1
|
Jones NG, Engstler M. Structure-function analysis defines the minimal functional C-terminal domain of the variant surface glycoprotein of Trypanosoma brucei. J Biol Chem 2025:110260. [PMID: 40412524 DOI: 10.1016/j.jbc.2025.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/28/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025] Open
Abstract
In their mammalian hosts, African trypanosomes abundantly express GPI-anchored variant surface glycoproteins (VSGs) on their cell surfaces. These provide a protective surface coat that has been studied best in Trypanosoma brucei. The genome of this single-celled parasite contains more than 2000 VSG genes and pseudogenes, a rich foundation based on which only one functional VSG is expressed at any given time. This allows coat exchange by antigenic variation which is an elegant means of repeatedly evading the immune response of the mammalian host. All proteins of the VSG family are composed of a larger, elongated N-terminal domain that is most exposed and a smaller C-terminal domain that is sandwiched between the N-terminal domain and the GPI-anchor, which connects the protein to the outer leaflet of the plasma membrane. Whereas the sequence variability in the N-terminal domain of different members of the VSG family is essential for antigenic variation, the role of the C-terminal domain remains less clear and other species such as T. congolense and T. vivax do not possess a similarly structured C-terminal domain in their VSGs. Here, we systematically mutated the C-terminal domain of selected T. brucei VSGs and define a minimal domain required for VSG function. We show that the size of the minimal C-terminal domain resembles that of T. congolense VSGs and structured regions are not essential. We further propose that the evolutionary pressure to conserve the build of the C-terminal domain is related to functions beyond protein structure.
Collapse
Affiliation(s)
- Nicola G Jones
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany.
| | - Markus Engstler
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Obi OA, Obiezue RN, Eze D, Adebote DA. Evasive mechanisms of human VSG and PfEMP1 antigens with link to Vaccine scenario: a review. J Parasit Dis 2025; 49:13-28. [PMID: 39975623 PMCID: PMC11833005 DOI: 10.1007/s12639-024-01740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/13/2024] [Indexed: 02/21/2025] Open
Abstract
Recent fights on the control of trypanosomiasis and malaria focused on underscoring the concepts of antigen evasive mechanisms with the view to exploit the defensive mechanisms inherent in VSG and PfEMP1, although giant strides is being achieved towards beating the antigenic propensity of malaria parasites. Trypanosoma and Plasmodium falciparum adopt a common antigenic novelty through alternate expression of VSG and PfEMP1 respectively. These immunodominant antigens sterically shield other surface proteins from host antibodies and unvaryingly turn out to be the requisite elements with difficult underlining immunological concept for unmatched escape mechanisms of vaccine actions. Hence, the uncommon role of the pathogens to brazenly circumnavigate immunity through switching of variant antigens has not kept pace. Switching of variant surface in human trypanosomes occurs through programmed DNA rearrangements while in P. falciparum, switching occurs by purely transcriptional mechanism. The repertoire genes harmonize evasion of human immunity and also rekindle the outcome of infections. The extensive sequence divergence and genetic polymorphism of VSG and PfEMP1 are the requisite elements for the next generation breakthrough in vaccine discoveries. Thus, the springboard for the development of novel targets is lurking with the wit of unraveling the immunological concepts underlining the evasive aptitude of VSG and PfEMP1 with convincing biochemical techniques, hence offering a blueprint for enhanced vaccine targets. This review elucidates evasive mechanisms of VSG and PfEMP1 with link to pathologies, challenges of antigenic switches and prospects to current vaccine scenario.
Collapse
Affiliation(s)
- Okechukwu Anthony Obi
- Department of Zoology, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | - Rose Nduka Obiezue
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State Nigeria
| | - Desmond Eze
- Department of Biochemistry, Federal University of Agriculture, Makurdi, Benue State Nigeria
| | | |
Collapse
|
3
|
Liu Y, Jiang N, Zuo S, Feng Y, Chen R, Zhang Y, Zhang N, Sang X, Chen Q. Graphene quantum dots disrupt the mitochondrial potential of Trypanosoma brucei by interacting with the p18 subunit of ATP synthase F 1 after endocytosis via the VSG recycling pathway. J Colloid Interface Sci 2025; 679:975-986. [PMID: 39418900 DOI: 10.1016/j.jcis.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
HYPOTHESIS Trypanosomiasis is one of the main threats to human and animal health in African countries. Trypanosoma brucei can evade the host immune recognition by rapidly altering its variant surface glycoprotein (VSG). The ATP synthase F1 subunit of the parasite exhibits extremely low similarity to that of its mammalian hosts, hypothetically making it an ideal target for the development of novel therapeutics. EXPERIMENTS Graphene quantum dots (GQDs) were synthesized, and their adhesion to T. brucei surface and internalization was observed microscopically. The activity of ATP synthase and mitochondrial membrane potential of T. brucei were measured after exposure to GQDs. Proteomics, biolayer interferometry, and molecular dynamic simulations were utilized to evaluate the interaction between GQDs with the target proteins. FINDINGS GQDs specifically adhered to the VSG of T. brucei and were conveyed inside the parasite via the VSG internalization pathway. The GQDs promoted intracellular ROS production, interacted with, and inhibited the activity of the p18 subunit of ATP synthase, disrupted parasite mitochondrial membrane potential. Additionally, the GQDs caused a decrease in aminoacyl - tRNA biosynthesis, and upregulated RNA and protein degradation pathways. The findings of this study offer a novel avenue for the target-oriented discovery of anti-trypanosome drugs.
Collapse
Affiliation(s)
- Yize Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Si Zuo
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Naiwen Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.
| |
Collapse
|
4
|
Alves DO, Geens R, da Silva Arruda HR, Jennen L, Corthaut S, Wuyts E, de Andrade GC, Prosdocimi F, Cordeiro Y, Pires JR, Vieira LR, de Oliveira GAP, Sterckx YGJ, Salmon D. Biophysical analysis of the membrane-proximal Venus Flytrap domain of ESAG4 receptor-like adenylate cyclase from Trypanosoma brucei. Mol Biochem Parasitol 2024; 260:111653. [PMID: 39447762 DOI: 10.1016/j.molbiopara.2024.111653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The protozoan parasite Trypanosoma brucei possesses a large family of transmembrane receptor-like adenylate cyclases (RACs), primarily located to the flagellar surface and involved in sensing of the extracellular environment. RACs exhibit a conserved topology characterized by a large N-terminal extracellular moiety harbouring two Venus Flytrap (VFT) bilobate structures separated from an intracellular catalytic domain by a single transmembrane helix. RAC activation, which typically occurs under mild acid stress, requires the dimerization of the intracellular catalytic domain. The occurrence of VFT domains in the RAC's extracellular moiety suggests their potential responsiveness to extracellular ligands in the absence of stress, although no such ligands have been identified so far. Herein we report the biophysical characterization of the membrane-proximal VFT2 domain of a bloodstream form-specific RAC called ESAG4, whose ectodomain 3D structure is completely unknown. The paper describes an AlphaFold2-based optimisation of the expression construct, enabling facile and high-yield recombinant production and purification of the target protein. Through an interdisciplinary approach combining various biophysical methods, we demonstrate that the optimised VFT2 domain obtained by recombination is properly folded and behaves as a monomer in solution. The latter suggests a ligand-binding capacity independent of dimerization, unlike typical mammalian VFT receptors, as guanylate cyclase. In silico VFT2 genomic analyses shows divergence among cyclase isoforms, hinting at ligand specificity. Taken together this improved procedure enabling facile and high-yield recombinant production and purification of the target protein could benefit researchers studying trypanosomal RAC VFT domains but also any trypanosome domain with poorly defined boundaries. Additionally, our findings support the stable monomeric VFT2 domain as a useful tool for future structural investigations and ligand screening.
