1
|
Yan W, Gu L, Yue X, Zhong H, Wang D. Vertical distribution of intracellular protoporphyrin IX in coastal sediment cores: Implications for sedimentology and microbial community composition. J Environ Sci (China) 2025; 156:712-724. [PMID: 40412969 DOI: 10.1016/j.jes.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/03/2024] [Accepted: 11/08/2024] [Indexed: 05/27/2025]
Abstract
Protoporphyrin IX (PPIX), a basic porphyrin system found in nature, all "porphyrin-type" tetrapyrroles with a biological function are biosynthetically derived thereof. PPIX is a metalloprosthetic group of numerous proteins involved in diverse metabolic and respiratory processes across all domains of life, and is thus considered essential for respiring organisms. Determining the biotic and abiotic factors that influence marine microbial growth and community structure is critical for understanding global biogeochemical cycles. Here, we present vertical profiles of intracellular PPIX and four derivative products (Chlorophyll-a/b and Pheophytin-a/b) from two coastal sediment cores, alongside ancillary geochemical and 16S rRNA microbial community data. Our findings indicated that PPIX is present in the natural sediment environment and displays a decreasing trend with depth, revealing a significant positive correlation with both organic matter and microbial abundance. Co-occurrence networks revealed that the environmental distribution of PPIX was positively correlated with the microbial porphyrin producer (high genetic completeness), but negatively correlated with auxotrophs (absence or low genetic completeness). It emphasized the critical role of PPIX as a biological molecule involved in key physiological processes. These results suggest that PPIX is a prominent component of the shared extracellular metabolite pool, especially in anoxic marine sediments where it exists at physiologically relevant concentrations for microbial metabolism. This study highlighted the significance of PPIX in microbial ecology and its potential impact on biogeochemical cycles in marine sedimentary environments.
Collapse
Affiliation(s)
- Wanli Yan
- Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Lide Gu
- Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| | - Xinli Yue
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Haowen Zhong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
2
|
Iriarte J, Lundin D, Martinez-Varela A, Gónzalez JM, Sánchez P, Dachs J, Vila-Costa M. Entanglement of Hydrocarbon-Degrading Bacteria and Polycyclic Aromatic Hydrocarbons in the Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126512. [PMID: 40412639 DOI: 10.1016/j.envpol.2025.126512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 05/07/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Knowledge of Earth's microbiomes capacity to degrade aromatic compounds is limited by the lack of precise tools for accurately targeting degrading genes and their associated taxa. Additionally, these estimates are hardly compared to in situ background concentrations of polycyclic aromatic hydrocarbons (PAHs), particularly in oceanic waters. This knowledge is important for assessing the persistence of the widespread and abundant PAHs in the environment, and their interactions with microbes. Here, we present a new tool to identify aromatic ring-hydroxylating dioxygenase α-subunit (arhdA) gene sequences by combining profile-based search with phylogenetic placement in a reference phylogeny. We identified arhdA-harboring taxa in both the Genome Taxonomy Database and the Malaspina Vertical Profiles Gene Database, a gene catalog derived from metagenomes collected during the Malaspina expedition. We found that multiple ubiquitous taxa in tropical and temperate oceans harbor arhdA. The comparison of arhdA gene abundances in seawater metagenomes with the field PAH concentrations showed that higher abundances of arhdA gene copies per cell were negatively correlated with 2-4 ring PAHs, consistent with the known degradation of lighter PAHs. Gene abundances were significantly higher in the particle-associated fraction than in the free-living fraction, suggesting particulate matter as a relevant reservoir of PAH degraders. Finally, we show that PAHs modulate, with other environmental variables, the structure of oceanic microbial communities.
Collapse
Affiliation(s)
- Jon Iriarte
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), 08034, Barcelona, Catalunya, Spain; Doctoral program in Analytical Chemistry and the Environment, Department of Chemical Engineering and Analytical Chemistry, Faculty of Chemistry, Universitat de Barcelona, 08028, Barcelona, Catalunya, Spain
| | - Daniel Lundin
- Centre for Ecology and Evolution in Microbial model Systems - EEMiS, Linnaeus University, SE-39182, Kalmar, Sweden; Dept. of Biochemistry and Biophysics, Stockholm University, SE-10691, Stockholm, Sweden
| | - Alicia Martinez-Varela
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), 08034, Barcelona, Catalunya, Spain
| | - José M Gónzalez
- Department of Microbiology, University of La Laguna, 38200, La Laguna, Spain
| | - Pablo Sánchez
- Institute of Marine Sciences, Spanish National Research Council (ICM-CSIC), 08003, Barcelona, Catalunya, Spain
| | - Jordi Dachs
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), 08034, Barcelona, Catalunya, Spain
| | - Maria Vila-Costa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (IDAEA-CSIC), 08034, Barcelona, Catalunya, Spain.
| |
Collapse
|
3
|
Cui J, Fassl M, Vasanthakumaran V, Dierig MM, Hölzl G, Karmainski T, Tiso T, Kubicki S, Thies S, Blank LM, Jaeger KE, Dörmann P. Biosurfactant biosynthesis by Alcanivorax borkumensis and its role in oil biodegradation. Nat Chem Biol 2025:10.1038/s41589-025-01908-1. [PMID: 40346253 DOI: 10.1038/s41589-025-01908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
The marine bacterium Alcanivorax borkumensis degrades alkanes derived from phytoplankton, natural hydrocarbon seeps and oil spills. We study the biosynthesis and function of a glycine-glucolipid biosurfactant from A. borkumensis for alkane degradation and identify a gene cluster encoding a nonribosomal peptide synthetase, glycosyltransferase and phosphopantetheinyl transferase. Analyses of A. borkumensis mutants and expression studies reveal that the nonribosomal peptide synthetase catalyzes the synthesis of the aglycone (tetra-D-3-hydroxydecanoyl-glycine) from glycine and D-3-hydroxydecanoyl-CoA, to which a glucose moiety is added by the glycosyltransferase. Deficiency in glycine-glucolipid impairs the ability of mutant cells to attach to the oil-water interface, compromises growth on hexadecane and affects carbon storage. The glycine-glucolipid is essential for biofilm formation on oil droplets and uptake of alkanes. The high incidence of Alcanivorax at oil-polluted sites can in part be explained by the accumulation of the glycine-glucolipid on the cell surface, effectively making the cells themselves act as biosurfactants.
Collapse
Affiliation(s)
- Jiaxin Cui
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Maximilian Fassl
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Vaisnavi Vasanthakumaran
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Maya Marita Dierig
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Georg Hölzl
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Tobias Karmainski
- Institute of Applied Microbiology-iAMB, RWTH Aachen University, Aachen, Germany
| | - Till Tiso
- Institute of Applied Microbiology-iAMB, RWTH Aachen University, Aachen, Germany
| | - Sonja Kubicki
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Stephan Thies
- Institute of Bio- and Geosciences IBG 1, Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Lars M Blank
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Jülich, Germany
- Institute of Bio- and Geosciences IBG 1, Biotechnology, Forschungszentrum Jülich, Jülich, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany.
| |
Collapse
|
4
|
Fernandes CF, da Silva Iúdice TN, Bezerra NV, Pontes AN. Biodegradation of oil-derived hydrocarbons by marine actinobacteria: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125509. [PMID: 39667573 DOI: 10.1016/j.envpol.2024.125509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The intensive use of oil and its derivatives is related to a greater frequency of accidents involving the release of pollutants that cause harmful effects on ecosystems. Actinobacteria are cosmopolitan and saprophytic microorganisms of great commercial interest, but because they are predominantly found in soil, most research into the products of this phylum's metabolism has focused on this habitat. Marine actinobacteria exhibit unique metabolic characteristics in response to extreme conditions in their habitat, which distinguishes them from terrestrial actinobacteria. This systematic review aims to describe cultivable hydrocarbonoclastic marine actinobacteria, analyze their biodegradation rates, as well as discuss their respective potential for application in bioremediation techniques and their limitations. Twenty-one actinobacteria were found to be capable of degrading one or more hydrocarbons derived from petroleum. The majority of these bacteria belonged to the genera Rhodococcus, Gordonia, Pseudonocardia, Isoptericola, Microbacterium, Citricoccus, Kocuria, Brevibacterium, and Cellulosimicrobium. The highest degradation rate was obtained by the species R. ruber, which degraded 100 % of fluorene at a concentration of 100 mg/L. On the other hand, the species Streptomyces gougerotti and Micromonospora matsumotoense were able to degrade polyethylene and use the carbon derived from it to produce polylactic acid (PLA), which represents an excellent candidate for making safely degradable bioplastics, with a view to recycling and replacing conventional petroleum-based plastics. An approach that integrates physicochemical and biological methods, and optimized growth conditions can lead to greater success in decontaminating environments. Despite the number of bacteria found in the research, this number may be significantly higher. This review provides valuable information to support further studies.
Collapse
Affiliation(s)
- Caroline Ferreira Fernandes
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil.
| | - Tirça Naiara da Silva Iúdice
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil; Institute of Health Sciences, Federal University of Pará (UFPA), Av. Augusto Corrêa, Belém, Pará, Brazil
| | - Nilson Veloso Bezerra
- Laboratory of Applied Microbiology and Genetics of Microorganisms, Center for Biological and Health Sciences., University of Pará State (UEPA), Av. Perebebuí, 2623, Belém, Pará, Brazil
| | - Altem Nascimento Pontes
- Center of Natural Sciences and Technology., University of Pará State (UEPA), av. Eneas, 2626, Belém, Pará, Brazil
| |
Collapse
|
5
|
Wang W, Zhi B, Wang Y, Shao Z. Maintaining ocean ecosystem health with hydrocarbonoclastic microbes. ISME COMMUNICATIONS 2025; 5:ycae135. [PMID: 40308514 PMCID: PMC12041423 DOI: 10.1093/ismeco/ycae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/12/2024] [Accepted: 10/31/2024] [Indexed: 05/02/2025]
Abstract
Accidental spills and persisting hydrocarbon pollution caused by petroleum exploitation have deeply disrupted marine ecosystems, including those in the deep oceans and the Arctic Ocean. While physicochemical methods are available for emergency cleanup, microorganisms are ultimately responsible for mineralizing the hydrocarbons. The understanding of environmental effects on the composition and efficiency of hydrocarbon-degrading microbial communities has greatly improved current microorganism-based remediation strategies. This review summarizes recent findings on the physiology, metabolism, and ecology of marine obligate hydrocarbonoclastic microorganisms. Strategies for improved biotechnological solutions based on the use of hydrocarbon-degrading microbes are discussed for hydrocarbon remediation in marine water columns, sediments, beaches, and the Arctic.
