
- TÜV Rheinland, Cologne, Germany
| | - Irene Wagner-Döbler
- Institute of Microbiology, Technical University of Braunschweig, Brunswick, Germany
| |
Collapse
|
30
|
Hu Y, Li J, Wang B, Zhu L, Li Y, Ivey KL, Lee KH, Eliassen AH, Chan A, Huttenhower C, Hu FB, Qi Q, Rimm EB, Sun Q. Interplay between diet, circulating indolepropionate concentrations and cardiometabolic health in US populations. Gut 2023; 72:2260-2271. [PMID: 37739776 PMCID: PMC10841831 DOI: 10.1136/gutjnl-2023-330410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
OBJECTIVES To identify indolepropionate (IPA)-predicting gut microbiota species, investigate potential diet-microbiota interactions, and examine the prospective associations of circulating IPA concentrations with type 2 diabetes (T2D) and coronary heart disease (CHD) risk in free-living individuals. DESIGN We included 287 men from the Men's Lifestyle Validation Study, a substudy of the Health Professionals Follow-Up Study (HPFS), who provided up to two pairs of faecal samples and two blood samples. Diet was assessed using 7-day diet records. Associations between plasma concentrations of tryptophan metabolites and T2D CHD risk were examined in 13 032 participants from Nurses' Health Study (NHS), NHSII and HPFS. RESULTS We identified 17 microbial species whose abundance was significantly associated with plasma IPA concentrations. A significant association between higher tryptophan intake and higher IPA concentrations was only observed among men who had higher fibre intake and a higher microbial species score consisting of the 17 species (p-interaction<0.01). Dietary and plasma concentrations of tryptophan and most kynurenine pathway metabolites were positively associated with T2D risk (HRQ5 vs Q1 ranged from 1.17 to 1.46) while a significant inverse association was found for IPA (HRQ5 vs Q1 (95% CI) 0.70 (0.56 to 0.88)). No associations were found in CHD for any plasma tryptophan metabolites. CONCLUSIONS Specific microbial species and dietary fibre jointly predicted significantly higher circulating IPA concentrations at higher tryptophan intake. Dietary and plasma tryptophan, as well as its kynurenine pathway metabolites, demonstrated divergent associations from those for IPA, which was significantly predictive of lower risk of T2D.
Collapse
Affiliation(s)
- Yang Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Jun Li
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Biqi Wang
- Department of Medicine, UMASS Medical School, Worcester, Massachusetts, USA
| | - Lu Zhu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Yanping Li
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kerry L Ivey
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - Kyu Ha Lee
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
| | - A Heather Eliassen
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew Chan
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Immunology and Infectious Diseases, Harvard University T. H. Chan School of Public Health, Boston, Boston, Massachusetts, USA
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Immunology and Infectious Diseases, Harvard University T. H. Chan School of Public Health, Boston, Boston, Massachusetts, USA
- Eli and Edythe L. Broad Institute of Harvard and MIT, Flinders University College of Nursing and Health Sciences, Cambridge, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Yeshiva University Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric B Rimm
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Qi Sun
- Department of Nutrition, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard University T H Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Ma C, Li Y, Mei Z, Yuan C, Kang JH, Grodstein F, Ascherio A, Willett WC, Chan AT, Huttenhower C, Stampfer MJ, Wang DD. Association Between Bowel Movement Pattern and Cognitive Function: Prospective Cohort Study and a Metagenomic Analysis of the Gut Microbiome. Neurology 2023; 101:e2014-e2025. [PMID: 37775319 PMCID: PMC10662989 DOI: 10.1212/wnl.0000000000207849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/03/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Little is known regarding the association between intestinal motility patterns and cognitive function in individuals who are baseline cognitively healthy. The gut microbiome may contribute to the association. We examined the association between bowel movement (BM) pattern and cognitive function and explored the role of the gut microbiome in explaining this association. METHODS In this prospective study, we leveraged 3 cohort studies, Nurses' Health Study (NHS), NHSII, and Health Professionals Follow-Up Study (HPFS). Participants reported BM frequency and subjective cognitive function. In a subset of NHSII participants, we assessed cognitive function using an objective neuropsychological battery. We profiled the gut microbiome in a subset of participants using whole-genome shotgun metagenomics. General linear models, Poisson regression, and logistic regression were used to quantify the association of BM frequency with different cognitive measurements. RESULTS We followed 112,753 men and women (women: 87.6%) with a mean age of 67.2 years at baseline (NHS: 76 years, NHSII: 59 years, HPFS: 75 years) for a median follow-up of 4 years (NHSII and HPFS: 4 years, NHS: 2 years). Compared with those with BM once daily, participants with BM frequency every 3+ days had significantly worse objective cognitive function, equivalent to 3.0 (95% confidence interval [CI],1.2-4.7) years of chronological cognitive aging. We observed similar J-shape dose-response relationships of BM frequency with the odds of subjective cognitive decline and the likelihood of having more subsequent subjective cognitive complaints (both p nonlinearity < 0.001). BM frequencies of every 3+ days and ≥twice/day, compared with once daily, were associated with the odds ratios of subjective cognitive decline of 1.73 (95% CI 1.60-1.86) and 1.37 (95% CI 1.33-1.44), respectively. BM frequency and subjective cognitive decline were significantly associated with the overall gut microbiome configuration (both p < 0.005) and specific microbial species in the 515 participants with microbiome data. Butyrate-producing microbial species were depleted in those with less frequent BM and worse cognition, whereas a higher abundance of proinflammatory species was associated with BM frequency of ≥twice/day and worse cognition. DISCUSSION Lower BM frequency was associated with worse cognitive function. The gut microbial dysbiosis may be a mechanistic link underlying the association.