Collapse
Affiliation(s)
- Desirée O Alves
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Rob Geens
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Hiam R da Silva Arruda
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Lisa Jennen
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sam Corthaut
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Ellen Wuyts
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Guilherme Caldas de Andrade
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Francisco Prosdocimi
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho 373, Rio de Janeiro 21941-902, Brazil
| | - José Ricardo Pires
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Guilherme A P de Oliveira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, Wilrijk 2610, Belgium.
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Av. Brigadeiro Trompowsky, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
5
|
Sülzen H, Volkov AN, Geens R, Zahedifard F, Stijlemans B, Zoltner M, Magez S, Sterckx YGJ, Zoll S. Beyond the VSG layer: Exploring the role of intrinsic disorder in the invariant surface glycoproteins of African trypanosomes. PLoS Pathog 2024; 20:e1012186. [PMID: 38648216 PMCID: PMC11065263 DOI: 10.1371/journal.ppat.1012186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/02/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
In the bloodstream of mammalian hosts, African trypanosomes face the challenge of protecting their invariant surface receptors from immune detection. This crucial role is fulfilled by a dense, glycosylated protein layer composed of variant surface glycoproteins (VSGs), which undergo antigenic variation and provide a physical barrier that shields the underlying invariant surface glycoproteins (ISGs). The protective shield's limited permeability comes at the cost of restricted access to the extracellular host environment, raising questions regarding the specific function of the ISG repertoire. In this study, we employ an integrative structural biology approach to show that intrinsically disordered membrane-proximal regions are a common feature of members of the ISG super-family, conferring the ability to switch between compact and elongated conformers. While the folded, membrane-distal ectodomain is buried within the VSG layer for compact conformers, their elongated counterparts would enable the extension beyond it. This dynamic behavior enables ISGs to maintain a low immunogenic footprint while still allowing them to engage with the host environment when necessary. Our findings add further evidence to a dynamic molecular organization of trypanosome surface antigens wherein intrinsic disorder underpins the characteristics of a highly flexible ISG proteome to circumvent the constraints imposed by the VSG coat.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rob Geens
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Center of Excellence, Department of Pharmaceutical Sciences, Universiteit of Antwerp, Wilrijk, Belgium
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Benoit Stijlemans
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Stefan Magez
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Incheon, South Korea
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Center of Excellence, Department of Pharmaceutical Sciences, Universiteit of Antwerp, Wilrijk, Belgium
| | - Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Đaković S, Zeelen JP, Gkeka A, Chandra M, van Straaten M, Foti K, Zhong J, Vlachou EP, Aresta-Branco F, Verdi JP, Papavasiliou FN, Stebbins CE. A structural classification of the variant surface glycoproteins of the African trypanosome. PLoS Negl Trop Dis 2023; 17:e0011621. [PMID: 37656766 PMCID: PMC10501684 DOI: 10.1371/journal.pntd.0011621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/14/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Long-term immune evasion by the African trypanosome is achieved through repetitive cycles of surface protein replacement with antigenically distinct versions of the dense Variant Surface Glycoprotein (VSG) coat. Thousands of VSG genes and pseudo-genes exist in the parasite genome that, together with genetic recombination mechanisms, allow for essentially unlimited immune escape from the adaptive immune system of the host. The diversity space of the "VSGnome" at the protein level was thought to be limited to a few related folds whose structures were determined more than 30 years ago. However, recent progress has shown that the VSGs possess significantly more architectural variation than had been appreciated. Here we combine experimental X-ray crystallography (presenting structures of N-terminal domains of coat proteins VSG11, VSG21, VSG545, VSG558, and VSG615) with deep-learning prediction using Alphafold to produce models of hundreds of VSG proteins. We classify the VSGnome into groups based on protein architecture and oligomerization state, contextualize recent bioinformatics clustering schemes, and extensively map VSG-diversity space. We demonstrate that in addition to the structural variability and post-translational modifications observed thus far, VSGs are also characterized by variations in oligomerization state and possess inherent flexibility and alternative conformations, lending additional variability to what is exposed to the immune system. Finally, these additional experimental structures and the hundreds of Alphafold predictions confirm that the molecular surfaces of the VSGs remain distinct from variant to variant, supporting the hypothesis that protein surface diversity is central to the process of antigenic variation used by this organism during infection.
Collapse
Affiliation(s)
- Sara Đaković
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Johan P. Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Anastasia Gkeka
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Monica Chandra
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Konstantina Foti
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Janet Zhong
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Evi P. Vlachou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Francisco Aresta-Branco
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Joseph P. Verdi
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - C. Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
7
|
Escrivani DO, Scheidt V, Tinti M, Faria J, Horn D. Competition among variants is predictable and contributes to the antigenic variation dynamics of African trypanosomes. PLoS Pathog 2023; 19:e1011530. [PMID: 37459347 PMCID: PMC10374056 DOI: 10.1371/journal.ppat.1011530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 07/27/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Several persistent pathogens employ antigenic variation to continually evade mammalian host adaptive immune responses. African trypanosomes use variant surface glycoproteins (VSGs) for this purpose, transcribing one telomeric VSG expression-site at a time, and exploiting a reservoir of (sub)telomeric VSG templates to switch the active VSG. It has been known for over fifty years that new VSGs emerge in a predictable order in Trypanosoma brucei, and differential activation frequencies are now known to contribute to the hierarchy. Switching of approximately 0.01% of dividing cells to many new VSGs, in the absence of post-switching competition, suggests that VSGs are deployed in a highly profligate manner, however. Here, we report that switched trypanosomes do indeed compete, in a highly predictable manner that is dependent upon the activated VSG. We induced VSG gene recombination and switching in in vitro culture using CRISPR-Cas9 nuclease to target the active VSG. VSG dynamics, that were independent of host immune selection, were subsequently assessed using RNA-seq. Although trypanosomes activated VSGs from repressed expression-sites at relatively higher frequencies, the population of cells that activated minichromosomal VSGs subsequently displayed a competitive advantage and came to dominate. Furthermore, the advantage appeared to be more pronounced for longer VSGs. Differential growth of switched clones was also associated with wider differences, affecting transcripts involved in nucleolar function, translation, and energy metabolism. We conclude that antigenic variants compete, and that the population of cells that activates minichromosome derived VSGs displays a competitive advantage. Thus, competition among variants impacts antigenic variation dynamics in African trypanosomes and likely prolongs immune evasion with a limited set of antigens.