Collapse
Affiliation(s)
- Wanpeng Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Bin Zhi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Yong Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, 184 Daxue Road, Xiamen, Fujian 361005, China
| | - Zongze Shao
- State Key Laboratory Breeding Base of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian 361005, China
- Key Laboratory of Marine Genetic Resources of Fujian Province, 184 Daxue Road, Xiamen, Fujian 361005, China
| |
Collapse
|
6
|
Cao Y, Zhang B, Chen B. Challenging plastic pollution with hydrocarbonoclastic lineages. Trends Biotechnol 2024:S0167-7799(24)00292-0. [PMID: 39510852 DOI: 10.1016/j.tibtech.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The hydrocarbonoclastic lineages that have existed for millennia are responsible for the degradation of diverse aliphatic and aromatic compounds, regulating the ocean hydrocarbon cycles. Given the metabolic similarities in breaking down plastics and hydrocarbons, a thorough understanding and leveraging of these processes can provide biotechnologically based solutions to tackle global plastic pollution.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada.
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada.
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St John's, NL A1B 3X5, Canada
| |
Collapse
|
7
|
Baruah NP, Goswami M, Sarma N, Chowdhury D, Devi A. Pioneering technologies over time to rehabilitate crude oil-contaminated ecosystems: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63576-63602. [PMID: 39516413 DOI: 10.1007/s11356-024-35442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
The unremitting pollution of our environment induced by crude oil spillage and drilling site accidents has jeopardized every living species in the biological ecosystem. Removing heavy crude oil constituents with the help of traditional and mainstream oil sorbents because of their ingrained raised viscosities is a strenuous venture. Lighter distillates of crude oil, like condensate, do not aggregate with tremulous shine on the aquatic surface nor settle at the bottom sediment of the water bodies like the heavier components do with time. Fabricating optimally designed materials capable of capturing, degrading, or removing toxic chemical constituents of this fossil fuel is critical in this modern era. This review comprehensively discusses the evolution of scientific technologies developed to separate these constituents from land and aquatic bodies. We provide an overview of the latest physical and chemical strategies and prevalent biological remediation schemes for removing these pollutants from soils and water for environmental protection. The article highlights the urgency of preventing oil spill accidents, whose anticipation is challenging to harness. A spectrum of advanced functional methodologies is also discussed to adequately treat discharged hydrocarbon contaminants, establish public safety, and pave the path to enhancing the circular economy metrics linked with oil industries.
Collapse
Affiliation(s)
- Netra Prova Baruah
- Environmental Chemistry Laboratory, Resource Management, and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha Goswami
- Environmental Chemistry Laboratory, Resource Management, and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, 781035, Assam, India
| | - Nimisha Sarma
- Environmental Chemistry Laboratory, Resource Management, and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, 781035, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Resource Management, and Environment Section, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Guwahati, 781035, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Adebayo O, Bhatnagar S, Webb J, Campbell C, Fowler M, MacAdam NM, Macdonald A, Li C, Hubert CRJ. Hydrocarbon-degrading microbial populations in permanently cold deep-sea sediments in the NW Atlantic. MARINE POLLUTION BULLETIN 2024; 208:117052. [PMID: 39357372 DOI: 10.1016/j.marpolbul.2024.117052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Permanently cold deep-sea sediments (2500-3500 m water depth) with and without indications of thermogenic hydrocarbon seepage were exposed to naphtha to examine the presence and potential of cold-adapted aerobic hydrocarbon-degrading microbial populations. Monitoring these microcosms for volatile hydrocarbons by GC-MS revealed sediments without in situ hydrocarbons responded more rapidly to naphtha amendment than hydrocarbon seep sediments overall, but seep sediments removed aromatic hydrocarbons benzene, toluene, ethylbenzene and xylene (BTEX) more readily. Naphtha-driven aerobic respiration was more evident in surface sediment (0-20 cmbsf) than deeper anoxic layers (>130 cmbsf) that responded less rapidly. In all cases, enrichment of Gammaproteobacteria included lineages of Oleispira, Pseudomonas, and Alteromonas known to be associated with marine oil spills. On the other hand, taxa known to be prevalent in situ and diagnostic for thermogenic hydrocarbon seepage in deep sea sediment, did not respond to naphtha amendment. This suggests a limited role for these prevalent seep-associated populations in the context of aerobic hydrocarbon biodegradation.
Collapse
Affiliation(s)
- Oyeboade Adebayo
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada.
| | - Srijak Bhatnagar
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada; Faculty of Science and Technology, Athabasca University, Athabasca, AB T9S 3A3, Canada
| | - Jamie Webb
- Applied Petroleum Technology (Canada), Calgary, AB T2N 1Z6, Canada
| | - Calvin Campbell
- Geological Survey of Canada-Atlantic, Dartmouth, NS B3B 1A6, Canada
| | - Martin Fowler
- Applied Petroleum Technology (Canada), Calgary, AB T2N 1Z6, Canada
| | - Natasha M MacAdam
- Nova Scotia Department of Natural Resources and Renewables, Halifax, NS B2H 4G8, Canada
| | - Adam Macdonald
- Nova Scotia Department of Natural Resources and Renewables, Halifax, NS B2H 4G8, Canada
| | - Carmen Li
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
9
|
Chen YJ, Altshuler I, Freyria NJ, Lirette A, Góngora E, Greer CW, Whyte LG. Arctic's hidden hydrocarbon degradation microbes: investigating the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on microbial communities and hydrocarbon biodegradation pathways in high-Arctic beaches. ENVIRONMENTAL MICROBIOME 2024; 19:81. [PMID: 39478600 PMCID: PMC11526595 DOI: 10.1186/s40793-024-00626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024]
Abstract
BACKGROUND Canadian Arctic summer sea ice has dramatically declined due to global warming, resulting in the rapid opening of the Northwest Passage (NWP), slated to be a major shipping route connecting the Atlantic and Pacific Oceans by 2040. This development elevates the risk of oil spills in Arctic regions, prompting growing concerns over the remediation and minimizing the impact on affected shorelines. RESULTS This research aims to assess the viability of nutrient and a surface washing agent addition as potential bioremediation methods for Arctic beaches. To achieve this goal, we conducted two semi-automated mesocosm experiments simulating hydrocarbon contamination in high-Arctic beach tidal sediments: a 32-day experiment at 8 °C and a 92-day experiment at 4 °C. We analyzed the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on the microbial community and its functional capacity using 16S rRNA gene sequencing and metagenomics. Hydrocarbon removal rates were determined through total petroleum hydrocarbon analysis. Biostimulation is commonly considered the most effective strategy for enhancing the bioremediation process in response to oil contamination. However, our findings suggest that nutrient addition has limited effectiveness in facilitating the biodegradation process in Arctic beaches, despite its initial promotion of aliphatic hydrocarbons within a constrained timeframe. Alternatively, our study highlights the promise of a surface washing agent as a potential bioremediation approach. By implementing advanced -omics approaches, we unveiled highly proficient, unconventional hydrocarbon-degrading microorganisms such as Halioglobus and Acidimicrobiales genera. CONCLUSIONS Given the receding Arctic sea ice and the rising traffic in the NWP, heightened awareness and preparedness for potential oil spills are imperative. While continuously exploring optimal remediation strategies through the integration of microbial and chemical studies, a paramount consideration involves limiting traffic in the NWP and Arctic regions to prevent beach oil contamination, as cleanup in these remote areas proves exceedingly challenging and costly.
Collapse
Affiliation(s)
- Ya-Jou Chen
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada.
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China.
| | - Ianina Altshuler
- The Alpine and Polar Environmental Research Centre (ALPOLE), Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
| | - Nastasia J Freyria
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Antoine Lirette
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Esteban Góngora
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
- Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Wang C, Wang Q, Ben W, Qiao M, Ma B, Bai Y, Qu J. Machine learning predicts the growth of cyanobacterial genera in river systems and reveals their different environmental responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174383. [PMID: 38960197 DOI: 10.1016/j.scitotenv.2024.174383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/04/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Cyanobacterial blooms are a common and serious problem in global freshwater environments. However, the response mechanisms of various cyanobacterial genera to multiple nutrients and pollutants, as well as the factors driving their competitive dominance, remain unclear or controversial. The relative abundance and cell density of two dominant cyanobacterial genera (i.e., Cyanobium and Microcystis) in river ecosystems along a gradient of anthropogenic disturbance were predicted by random forest with post-interpretability based on physicochemical indices. Results showed that the optimized predictions all reached strong fitting with R2 > 0.75, and conventional water quality indices played a dominant role. One-dimensional and two-dimensional partial dependence plot (PDP) revealed that the responses of Cyanobium and Microcystis to nutrients and temperature were similar, but they showed differences in preferrable nutrient utilization and response to pollutants. Further prediction and PDP for the ratio of Cyanobium and Microcystis unveiled that their distinct responses to PAHs and SPAHs were crucial drivers for their competitive dominance over each other. This study presents a new way for analyzing the response of cyanobacterial genera to multiple environmental factors and their dominance relationships by interpretable machine learning, which is suitable for the identification and interpretation of high-dimensional nonlinear ecosystems with complex interactions.
Collapse
Affiliation(s)
- Chenchen Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Qiaojuan Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Meng Qiao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baiwen Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
11
|
Góngora E, Lirette AO, Freyria NJ, Greer CW, Whyte LG. Metagenomic survey reveals hydrocarbon biodegradation potential of Canadian high Arctic beaches. ENVIRONMENTAL MICROBIOME 2024; 19:72. [PMID: 39294752 PMCID: PMC11411865 DOI: 10.1186/s40793-024-00616-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Decreasing sea ice coverage across the Arctic Ocean due to climate change is expected to increase shipping activity through previously inaccessible shipping routes, including the Northwest Passage (NWP). Changing weather conditions typically encountered in the Arctic will still pose a risk for ships which could lead to an accident and the uncontrolled release of hydrocarbons onto NWP shorelines. We performed a metagenomic survey to characterize the microbial communities of various NWP shorelines and to determine whether there is a metabolic potential for hydrocarbon degradation in these microbiomes. RESULTS We observed taxonomic and functional gene evidence supporting the potential of NWP beach microbes to degrade various types of hydrocarbons. The metagenomic and metagenome-assembled genome (MAG) taxonomy showed that known hydrocarbon-degrading taxa are present in these beaches. Additionally, we detected the presence of biomarker genes of aerobic and anaerobic degradation pathways of alkane and aromatic hydrocarbons along with complete degradation pathways for aerobic alkane degradation. Alkane degradation genes were present in all samples and were also more abundant (33.8 ± 34.5 hits per million genes, HPM) than their aromatic hydrocarbon counterparts (11.7 ± 12.3 HPM). Due to the ubiquity of MAGs from the genus Rhodococcus (23.8% of the MAGs), we compared our MAGs with Rhodococcus genomes from NWP isolates obtained using hydrocarbons as the carbon source to corroborate our results and to develop a pangenome of Arctic Rhodococcus. Our analysis revealed that the biodegradation of alkanes is part of the core pangenome of this genus. We also detected nitrogen and sulfur pathways as additional energy sources and electron donors as well as carbon pathways providing alternative carbon sources. These pathways occur in the absence of hydrocarbons allowing microbes to survive in these nutrient-poor beaches. CONCLUSIONS Our metagenomic analyses detected the genetic potential for hydrocarbon biodegradation in these NWP shoreline microbiomes. Alkane metabolism was the most prevalent type of hydrocarbon degradation observed in these tidal beach ecosystems. Our results indicate that bioremediation could be used as a cleanup strategy, but the addition of adequate amounts of N and P fertilizers, should be considered to help bacteria overcome the oligotrophic nature of NWP shorelines.