Collapse
Affiliation(s)
- Chaoran Ma
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA..
| | - Yanping Li
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Zhendong Mei
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Changzheng Yuan
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Jae H Kang
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Francine Grodstein
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Alberto Ascherio
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Walter C Willett
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Andrew T Chan
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Curtis Huttenhower
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Meir J Stampfer
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA
| | - Dong D Wang
- From the Channing Division of Network Medicine (C.M., Z.M., J.H.K., A.A., M.J.S., D.D.W.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Department of Nutrition (C.M.), University of Massachusetts Amherst; Departments of Nutrition (Y.L., A.A., W.C.W., M.J.S., D.D.W.), Epidemiology (A.A., W.C.W., A.T.C., M.J.S.), and Biostatistics (C.H.), Harvard T.H. Chan School of Public Health, Boston, MA; School of Medicine (C.Y.), Zhejiang University, Hangzhou, China; Rush Alzheimer's Disease Center (F.G.), Rush University Medical Center, Chicago, IL; Division of Gastroenterology (A.T.C.), Massachusetts General Hospital and Harvard Medical School, Boston, MA; and Broad Institute of MIT and Harvard (A.T.C., C.H., D.D.W), Cambridge, MA..
| |
Collapse
|
32
|
Petersen KS, Chandra M, Chen See JR, Leister J, Jafari F, Tindall A, Kris-Etherton PM, Lamendella R. Walnut consumption and gut microbial metabolism: Results of an exploratory analysis from a randomized, crossover, controlled-feeding study. Clin Nutr 2023; 42:2258-2269. [PMID: 37826992 DOI: 10.1016/j.clnu.2023.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND & AIMS The effect of walnut-related modulation of gut microbiota composition on microbiota functionality is unknown. The aim was to characterize the effect of a walnut-enriched diet (WD), compared to a fatty acid-matched diet devoid of walnuts (WFMD) and a diet where oleic acid replaces alpha-linolenic acid (ORAD), on bacterial gene expression. METHODS A 3-period, randomized, crossover, controlled-feeding study was conducted. Participants were provided a 2-week run-in standard western diet (SWD; 50% kcal carbohydrate, 16% protein, 34% fat, 12% SFA). Following the SWD in random sequence order, participants were provided the WD, WFMD, and ORAD (48% carbohydrate; 17% protein; fat 35%; 7% SFA). The WD contained 18% of energy from walnuts (57 g/d/2100 kcal). The WFMD and ORAD were devoid of walnuts; liquid non-tropical plant oils were included in these diets. Metatranscriptomic analyses were performed as an exploratory outcome. RESULTS The analytical sample included 35 participants (40% female) with a mean ± SD age of 43 ± 10 y and BMI of 30.3 ± 4.9 kg/m2. The ⍺-diversity of taxa actively expressing genes, assessed by observed species (p = 0.27) and Pielou's Evenness (p = 0.09), did not differ among the diets. The ⍺-diversity of actively expressed genes was greater following the WD compared to the WFMD and ORAD as assessed by the observed genes and Pielou's Evenness metrics (p < 0.05). β-Diversity of the actively expressed genes differed following the WD compared to the WFMD (p = 0.001) and ORAD (p = 0.001); β-diversity did not differ between the WFMD and ORAD. Active composition analyses showed increased Gordonibacter (p < 0.001) activity following the WD vs. the ORAD. Greater expression of many genes was observed following the WD compared to the WFMD and ORAD. Following the WD, greater expression of metabolism-related genes encoding glycine amidinotransferase (GATM; K00613) and arginine deiminase (K01478) was observed compared to the WFMD. Greater expression of glycine amidinotransferase (GATM; K00613) by Gordonibacter was also observed following the WD vs. the WFMD and ORAD. CONCLUSION Our results suggest walnut intake may increase endogenous production of homoarginine through gut microbiota-mediated upregulation of GATM, which is a novel mechanism by which walnuts may lower cardiovascular disease risk. However, given the exploratory nature replication is needed. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov (NCT02210767).
Collapse
Affiliation(s)
- Kristina S Petersen
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA; Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA.