Collapse
Affiliation(s)
- Douglas O Escrivani
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Viktor Scheidt
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - Joana Faria
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| | - David Horn
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee, United Kingdom
| |
Collapse
|
8
|
Sülzen H, Began J, Dhillon A, Kereïche S, Pompach P, Votrubova J, Zahedifard F, Šubrtova A, Šafner M, Hubalek M, Thompson M, Zoltner M, Zoll S. Cryo-EM structures of Trypanosoma brucei gambiense ISG65 with human complement C3 and C3b and their roles in alternative pathway restriction. Nat Commun 2023; 14:2403. [PMID: 37105991 PMCID: PMC10140031 DOI: 10.1038/s41467-023-37988-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
African Trypanosomes have developed elaborate mechanisms to escape the adaptive immune response, but little is known about complement evasion particularly at the early stage of infection. Here we show that ISG65 of the human-infective parasite Trypanosoma brucei gambiense is a receptor for human complement factor C3 and its activation fragments and that it takes over a role in selective inhibition of the alternative pathway C5 convertase and thus abrogation of the terminal pathway. No deposition of C4b, as part of the classical and lectin pathway convertases, was detected on trypanosomes. We present the cryo-electron microscopy (EM) structures of native C3 and C3b in complex with ISG65 which reveal a set of modes of complement interaction. Based on these findings, we propose a model for receptor-ligand interactions as they occur at the plasma membrane of blood-stage trypanosomes and may facilitate innate immune escape of the parasite.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 12800, Prague 2, Czech Republic
| | - Jakub Began
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- Department of Immunobiology, University of Lausanne, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Arun Dhillon
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Sami Kereïche
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Albertov 4, 12800, Prague, Czech Republic
| | - Petr Pompach
- Institute of Biotechnology of the Czech Academy of Sciences, 25250, Vestec, Czech Republic
| | - Jitka Votrubova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University Prague, Biocev, 25250, Vestec, Czech Republic
| | - Adriana Šubrtova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Marie Šafner
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Martin Hubalek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
| | - Maaike Thompson
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic
- University of Antwerp, Antwerp, Belgium
- Agidens, Industrial Machinery Manufacturing, Zwijndrecht, Antwerp, Belgium
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University Prague, Biocev, 25250, Vestec, Czech Republic
| | - Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 542/2, 16000, Prague, Czech Republic.
| |
Collapse
|
9
|
Gkeka A, Aresta-Branco F, Triller G, Vlachou EP, van Straaten M, Lilic M, Olinares PDB, Perez K, Chait BT, Blatnik R, Ruppert T, Verdi JP, Stebbins CE, Papavasiliou FN. Immunodominant surface epitopes power immune evasion in the African trypanosome. Cell Rep 2023; 42:112262. [PMID: 36943866 DOI: 10.1016/j.celrep.2023.112262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 12/02/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
The African trypanosome survives the immune response of its mammalian host by antigenic variation of its major surface antigen (the variant surface glycoprotein or VSG). Here we describe the antibody repertoires elicited by different VSGs. We show that the repertoires are highly restricted and are directed predominantly to distinct epitopes on the surface of the VSGs. They are also highly discriminatory; minor alterations within these exposed epitopes confer antigenically distinct properties to these VSGs and elicit different repertoires. We propose that the patterned and repetitive nature of the VSG coat focuses host immunity to a restricted set of immunodominant epitopes per VSG, eliciting a highly stereotyped response, minimizing cross-reactivity between different VSGs and facilitating prolonged immune evasion through epitope variation.
Collapse
Affiliation(s)
- Anastasia Gkeka
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Faculty of Biosciences, University of Heidelberg, 69120 Heidelberg, Germany; Panosome GmbH, 69123 Heidelberg, Germany
| | - Francisco Aresta-Branco
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Gianna Triller
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Evi P Vlachou
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mirjana Lilic
- Laboratory of Structural Microbiology, the Rockefeller University, New York, NY 10065, USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, the Rockefeller University, New York, NY 10065, USA
| | - Kathryn Perez
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, the Rockefeller University, New York, NY 10065, USA
| | - Renata Blatnik
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Thomas Ruppert
- Center for Molecular Biology of Heidelberg University, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Joseph P Verdi
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany; Panosome GmbH, 69123 Heidelberg, Germany
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, 69120 Heidelberg, Germany.
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, 69120 Heidelberg, Germany.
| |
Collapse
|
10
|
Casas-Sanchez A, Ramaswamy R, Perally S, Haines LR, Rose C, Aguilera-Flores M, Portillo S, Verbeelen M, Hussain S, Smithson L, Yunta C, Lehane MJ, Vaughan S, van den Abbeele J, Almeida IC, Boulanger MJ, Acosta-Serrano Á. The Trypanosoma brucei MISP family of invariant proteins is co-expressed with BARP as triple helical bundle structures on the surface of salivary gland forms, but is dispensable for parasite development within the tsetse vector. PLoS Pathog 2023; 19:e1011269. [PMID: 36996244 PMCID: PMC10089363 DOI: 10.1371/journal.ppat.1011269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/11/2023] [Accepted: 03/08/2023] [Indexed: 04/01/2023] Open
Abstract
Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens. Proteomic analyses of saliva from T. brucei-infected tsetse flies identified, in addition to VSG and Brucei Alanine-Rich Protein (BARP) peptides, a family of glycosylphosphatidylinositol (GPI)-anchored surface proteins herein named as Metacyclic Invariant Surface Proteins (MISP) because of its predominant expression on the surface of metacyclic trypomastigotes. The MISP family is encoded by five paralog genes with >80% protein identity, which are exclusively expressed by salivary gland stages of the parasite and peak in metacyclic stage, as shown by confocal microscopy and immuno-high resolution scanning electron microscopy. Crystallographic analysis of a MISP isoform (MISP360) and a high confidence model of BARP revealed a triple helical bundle architecture commonly found in other trypanosome surface proteins. Molecular modelling combined with live fluorescent microscopy suggests that MISP N-termini are potentially extended above the metacyclic VSG coat, and thus could be tested as a transmission-blocking vaccine target. However, vaccination with recombinant MISP360 isoform did not protect mice against a T. brucei infectious tsetse bite. Lastly, both CRISPR-Cas9-driven knock out and RNAi knock down of all MISP paralogues suggest they are not essential for parasite development in the tsetse vector. We suggest MISP may be relevant during trypanosome transmission or establishment in the vertebrate's skin.
Collapse
Affiliation(s)
- Aitor Casas-Sanchez
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Samïrah Perally
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lee R. Haines
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Marcela Aguilera-Flores
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Susana Portillo
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | | | | | - Laura Smithson
- Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Cristina Yunta
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michael J. Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Sue Vaughan
- Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | | | - Igor C. Almeida
- Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, United States of America
| | - Martin J. Boulanger
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Álvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
11
|
Chandra M, Đaković S, Foti K, Zeelen JP, van Straaten M, Aresta-Branco F, Tihon E, Lübbehusen N, Ruppert T, Glover L, Papavasiliou FN, Stebbins CE. Structural similarities between the metacyclic and bloodstream form variant surface glycoproteins of the African trypanosome. PLoS Negl Trop Dis 2023; 17:e0011093. [PMID: 36780870 PMCID: PMC9956791 DOI: 10.1371/journal.pntd.0011093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 01/12/2023] [Indexed: 02/15/2023] Open
Abstract
During infection of mammalian hosts, African trypanosomes thwart immunity using antigenic variation of the dense Variant Surface Glycoprotein (VSG) coat, accessing a large repertoire of several thousand genes and pseudogenes, and switching to antigenically distinct copies. The parasite is transferred to mammalian hosts by the tsetse fly. In the salivary glands of the fly, the pathogen adopts the metacyclic form and expresses a limited repertoire of VSG genes specific to that developmental stage. It has remained unknown whether the metacyclic VSGs possess distinct properties associated with this particular and discrete phase of the parasite life cycle. We present here three novel metacyclic form VSG N-terminal domain crystal structures (mVSG397, mVSG531, and mVSG1954) and show that they mirror closely in architecture, oligomerization, and surface diversity the known classes of bloodstream form VSGs. These data suggest that the mVSGs are unlikely to be a specialized subclass of VSG proteins, and thus could be poor candidates as the major components of prophylactic vaccines against trypanosomiasis.