Collapse
Affiliation(s)
- Esteban Góngora
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada.
| | - Antoine-O Lirette
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Nastasia J Freyria
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC, Canada
| | - Lyle G Whyte
- Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
12
|
Wang Y, Liu Y. Computational Insights into the Non-Heme Diiron Alkane Monooxygenase Enzyme AlkB: Electronic Structures, Dioxygen Activation, and Hydroxylation Mechanism of Liquid Alkanes. Inorg Chem 2024; 63:17056-17066. [PMID: 39238331 DOI: 10.1021/acs.inorgchem.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Alkane monooxygenase (AlkB) is a membrane-spanning metalloenzyme that catalyzes the terminal hydroxylation of straight-chain alkanes involved in the microbially mediated degradation of liquid alkanes. According to the cryoEM structures, AlkB features a unique multihistidine ligand coordination environment with a long Fe-Fe distance in its active center. Up to now, how AlkB employs the diiron center to activate dioxygen and which species is responsible for triggering the hydroxylation are still elusive. In this work, we constructed computational models and performed quantum mechanics/molecular mechanics (QM/MM) calculations to illuminate the electronic characteristics of the diiron active center and how AlkB carries out the terminal hydroxylation. Our calculations revealed that the spin-spin interaction between two irons is rather weak. The dioxygen may ligate to either the Fe1 or Fe2 atom and prefers to act as a linker to increase the spin-spin interaction of two irons, facilitating the dioxygen cleavage to generate the highly reactive Fe(IV)═O. Thus, AlkB employs Fe(IV)═O to trigger the hydrogen abstraction. In addition, the previously suggested mechanism that AlkB uses both the dioxygen and Fe-coordinated water to perform hydroxylation was calculated to be unlikely. Besides, our results indicate that AlkB cannot use the Fe-coordinated dioxygen to directly trigger hydrogen abstraction.
Collapse
Affiliation(s)
- Yue Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
13
|
Zhao Y, Sun Y, Sun H, Zuo F, Kuang S, Zhang S, Wang F. Surfactant-Based Chemical Washing to Remediate Oil-Contaminated Soil: The State of Knowledge. TOXICS 2024; 12:648. [PMID: 39330576 PMCID: PMC11436144 DOI: 10.3390/toxics12090648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
As the energy demand increases, there is a significant expansion and utilization of oil resources, resulting in the inevitable occurrence of environmental pollution. Oil has been identified as a prevalent soil contaminant, posing substantial risks to the soil ecosystems. The remediation of soil contaminated with oil is a formidable undertaking. Increasing evidence shows that chemical washing, a remediation technique employing chemical reagents like surfactants to augment the solubilization, desorption, and separation of petroleum hydrocarbons in soil, proves to be an efficacious approach, but the latest advances on this topic have not been systematically reviewed. Here, we present the state of knowledge about the surfactant-based chemical washing to remediate oil-contaminated soil. Using the latest data, the present article systematically summarizes the advancements on ex situ chemical washing of oil pollution and provides a concise summary of the underlying principles. The use of various surfactants in chemical washing and the factors influencing remediation efficiency are highlighted. Based on the current research status and knowledge gaps, future perspectives are proposed to facilitate chemical washing of oil-polluted soil. This review can help recognize the application of chemical washing in the remediation of oil-polluted soil.
Collapse
Affiliation(s)
- Yanxin Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haihan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fang Zuo
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
14
|
Miao R, Légeret B, Cuine S, Burlacot A, Lindblad P, Li-Beisson Y, Beisson F, Peltier G. Absence of alka(e)nes triggers profound remodeling of glycerolipid and carotenoid composition in cyanobacteria membrane. PLANT PHYSIOLOGY 2024; 196:397-408. [PMID: 38850059 PMCID: PMC11376386 DOI: 10.1093/plphys/kiae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Alka(e)nes are produced by many living organisms and exhibit diverse physiological roles, reflecting a high functional versatility. Alka(e)nes serve as waterproof wax in plants, communicating pheromones for insects, and microbial signaling molecules in some bacteria. Although alka(e)nes have been found in cyanobacteria and algal chloroplasts, their importance for photosynthetic membranes has remained elusive. In this study, we investigated the consequences of the absence of alka(e)nes on membrane lipid composition and photosynthesis using the cyanobacterium Synechocystis PCC6803 as a model organism. By following the dynamics of membrane lipids and the photosynthetic performance in strains defected and altered in alka(e)ne biosynthesis, we show that drastic changes in the glycerolipid contents occur in the absence of alka(e)nes, including a decrease in the membrane carotenoid content, a decrease in some digalactosyldiacylglycerol (DGDG) species and a parallel increase in monogalactosyldiacylglycerol (MGDG) species. These changes are associated with a higher susceptibility of photosynthesis and growth to high light in alka(e)ne-deficient strains. All these phenotypes are reversed by expressing an algal photoenzyme producing alka(e)nes from fatty acids. Therefore, alkenes, despite their low abundance, are an essential component of the lipid composition of membranes. The profound remodeling of lipid composition that results from their absence suggests that they play an important role in one or more membrane properties in cyanobacteria. Moreover, the lipid compensatory mechanism observed is not sufficient to restore normal functioning of the photosynthetic membranes, particularly under high-light intensity. We conclude that alka(e)nes play a crucial role in maintaining the lipid homeostasis of thylakoid membranes, thereby contributing to the proper functioning of photosynthesis, particularly under elevated light intensities.
Collapse
Affiliation(s)
- Rui Miao
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
- Microbial chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Bertrand Légeret
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| | - Stéphan Cuine
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| | - Adrien Burlacot
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama Street, Stanford, CA 94305, USA
| | - Peter Lindblad
- Microbial chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Yonghua Li-Beisson
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| | - Fred Beisson
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| | - Gilles Peltier
- Institut de Biosciences et Biotechnologies, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, F-13115, France
| |
Collapse
|
15
|
Liu W, Zhao F, Li X, Zheng S, Li L, Zhao R, Xu K. Enhanced nutrient supply promotes mutualistic interactions between cyanobacteria and bacteria in oligotrophic ocean. Proc Biol Sci 2024; 291:20240788. [PMID: 39043236 PMCID: PMC11265871 DOI: 10.1098/rspb.2024.0788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Cyanobacteria can form complex interactions with heterotrophic microorganisms, but this relationship is susceptible to nutrient concentrations. Disentangling the cyanobacteria-bacteria interactions in relation to nutrient supply is essential to understanding their roles in geochemical cycles under global change. We hypothesize that enhanced nutrient supply in oligotrophic oceans can promote interactions among cyanobacteria and bacteria. Therefore, we investigated the planktonic bacteria and their interactions with cyanobacteria in relation to elevated nutrients caused by enhanced upwelling around a shallow and a deep seamount in the tropical western Pacific Ocean. We found obviously higher complexity of network occurred with significantly more cyanobacteria in the deep chlorophyll maximum layer of the shallow seamount when compared with that of the deep seamount. Cyanobacteria can shape bacterial interaction and community evenness in response to relatively high nutrient concentrations. The effects of the nutrients on cyanobacteria-related networks were further estimated based on the Tara Oceans data. Statistical analyses further showed a facilitative effect of nitrate concentrations on cyanobacteria-bacteria mutualistic interactions in the global oligotrophic ocean. By analysing the Tara Ocean macrogenomic data, we detected functional genes related to cyanobacteria-bacteria interactions in all samples, indicating the existence of a mutualistic relationship. Our results reveal cyanobacteria-bacteria interaction in response to nutrient elevation in oligotrophic ocean and highlight the potentially negative effects of global change on the bacterial community from the view of the bio-interaction.
Collapse
Affiliation(s)
- Weiyue Liu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Feng Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xuegang Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
| | - Shan Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
| | - Longzhao Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rongjie Zhao
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
16
|
Cao Y, Zhang B, Song X, Dong G, Zhang Y, Chen B. Polyhydroxybutyrate Plastics Show Rapid Disintegration and More Straightforward Biogeochemical Impacts than Polyethylene under Marine Biofragmentation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39047231 DOI: 10.1021/acs.est.4c04639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Although massive studies have investigated the spatiotemporally occurring marine plastisphere, a new microbial ecosystem colonizing the surfaces of plastics, the resulting biofragmentation process and impacts of plastics on biogeochemical cycles remain largely unknown. Here, we leverage synchrotron-based Fourier transform infrared spectromicroscopy (FTIR mapping) and metagenomic sequencing to explore independent marine microcosms amended with petroleum-based polyethylene (PE) and biobased polyhydroxybutyrate (PHB) plastic films. FTIR mapping results demonstrate unequal fragmentation scenarios by which the PE plastic rarely releases oxidized fragments while PHB disintegrates quickly, gradually forming fragments composed of extracellular polymeric substances resembling plastic films. Metagenomic analysis shows the critical role of hydrocarbonoclastic lineages in the biodegradation of the two plastics by the fatty acid degradation pathway, where the PE plastics host different microbial trajectories between the plastisphere (dominated by Alcanivorax) and surrounding seawater. In contrast, the PHB addition demonstrates decreased microbial richness and diversity, consistent community composition (dominated by Phaeobacter and Marinobacter), and apparently stimulated sulfur cycle and denitrification pathways in both the plastisphere and surrounding seawater. Our study gives scientific evidence on the marine biotic processes distinguishing petroleum- and biobased plastics, highlighting marine PHB input exerting straightforward impacts on the water phase and deserving critical management practices.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Xing Song
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Yuanmei Zhang
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
17
|
Harrison SJ, Malkin SY, Joye SB. Dispersant addition, but not nutrients, stimulated blooms of multiple hydrocarbonoclastic genera in nutrient-replete coastal marine surface waters. MARINE POLLUTION BULLETIN 2024; 204:116490. [PMID: 38843703 DOI: 10.1016/j.marpolbul.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/17/2024]
Abstract
The range of impacts of chemical dispersants on indigenous marine microbial communities and their activity remains poorly constrained. We tested the response of nearshore surface waters chronically exposed to oil leakage from a downed platform and supplied with nutrients by the Mississippi River to Corexit dispersant and nutrient additions. As assessed using 14C-labeled tracers, hexadecane mineralization potential was orders of magnitude higher in all unamended samples than in previously assessed bathypelagic communities. Nutrient additions stimulated microbial mortality but did not affect community composition and had no generalizable effect on hydrocarbon mineralization potential. By contrast, Corexit amendments caused a rapid shift in community composition and a drawdown of inorganic nitrogen and orthophosphate though no generalizable effect on hydrocarbon mineralization potential. The hydrocarbonoclastic community's response to dispersants is largely driven by the relative availability of organic substrates and nutrients, underscoring the role of environmental conditions and multiple interacting stressors on hydrocarbon degradation potential.