| | - Mansi Chandra
- Department of Biology, Juniata College, Huntingdon, PA, USA; Wright Labs, LLC, Huntingdon, PA, USA
| | - Jeremy R Chen See
- Department of Biology, Juniata College, Huntingdon, PA, USA; Wright Labs, LLC, Huntingdon, PA, USA
| | - Jillian Leister
- Department of Biology, Juniata College, Huntingdon, PA, USA; Wright Labs, LLC, Huntingdon, PA, USA
| | - Fatemeh Jafari
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX, USA
| | - Alyssa Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA; Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Regina Lamendella
- Department of Biology, Juniata College, Huntingdon, PA, USA; Wright Labs, LLC, Huntingdon, PA, USA
| |
Collapse
|
33
|
Borton MA, Shaffer M, Hoyt DW, Jiang R, Ellenbogen JB, Purvine S, Nicora CD, Eder EK, Wong AR, Smulian AG, Lipton MS, Krzycki JA, Wrighton KC. Targeted curation of the gut microbial gene content modulating human cardiovascular disease. mBio 2023; 14:e0151123. [PMID: 37695138 PMCID: PMC10653893 DOI: 10.1128/mbio.01511-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 09/12/2023] Open
Abstract
IMPORTANCE One of the most-cited examples of the gut microbiome modulating human disease is the microbial metabolism of quaternary amines from protein-rich foods. By-products of this microbial processing promote atherosclerotic heart disease, a leading cause of human mortality globally. Our research addresses current knowledge gaps in our understanding of this microbial metabolism by holistically inventorying the microorganisms and expressed genes catalyzing critical atherosclerosis-promoting and -ameliorating reactions in the human gut. This led to the creation of an open-access resource, the Methylated Amine Gene Inventory of Catabolism database, the first systematic inventory of gut methylated amine metabolism. More importantly, using this resource we deliver here, we show for the first time that these gut microbial genes can predict human disease, paving the way for microbiota-inspired diagnostics and interventions.
Collapse
Affiliation(s)
- Mikayla A. Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - David W. Hoyt
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Ruisheng Jiang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | - Samuel Purvine
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Carrie D. Nicora
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Elizabeth K. Eder
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Allison R. Wong
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - A. George Smulian
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mary S. Lipton
- Environmental and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Joseph A. Krzycki
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Kelly C. Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
34
|
Tan A, Murugapiran S, Mikalauskas A, Koble J, Kennedy D, Hyde F, Ruotti V, Law E, Jensen J, Schroth GP, Macklaim JM, Kuersten S, LeFrançois B, Gohl DM. Rational probe design for efficient rRNA depletion and improved metatranscriptomic analysis of human microbiomes. BMC Microbiol 2023; 23:299. [PMID: 37864136 PMCID: PMC10588151 DOI: 10.1186/s12866-023-03037-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time. Gene expression measurements can provide insights into microbiome composition and function. However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data. Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities. We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples. Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles. Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.
Collapse
Affiliation(s)
- Asako Tan
- Illumina, Inc, Madison, WI, 53719, USA
| | | | | | - Jeff Koble
- Illumina, Inc, San Diego, CA, 92122, USA
| | | | - Fred Hyde
- Illumina, Inc, Madison, WI, 53719, USA
| | | | - Emily Law
- Diversigen, Inc, New Brighton, MN, 55112, USA
| | | | | | | | | | | | - Daryl M Gohl
- Diversigen, Inc, New Brighton, MN, 55112, USA.
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
35
|
Zhou R, Ng SK, Sung JJY, Goh WWB, Wong SH. Data pre-processing for analyzing microbiome data - A mini review. Comput Struct Biotechnol J 2023; 21:4804-4815. [PMID: 37841330 PMCID: PMC10569954 DOI: 10.1016/j.csbj.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/01/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023] Open
Abstract
The human microbiome is an emerging research frontier due to its profound impacts on health. High-throughput microbiome sequencing enables studying microbial communities but suffers from analytical challenges. In particular, the lack of dedicated preprocessing methods to improve data quality impedes effective minimization of biases prior to downstream analysis. This review aims to address this gap by providing a comprehensive overview of preprocessing techniques relevant to microbiome research. We outline a typical workflow for microbiome data analysis. Preprocessing methods discussed include quality filtering, batch effect correction, imputation of missing values, normalization, and data transformation. We highlight strengths and limitations of each technique to serve as a practical guide for researchers and identify areas needing further methodological development. Establishing robust, standardized preprocessing will be essential for drawing valid biological conclusions from microbiome studies.
Collapse
Affiliation(s)
- Ruwen Zhou
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Siu Kin Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
| | - Joseph Jao Yiu Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, 11 Jalan Tan Tock Seng, 308433, Singapore
| | - Wilson Wen Bin Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
- Center for Biomedical Informatics, Nanyang Technological University, 59 Nanyang Drive, 636921, Singapore
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore
- Department of Gastroenterology and Hepatology, Tan Tock Seng Hospital, National Healthcare Group, 11 Jalan Tan Tock Seng, 308433, Singapore
| |
Collapse
|
36
|
Cai J, Auster A, Cho S, Lai Z. Dissecting the human gut microbiome to better decipher drug liability: A once-forgotten organ takes center stage. J Adv Res 2023; 52:171-201. [PMID: 37419381 PMCID: PMC10555929 DOI: 10.1016/j.jare.2023.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND The gut microbiome is a diverse system within the gastrointestinal tract composed of trillions of microorganisms (gut microbiota), along with their genomes. Accumulated evidence has revealed the significance of the gut microbiome in human health and disease. Due to its ability to alter drug/xenobiotic pharmacokinetics and therapeutic outcomes, this once-forgotten "metabolic organ" is receiving increasing attention. In parallel with the growing microbiome-driven studies, traditional analytical techniques and technologies have also evolved, allowing researchers to gain a deeper understanding of the functional and mechanistic effects of gut microbiome. AIM OF REVIEW From a drug development perspective, microbial drug metabolism is becoming increasingly critical as new modalities (e.g., degradation peptides) with potential microbial metabolism implications emerge. The pharmaceutical industry thus has a pressing need to stay up-to-date with, and continue pursuing, research efforts investigating clinical impact of the gut microbiome on drug actions whilst integrating advances in analytical technology and gut microbiome models. Our review aims to practically address this need by comprehensively introducing the latest innovations in microbial drug metabolism research- including strengths and limitations, to aid in mechanistically dissecting the impact of the gut microbiome on drug metabolism and therapeutic impact, and to develop informed strategies to address microbiome-related drug liability and minimize clinical risk. KEY SCIENTIFIC CONCEPTS OF REVIEW We present comprehensive mechanisms and co-contributing factors by which the gut microbiome influences drug therapeutic outcomes. We highlight in vitro, in vivo, and in silico models for elucidating the mechanistic role and clinical impact of the gut microbiome on drugs in combination with high-throughput, functionally oriented, and physiologically relevant techniques. Integrating pharmaceutical knowledge and insight, we provide practical suggestions to pharmaceutical scientists for when, why, how, and what is next in microbial studies for improved drug efficacy and safety, and ultimately, support precision medicine formulation for personalized and efficacious therapies.