Collapse
Affiliation(s)
- Monica Chandra
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Sara Đaković
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Konstantina Foti
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Johan P. Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Francisco Aresta-Branco
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Eliane Tihon
- Institut Pasteur, Université Paris Cité, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - Nicole Lübbehusen
- Centre for Molecular Biology at the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Thomas Ruppert
- Centre for Molecular Biology at the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Lucy Glover
- Institut Pasteur, Université Paris Cité, Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Paris, France
| | - F. Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - C. Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
12
|
VSGs Expressed during Natural T. b. gambiense Infection Exhibit Extensive Sequence Divergence and a Subspecies-Specific Bias towards Type B N-Terminal Domains. mBio 2022; 13:e0255322. [PMID: 36354333 PMCID: PMC9765701 DOI: 10.1128/mbio.02553-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trypanosoma brucei gambiense is the primary causative agent of human African trypanosomiasis (HAT), a vector-borne disease endemic to West and Central Africa. The extracellular parasite evades antibody recognition within the host bloodstream by altering its variant surface glycoprotein (VSG) coat through a process of antigenic variation. The serological tests that are widely used to screen for HAT use VSG as one of the target antigens. However, the VSGs expressed during human infection have not been characterized. Here, we use VSG sequencing (VSG-seq) to analyze the VSGs expressed in the blood of patients infected with T. b. gambiense and compared them to VSG expression in Trypanosoma brucei rhodesiense infections in humans as well as Trypanosoma brucei brucei infections in mice. The 44 VSGs expressed during T. b. gambiense infection revealed a striking bias toward expression of type B N termini (82% of detected VSGs). This bias is specific to T. b. gambiense, which is unique among T. brucei subspecies in its chronic clinical presentation and anthroponotic nature. The expressed T. b. gambiense VSGs also share very little similarity to sequences from 36 T. b. gambiense whole-genome sequencing data sets, particularly in areas of the VSG protein exposed to host antibodies, suggesting the antigen repertoire is under strong selective pressure to diversify. Overall, this work demonstrates new features of antigenic variation in T. brucei gambiense and highlights the importance of understanding VSG repertoires in nature. IMPORTANCE Human African trypanosomiasis is a neglected tropical disease primarily caused by the extracellular parasite Trypanosoma brucei gambiense. To avoid elimination by the host, these parasites repeatedly replace their variant surface glycoprotein (VSG) coat. Despite the important role of VSGs in prolonging infection, VSG expression during human infections is poorly understood. A better understanding of natural VSG gene expression dynamics can clarify the mechanisms that T. brucei uses to alter its VSG coat. We analyzed the expressed VSGs detected in the blood of patients with trypanosomiasis. Our findings indicate that there are features of antigenic variation unique to human-infective T. brucei subspecies and that natural VSG repertoires may vary more than previously expected.
Collapse
|
13
|
Common and unique features of glycosylation and glycosyltransferases in African trypanosomes. Biochem J 2022; 479:1743-1758. [PMID: 36066312 PMCID: PMC9472816 DOI: 10.1042/bcj20210778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022]
Abstract
Eukaryotic protein glycosylation is mediated by glycosyl- and oligosaccharyl-transferases. Here, we describe how African trypanosomes exhibit both evolutionary conservation and significant divergence compared with other eukaryotes in how they synthesise their glycoproteins. The kinetoplastid parasites have conserved components of the dolichol-cycle and oligosaccharyltransferases (OSTs) of protein N-glycosylation, and of glycosylphosphatidylinositol (GPI) anchor biosynthesis and transfer to protein. However, some components are missing, and they process and decorate their N-glycans and GPI anchors in unique ways. To do so, they appear to have evolved a distinct and functionally flexible glycosyltransferases (GT) family, the GT67 family, from an ancestral eukaryotic β3GT gene. The expansion and/or loss of GT67 genes appears to be dependent on parasite biology. Some appear to correlate with the obligate passage of parasites through an insect vector, suggesting they were acquired through GT67 gene expansion to assist insect vector (tsetse fly) colonisation. Others appear to have been lost in species that subsequently adopted contaminative transmission. We also highlight the recent discovery of a novel and essential GT11 family of kinetoplastid parasite fucosyltransferases that are uniquely localised to the mitochondria of Trypanosoma brucei and Leishmania major. The origins of these kinetoplastid FUT1 genes, and additional putative mitochondrial GT genes, are discussed.
Collapse
|
14
|
Marufu L, Coetzer THT. Homology modelling of Trypanosoma brucei major surface proteases and molecular docking of variant surface glycoproteins and inhibitor ligands for drug design. J Mol Graph Model 2021; 111:108104. [PMID: 34920394 DOI: 10.1016/j.jmgm.2021.108104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 12/05/2021] [Indexed: 12/30/2022]
Abstract
Trypanosomes, which cause animal African trypanosomiasis, escape host immune responses by renewing their variable surface glycoprotein (VSG) coat. Chemotherapy is currently the only form of external intervention available. However, the efficacy of current trypanocides is poor due to overuse leading to an increase in drug resistance. Major surface proteases (MSPs) of trypanosomes, which are zinc-dependent metalloproteases, are possible drug targets. A Trypanosoma brucei MSP-B (TbMSP-B) mediates parasite antigenic variation via cleavage of 60% of VSG molecules. Whilst TbMSP-A has no apparent role in VSG cleavage; it is not known if TbMSP-C is involved in VSG cleavage. In this study, three-dimensional structures of TbMSP-A, TbMSP-B and TbMSP-C were modelled. By comparing the docking poses of the C-terminal domains of VSG substrates into the models, TbMSP-C showed an affinity for similar VSG substrate sites as TbMSP-B, but these sites differed from those recognised by TbMSP-A. This observation suggests that TbMSP-C may be involved in VSG cleavage during antigenic variation. Furthermore, by docking small inhibitor ligands into the TbMSP-B and TbMSP-C homology models, followed by molecular dynamics simulations, ligands with potential anti-trypanosomal activity were identified. Docking studies also revealed the depth of the S1' pockets of TbMSP-B and TbMSP-C, which is influential in ligand and substrate binding, thereby identifying the protease subsite pocket that should be targeted in drug design.
Collapse
Affiliation(s)
- Lucky Marufu
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa
| | - Theresa H T Coetzer
- Biochemistry, School of Life Sciences, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville, 3209, South Africa.
| |
Collapse
|
15
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
16
|
Duncan SM, Nagar R, Damerow M, Yashunsky DV, Buzzi B, Nikolaev AV, Ferguson MAJ. A Trypanosoma brucei β3 glycosyltransferase superfamily gene encodes a β1-6 GlcNAc-transferase mediating N-glycan and GPI anchor modification. J Biol Chem 2021; 297:101153. [PMID: 34478712 PMCID: PMC8477195 DOI: 10.1016/j.jbc.2021.101153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 11/18/2022] Open
Abstract
The parasite Trypanosoma brucei exists in both a bloodstream form (BSF) and a procyclic form (PCF), which exhibit large carbohydrate extensions on the N-linked glycans and glycosylphosphatidylinositol (GPI) anchors, respectively. The parasite's glycoconjugate repertoire suggests at least 38 glycosyltransferase (GT) activities, 16 of which are currently uncharacterized. Here, we probe the function(s) of the uncharacterized GT67 glycosyltransferase family and a β3 glycosyltransferase (β3GT) superfamily gene, TbGT10. A BSF-null mutant, created by applying the diCre/loxP method in T. brucei for the first time, showed a fitness cost but was viable in vitro and in vivo and could differentiate into the PCF, demonstrating nonessentiality of TbGT10. The absence of TbGT10 impaired the elaboration of N-glycans and GPI anchor side chains in BSF and PCF parasites, respectively. Glycosylation defects included reduced BSF glycoprotein binding to the lectin ricin and monoclonal antibodies mAb139 and mAbCB1. The latter bind a carbohydrate epitope present on lysosomal glycoprotein p67 that we show here consists of (-6Galβ1-4GlcNAcβ1-)≥4 poly-N-acetyllactosamine repeats. Methylation linkage analysis of Pronase-digested glycopeptides isolated from BSF wild-type and TbGT10 null parasites showed a reduction in 6-O-substituted- and 3,6-di-O-substituted-Gal residues. These data define TbGT10 as a UDP-GlcNAc:βGal β1-6 GlcNAc-transferase. The dual role of TbGT10 in BSF N-glycan and PCF GPI-glycan elaboration is notable, and the β1-6 specificity of a β3GT superfamily gene product is unprecedented. The similar activities of trypanosome TbGT10 and higher-eukaryote I-branching enzyme (EC 2.4.1.150), which belong to glycosyltransferase families GT67 and GT14, respectively, in elaborating N-linked glycans, are a novel example of convergent evolution.