Collapse
Affiliation(s)
- Sarah J Harrison
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sairah Y Malkin
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Samantha B Joye
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
18
|
Liu Q, Peng Y, Liao J, Liu X, Peng J, Wang JH, Shao Z. Broad-spectrum hydrocarbon-degrading microbes in the global ocean metagenomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171746. [PMID: 38521276 DOI: 10.1016/j.scitotenv.2024.171746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Understanding the diversity and functions of hydrocarbon-degrading microorganisms in marine environments is crucial for both advancing knowledge of biogeochemical processes and improving bioremediation methods. In this study, we leveraged nearly 20,000 metagenome-assembled genomes (MAGs), recovered from a wide array of marine samples across the global oceans, to map the diversity of aerobic hydrocarbon-degrading microorganisms. A broad bacterial diversity was uncovered, with a notable preference for degrading aliphatic hydrocarbons over aromatic ones, primarily within Proteobacteria and Actinobacteriota. Three types of broad-spectrum hydrocarbon-degrading bacteria were identified for their ability to degrade various hydrocarbons and possession of multiple copies of hydrocarbon biodegradation genes. These bacteria demonstrate extensive metabolic versatility, aiding their survival and adaptability in diverse environmental conditions. Evidence of gene duplication and horizontal gene transfer in these microbes suggested a potential enhancement in the diversity of hydrocarbon-degrading bacteria. Positive correlations were observed between the abundances of hydrocarbon-degrading genes and environmental parameters such as temperature (-5 to 35 °C) and salinity (20 to 42 PSU). Overall, our findings offer valuable insights into marine hydrocarbon-degrading microorganisms and suggest considerations for selecting microbial strains for oil pollution remediation.
Collapse
Affiliation(s)
- Qing Liu
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Yongyi Peng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Jing Liao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinyue Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jiaxue Peng
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jiang-Hai Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China.
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519099, China.
| |
Collapse
|
19
|
Deng S, Wang B, Zhang H, Qu R, Sun S, You Q, She Y, Zhang F. Degradation and enhanced oil recovery potential of Alcanivorax borkumensis through production of bio-enzyme and bio-surfactant. BIORESOURCE TECHNOLOGY 2024; 400:130690. [PMID: 38614150 DOI: 10.1016/j.biortech.2024.130690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Microbial enhanced oil recovery (EOR) has become the focus of oilfield research due to its low cost, environmental friendliness and sustainability. The degradation and EOR capacity of A. borkumensis through the production of bio-enzyme and bio-surfactant were first investigated in this study. The total protein concentration, acetylcholinesterase, esterase, lipase, alkane hydroxylase activity, surface tension, and emulsification index (EI) were determined at different culture times. The bio-surfactant was identified as glycolipid compound, and the yield was 2.6 ± 0.2 g/L. The nC12 and nC13 of crude oil were completely degraded, and more than 40.0 % of nC14-nC24 was degraded by by A. borkumensis. The results of the microscopic etching model displacement and core flooding experiments showed that emulsification was the main mechanism of EOR. A. borkumensis enhanced the recovery rate by 20.2 %. This study offers novel insights for the development of environmentally friendly and efficient oil fields.
Collapse
Affiliation(s)
- Shuyuan Deng
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Bo Wang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hong Zhang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Ruixue Qu
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Shanshan Sun
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China; Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China; Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Qing You
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yuehui She
- College of Petroleum Engineering, Yangtze University, Wuhan, Hubei 430100, China; Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan, Hubei 430100, China; Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, Hubei 430100, China
| | - Fan Zhang
- School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
20
|
Cai L, Li H, Deng J, Zhou R, Zeng Q. Biological interactions with Prochlorococcus: implications for the marine carbon cycle. Trends Microbiol 2024; 32:280-291. [PMID: 37722980 DOI: 10.1016/j.tim.2023.08.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
The unicellular picocyanobacterium Prochlorococcus is the most abundant photoautotroph and contributes substantially to global CO2 fixation. In the vast euphotic zones of the open ocean, Prochlorococcus converts CO2 into organic compounds and supports diverse organisms, forming an intricate network of interactions that regulate the magnitude of carbon cycling and storage in the ocean. An understanding of the biological interactions with Prochlorococcus is critical for accurately estimating the contributions of Prochlorococcus and interacting organisms to the marine carbon cycle. This review synthesizes the primary production contributed by Prochlorococcus in the global ocean. We outline recent progress on the interactions of Prochlorococcus with heterotrophic bacteria, phages, and grazers that multifacetedly determine Prochlorococcus carbon production and fate. We discuss that climate change might affect the biological interactions with Prochlorococcus and thus the marine carbon cycle.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Haofu Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Junwei Deng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ruiqian Zhou
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China; Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
21
|
Freyria NJ, Góngora E, Greer CW, Whyte LG. High Arctic seawater and coastal soil microbiome co-occurrence and composition structure and their potential hydrocarbon biodegradation. ISME COMMUNICATIONS 2024; 4:ycae100. [PMID: 39101031 PMCID: PMC11296632 DOI: 10.1093/ismeco/ycae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
The accelerated decline in Arctic sea-ice cover and duration is enabling the opening of Arctic marine passages and improving access to natural resources. The increasing accessibility to navigation and resource exploration and production brings risks of accidental hydrocarbon releases into Arctic waters, posing a major threat to Arctic marine ecosystems where oil may persist for many years, especially in beach sediment. The composition and response of the microbial community to oil contamination on Arctic beaches remain poorly understood. To address this, we analyzed microbial community structure and identified hydrocarbon degradation genes among the Northwest Passage intertidal beach sediments and shoreline seawater from five high Arctic beaches. Our results from 16S/18S rRNA genes, long-read metagenomes, and metagenome-assembled genomes reveal the composition and metabolic capabilities of the hydrocarbon microbial degrader community, as well as tight cross-habitat and cross-kingdom interactions dominated by lineages that are common and often dominant in the polar coastal habitat, but distinct from petroleum hydrocarbon-contaminated sites. In the polar beach sediment habitats, Granulosicoccus sp. and Cyclocasticus sp. were major potential hydrocarbon-degraders, and our metagenomes revealed a small proportion of microalgae and algal viruses possessing key hydrocarbon biodegradative genes. This research demonstrates that Arctic beach sediment and marine microbial communities possess the ability for hydrocarbon natural attenuation. The findings provide new insights into the viral and microalgal communities possessing hydrocarbon degradation genes and might represent an important contribution to the removal of hydrocarbons under harsh environmental conditions in a pristine, cold, and oil-free environment that is threatened by oil spills.
Collapse
Affiliation(s)
- Nastasia J Freyria
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Esteban Góngora
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
- Energy, Mining and Environment, Research Centre, National Research Council Canada, 6100 Royalmount Ave., Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, 21111 Lakeshore Road, Macdonald Stewart Building, Room MS3-053, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
22
|
Groves JT, Feng L, Austin RN. Structure and Function of Alkane Monooxygenase (AlkB). Acc Chem Res 2023; 56:3665-3675. [PMID: 38032826 PMCID: PMC11623191 DOI: 10.1021/acs.accounts.3c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Every year, perhaps as much as 800 million tons of hydrocarbons enters the environment; alkanes make up a large percentage of it. Most are transformed by organisms that utilize these molecules as sources of energy and carbon. Both aerobic and anaerobic alkane transformation chemistries exist, capitalizing on the presence of alkanes in both oxic and anoxic environments. Over the past 40 years, tremendous progress has been made in understanding the structure and mechanism of enzymes that catalyze the transformation of methane. By contrast, progress involving enzymes that transform liquid alkanes has been slower with the first structures of AlkB, the predominant aerobic alkane hydroxylase in the environment, appearing in 2023. Because of the fundamental importance of C-H bond activation chemistries, interest in understanding how biology activates and transforms alkanes is high.In this Account, we focus on steps we have taken to understand the mechanism and structure of alkane monooxygenase (AlkB), the metalloenzyme that dominates the transformation of liquid alkanes in the environment (not to be confused with another AlkB that is an α-ketogluturate-dependent enzyme involved in DNA repair). First, we briefly describe what is known about the prevalence of AlkB in the environment and its role in the carbon cycle. Then we review the key findings from our recent high-resolution cryoEM structure of AlkB and highlight important similarities and differences in the structures of members of class III diiron enzymes. Functional studies, which we summarize, from a number of single residue variants enable us to say a great deal about how the structure of AlkB facilitates its function. Next, we overview work from our laboratories using mechanistically diagnostic radical clock substrates to characterize the mechanism of AlkB and contextualize the results we have obtained on AlkB with results we have obtained on other alkane-oxidizing enzymes and explain these results in light of the enzyme's structure. Finally, we integrate recent work in our laboratories with information from prior studies of AlkB, and relevant model systems, to create a holistic picture of the enzyme. We end by pointing to critical questions that still need to be answered, questions about the electronic structure of the active site of the enzyme throughout the reaction cycle and about whether and to what extent the enzyme plays functional roles in biology beyond simply initiating the degradation of alkanes.
Collapse
Affiliation(s)
- John T Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|
23
|
Arrington EC, Tarn J, Kittner HE, Kivenson V, Liu RM, Valentine DL. Methylated cycloalkanes fuel a novel genus in the Porticoccaceae family (Ca. Reddybacter gen. nov). Environ Microbiol 2023; 25:2958-2971. [PMID: 37599091 DOI: 10.1111/1462-2920.16474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023]
Abstract
Cycloalkanes are abundant and toxic compounds in subsurface petroleum reservoirs and their fate is important to ecosystems impacted by natural oil seeps and spills. This study focuses on the microbial metabolism of methylcyclohexane (MCH) and methylcyclopentane (MCP) in the deep Gulf of Mexico. MCH and MCP are often abundant cycloalkanes observed in petroleum and will dissolve into the water column when introduced at the seafloor via a spill or natural seep. We conducted incubations with deep Gulf of Mexico (GOM) seawater amended with MCH and MCP at four stations. Within incubations with active respiration of MCH and MCP, we found that a novel genus of bacteria belonging to the Porticoccaceae family (Candidatus Reddybacter) dominated the microbial community. Using metagenome-assembled genomes, we reconstructed the central metabolism of Candidatus Reddybacter, identifying a novel clade of the particulate hydrocarbon monooxygenase (pmo) that may play a central role in MCH and MCP metabolism. Through comparative analysis of 174 genomes, we parsed the taxonomy of the Porticoccaceae family and found evidence suggesting the acquisition of pmo and other genes related to the degradation of cyclic and branched hydrophobic compounds were likely key events in the ecology and evolution of this group of organisms.