Collapse
Affiliation(s)
- Jingwei Cai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA.
| | - Alexis Auster
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Sungjoon Cho
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Zijuan Lai
- Drug Metabolism & Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
37
|
Malard LA, Guisan A. Into the microbial niche. Trends Ecol Evol 2023; 38:936-945. [PMID: 37236880 DOI: 10.1016/j.tree.2023.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
The environmental niche concept describes the distribution of a taxon in the environment and can be used to understand community dynamics, biological invasions, and the impact of environmental changes. The uses and applications are still restricted in microbial ecology, largely due to the complexity of microbial systems and associated methodological limitations. The development of shotgun metagenomics and metatranscriptomics opens new ways to investigate the microbial niche by focusing on the metabolic niche within the environmental space. Here, we propose the metabolic niche framework, which, by defining the fundamental and realised metabolic niche of microorganisms, has the potential to not only provide novel insights into habitat preferences and the metabolism associated, but also to inform on metabolic plasticity, niche shifts, and microbial invasions.
Collapse
Affiliation(s)
- Lucie A Malard
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland; Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
39
|
Ojala T, Häkkinen AE, Kankuri E, Kankainen M. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet 2023; 39:686-702. [PMID: 37365103 DOI: 10.1016/j.tig.2023.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Metatranscriptomics refers to the analysis of the collective microbial transcriptome of a sample. Its increased utilization for the characterization of human-associated microbial communities has enabled the discovery of many disease-state related microbial activities. Here, we review the principles of metatranscriptomics-based analysis of human-associated microbial samples. We describe strengths and weaknesses of popular sample preparation, sequencing, and bioinformatics approaches and summarize strategies for their use. We then discuss how human-associated microbial communities have recently been examined and how their characterization may change. We conclude that metatranscriptomics insights into human microbiotas under health and disease have not only expanded our knowledge on human health, but also opened avenues for rational antimicrobial drug use and disease management.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland.
| |
Collapse
|
40
|
Wang XW, Hu Y, Menichetti G, Grodstein F, Bhupathiraju SN, Sun Q, Zhang X, Hu FB, Weiss ST, Liu YY. Nutritional redundancy in the human diet and its application in phenotype association studies. Nat Commun 2023; 14:4316. [PMID: 37463879 PMCID: PMC10354046 DOI: 10.1038/s41467-023-39836-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Studying human dietary intake may help us identify effective measures to treat or prevent many chronic diseases whose natural histories are influenced by nutritional factors. Here, by examining five cohorts with dietary intake data collected on different time scales, we show that the food intake profile varies substantially across individuals and over time, while the nutritional intake profile appears fairly stable. We refer to this phenomenon as 'nutritional redundancy' and attribute it to the nested structure of the food-nutrient network. This network enables us to quantify the level of nutritional redundancy for each diet assessment of any individual. Interestingly, this nutritional redundancy measure does not strongly correlate with any classical healthy diet scores, but its performance in predicting healthy aging shows comparable strength. Moreover, after adjusting for age, we find that a high nutritional redundancy is associated with lower risks of cardiovascular disease and type 2 diabetes.
Collapse
Affiliation(s)
- Xu-Wen Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Giulia Menichetti
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Network Science Institute, Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Department of Internal Medicine, Rush Medical College, Rush University, Chicago, IL, 60612, USA
| | - Shilpa N Bhupathiraju
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Qi Sun
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
41
|
Campbell A, Gdanetz K, Schmidt AW, Schmidt TM. H 2 generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers. MICROBIOME 2023; 11:133. [PMID: 37322527 PMCID: PMC10268494 DOI: 10.1186/s40168-023-01565-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Hydrogen gas (H2) is a common product of carbohydrate fermentation in the human gut microbiome and its accumulation can modulate fermentation. Concentrations of colonic H2 vary between individuals, raising the possibility that H2 concentration may be an important factor differentiating individual microbiomes and their metabolites. Butyrate-producing bacteria (butyrogens) in the human gut usually produce some combination of butyrate, lactate, formate, acetate, and H2 in branched fermentation pathways to manage reducing power generated during the oxidation of glucose to acetate and carbon dioxide. We predicted that a high concentration of intestinal H2 would favor the production of butyrate, lactate, and formate by the butyrogens at the expense of acetate, H2, and CO2. Regulation of butyrate production in the human gut is of particular interest due to its role as a mediator of colonic health through anti-inflammatory and anti-carcinogenic properties. RESULTS For butyrogens that contained a hydrogenase, growth under a high H2 atmosphere or in the presence of the hydrogenase inhibitor CO stimulated production of organic fermentation products that accommodate reducing power generated during glycolysis, specifically butyrate, lactate, and formate. Also as expected, production of fermentation products in cultures of Faecalibacterium prausnitzii strain A2-165, which does not contain a hydrogenase, was unaffected by H2 or CO. In a synthetic gut microbial community, addition of the H2-consuming human gut methanogen Methanobrevibacter smithii decreased butyrate production alongside H2 concentration. Consistent with this observation, M. smithii metabolic activity in a large human cohort was associated with decreased fecal butyrate, but only during consumption of a resistant starch dietary supplement, suggesting the effect may be most prominent when H2 production in the gut is especially high. Addition of M. smithii to the synthetic communities also facilitated the growth of E. rectale, resulting in decreased relative competitive fitness of F. prausnitzii. CONCLUSIONS H2 is a regulator of fermentation in the human gut microbiome. In particular, high H2 concentration stimulates production of the anti-inflammatory metabolite butyrate. By consuming H2, gut methanogenesis can decrease butyrate production. These shifts in butyrate production may also impact the competitive fitness of butyrate producers in the gut microbiome. Video Abstract.