Collapse
Affiliation(s)
- Samuel M Duncan
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Manuela Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Dmitry V Yashunsky
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Benedetta Buzzi
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Andrei V Nikolaev
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A J Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
| |
Collapse
|
17
|
Link F, Borges AR, Jones NG, Engstler M. To the Surface and Back: Exo- and Endocytic Pathways in Trypanosoma brucei. Front Cell Dev Biol 2021; 9:720521. [PMID: 34422837 PMCID: PMC8377397 DOI: 10.3389/fcell.2021.720521] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/06/2021] [Indexed: 01/10/2023] Open
Abstract
Trypanosoma brucei is one of only a few unicellular pathogens that thrives extracellularly in the vertebrate host. Consequently, the cell surface plays a critical role in both immune recognition and immune evasion. The variant surface glycoprotein (VSG) coats the entire surface of the parasite and acts as a flexible shield to protect invariant proteins against immune recognition. Antigenic variation of the VSG coat is the major virulence mechanism of trypanosomes. In addition, incessant motility of the parasite contributes to its immune evasion, as the resulting fluid flow on the cell surface drags immunocomplexes toward the flagellar pocket, where they are internalized. The flagellar pocket is the sole site of endo- and exocytosis in this organism. After internalization, VSG is rapidly recycled back to the surface, whereas host antibodies are thought to be transported to the lysosome for degradation. For this essential step to work, effective machineries for both sorting and recycling of VSGs must have evolved in trypanosomes. Our understanding of the mechanisms behind VSG recycling and VSG secretion, is by far not complete. This review provides an overview of the trypanosome secretory and endosomal pathways. Longstanding questions are pinpointed that, with the advent of novel technologies, might be answered in the near future.
Collapse
Affiliation(s)
- Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
18
|
Bandini G, Damerow S, Sempaio Guther ML, Guo H, Mehlert A, Paredes Franco JC, Beverley S, Ferguson MAJ. An essential, kinetoplastid-specific GDP-Fuc: β-D-Gal α-1,2-fucosyltransferase is located in the mitochondrion of Trypanosoma brucei. eLife 2021; 10:e70272. [PMID: 34410224 PMCID: PMC8439653 DOI: 10.7554/elife.70272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fucose is a common component of eukaryotic cell-surface glycoconjugates, generally added by Golgi-resident fucosyltransferases. Whereas fucosylated glycoconjugates are rare in kinetoplastids, the biosynthesis of the nucleotide sugar GDP-Fuc has been shown to be essential in Trypanosoma brucei. Here we show that the single identifiable T. brucei fucosyltransferase (TbFUT1) is a GDP-Fuc: β-D-galactose α-1,2-fucosyltransferase with an apparent preference for a Galβ1,3GlcNAcβ1-O-R acceptor motif. Conditional null mutants of TbFUT1 demonstrated that it is essential for both the mammalian-infective bloodstream form and the insect vector-dwelling procyclic form. Unexpectedly, TbFUT1 was localized in the mitochondrion of T. brucei and found to be required for mitochondrial function in bloodstream form trypanosomes. Finally, the TbFUT1 gene was able to complement a Leishmania major mutant lacking the homologous fucosyltransferase gene (Guo et al., 2021). Together these results suggest that kinetoplastids possess an unusual, conserved and essential mitochondrial fucosyltransferase activity that may have therapeutic potential across trypanosomatids.
Collapse
Affiliation(s)
- Giulia Bandini
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Sebastian Damerow
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Maria Lucia Sempaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hongjie Guo
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Angela Mehlert
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jose Carlos Paredes Franco
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Stephen Beverley
- Department of Molecular Microbiology, Washington University School of MedicineSt. LouisUnited States
| | - Michael AJ Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
19
|
Magez S, Li Z, Nguyen HTT, Pinto Torres JE, Van Wielendaele P, Radwanska M, Began J, Zoll S, Sterckx YGJ. The History of Anti-Trypanosome Vaccine Development Shows That Highly Immunogenic and Exposed Pathogen-Derived Antigens Are Not Necessarily Good Target Candidates: Enolase and ISG75 as Examples. Pathogens 2021; 10:pathogens10081050. [PMID: 34451514 PMCID: PMC8400590 DOI: 10.3390/pathogens10081050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Salivarian trypanosomes comprise a group of extracellular anthroponotic and zoonotic parasites. The only sustainable method for global control of these infection is through vaccination of livestock animals. Despite multiple reports describing promising laboratory results, no single field-applicable solution has been successful so far. Conventionally, vaccine research focusses mostly on exposed immunogenic antigens, or the structural molecular knowledge of surface exposed invariant immunogens. Unfortunately, extracellular parasites (or parasites with extracellular life stages) have devised efficient defense systems against host antibody attacks, so they can deal with the mammalian humoral immune response. In the case of trypanosomes, it appears that these mechanisms have been perfected, leading to vaccine failure in natural hosts. Here, we provide two examples of potential vaccine candidates that, despite being immunogenic and accessible to the immune system, failed to induce a functionally protective memory response. First, trypanosomal enolase was tested as a vaccine candidate, as it was recently characterized as a highly conserved enzyme that is readily recognized during infection by the host antibody response. Secondly, we re-addressed a vaccine approach towards the Invariant Surface Glycoprotein ISG75, and showed that despite being highly immunogenic, trypanosomes can avoid anti-ISG75 mediated parasitemia control.
Collapse
Affiliation(s)
- Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
- Correspondence:
| | - Zeng Li
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| | - Hang Thi Thu Nguyen
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
- Department of Biochemistry and Microbiology, Ghent University, Ledeganckstraat 35, 9000 Ghent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
| | - Joar Esteban Pinto Torres
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; (Z.L.); (H.T.T.N.); (J.E.P.T.)
| | - Pieter Van Wielendaele
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Songdomunhwa-Ro 119-5, Yeonsu-Gu, Incheon 406-840, Korea;
- Department of Biomedical Molecular Biology, Ghent University, Technologiepark Zwijnaarde 71, 9000 Ghent, Belgium
| | - Jakub Began
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Namesti 2, 16610 Prague 6, Czech Republic; (J.B.); (S.Z.)
| | - Sebastian Zoll
- Laboratory of Structural Parasitology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo Namesti 2, 16610 Prague 6, Czech Republic; (J.B.); (S.Z.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Centre of Excellence, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium; (P.V.W.); (Y.G.-J.S.)