Collapse
Affiliation(s)
- Eleanor C Arrington
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Jonathan Tarn
- Interdepartmental Graduate Program in Marine Science, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Hailie E Kittner
- Interdepartmental Graduate Program in Marine Science, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Veronika Kivenson
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, California, USA
| | - Rachel M Liu
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - David L Valentine
- Marine Science Institute, University of California-Santa Barbara, Santa Barbara, California, USA
- Department of Earth Science, University of California-Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
24
|
Xu L, Li K, Zhang M, Guo J, Jia W, Bai X, Tian X, Huang Y. Plastic substrate and residual time of microplastics in the urban river shape the composition and structure of bacterial communities in plastisphere. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118710. [PMID: 37536136 DOI: 10.1016/j.jenvman.2023.118710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023]
Abstract
The widespread secondary microplastics (MPs) in urban freshwater, originating from plastic wastes, have created a new habitat called plastisphere for microorganisms. The factors influencing the structure and ecological risks of the microbial community within the plastisphere are not yet fully understood. We conducted an in-site incubation experiment in an urban river, using MPs from garbage bags (GB), shopping bags (SB), and plastic bottles (PB). Bacterial communities in water and plastisphere incubated for 2 and 4 weeks were analyzed by 16S high-throughput sequencing. The results showed the bacterial composition of the plastisphere, especially the PB, exhibited enrichment of plastic-degrading and photoautotrophic taxa. Diversity declined in GB and PB but increased in SB plastisphere. Abundance analysis revealed distinct bacterial species that were enriched or depleted in each type of plastisphere. As the succession progressed, the differences in community structure was more pronounced, and the decline in the complexity of bacterial community within each plastisphere suggested increasing specialization. All the plastisphere exhibited elevated pathogenicity at the second or forth week, compared to bacterial communities related to natural particles. These findings highlighted the continually evolving plastisphere in urban rivers was influenced by the plastic substrates, and attention should be paid to fragile plastic wastes due to the rapidly increasing pathogenicity of the bacterial community attached to them.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong, 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong, 518057, China
| | - Jiabao Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Weiqian Jia
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Xudong Tian
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China.
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
25
|
Ji M, Smith AF, Rattray JE, England WE, Hubert CRJ. Potential for natural attenuation of crude oil hydrocarbons in benthic microbiomes near coastal communities in Kivalliq, Nunavut, Canada. MARINE POLLUTION BULLETIN 2023; 196:115557. [PMID: 37776739 DOI: 10.1016/j.marpolbul.2023.115557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/04/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
Oil spilled in marine environments can settle to the seafloor through aggregation and sedimentation processes. This has been predicted to be especially relevant in the Arctic due to plankton blooms initiated by melting sea ice. These conditions exist in the Kivalliq region in Nunavut, Canada, where elevated shipping traffic has increased the risk of accidental spills. Experimental microcosms combining surface sediment and crude oil were incubated at 4 °C over 21 weeks to evaluate the biodegradation potential of seabed microbiomes. Sediments sampled near the communities of Arviat and Chesterfield Inlet were assessed for biodegradation capabilities by combining hydrocarbon geochemistry with 16S rRNA gene and metagenomic sequencing, revealing decreased microbial diversity but enrichment of oil-degrading taxa. Alkane and aromatic hydrocarbon losses corresponded to detection of genes and genomes that encode enzymes for aerobic biodegradation of these compounds, pointing to the utility of marine microbiome surveys for predicting the fate of oil released into Arctic marine environments.
Collapse
Affiliation(s)
- Meng Ji
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Alastair F Smith
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Jayne E Rattray
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Whitney E England
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Casey R J Hubert
- Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Ferguson DK, Li C, Chakraborty A, Gittins DA, Fowler M, Webb J, Campbell C, Morrison N, MacDonald A, Hubert CRJ. Multi-year seabed environmental baseline in deep-sea offshore oil prospective areas established using microbial biodiversity. MARINE POLLUTION BULLETIN 2023; 194:115308. [PMID: 37517246 DOI: 10.1016/j.marpolbul.2023.115308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 08/01/2023]
Abstract
Microorganisms are the ocean's first responders to marine pollution events, yet baseline studies rarely focus on microbial communities. Temporal and spatial microbial biodiversity baselines were established using bacterial 16S rRNA gene amplicon sequencing of seafloor sediments in a deep-water oil prospective area along the Scotian Slope off Canada's east coast sampled during 2015-2018. Bacterial diversity was generally similar in space and time, with members of the family Woeseiaceae detected consistently in >1 % relative abundance, similar to seabed sediments in other parts of the world. Anomalous biodiversity results at one site featured lower Woeseiaceae as well as higher levels of bacterial groups specifically associated with cold seeps such as Aminicenantes. This was unexpected given that site selection was based on sediment geochemistry not revealing any petroleum hydrocarbons in these locations. This finding highlights the sensitivity and specificity of microbial DNA sequencing in environmental monitoring. Microbiome assessments like this one represent an important strategy for incorporating microbial biodiversity as a new and useful metric for establishing robust environmental baselines that are necessary for understanding ecosystem responses to marine pollution.
Collapse
Affiliation(s)
- Deidra K Ferguson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Carmen Li
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Anirban Chakraborty
- Department of Biological Sciences, Idaho State University, Pocatello, ID, USA
| | - Daniel A Gittins
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Martin Fowler
- Applied Petroleum Technology Canada, Calgary, Alberta, Canada
| | - Jamie Webb
- Applied Petroleum Technology Canada, Calgary, Alberta, Canada
| | - Calvin Campbell
- Natural Resources Canada, Geological Survey of Canada-Atlantic, Dartmouth, Nova Scotia, Canada
| | - Natasha Morrison
- Nova Scotia Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Nova Scotia, Canada
| | - Adam MacDonald
- Nova Scotia Department of Natural Resources and Renewables, Government of Nova Scotia, Halifax, Nova Scotia, Canada
| | - Casey R J Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
27
|
Guigue C, Tesán-Onrubia JA, Guyomarc'h L, Bănaru D, Carlotti F, Pagano M, Chifflet S, Malengros D, Chouba L, Tronczynski J, Tedetti M. Hydrocarbons in size-fractionated plankton of the Mediterranean Sea (MERITE-HIPPOCAMPE campaign). MARINE POLLUTION BULLETIN 2023; 194:115386. [PMID: 37591021 DOI: 10.1016/j.marpolbul.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Aliphatic and polycyclic aromatic hydrocarbons (AHs and PAHs, respectively) were analyzed in the dissolved fraction (<0.7 μm) of surface water and in various particulate/planktonic size fractions (0.7-60, 60-200, 200-500 and 500-1000 μm) collected at the deep chlorophyll maximum, along a North-South transect in the Mediterranean Sea in spring 2019 (MERITE-HIPPOCAMPE campaign). Suspended particulate matter, biomass, total chlorophyll a, particulate organic carbon, C and N isotopic ratios, and lipid biomarkers were also determined to help characterizing the size-fractionated plankton and highlight the potential link with the content in AHs and PAHs in these size fractions. Ʃ28AH concentrations ranged 18-489 ng L-1 for water, 3.9-72 μg g-1 dry weight (dw) for the size fraction 0.7-60 μm, and 3.4-55 μg g-1 dw for the fractions 60-200, 200-500 and 500-1000 μm. AH molecular profiles revealed that they were mainly of biogenic origin. Ʃ14PAH concentrations were 0.9-16 ng L-1 for water, and Ʃ27PAH concentrations were 53-220 ng g-1 dw for the fraction 0.7-60 μm and 35-255 ng g-1 dw for the three higher fractions, phenanthrene being the most abundant compound in planktonic compartment. Two processes were evidenced concerning the PAH patterns, the bioreduction, i.e., the decrease in concentrations from the small size fractions (0.7-60 and 60-200 μm) to the higher ones (200-500 μm and 500-1000 μm), and the biodilution, i.e., the decrease in concentrations in plankton at higher suspended matter or biomass, especially for the 0.7-60 and 60-200-μm size fractions. We estimated the biological pump fluxes of Ʃ27PAHs below 100-m depth in the Western Mediterranean Sea at 15 ± 10 ng m-2 day-1, which is comparable to those previously reported in the South Pacific and Indian Ocean.
Collapse
Affiliation(s)
- Catherine Guigue
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France.
| | | | - Léa Guyomarc'h
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Daniela Bănaru
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - François Carlotti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Marc Pagano
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Sandrine Chifflet
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Deny Malengros
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Lassaad Chouba
- Institut National des Sciences et Technologies de la Mer (INSTM), 28, rue 2 mars 1934, Salammbô 2025, Tunisia
| | - Jacek Tronczynski
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44311 Nantes, France
| | - Marc Tedetti
- Aix Marseille Univ., Université de Toulon, CNRS, IRD, MIO, Marseille, France
| |
Collapse
|
28
|
Prasad M, Obana N, Lin SZ, Zhao S, Sakai K, Blanch-Mercader C, Prost J, Nomura N, Rupprecht JF, Fattaccioli J, Utada AS. Alcanivorax borkumensis biofilms enhance oil degradation by interfacial tubulation. Science 2023; 381:748-753. [PMID: 37590351 DOI: 10.1126/science.adf3345] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/21/2023] [Indexed: 08/19/2023]
Abstract
During the consumption of alkanes, Alcanivorax borkumensis will form a biofilm around an oil droplet, but the role this plays during degradation remains unclear. We identified a shift in biofilm morphology that depends on adaptation to oil consumption: Longer exposure leads to the appearance of dendritic biofilms optimized for oil consumption effected through tubulation of the interface. In situ microfluidic tracking enabled us to correlate tubulation to localized defects in the interfacial cell ordering. We demonstrate control over droplet deformation by using confinement to position defects, inducing dimpling in the droplets. We developed a model that elucidates biofilm morphology, linking tubulation to decreased interfacial tension and increased cell hydrophobicity.
Collapse
Affiliation(s)
- M Prasad
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - N Obana
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - S-Z Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| | - S Zhao
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - K Sakai
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - C Blanch-Mercader
- Laboratoire Physico-Chimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 75248 Paris, France
| | - J Prost
- Laboratoire Physico-Chimie Curie UMR168, Institut Curie, Paris Sciences et Lettres, Centre National de la Recherche Scientifique, Sorbonne Université, 75248 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - N Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- TARA center, Univeristy of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - J-F Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| | - J Fattaccioli
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL Université, Sorbonne Université, CNRS, 75005 Paris, France
- Institut Pierre-Gilles de Gennes pour la Microfluidique, 75005 Paris, France
| | - A S Utada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
- Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
29
|
Hu X, Wang X, Zhao S, Cao L, Pan Y, Li F, Li F, Lu J, Li Y, Song G, Zhang H, Sun P, Bao M. Uncovering the dynamic evolution of microbes and n-alkanes: Insights from the Kuroshio Extension in the Northwest Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162418. [PMID: 36858214 DOI: 10.1016/j.scitotenv.2023.162418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Biomarkers offer unique insights into the state of the environment, but little is known about how they interact with microbial communities in the open ocean. This study investigated the correlative effects between microbial communities and n-alkane distribution in surface seawater and sediments from the Kuroshio Extension in the Northwest Pacific Ocean. The n-alkanes in both surface seawater and surface sediments were mostly derived from algae and higher plants, with some minor contributions from anthropogenic and biological sources. The composition of microbial communities in surface seawater and sediments was different. In surface seawater, the dominant taxa were Vibrio, Alteromonas, Clade_Ia, Pseudoalteromonas, and Synechococcus_CC9902, while the taxa in the sediments were mostly unclassified. These variations/fluctuations of n-alkanes in three areas caused the aggregation of specialized microbial communities (Alteromonas). As the characteristic composition indexes of two typical n-alkanes, Short-chain n-alkane carbon preference index (CPI-L) and long-chain n-alkane carbon preference index (CPI-H) significantly influenced the microbial community structure in surface seawater, but not in surface sediments. Effect of CPI on microbial communities may be attributed to anthropogenic inputs or petroleum pollution. The abundance of hydrocarbon degradation genes also varied across the three different areas. Our work underscores that n-alkanes in the oceans alter the microbial community structure and enrich associated degradation genes. The functional differences in microbial communities within different areas contribute to their ecological uniqueness.