Collapse
Affiliation(s)
- Austin Campbell
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kristi Gdanetz
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Alexander W Schmidt
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, MI, 48109, Ann Arbor, USA
| | - Thomas M Schmidt
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Ecology & Evolutionary Biology, University of Michigan, MI, 48109, Ann Arbor, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, MI, 48109, Ann Arbor, USA.
| |
Collapse
|
42
|
Wang K, Mehta RS, Ma W, Nguyen LH, Wang DD, Ghazi AR, Yan Y, Al-Shaar L, Wang Y, Hang D, Fu BC, Ogino S, Rimm EB, Hu FB, Carmody RN, Garrett WS, Sun Q, Chan AT, Huttenhower C, Song M. The gut microbiome modifies the associations of short- and long-term physical activity with body weight changes. MICROBIOME 2023; 11:121. [PMID: 37254152 PMCID: PMC10228038 DOI: 10.1186/s40168-023-01542-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND The gut microbiome regulates host energy balance and adiposity-related metabolic consequences, but it remains unknown how the gut microbiome modulates body weight response to physical activity (PA). METHODS Nested in the Health Professionals Follow-up Study, a subcohort of 307 healthy men (mean[SD] age, 70[4] years) provided stool and blood samples in 2012-2013. Data from cohort long-term follow-ups and from the accelerometer, doubly labeled water, and plasma biomarker measurements during the time of stool collection were used to assess long-term and short-term associations of PA with adiposity. The gut microbiome was profiled by shotgun metagenomics and metatranscriptomics. A subcohort of 209 healthy women from the Nurses' Health Study II was used for validation. RESULTS The microbial species Alistipes putredinis was found to modify the association between PA and body weight. Specifically, in individuals with higher abundance of A. putredinis, each 15-MET-hour/week increment in long-term PA was associated with 2.26 kg (95% CI, 1.53-2.98 kg) less weight gain from age 21 to the time of stool collection, whereas those with lower abundance of A. putredinis only had 1.01 kg (95% CI, 0.41-1.61 kg) less weight gain (pinteraction = 0.019). Consistent modification associated with A. putredinis was observed for short-term PA in relation to BMI, fat mass%, plasma HbA1c, and 6-month weight change. This modification effect might be partly attributable to four metabolic pathways encoded by A. putredinis, including folate transformation, fatty acid β-oxidation, gluconeogenesis, and stearate biosynthesis. CONCLUSIONS A greater abundance of A. putredinis may strengthen the beneficial association of PA with body weight change, suggesting the potential of gut microbial intervention to improve the efficacy of PA in body weight management. Video Abstract.
Collapse
Affiliation(s)
- Kai Wang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 667 Huntington Avenue, Kresge 906A, Boston, MA, 02115, USA
| | - Raaj S Mehta
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wenjie Ma
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Dong D Wang
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew R Ghazi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yan Yan
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Laila Al-Shaar
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yiqing Wang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Dong Hang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology and Biostatistics, International Joint Research Center On Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China
| | - Benjamin C Fu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 667 Huntington Avenue, Kresge 906A, Boston, MA, 02115, USA
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 667 Huntington Avenue, Kresge 906A, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Program in MPE Molecular Pathological Epidemiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric B Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 667 Huntington Avenue, Kresge 906A, Boston, MA, 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 667 Huntington Avenue, Kresge 906A, Boston, MA, 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Rachel N Carmody
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Wendy S Garrett
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 667 Huntington Avenue, Kresge 906A, Boston, MA, 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, 667 Huntington Avenue, Kresge 906A, Boston, MA, 02115, USA.