| |
Collapse
|
20
|
Silva Pereira S, Jackson AP, Figueiredo LM. Evolution of the variant surface glycoprotein family in African trypanosomes. Trends Parasitol 2021; 38:23-36. [PMID: 34376326 DOI: 10.1016/j.pt.2021.07.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023]
Abstract
An intriguing and remarkable feature of African trypanosomes is their antigenic variation system, mediated by the variant surface glycoprotein (VSG) family and fundamental to both immune evasion and disease epidemiology within host populations. Recent studies have revealed that the VSG repertoire has a complex evolutionary history. Sequence diversity, genomic organization, and expression patterns are species-specific, which may explain other variations in parasite virulence and disease pathology. Evidence also shows that we may be underestimating the extent to what VSGs are repurposed beyond their roles as variant antigens, establishing a need to examine VSG functionality more deeply. Here, we review sequence variation within the VSG gene family, and highlight the many opportunities to explore their likely diverse contributions to parasite survival.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Andrew P Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Luísa M Figueiredo
- Instituto de Medicina Molecular - João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
21
|
Umaer K, Aresta-Branco F, Chandra M, van Straaten M, Zeelen J, Lapouge K, Waxman B, Stebbins CE, Bangs JD. Dynamic, variable oligomerization and the trafficking of variant surface glycoproteins of Trypanosoma brucei. Traffic 2021; 22:274-283. [PMID: 34101314 DOI: 10.1111/tra.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/14/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
African trypanosomes cause disease in humans and livestock, avoiding host immunity by changing the expression of variant surface glycoproteins (VSGs); the major glycosylphosphatidylinositol (GPI) anchored antigens coating the surface of the bloodstream stage. Proper trafficking of VSGs is therefore critical to pathogen survival. The valence model argues that GPI anchors regulate progression and fate in the secretory pathway and that, specifically, a valence of two (VSGs are dimers) is critical for stable cell surface association. However, recent reports that the MITat1.3 (M1.3) VSG N-terminal domain (NTD) behaves as a monomer in solution and in a crystal structure challenge this model. We now show that the behavior of intact M1.3 VSG in standard in vivo trafficking assays is consistent with an oligomer. Nevertheless, Blue Native Gel electrophoresis and size exclusion chromatography-multiangle light scattering chromatography of purified full length M1.3 VSG indicates a monomer in vitro. However, studies with additional VSGs show that multiple oligomeric states are possible, and that for some VSGs oligomerization is concentration dependent. These data argue that individual VSG monomers possess different propensities to self-oligomerize, but that when constrained at high density to the cell surface, oligomeric species predominate. These results resolve the apparent conflict between the valence hypothesis and the M1.3 NTD VSG crystal structure.
Collapse
Affiliation(s)
- Khan Umaer
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA.,Eurofins, Spring House, Pennsylvania, USA
| | - Francisco Aresta-Branco
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.,Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany
| | - Monica Chandra
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Monique van Straaten
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Johan Zeelen
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Brandon Waxman
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, USA
| |
Collapse
|
22
|
Palanikumar L, Karpauskaite L, Al-Sayegh M, Chehade I, Alam M, Hassan S, Maity D, Ali L, Kalmouni M, Hunashal Y, Ahmed J, Houhou T, Karapetyan S, Falls Z, Samudrala R, Pasricha R, Esposito G, Afzal AJ, Hamilton AD, Kumar S, Magzoub M. Protein mimetic amyloid inhibitor potently abrogates cancer-associated mutant p53 aggregation and restores tumor suppressor function. Nat Commun 2021; 12:3962. [PMID: 34172723 PMCID: PMC8233319 DOI: 10.1038/s41467-021-23985-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Missense mutations in p53 are severely deleterious and occur in over 50% of all human cancers. The majority of these mutations are located in the inherently unstable DNA-binding domain (DBD), many of which destabilize the domain further and expose its aggregation-prone hydrophobic core, prompting self-assembly of mutant p53 into inactive cytosolic amyloid-like aggregates. Screening an oligopyridylamide library, previously shown to inhibit amyloid formation associated with Alzheimer's disease and type II diabetes, identified a tripyridylamide, ADH-6, that abrogates self-assembly of the aggregation-nucleating subdomain of mutant p53 DBD. Moreover, ADH-6 targets and dissociates mutant p53 aggregates in human cancer cells, which restores p53's transcriptional activity, leading to cell cycle arrest and apoptosis. Notably, ADH-6 treatment effectively shrinks xenografts harboring mutant p53, while exhibiting no toxicity to healthy tissue, thereby substantially prolonging survival. This study demonstrates the successful application of a bona fide small-molecule amyloid inhibitor as a potent anticancer agent.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Laura Karpauskaite
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mohamed Al-Sayegh
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Ibrahim Chehade
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Maheen Alam
- Department of Biology, SBA School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Sarah Hassan
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Debabrata Maity
- Department of Chemistry, New York University, New York, NY, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Yamanappa Hunashal
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,DAME, Università di Udine, Udine, Italy
| | - Jemil Ahmed
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA
| | - Tatiana Houhou
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Shake Karapetyan
- Physics Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Zackary Falls
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Ram Samudrala
- Department of Biomedical Informatics, School of Medicine and Biomedical Sciences, State University of New York (SUNY), Buffalo, NY, USA
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | - Gennaro Esposito
- Chemistry Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.,INBB, Rome, Italy
| | - Ahmed J Afzal
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates
| | | | - Sunil Kumar
- Department of Chemistry and Biochemistry and Knoebel Institute for Healthy Aging, The University of Denver, Denver, CO, USA.
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Saadiyat Island Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Pays E, Nolan DP. Genetic and immunological basis of human African trypanosomiasis. Curr Opin Immunol 2021; 72:13-20. [PMID: 33721725 PMCID: PMC8589022 DOI: 10.1016/j.coi.2021.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022]
Abstract
Human African trypanosomiasis, or sleeping sickness, results from infection by two subspecies of the protozoan flagellate parasite Trypanosoma brucei, termed Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, prevalent in western and eastern Africa respectively. These subspecies escape the trypanolytic potential of human serum, which efficiently acts against the prototype species Trypanosoma brucei brucei, responsible for the Nagana disease in cattle. We review the various strategies and components used by trypanosomes to counteract the immune defences of their host, highlighting the adaptive genomic evolution that occurred in both parasite and host to take the lead in this battle. The main parasite surface antigen, named Variant Surface Glycoprotein or VSG, appears to play a key role in different processes involved in the dialogue with the host.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
| | - Derek P Nolan
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
24
|
Structure of trypanosome coat protein VSGsur and function in suramin resistance. Nat Microbiol 2021; 6:392-400. [PMID: 33462435 PMCID: PMC7116837 DOI: 10.1038/s41564-020-00844-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/30/2020] [Indexed: 01/28/2023]
Abstract
Suramin has been a primary early-stage treatment for African trypanosomiasis for nearly 100 yr. Recent studies revealed that trypanosome strains that express the variant surface glycoprotein (VSG) VSGsur possess heightened resistance to suramin. Here, we show that VSGsur binds tightly to suramin but other VSGs do not. By solving high-resolution crystal structures of VSGsur and VSG13, we also demonstrate that these VSGs define a structurally divergent subgroup of the coat proteins. The co-crystal structure of VSGsur with suramin reveals that the chemically symmetric drug binds within a large cavity in the VSG homodimer asymmetrically, primarily through contacts of its central benzene rings. Structure-based, loss-of-contact mutations in VSGsur significantly decrease the affinity to suramin and lead to a loss of the resistance phenotype. Altogether, these data show that the resistance phenotype is dependent on the binding of suramin to VSGsur, establishing that the VSG proteins can possess functionality beyond their role in antigenic variation.