Collapse
Affiliation(s)
- Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Xinping Wang
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Shanshan Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Lixin Cao
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Yaping Pan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Fujuan Li
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China
| | - Fengshu Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Jinren Lu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Guodong Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Honghai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Peiyan Sun
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, Shandong Province 266033, China; North China Sea Environmental Monitoring Center, State Oceanic Administration, Qingdao, Shandong Province, 266033, China.
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, Shandong Province 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China.
| |
Collapse
|
30
|
Guo X, Zhang J, Han L, Lee J, Williams SC, Forsberg A, Xu Y, Austin RN, Feng L. Structure and mechanism of the alkane-oxidizing enzyme AlkB. Nat Commun 2023; 14:2180. [PMID: 37069165 PMCID: PMC10110569 DOI: 10.1038/s41467-023-37869-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
Alkanes are the most energy-rich form of carbon and are widely dispersed in the environment. Their transformation by microbes represents a key step in the global carbon cycle. Alkane monooxygenase (AlkB), a membrane-spanning metalloenzyme, converts straight chain alkanes to alcohols in the first step of the microbially-mediated degradation of alkanes, thereby playing a critical role in the global cycling of carbon and the bioremediation of oil. AlkB biodiversity is attributed to its ability to oxidize alkanes of various chain lengths, while individual AlkBs target a relatively narrow range. Mechanisms of substrate selectivity and catalytic activity remain elusive. Here we report the cryo-EM structure of AlkB, which provides a distinct architecture for membrane enzymes. Our structure and functional studies reveal an unexpected diiron center configuration and identify molecular determinants for substrate selectivity. These findings provide insight into the catalytic mechanism of AlkB and shed light on its function in alkane-degrading microorganisms.
Collapse
Affiliation(s)
- Xue Guo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jianxiu Zhang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lei Han
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Juliet Lee
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Biochemistry and Molecular Biophysics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shoshana C Williams
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Allison Forsberg
- Department of Chemistry, Barnard College, 3009 Broadway, New York, NY, 10027, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90007, USA
| | - Yan Xu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - Liang Feng
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
31
|
Wang J, Zhang Y, Liu Y, Xie Z, Cao J, Zhang H, Liu J, Bao T, Sun C, Liu B, Wei Y, Fang J. The phylogeny and metabolic potentials of an n-alkane-degrading Venatorbacter bacterium isolated from deep-sea sediment of the Mariana Trench. Front Microbiol 2023; 14:1108651. [PMID: 37032874 PMCID: PMC10073702 DOI: 10.3389/fmicb.2023.1108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Recently, several reports showed that n-alkanes were abundant in the hadal zone, suggesting that n-alkanes could be an important source of nutrients for microorganisms in hadal ecosystems. To date, most of the published studies on the microbial capacity to degrade hydrocarbons were conducted only at atmospheric temperature and pressure (0.1 MPa), and little is known about whether and which microbes could utilize n-alkanes at in situ environmental conditions in the hadal zone, including low temperature and high hydrostatic pressure (especially >30 MPa). In this study, a piezotolerant bacterium, strain C2-1, was isolated from a Mariana Trench sediment at depth of 5,800 m. Strain C2-1 was able to grow at in situ temperature (4°C) and pressure (58 MPa) with n-alkanes as the sole carbon source. Phylogenetically, strain C2-1 and related strains (TMPB967, ST750PaO-4, IMCC1826, and TTBP476) should be classified into the genus Venatorbacter. Metagenomic analysis using ~5,000 publicly available datasets showed that Venatorbacter has a wide environmental distribution in seawater (38), marine sediments (3), hydrothermal vent plumes (2), Antarctic ice (1), groundwater (13), and marine sponge ecosystems (1). Most Venatorbacter species are non-obligate n-alkane degraders that could utilize, at a minimal, C16-C18 n-alkanes, as well as other different types of carbon substrates, including carbohydrates, amino acids, peptides, and phospholipids. The type II secretion system, extracellular proteases, phospholipase, and endonuclease of Venatorbacter species were robustly expressed in the metatranscriptomes of deep-sea hydrothermal vents, suggesting their important contribution to secondary productivity by degrading extracellular macromolecules. The identification of denitrifying genes suggested a genus-specific ecological potential that allowed Venatorbacter species to be active in anoxic environments, e.g., the oxygen-minimal zone (OMZ) and the deeply buried marine sediments. Our results show that Venatorbacter species are responsible for the degradation of hydrocarbon and extracellular macromolecules, suggesting that they may play an important role in the biogeochemistry process in the Trench ecosystems.
Collapse
Affiliation(s)
- Jiahua Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yan Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Ying Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhe Xie
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Hongcai Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jie Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Tianqiang Bao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Congwen Sun
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Bilin Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Xiao W, Ji H, Huang G. Geochemical characteristics and implications of hydrocarbon in source rocks of Chagan Sag, Yin'e basin of Inner Mongolia. Heliyon 2023; 9:e13973. [PMID: 36873467 PMCID: PMC9982611 DOI: 10.1016/j.heliyon.2023.e13973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023] Open
Abstract
Chagan Sag is one of the most significant tectonic unit in the Yin'e Basin. The special component of the organic macerals and biomarkers in the Chagan sag suggests great difference of its hydrocarbon generation process. In this paper, forty samples of source rocks are subjected to carry out on the geochemical characteristics by methods of rock-eval analysis, organic petrology and gas chromatography mass spectrometry (GC-MS) to reveal the origin, depositional environment and maturity of organic matter in Chagan Sag, Yin'e Basin of Inner Mongolia. The total organic matter of the analyzed samples ranges from 0.4 wt%∼3.89 wt% with an average of 1.12 wt%, indicating fair to excellent hydrocarbon generation potential. The rock-eval results show that the S1+S2 and hydrocarbon index range from 0.03 mg/g∼16.34 mg/g (avg.3.6 mg/g) and 6.24-521.32 mg/g (avg. 199.63 mg/g), suggesting most of the kerogen types are type II and III, with small amount of type I. The Tmax ranges from 428 to 496 °C, suggesting low mature to mature stage. The macerals component of morphological macerals presents with certain amount of vitrinite, liptinite and some inertinite. However, the amorphous component takes the dominant part of the macerals with account of 50%-80%. The amorphous components are dominated by sapropelite in the source rock, indicating bacteriolytic amorphous promote the organic generation process. Hopanes and sterane are widely distributed in the source rocks. The biomarker results suggest a mix of planktonic-bacterial and higher plant origins, with wide range of thermal maturity and relatively reducing depositional environment. Abnormal high content of hopanes were observed in the biomarkers, and some special biomarkers such as monomethylalkanes, long-chain-alkyl naphthalenes, aromatized de A-triterpenes, 8,14-seco-triterpenes, and A, B-cyclostane are detected in Chagan Sag. The presence of these compounds suggests that bacterial and microorganisms are of great significance to the generation of hydrocarbon in the source rock in Chagan Sag.
Collapse
Affiliation(s)
- Wenjie Xiao
- College of Science, Guangdong University of Petrochemical Technology, Maoming Guangdong 525000, China
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China
| | - Hong Ji
- College of Science, Guangdong University of Petrochemical Technology, Maoming Guangdong 525000, China
- Corresponding author.
| | - Guanghui Huang
- College of Resources and Environment, Yangtze University, Wuhan 430100, Hubei, China
- Corresponding author.
| |
Collapse
|
33
|
Kim GB, Choi SY, Cho IJ, Ahn DH, Lee SY. Metabolic engineering for sustainability and health. Trends Biotechnol 2023; 41:425-451. [PMID: 36635195 DOI: 10.1016/j.tibtech.2022.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Bio-based production of chemicals and materials has attracted much attention due to the urgent need to establish sustainability and enhance human health. Metabolic engineering (ME) allows purposeful modification of cellular metabolic, regulatory, and signaling networks to achieve enhanced production of desired chemicals and degradation of environmentally harmful chemicals. ME has significantly progressed over the past 30 years through further integration of the strategies of synthetic biology, systems biology, evolutionary engineering, and data science aided by artificial intelligence. Here we review the field of ME from its emergence to the current state-of-the-art, highlighting its contribution to sustainable production of chemicals, health, and the environment through representative examples. Future challenges of ME and perspectives are also discussed.
Collapse
Affiliation(s)
- Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Da-Hee Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
34
|
Liu Y, Chen S, Xie Z, Zhang L, Wang J, Fang J. Influence of Extremely High Pressure and Oxygen on Hydrocarbon-Enriched Microbial Communities in Sediments from the Challenger Deep, Mariana Trench. Microorganisms 2023; 11:microorganisms11030630. [PMID: 36985204 PMCID: PMC10052102 DOI: 10.3390/microorganisms11030630] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Recent studies reported that highly abundant alkane content exists in the ~11,000 m sediment of the Mariana Trench, and a few key alkane-degrading bacteria were identified in the Mariana Trench. At present, most of the studies on microbes for degrading hydrocarbons were performed mainly at atmospheric pressure (0.1 MPa) and room temperature; little is known about which microbes could be enriched with the addition of n-alkanes under in-situ environmental pressure and temperature conditions in the hadal zone. In this study, we conducted microbial enrichments of sediment from the Mariana Trench with short-chain (SCAs, C7–C17) or long-chain (LCAs, C18–C36) n-alkanes and incubated them at 0.1 MPa/100 MPa and 4 °C under aerobic or anaerobic conditions for 150 days. Microbial diversity analysis showed that a higher microbial diversity was observed at 100 MPa than at 0.1 MPa, irrespective of whether SCAs or LCAs were added. Non-metric multidimensional scaling (nMDS) and hierarchical cluster analysis revealed that different microbial clusters were formed according to hydrostatic pressure and oxygen. Significantly different microbial communities were formed according to pressure or oxygen (p < 0.05). For example, Gammaproteobacteria (Thalassolituus) were the most abundant anaerobic n-alkanes-enriched microbes at 0.1 MPa, whereas the microbial communities shifted to dominance by Gammaproteobacteria (Idiomarina, Halomonas, and Methylophaga) and Bacteroidetes (Arenibacter) at 100 MPa. Compared to the anaerobic treatments, Actinobacteria (Microbacterium) and Alphaproteobacteria (Sulfitobacter and Phenylobacterium) were the most abundant groups with the addition of hydrocarbon under aerobic conditions at 100 MPa. Our results revealed that unique n-alkane-enriched microorganisms were present in the deepest sediment of the Mariana Trench, which may imply that extremely high hydrostatic pressure (100 MPa) and oxygen dramatically affected the processes of microbial-mediated alkane utilization.