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
43
|
Martin AJ, Serebrinsky-Duek K, Riquelme E, Saa PA, Garrido D. Microbial interactions and the homeostasis of the gut microbiome: the role of Bifidobacterium. MICROBIOME RESEARCH REPORTS 2023; 2:17. [PMID: 38046822 PMCID: PMC10688804 DOI: 10.20517/mrr.2023.10] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 12/05/2023]
Abstract
The human gut is home to trillions of microorganisms that influence several aspects of our health. This dense microbial community targets almost all dietary polysaccharides and releases multiple metabolites, some of which have physiological effects on the host. A healthy equilibrium between members of the gut microbiota, its microbial diversity, and their metabolites is required for intestinal health, promoting regulatory or anti-inflammatory immune responses. In contrast, the loss of this equilibrium due to antibiotics, low fiber intake, or other conditions results in alterations in gut microbiota composition, a term known as gut dysbiosis. This dysbiosis can be characterized by a reduction in health-associated microorganisms, such as butyrate-producing bacteria, enrichment of a small number of opportunistic pathogens, or a reduction in microbial diversity. Bifidobacterium species are key species in the gut microbiome, serving as primary degraders and contributing to a balanced gut environment in various ways. Colonization resistance is a fundamental property of gut microbiota for the prevention and control of infections. This community competes strongly with foreign microorganisms, such as gastrointestinal pathogens, antibiotic-resistant bacteria, or even probiotics. Resistance to colonization is based on microbial interactions such as metabolic cross-feeding, competition for nutrients, or antimicrobial-based inhibition. These interactions are mediated by metabolites and metabolic pathways, representing the inner workings of the gut microbiota, and play a protective role through colonization resistance. This review presents a rationale for how microbial interactions provide resistance to colonization and gut dysbiosis, highlighting the protective role of Bifidobacterium species.
Collapse
Affiliation(s)
- Alberto J.M. Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8580702, Chile
| | - Kineret Serebrinsky-Duek
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| | - Erick Riquelme
- Department of Respiratory Diseases, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Pedro A. Saa
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
- Institute for Mathematical and Computational Engineering, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, Pontificia Universidad Católica de Chile, Santiago 833115, Chile
| |
Collapse
|
44
|
Lamaudière MTF, Arasaradnam R, Weedall GD, Morozov IY. The Colorectal Cancer Gut Environment Regulates Activity of the Microbiome and Promotes the Multidrug Resistant Phenotype of ESKAPE and Other Pathogens. mSphere 2023; 8:e0062622. [PMID: 36847529 PMCID: PMC10117110 DOI: 10.1128/msphere.00626-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/28/2023] [Indexed: 03/01/2023] Open
Abstract
Taxonomic composition of the gut microbiota in colorectal cancer (CRC) patients is altered, a newly recognized driving force behind the disease, the activity of which has been overlooked. We conducted a pilot study on active microbial taxonomic composition in the CRC gut via metatranscriptome and 16S rRNA gene (rDNA) sequencing. We revealed sub-populations in CRC (n = 10) and control (n = 10) cohorts of over-active and dormant species, as changes in activity were often independent from abundance. Strikingly, the diseased gut significantly influenced transcription of butyrate producing bacteria, clinically relevant ESKAPE, oral, and Enterobacteriaceae pathogens. A focused analysis of antibiotic (AB) resistance genes showed that both CRC and control microbiota displayed a multidrug resistant phenotype, including ESKAPE species. However, a significant majority of AB resistance determinants of several AB families were upregulated in the CRC gut. We found that environmental gut factors regulated AB resistance gene expression in vitro of aerobic CRC microbiota, specifically acid, osmotic, and oxidative pressures in a predominantly health-dependent manner. This was consistent with metatranscriptome analysis of these cohorts, while osmotic and oxidative pressures induced differentially regulated responses. This work provides novel insights into the organization of active microbes in CRC, and reveals significant regulation of functionally related group activity, and unexpected microbiome-wide upregulation of AB resistance genes in response to environmental changes of the cancerous gut. IMPORTANCE The human gut microbiota in colorectal cancer patients have a distinct population compared to heathy counterparts. However, the activity (gene expression) of this community has not been investigated. Following quantification of both expressed genes and gene abundance, we established that a sub-population of microbes lies dormant in the cancerous gut, while other groups, namely, clinically relevant oral and multi-drug resistant pathogens, significantly increased in activity. Targeted analysis of community-wide antibiotic resistance determinants found that their expression occurs independently of antibiotic treatment, regardless of host health. However, its expression in aerobes, in vitro, can be regulated by specific environmental stresses of the gut, including organic and inorganic acid pressure in a health-dependent manner. This work advances the field of microbiology in the context of disease, showing, for the first time, that colorectal cancer regulates activity of gut microorganisms and that specific gut environmental pressures can modulate their antibiotic resistance determinants expression.
Collapse
Affiliation(s)
| | - Ramesh Arasaradnam
- Divison of Biomedical Sciences, Warwick Medical School, University of Warwick, Warwick, United Kingdom
- Department of Gastroenterology, University Hospitals of Coventry and Warwickshire, NHS trust, Coventry, United Kingdom
- University of Leicester, Leicester, United Kingdom
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moors University, Liverpool, United Kingdom
| | - Igor Y. Morozov
- Centre for Sports, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| |
Collapse
|
45
|
Cui H, Wang J, Cai X, Feng K, Xie GJ, Liu BF, Xing D. Chemical Pretreatments and Anaerobic Digestion Shape the Virome and Functional Microbiome in Fecal Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6008-6020. [PMID: 36996193 DOI: 10.1021/acs.est.2c09587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The decomposition and pathogen inactivation of fecal sludge (FS) are vitally important for safely managing onsite sanitation and protecting public and environmental health. However, the microbiome and virome assemblages in FS after chemical and biological treatments remain unclear. Here, we reported the differences in the solid reduction and microbiomes of FS subjected to potassium ferrate (PF), alkali (ALK), and sodium hypochlorite (NaClO) pretreatments and anaerobic digestion (AD). The PF and NaClO pretreatments enhanced FS hydrolysis and pathogen suppression, respectively; AD suppressed Gram-positive bacteria. Most of the viromes were those of bacteriophages, which were also shaped by chemical pretreatments and AD. Metatranscriptome analysis revealed distinct gene expression patterns between the PF- and ALK-pretreated FS and the subsequent AD. Differentially expressed gene profiles indicated that genes related to biological processes, molecular functions, and transcriptional regulators were upregulated in ALK-AD and PF-AD samples. These findings suggested that the effect of different treatment technologies on the viral diversity, pathogen abundance, and metabolic function of the core microbiome extends beyond FS decomposition and that the use of combined processes would provide possible alternatives for FS management in pandemic emergencies.