Collapse
|
25
|
Sampaio Guther ML, Prescott AR, Kuettel S, Tinti M, Ferguson MAJ. Nucleotide sugar biosynthesis occurs in the glycosomes of procyclic and bloodstream form Trypanosoma brucei. PLoS Negl Trop Dis 2021; 15:e0009132. [PMID: 33592041 PMCID: PMC7909634 DOI: 10.1371/journal.pntd.0009132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/26/2021] [Accepted: 01/12/2021] [Indexed: 11/19/2022] Open
Abstract
In Trypanosoma brucei, there are fourteen enzymatic biotransformations that collectively convert glucose into five essential nucleotide sugars: UDP-Glc, UDP-Gal, UDP-GlcNAc, GDP-Man and GDP-Fuc. These biotransformations are catalyzed by thirteen discrete enzymes, five of which possess putative peroxisome targeting sequences. Published experimental analyses using immunofluorescence microscopy and/or digitonin latency and/or subcellular fractionation and/or organelle proteomics have localized eight and six of these enzymes to the glycosomes of bloodstream form and procyclic form T. brucei, respectively. Here we increase these glycosome localizations to eleven in both lifecycle stages while noting that one, phospho-N-acetylglucosamine mutase, also localizes to the cytoplasm. In the course of these studies, the heterogeneity of glycosome contents was also noted. These data suggest that, unlike other eukaryotes, all of nucleotide sugar biosynthesis in T. brucei is compartmentalized to the glycosomes in both lifecycle stages. The implications are discussed.
Collapse
Affiliation(s)
- Maria Lucia Sampaio Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alan R. Prescott
- Dundee Imaging Facility, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sabine Kuettel
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
West CM, Malzl D, Hykollari A, Wilson IBH. Glycomics, Glycoproteomics, and Glycogenomics: An Inter-Taxa Evolutionary Perspective. Mol Cell Proteomics 2021; 20:100024. [PMID: 32994314 PMCID: PMC8724618 DOI: 10.1074/mcp.r120.002263] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Glycosylation is a highly diverse set of co- and posttranslational modifications of proteins. For mammalian glycoproteins, glycosylation is often site-, tissue-, and species-specific and diversified by microheterogeneity. Multitudinous biochemical, cellular, physiological, and organismic effects of their glycans have been revealed, either intrinsic to the carrier proteins or mediated by endogenous reader proteins with carbohydrate recognition domains. Furthermore, glycans frequently form the first line of access by or defense from foreign invaders, and new roles for nucleocytoplasmic glycosylation are blossoming. We now know enough to conclude that the same general principles apply in invertebrate animals and unicellular eukaryotes-different branches of which spawned the plants or fungi and animals. The two major driving forces for exploring the glycomes of invertebrates and protists are (i) to understand the biochemical basis of glycan-driven biology in these organisms, especially of pathogens, and (ii) to uncover the evolutionary relationships between glycans, their biosynthetic enzyme genes, and biological functions for new glycobiological insights. With an emphasis on emerging areas of protist glycobiology, here we offer an overview of glycan diversity and evolution, to promote future access to this treasure trove of glycobiological processes.
Collapse
Affiliation(s)
- Christopher M West
- Department of Biochemistry & Molecular Biology, Center for Tropical and Emerging Global Diseases, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria; VetCore Facility for Research/Proteomics Unit, Veterinärmedizinische Universität, Vienna, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| |
Collapse
|
27
|
Bagdonas H, Ungar D, Agirre J. Leveraging glycomics data in glycoprotein 3D structure validation with Privateer. Beilstein J Org Chem 2020; 16:2523-2533. [PMID: 33093930 PMCID: PMC7554661 DOI: 10.3762/bjoc.16.204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/06/2020] [Indexed: 12/20/2022] Open
Abstract
The heterogeneity, mobility and complexity of glycans in glycoproteins have been, and currently remain, significant challenges in structural biology. These aspects present unique problems to the two most prolific techniques: X-ray crystallography and cryo-electron microscopy. At the same time, advances in mass spectrometry have made it possible to get deeper insights on precisely the information that is most difficult to recover by structure solution methods: the full-length glycan composition, including linkage details for the glycosidic bonds. The developments have given rise to glycomics. Thankfully, several large scale glycomics initiatives have stored results in publicly available databases, some of which can be accessed through API interfaces. In the present work, we will describe how the Privateer carbohydrate structure validation software has been extended to harness results from glycomics projects, and its use to greatly improve the validation of 3D glycoprotein structures.
Collapse
Affiliation(s)
- Haroldas Bagdonas
- York Structural Biology Laboratory, Department of Chemistry, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Daniel Ungar
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
28
|
Inflammation following trypanosome infection and persistence in the skin. Curr Opin Immunol 2020; 66:65-73. [PMID: 32446136 DOI: 10.1016/j.coi.2020.04.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Human African trypanosomes rely for their transmission on tsetse flies (Glossina sp.) that inoculate parasites into the skin during blood feeding. The absence of a protective vaccine, limited knowledge about the infection immunology, and the existence of asymptomatic carriers sustaining transmission are major outstanding challenges towards elimination. All these relate to the skin where (i) parasites persist and transmit to tsetse flies and (ii) a successful vaccination strategy should ideally be effective. Host immune processes and parasite strategies that underlie early infection and skin tropism are essential aspects to comprehend the transmission-success of trypanosomes and the failure in vaccine development. Recent insights into the early infection establishment may pave the way to novel strategies aimed at blocking transmission.
Collapse
|
29
|
Inducible Germline IgMs Bridge Trypanosome Lytic Factor Assembly and Parasite Recognition. Cell Host Microbe 2020; 28:79-88.e4. [PMID: 32416060 DOI: 10.1016/j.chom.2020.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/20/2020] [Accepted: 04/14/2020] [Indexed: 11/23/2022]
Abstract
Trypanosomiasis is a devastating neglected tropical disease affecting livestock and humans. Humans are susceptible to two Trypanosoma brucei subspecies but protected from other trypanosomes by circulating high-density lipoprotein (HDL) complexes called trypanosome lytic factors (TLFs) 1 and 2. TLFs contain apolipoprotein L-1 contributing to lysis and haptoglobin-related protein (HPR), which can function as a ligand for a parasite receptor. TLF2 also uniquely contains non-covalently associated immunoglobin M (IgM) antibodies, the role and origin of which remain unclear. Here, we show that these TLF2-associated IgMs interact with both HPR and alternate trypanosome surface proteins, including variant surface glycoprotein, likely facilitating complex biogenesis and TLF uptake into parasites. TLF2-IgMs are germline antibodies that, while present at basal concentrations in healthy individuals, are elicited by trypanosome infection in both murine models and human sleeping sickness patients. These data suggest that poly- and self-reactive germline antibodies such as TLF2-associated IgMs play a role in antimicrobial immunity.
Collapse
|
30
|
Sima N, McLaughlin EJ, Hutchinson S, Glover L. Escaping the immune system by DNA repair and recombination in African trypanosomes. Open Biol 2019; 9:190182. [PMID: 31718509 PMCID: PMC6893398 DOI: 10.1098/rsob.190182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes escape the mammalian immune response by antigenic variation-the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a 'new' VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.
Collapse
Affiliation(s)
- Núria Sima
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Emilia Jane McLaughlin
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology and INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
31
|
Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: prospects for therapeutic intervention. Parasitology 2019; 146:1743-1754. [PMID: 31603063 PMCID: PMC6939169 DOI: 10.1017/s0031182019001355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinetoplastid parasites are responsible for serious diseases in humans and livestock such as Chagas disease and sleeping sickness (caused by Trypanosoma cruzi and Trypanosoma brucei, respectively), and the different forms of cutaneous, mucocutaneous and visceral leishmaniasis (produced by Leishmania spp). The limited number of antiparasitic drugs available together with the emergence of resistance underscores the need for new therapeutic agents with novel mechanisms of action. The use of agents binding to surface glycans has been recently suggested as a new approach to antitrypanosomal design and a series of peptidic and non-peptidic carbohydrate-binding agents have been identified as antiparasitics showing efficacy in animal models of sleeping sickness. Here we provide an overview of the nature of surface glycans in three kinetoplastid parasites, T. cruzi, T. brucei and Leishmania. Their role in virulence and host cell invasion is highlighted with the aim of identifying specific glycan-lectin interactions and carbohydrate functions that may be the target of novel carbohydrate-binding agents with therapeutic applications.