Collapse
Affiliation(s)
- Ying Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai 200120, China
| | - Songze Chen
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518000, China
| | - Zhe Xie
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai 200120, China
| | - Li Zhang
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai 200120, China
| | - Jiahua Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai 200120, China
- Correspondence: (J.W.); (J.F.)
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai 200120, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813, USA
- Correspondence: (J.W.); (J.F.)
| |
Collapse
|
35
|
Amaneesh C, Anna Balan S, Silpa PS, Kim JW, Greeshma K, Aswathi Mohan A, Robert Antony A, Grossart HP, Kim HS, Ramanan R. Gross Negligence: Impacts of Microplastics and Plastic Leachates on Phytoplankton Community and Ecosystem Dynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5-24. [PMID: 36534053 DOI: 10.1021/acs.est.2c05817] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plastic debris is an established environmental menace affecting aquatic systems globally. Recently, microplastics (MP) and plastic leachates (PL) have been detected in vital human organs, the vascular system, and in vitro animal studies positing severe health hazards. MP and PL have been found in every conceivable aquatic ecosystem─from open oceans and deep sea floors to supposedly pristine glacier lakes and snow covered mountain catchment sites. Many studies have documented the MP and PL impacts on a variety of aquatic organisms, whereby some exclusively focus on aquatic microorganisms. Yet, the specific MP and PL impacts on primary producers have not been systematically analyzed. Therefore, this review focuses on the threats posed by MP, PL, and associated chemicals on phytoplankton, their comprehensive impacts at organismal, community, and ecosystem scales, and their endogenous amelioration. Studies on MP- and PL-impacted individual phytoplankton species reveal the production of reactive oxygen species, lipid peroxidation, physical damage of thylakoids, and other physiological and metabolic changes, followed by homo- and heteroaggregations, ultimately eventuating in decreased photosynthesis and primary productivity. Likewise, analyses of the microbial community in the plastisphere show a radically different profile compared to the surrounding planktonic diversity. The plastisphere also enriches multidrug-resistant bacteria, cyanotoxins, and pollutants, accelerating microbial succession, changing the microbiome, and thus, affecting phytoplankton diversity and evolution. These impacts on cellular and community scales manifest in changed ecosystem dynamics with widespread bottom-up and top-down effects on aquatic biodiversity and food web interactions. These adverse effects─through altered nutrient cycling─have "knock-on" impacts on biogeochemical cycles and greenhouse gases. Consequently, these impacts affect provisioning and regulating ecosystem services. Our citation network analyses (CNA) further demonstrate dire effects of MP and PL on all trophic levels, thereby unsettling ecosystem stability and services. CNA points to several emerging nodes indicating combined toxicity of MP, PL, and their associated hazards on phytoplankton. Taken together, our study shows that ecotoxicity of plastic particles and their leachates have placed primary producers and some aquatic ecosystems in peril.
Collapse
Affiliation(s)
- C Amaneesh
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Shankari Anna Balan
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford, Oxfordshire OX10 8BB, United Kingdom
- Wageningen University & Research, P.O. Box 8000, 6700 EA, Wageningen, Netherlands
| | - P S Silpa
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Ji Won Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Kozhumal Greeshma
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - A Aswathi Mohan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Aiswarya Robert Antony
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Plankton and Microbial Ecology, 12587 Berlin, Germany
- Potsdam University, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), 34113, Daejeon, Republic of Korea
| | - Rishiram Ramanan
- Sustainable Resources Laboratory, Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Centre for Policy Research & Governance, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, Kerala 671316, India
| |
Collapse
|
36
|
Dong C, Wei L, Wang J, Lai Q, Huang Z, Shao Z. Genome-based taxonomic rearrangement of Oceanobacter-related bacteria including the description of Thalassolituus hydrocarbonoclasticus sp. nov. and Thalassolituus pacificus sp. nov. and emended description of the genus Thalassolituus. Front Microbiol 2022; 13:1051202. [PMID: 36605514 PMCID: PMC9807766 DOI: 10.3389/fmicb.2022.1051202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Oceanobacter-related bacteria (ORB) are a group of oligotrophic marine bacteria play an underappreciated role in carbon cycling. They have been frequently described as one of the dominant bacterial groups with a wide distribution in coastal and deep seawater of global oceans. To clarify their taxonomic affiliation in relation to alkane utilization, phylogenomic and comparative genomics analyses were performed based on currently available genomes from GenBank and four newly isolated strains, in addition to phenotypic and chemotaxonomic characteristics. Consistently, phylogenomic analysis robustly separated them into two groups, which are accordingly hydrocarbon-degrading (HD, Thalassolituus and Oleibacter) and non-HD (NHD, Oceanobacter). In addition, the two groups can also be readily distinguished by several polyphasic taxonomic characteristics. Furthermore, both AAI and POCP genomic indices within the HD group support the conclusion that the members of the genus Oleibacter should be transferred into the genus Thalassolituus. Moreover, HD and NHD bacteria differed significantly in terms of genome size, G + C content and genes involved in alkane utilization. All HD bacteria contain the key gene alkB encoding an alkane monooxygenase, which can be used as a marker gene to distinguish the members of closely related genera Oceanobacter and Thalassolituus. Pangenome analysis revealed that the larger accessory genome may endow Thalassolituus with the flexibility to cope with the dynamics of marine environments and thrive therein, although they possess smaller pan, core- and unique-genomes than Oceanobacter. Within the HD group, twelve species were clearly distinguished from each other by both dDDH and ANI genomic indices, including two novel species represented by the newly isolated strains alknpb1M-1 T and 59MF3M-4 T , for which the names Thalassolituus hydrocarbonoclasticus sp. nov. and Thalassolituus pacificus sp. nov. are proposed. Collectively, these findings build a phylogenetic framework for the ORB and contribute to understanding of their role in marine carbon cycling.
Collapse
Affiliation(s)
- Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Lin Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Jianning Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China
| | - Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China,State Key Laboratory Breeding Base of Marine Genetic Resources, Xiamen, China,Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen, China,*Correspondence: Zongze Shao,
| |
Collapse
|
37
|
Cao Y, Zhang B, Cai Q, Zhu Z, Liu B, Dong G, Greer CW, Lee K, Chen B. Responses of Alcanivorax species to marine alkanes and polyhydroxybutyrate plastic pollution: Importance of the ocean hydrocarbon cycles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120177. [PMID: 36116568 DOI: 10.1016/j.envpol.2022.120177] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Understanding microbial responses to hydrocarbon and plastic pollution are crucial for limiting the detrimental impacts of environmental contaminants on marine ecosystems. Herein, we reported a new Alcanivorax species isolated from the North Atlantic Ocean capable of degrading alkanes and polyhydroxybutyrate (PHB) plastic (one of the emerging bioplastics that may capture the future plastic market). The whole-genome sequencing showed that the species harbors three types of alkane 1-monooxygenases (AlkB) and one PHB depolymerase (PhaZ) to initiate the degradation of alkanes and plastics. Growth profiling demonstrated that n-pentadecane (C15, the main alkane in the marine environment due to cyanobacterial production other than oil spills) and PHB could serve as preferential carbon sources. However, the cell membrane composition, PhaZ activity, and expression of three alkB genes were utterly different when grown on C15 and PHB. Further, Alcanivorax was a well-recognized alkane-degrader that participated in the ocean hydrocarbon cycles linking with hydrocarbon production and removal. Our discovery supported that the existing biogeochemical processes may add to the marine ecosystem's resilience to the impacts of plastics.
Collapse
Affiliation(s)
- Yiqi Cao
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Qinhong Cai
- Gaia Refinery, Saint John, NB E2J 2E7, Canada
| | - Zhiwen Zhu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Bo Liu
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Bing Chen
- Northern Region Persistent Organic Pollutant Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
38
|
Lyu L, Li J, Chen Y, Mai Z, Wang L, Li Q, Zhang S. Degradation potential of alkanes by diverse oil-degrading bacteria from deep-sea sediments of Haima cold seep areas, South China Sea. Front Microbiol 2022; 13:920067. [PMID: 36338091 PMCID: PMC9626528 DOI: 10.3389/fmicb.2022.920067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Marine oil spills are a significant concern worldwide, destroying the ecological environment and threatening the survival of marine life. Various oil-degrading bacteria have been widely reported in marine environments in response to marine oil pollution. However, little information is known about culturable oil-degrading bacteria in cold seep of the deep-sea environments, which are rich in hydrocarbons. This study enriched five oil-degrading consortia from sediments collected from the Haima cold seep areas of the South China Sea. Parvibaculum, Erythrobacter, Acinetobacter, Alcanivorax, Pseudomonas, Marinobacter, Halomonas, and Idiomarina were the dominant genera. Further results of bacterial growth and degradation ability tests indicated seven efficient alkane-degrading bacteria belonging to Acinetobacter, Alcanivorax, Kangiella, Limimaricola, Marinobacter, Flavobacterium, and Paracoccus, whose degradation rates were higher in crude oil (70.3–78.0%) than that in diesel oil (62.7–66.3%). From the view of carbon chain length, alkane degradation rates were medium chains > long chains > short chains. In addition, Kangiella aquimarina F7, Acinetobacter venetianus F1, Limimaricola variabilis F8, Marinobacter nauticus J5, Flavobacterium sediminis N3, and Paracoccus sediminilitoris N6 were first identified as oil-degrading bacteria from deep-sea environments. This study will provide insight into the bacterial community structures and oil-degrading bacterial diversity in the Haima cold seep areas, South China Sea, and offer bacterial resources to oil bioremediation applications.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Lina Lyu,
| | - Jie Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yu Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Zhimao Mai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qiqi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- *Correspondence: Si Zhang,
| |
Collapse
|
39
|
Somee MR, Amoozegar MA, Dastgheib SMM, Shavandi M, Maman LG, Bertilsson S, Mehrshad M. Genome-resolved analyses show an extensive diversification in key aerobic hydrocarbon-degrading enzymes across bacteria and archaea. BMC Genomics 2022; 23:690. [PMID: 36203131 PMCID: PMC9535955 DOI: 10.1186/s12864-022-08906-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hydrocarbons (HCs) are organic compounds composed solely of carbon and hydrogen that are mainly accumulated in oil reservoirs. As the introduction of all classes of hydrocarbons including crude oil and oil products into the environment has increased significantly, oil pollution has become a global ecological problem. However, our perception of pathways for biotic degradation of major HCs and key enzymes in these bioconversion processes has mainly been based on cultured microbes and is biased by uneven taxonomic representation. Here we used Annotree to provide a gene-centric view of the aerobic degradation ability of aliphatic and aromatic HCs in 23,446 genomes from 123 bacterial and 14 archaeal phyla. Results Apart from the widespread genetic potential for HC degradation in Proteobacteria, Actinobacteriota, Bacteroidota, and Firmicutes, genomes from an additional 18 bacterial and 3 archaeal phyla also hosted key HC degrading enzymes. Among these, such degradation potential has not been previously reported for representatives in the phyla UBA8248, Tectomicrobia, SAR324, and Eremiobacterota. Genomes containing whole pathways for complete degradation of HCs were only detected in Proteobacteria and Actinobacteriota. Except for several members of Crenarchaeota, Halobacterota, and Nanoarchaeota that have tmoA, ladA, and alkB/M key genes, respectively, representatives of archaeal genomes made a small contribution to HC degradation. None of the screened archaeal genomes coded for complete HC degradation pathways studied here; however, they contribute significantly to peripheral routes of HC degradation with bacteria. Conclusion Phylogeny reconstruction showed that the reservoir of key aerobic hydrocarbon-degrading enzymes in Bacteria and Archaea undergoes extensive diversification via gene duplication and horizontal gene transfer. This diversification could potentially enable microbes to rapidly adapt to novel and manufactured HCs that reach the environment. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08906-w.