Collapse
Affiliation(s)
- Han Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jing Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaoyu Cai
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
46
|
Whaley-Martin KJ, Chen LX, Nelson TC, Gordon J, Kantor R, Twible LE, Marshall S, McGarry S, Rossi L, Bessette B, Baron C, Apte S, Banfield JF, Warren LA. O 2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters. Nat Commun 2023; 14:2006. [PMID: 37037821 PMCID: PMC10086054 DOI: 10.1038/s41467-023-37426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
The acidification of water in mining areas is a global environmental issue primarily catalyzed by sulfur-oxidizing bacteria (SOB). Little is known about microbial sulfur cycling in circumneutral pH mine tailing impoundment waters. Here we investigate biological sulfur oxidation over four years in a mine tailings impoundment water cap, integrating aqueous sulfur geochemistry, genome-resolved metagenomics and metatranscriptomics. The microbial community is consistently dominated by neutrophilic, chemolithoautotrophic SOB (relative abundances of ~76% in 2015, ~55% in 2016/2017 and ~60% in 2018). Results reveal two SOB strategies alternately dominate across the four years, influencing acid generation and sulfur speciation. Under oxic conditions, novel Halothiobacillus drive lower pH conditions (as low as 4.3) and lower [S2O32-] via the complete Sox pathway coupled to O2. Under anoxic conditions, Thiobacillus spp. dominate in activity, via the incomplete Sox and rDSR pathways coupled to NO3-, resulting in higher [S2O32-] and no net significant acidity generation. This study provides genomic evidence explaining acidity generation and thiosulfate accumulation patterns in a circumneutral mine tailing impoundment and has significant environmental applications in preventing the discharge of sulfur compounds that can impact downstream environments. These insights illuminate opportunities for in situ biotreatment of reduced sulfur compounds and prediction of acidification events using gene-based monitoring and in situ RNA detection.
Collapse
Affiliation(s)
- Kelly J Whaley-Martin
- University of Toronto, Toronto, ON, Canada
- Environmental Resources management (ERM), Toronto, ON, Canada
| | - Lin-Xing Chen
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | | | | | - Rose Kantor
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | | | - Stephanie Marshall
- Environmental Resources management (ERM), Toronto, ON, Canada
- McMaster University, Hamilton, ON, Canada
| | - Sam McGarry
- Glencore, Sudbury Integrated Nickel Operations, Sudbury, ON, Canada
| | | | | | | | - Simon Apte
- CSIRO Land and Water, Clayton, NSW, Australia
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
| | | |
Collapse
|
47
|
Ladeira R, Tap J, Derrien M. Exploring Bifidobacterium species community and functional variations with human gut microbiome structure and health beyond infancy. MICROBIOME RESEARCH REPORTS 2023; 2:9. [PMID: 38047280 PMCID: PMC10688807 DOI: 10.20517/mrr.2023.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 12/05/2023]
Abstract
Aim: The human gut Bifidobacterium community has been studied in detail in infants and following dietary interventions in adults. However, the variability of the distribution of Bifidobacterium species and intra-species functions have been little studied, particularly beyond infancy. Here, we explore the ecology of Bifidobacterium communities in a large public dataset of human gut metagenomes, mostly corresponding to adults. Methods: We selected 9.515 unique gut metagenomes from curatedMetagenomicData. Samples were partitioned by applying Dirichlet's multinomial mixture to Bifidobacterium species. A functional analysis was performed on > 2.000 human-associated Bifidobacterium metagenome-assembled genomes (MAGs) paired with participant gut microbiome and health features. Results: We identified several Bifidobacterium-based partitions in the human gut microbiome differing in terms of the presence and abundance of Bifidobacterium species. The partitions enriched in both B. longum and B. adolescentis were associated with gut microbiome diversity and a higher abundance of butyrate producers and were more prevalent in healthy individuals. B. bifidum MAGs harboring a set of genes potentially related to phages were more prevalent in partitions associated with a lower gut microbiome diversity and were genetically more closely related. Conclusion: This study expands our knowledge of the ecology and variability of the Bifidobacterium community, particularly in adults, and its specific association with the gut microbiota and health. Its findings may guide the rational selection of Bifidobacterium strains for gut microbiome complementation according to the individual's endogenous Bifidobacterium community. Our results also suggest that gut microbiome stratification for particular genera may be relevant for studies of variations of species and associations with the gut microbiome and health.