Collapse
|
32
|
|
33
|
Aresta-Branco F, Erben E, Papavasiliou FN, Stebbins CE. Mechanistic Similarities between Antigenic Variation and Antibody Diversification during Trypanosoma brucei Infection. Trends Parasitol 2019; 35:302-315. [PMID: 30826207 DOI: 10.1016/j.pt.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Trypanosoma brucei, which causes African trypanosomiasis, avoids immunity by periodically switching its surface composition. The parasite is coated by 10 million identical, monoallelically expressed variant surface glycoprotein (VSG) molecules. Multiple distinct parasites (with respect to their VSG coat) coexist simultaneously during each wave of parasitemia. This substantial antigenic load is countered by B cells whose antigen receptors (antibodies or immunoglobulins) are also monoallelically expressed, and that diversify dynamically to counter each variant antigen. Here we examine parallels between the processes that generate VSGs and antibodies. We also discuss current insights into VSG mRNA regulation that may inform the emerging field of Ig mRNA biology. We conclude by extending the parallels between VSG and Ig to the protein level.
Collapse
Affiliation(s)
- Francisco Aresta-Branco
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany; Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany; These authors contributed equally to this work
| | - Esteban Erben
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany; These authors contributed equally to this work
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
34
|
Khurana S, Coffey MJ, John A, Uboldi AD, Huynh MH, Stewart RJ, Carruthers VB, Tonkin CJ, Goddard-Borger ED, Scott NE. Protein O-fucosyltransferase 2-mediated O-glycosylation of the adhesin MIC2 is dispensable for Toxoplasma gondii tachyzoite infection. J Biol Chem 2018; 294:1541-1553. [PMID: 30514763 DOI: 10.1074/jbc.ra118.005357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/27/2018] [Indexed: 12/12/2022] Open
Abstract
Toxoplasma gondii is a ubiquitous, obligate intracellular eukaryotic parasite that causes congenital birth defects, disease in immunocompromised individuals, and blindness. Protein glycosylation plays an important role in the infectivity and evasion of immune responses of many eukaryotic parasites and is also of great relevance to vaccine design. Here we demonstrate that micronemal protein 2 (MIC2), a motility-associated adhesin of T. gondii, has highly glycosylated thrombospondin repeat (TSR) domains. Using affinity-purified MIC2 and MS/MS analysis along with enzymatic digestion assays, we observed that at least seven C-linked and three O-linked glycosylation sites exist within MIC2, with >95% occupancy at these O-glycosylation sites. We found that addition of O-glycans to MIC2 is mediated by a protein O-fucosyltransferase 2 homolog (TgPOFUT2) encoded by the TGGT1_273550 gene. Even though POFUT2 homologs are important for stabilizing motility-associated adhesins and for host infection in other apicomplexan parasites, loss of TgPOFUT2 in T. gondii had only a modest impact on MIC2 levels and the wider parasite proteome. Consistent with this, both plaque formation and tachyzoite invasion were broadly similar in the presence or absence of TgPOFUT2. These findings indicate that TgPOFUT2 O-glycosylates MIC2 and that this glycan, in contrast to previous findings in another study, is dispensable in T. gondii tachyzoites and for T. gondii infectivity.
Collapse
Affiliation(s)
- Sachin Khurana
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Coffey
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan John
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro D Uboldi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - My-Hang Huynh
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Rebecca J Stewart
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Christopher J Tonkin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Ethan D Goddard-Borger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3010, Australia.
| |
Collapse
|
35
|
Bangs JD. Evolution of Antigenic Variation in African Trypanosomes: Variant Surface Glycoprotein Expression, Structure, and Function. Bioessays 2018; 40:e1800181. [PMID: 30370931 PMCID: PMC6441954 DOI: 10.1002/bies.201800181] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2018] [Indexed: 12/11/2022]
Abstract
The process of antigenic variation in parasitic African trypanosomes is a remarkable mechanism for outwitting the immune system of the mammalian host, but it requires a delicate balancing act for the monoallelic expression, folding and transport of a single variant surface glycoprotein (VSG). Only one of hundreds of VSG genes is expressed at time, and this from just one of ≈15 dedicated expression sites. By switching expression of VSGs the parasite presents a continuously shifting antigenic facade leading to prolonged chronic infections lasting months to years. The basics of VSG structure and switching have been known for several decades, but recent studies have brought higher resolution to many aspects this process. New VSG structures, in silico modeling of infections, studies of VSG codon usage, and experimental ablation of VSG expression provide insights that inform how this remarkable system may have evolved.
Collapse
Affiliation(s)
- James D. Bangs
- Department of Microbiology & Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 955 Main Street, Buffalo NY 14203,
| |
Collapse
|
36
|
Müller LSM, Cosentino RO, Förstner KU, Guizetti J, Wedel C, Kaplan N, Janzen CJ, Arampatzi P, Vogel J, Steinbiss S, Otto TD, Saliba AE, Sebra RP, Siegel TN. Genome organization and DNA accessibility control antigenic variation in trypanosomes. Nature 2018; 563:121-125. [PMID: 30333624 PMCID: PMC6784898 DOI: 10.1038/s41586-018-0619-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/03/2018] [Indexed: 01/15/2023]
Abstract
Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.
Collapse
Affiliation(s)
- Laura S M Müller
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Raúl O Cosentino
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Konrad U Förstner
- ZB MED - Information Centre for Life Sciences, Cologne, Germany
- TH Köln, Faculty of Information Science and Communication Studies, Cologne, Germany
- Core Unit Systems Medicine, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Julien Guizetti
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Wedel
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Panagiota Arampatzi
- Core Unit Systems Medicine, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research, Würzburg, Germany
- RNA Biology Group, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | - Thomas D Otto
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Centre of Immunobiology, Institute of Infection, Immunity & Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Robert P Sebra
- Icahn Institute and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Nicolai Siegel
- Department of Veterinary Sciences, Experimental Parasitology, Ludwig-Maximilians-Universität München, Munich, Germany.
- Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
- Research Center for Infectious Diseases, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
37
|
Quintana JF, Pino RCD, Yamada K, Zhang N. Adaptation and Therapeutic Exploitation of the Plasma Membrane of African Trypanosomes. Genes (Basel) 2018; 9:E368. [PMID: 30037058 PMCID: PMC6071061 DOI: 10.3390/genes9070368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes are highly divergent from their metazoan hosts, and as part of adaptation to a parasitic life style have developed a unique endomembrane system. The key virulence mechanism of many pathogens is successful immune evasion, to enable survival within a host, a feature that requires both genetic events and membrane transport mechanisms in African trypanosomes. Intracellular trafficking not only plays a role in immune evasion, but also in homeostasis of intracellular and extracellular compartments and interactions with the environment. Significantly, historical and recent work has unraveled some of the connections between these processes and highlighted how immune evasion mechanisms that are associated with adaptations to membrane trafficking may have, paradoxically, provided specific sensitivity to drugs. Here, we explore these advances in understanding the membrane composition of the trypanosome plasma membrane and organelles and provide a perspective for how transport could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juan F Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | - Kayo Yamada
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|