Collapse
Affiliation(s)
- Ruben Ladeira
- Advanced Health & Science, Danone Global Research & Innovation Center, Gif-sur-Yvette 91190, France
| | - Julien Tap
- Advanced Health & Science, Danone Global Research & Innovation Center, Gif-sur-Yvette 91190, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas 78350, France
| | - Muriel Derrien
- Advanced Health & Science, Danone Global Research & Innovation Center, Gif-sur-Yvette 91190, France
| |
Collapse
|
48
|
Valles-Colomer M, Menni C, Berry SE, Valdes AM, Spector TD, Segata N. Cardiometabolic health, diet and the gut microbiome: a meta-omics perspective. Nat Med 2023; 29:551-561. [PMID: 36932240 PMCID: PMC11258867 DOI: 10.1038/s41591-023-02260-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/16/2023] [Indexed: 03/19/2023]
Abstract
Cardiometabolic diseases have become a leading cause of morbidity and mortality globally. They have been tightly linked to microbiome taxonomic and functional composition, with diet possibly mediating some of the associations described. Both the microbiome and diet are modifiable, which opens the way for novel therapeutic strategies. High-throughput omics techniques applied on microbiome samples (meta-omics) hold the unprecedented potential to shed light on the intricate links between diet, the microbiome, the metabolome and cardiometabolic health, with a top-down approach. However, effective integration of complementary meta-omic techniques is an open challenge and their application on large cohorts is still limited. Here we review meta-omics techniques and discuss their potential in this context, highlighting recent large-scale efforts and the novel insights they provided. Finally, we look to the next decade of meta-omics research and discuss various translational and clinical pathways to improving cardiometabolic health.
Collapse
Affiliation(s)
- Mireia Valles-Colomer
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Cristina Menni
- Department of Twin Research, King's College London, London, UK
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham, UK
- Nottingham National Institute for Health Research Biomedical Research Centre, Nottingham, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
- European Institute of Oncology, Scientific Institute for Research, Hospitalization and Healthcare, Milan, Italy.
| |
Collapse
|
49
|
The Colorectal Cancer Microbiota Alter Their Transcriptome To Adapt to the Acidity, Reactive Oxygen Species, and Metabolite Availability of Gut Microenvironments. mSphere 2023; 8:e0062722. [PMID: 36847536 PMCID: PMC10117117 DOI: 10.1128/msphere.00627-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The gut microbiome is implicated in the pathology of colorectal cancer (CRC). However, the mechanisms by which the microbiota actively contribute to disease onset and progression remain elusive. In this pilot study, we sequenced fecal metatranscriptomes of 10 non-CRC and 10 CRC patient gut microbiomes and conducted differential gene expression analyses to assess any changed functionality in disease. We report that oxidative stress responses were the dominant activity across cohorts, an overlooked protective housekeeping role of the human gut microbiome. However, expression of hydrogen peroxide and nitric oxide-scavenging genes was diminished and augmented, respectively, positing that these regulated microbial responses have implications for CRC pathology. CRC microbes enhanced expression of genes for host colonization, biofilm formation, genetic exchange, virulence determinants, antibiotic, and acid resistances. Moreover, microbes promoted transcription of genes involved in metabolism of several beneficial metabolites, suggesting their contribution to patient metabolite deficiencies previously solely attributed to tumor cells. We showed in vitro that expression of genes involved in amino acid-dependent acid resistance mechanisms of meta-gut Escherichia coli responded differently to acid, salt, and oxidative pressures under aerobic conditions. These responses were mostly dictated by the host health status of origin of the microbiota, suggesting their exposure to fundamentally different gut conditions. These findings for the first time highlight mechanisms by which the gut microbiota can either protect against or drive colorectal cancer and provide insights into the cancerous gut environment that drives functional characteristics of the microbiome. IMPORTANCE The human gut microbiota has the genetic potential to drive colorectal cancer onset and progression; however, the expression of this genetic potential during the disease has not been investigated. We found that microbial expression of genes that detoxify DNA-damaging reactive oxygen species, which drive colorectal cancer, is compromised in cancer. We observed a greater activation of expression of genes involved in virulence, host colonization, exchange of genetic material, metabolite utilization, defense against antibiotics, and environmental pressures. Culturing gut Escherichia coli of cancerous and noncancerous metamicrobiota revealed different regulatory responses of amino acid-dependent acid resistance mechanisms in a health-dependent manner under environmental acid, oxidative, and osmotic pressures. Here, for the first time, we demonstrate that the activity of microbial genomes is regulated by the health status of the gut in vivo and in vitro and provides new insights for shifts in microbial gene expression in colorectal cancer.
Collapse
|
50
|
Ojala T, Kankuri E, Kankainen M. Understanding human health through metatranscriptomics. Trends Mol Med 2023; 29:376-389. [PMID: 36842848 DOI: 10.1016/j.molmed.2023.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023]
Abstract
Metatranscriptomics has revolutionized our ability to explore and understand transcriptional programs in microbial communities. Moreover, it has enabled us to gain deeper and more specific insight into the microbial activities in human gut, respiratory, oral, and vaginal communities. Perhaps the most important contribution of metatranscriptomics arises, however, from the analyses of disease-associated communities. We review the advantages and disadvantages of metatranscriptomics analyses in understanding human health and disease. We focus on human tissues low in microbial biomass and conditions associated with dysbiotic microbiota. We conclude that a more widespread use of metatranscriptomics and increased knowledge on microbe activities will uncover critical interactions between microbes and host in human health and provide diagnostic basis for culturing-independent, direct functional pathogen identification.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland; Hematology Research Unit Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|