Collapse
Affiliation(s)
- Maryam Rezaei Somee
- Extremophile Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophile Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Mahmoud Shavandi
- Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Leila Ghanbari Maman
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden
| | - Maliheh Mehrshad
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, 75007, Uppsala, Sweden.
| |
Collapse
|
40
|
Hu Z, Chen Y, Lai Q, Yu Z, Shao Z, Dong C. Zavarzinia marina sp. nov., a novel hydrocarbon-degrading bacterium isolated from deep chlorophyll maximum layer seawater of the West Pacific Ocean and emended description of the genus Zavarzinia. Int J Syst Evol Microbiol 2022; 72. [PMID: 36251753 DOI: 10.1099/ijsem.0.005527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
A Gram-stain-negative, motile, non-spore-forming, strictly aerobic and rod-shaped bacterial strain, Adcm-6AT, was isolated from a seawater sample collected from the deep chlorophyll maximum layer in the West Pacific Ocean. Strain Adcm-6AT grew at 20-37 °C (optimum, 28-32 °C), at pH 6-11 (pH 7) and in the presence of 0-6 % (1-2 %) NaCl (w/v). Phylogenetic analysis based on 16S rRNA gene sequences indicated that it belonged to the genus Zavarzinia and had 97.7 and 96.9 % sequence similarity to Zavarzinia compransoris DSM 1231T and Zavarzinia aquatilis JCM 32263T, respectively. Digital DNA-DNA hybridization and average nucleotide identity values between strain Adcm-6AT and the two type strains were 22.2-22.9 % and 79.7-80.4 %, respectively. The principal fatty acids were C19:0 cyclo ω8c, summed feature 8 (C18:1 ω6c and/or C18:1 ω7c) and C16:0. The predominant respiratory quinone was Q-10. The polar lipids were diphosphatidylglycerol, two phosphatidylethanolamines, two phosphatidyglycerols and an unidentified lipid. The genomic DNA G+C content of strain Adcm-6AT was 67.7 %. Based on phylogenetic analysis and genomic-based relatedness indices, as well as phenotypic and genotypic characteristics, strain Adcm-6AT represents a novel species within the genus Zavarzinia, for which the name Zavarzinia marina sp. nov. is proposed. The type strain is Adcm-6AT (=MCCC M24951T=KCTC 82849T).
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Yongqing Chen
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Qiliang Lai
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Ziquan Yu
- College of Life Sciences, Hunan Normal University, Changsha 410081, PR China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China; State Key Laboratory Breeding Base of Marine Genetic Resources; Key Laboratory of Marine Genetic Resources of Fujian Province, Xiamen 361005, PR China
| |
Collapse
|
41
|
Zadjelovic V, Erni-Cassola G, Obrador-Viel T, Lester D, Eley Y, Gibson MI, Dorador C, Golyshin PN, Black S, Wellington EMH, Christie-Oleza JA. A mechanistic understanding of polyethylene biodegradation by the marine bacterium Alcanivorax. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129278. [PMID: 35739790 DOI: 10.1016/j.jhazmat.2022.129278] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Polyethylene (PE) is one of the most recalcitrant carbon-based synthetic materials produced and, currently, the most ubiquitous plastic pollutant found in nature. Over time, combined abiotic and biotic processes are thought to eventually breakdown PE. Despite limited evidence of biological PE degradation and speculation that hydrocarbon-degrading bacteria found within the plastisphere is an indication of biodegradation, there is no clear mechanistic understanding of the process. Here, using high-throughput proteomics, we investigated the molecular processes that take place in the hydrocarbon-degrading marine bacterium Alcanivorax sp. 24 when grown in the presence of low density PE (LDPE). As well as efficiently utilising and assimilating the leachate of weathered LDPE, the bacterium was able to reduce the molecular weight distribution (Mw from 122 to 83 kg/mol) and overall mass of pristine LDPE films (0.9 % after 34 days of incubation). Most interestingly, Alcanivorax acquired the isotopic signature of the pristine plastic and induced an extensive array of metabolic pathways for aliphatic compound degradation. Presumably, the primary biodegradation of LDPE by Alcanivorax sp. 24 is possible via the production of extracellular reactive oxygen species as observed both by the material's surface oxidation and the measurement of superoxide in the culture with LDPE. Our findings confirm that hydrocarbon-biodegrading bacteria within the plastisphere may in fact have a role in degrading PE.
Collapse
Affiliation(s)
- Vinko Zadjelovic
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Gabriel Erni-Cassola
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; Program Man-Society-Environment (MGU), University of Basel, 4051 Basel, Switzerland
| | - Theo Obrador-Viel
- Department of Biology, University of the Balearic Islands, Palma 07122, Spain
| | - Daniel Lester
- Polymer Characterisation Research Technology Platform, University of Warwick, Coventry CV4 7AL, UK
| | - Yvette Eley
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Matthew I Gibson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Chile; Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta Angamos 601, Antofagasta, Chile; Centre for Biotechnology & Bioengineering (CeBiB) Santiago, Chile
| | - Peter N Golyshin
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - Stuart Black
- Department of Geography and Environmental Science, University of Reading, UK
| | | | - Joseph A Christie-Oleza
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; Department of Biology, University of the Balearic Islands, Palma 07122, Spain.
| |
Collapse
|
42
|
Kim T, Lee C, Lee J, Bae H, Noh J, Hong S, Kwon BO, Kim JJ, Yim UH, Chang GS, Giesy JP, Khim JS. Best available technique for the recovery of marine benthic communities in a gravel shore after the oil spill: A mesocosm-based sediment triad assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128945. [PMID: 35500340 DOI: 10.1016/j.jhazmat.2022.128945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Ecotoxicological effects of spilled oils are well documented, but study of recovery of marine benthic communities is limited. Long-term recovery of hard bottom communities during physical and biological remediations after a spill was monitored. A 60-day experiment was conducted using a mesocosm with monitoring of eight endpoints by use of the sediment quality triad (SQT). First, physical treatment of hot water + high pressure flushing maximally removed residual oils (max=93%), showing the greatest recovery among SQT variables (mean=72%). Physical cleanup generally involved adverse effects such as depression of the microphytobenthic community during the initial period. Next, biological treatments, such as fertilizer, emulsifier, enzyme and augmentation of the microbes, all facilitated removal of oil (max=66%) enhancing ecological recovery. Analysis of the microbiome confirmed that oil-degrading bacteria, such as Dietzia sp. and Rosevarius sp. were present. A mixed bioremediation, including fertilizer + multi-enzyme + microbes (FMeM) maximized efficacy of remediation as indicated by SQT parameters (mean=47%). Natural attenuation with "no treatment" showed comparable recovery to other remediations. Considering economic availability, environmental performance, and technical applicability, of currently available techniques, combined treatments of physical removal via hand wiping followed by FMeM could be most effective for recovery of the rocky shore benthic community.
Collapse
Affiliation(s)
- Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanna Bae
- GeoSystem Research Corporation, Gunpo 15807, Republic of Korea
| | - Junsung Noh
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Jae-Jin Kim
- Division of Environmental Science & Ecological Engineering, College of Life Science & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Un Hyuk Yim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Gap Soo Chang
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N5E2, Canada
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan,Saskatoon, SK S7N5B3, Canada; Environmental Sciences Department, Baylor University, Waco, TX 76798-7266, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
43
|
|
44
|
|
45
|
Perczyk P, Broniatowski M. Membrane composition and successful bioaugmentation. Studies of the interactions of model thylakoid and plasma cyanobacterial and bacterial membranes with fungal membrane-lytic enzyme Lecitase ultra. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183888. [PMID: 35189110 DOI: 10.1016/j.bbamem.2022.183888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Cyanobacterial/bacterial consortia are frequently inoculated to soils to increase the soil fertility and to accelerate the biodegradation of organic pollutants. Moreover, such consortia can also be successfully applied in landfills especially for the biodegradation of plastic wastes. However, the bioaugmentation techniques turn out frequently inefficient due to the competition of the indigenous microorganisms attacking directly these inoculated or secreting to their surroundings cell wall and membrane-lytic enzymes. It can be hypothesized that the resistance of the microbial membrane to the enzymatic degradation is correlated with its lipid composition. To verify this hypothesis glycolipid and phospholipid Langmuir monolayers were applied as models of thylakoid and plasma cyanobacterial and bacterial membranes. Hybrid fungal enzyme Lecitase ultra joining the activity of lipase and phospholipase A1 was applied as the model of fungal membrane-lytic enzyme. It turned out that anionic thylakoid lipids sulfoquinovosyldiacylglycerol and phosphatidylglycerols were the main targets of Lecitase ultra in the model multicomponent thylakoid membranes. The resistance of the model plasma bacterial membranes to enzymatic degradation depended significantly to their composition. The resistance increased generally when the unsaturated lipids were exchanged to their saturated counterparts. However, most resistant turned out the membranes composed of unsaturated phosphatidylamine and saturated anionic phospholipids.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, The Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, The Jagiellonian University in Krakow, Gronostajowa 2, 30-387 Kraków, Poland..
| |
Collapse
|
46
|
Yang P, Hao S, Han M, Xu J, Yu S, Chen C, Zhang H, Ning K. Analysis of antibiotic resistance genes reveals their important roles in influencing the community structure of ocean microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153731. [PMID: 35143795 DOI: 10.1016/j.scitotenv.2022.153731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/30/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance gene (ARG) content is a well-established driver of microbial abundance and diversity in an environment. By reanalyzing 132 metagenomic datasets from the Tara Oceans project, we aim to unveil the associations between environmental factors, the ocean microbial community structure and ARG contents. We first investigated the structural patterns of microbial communities including both prokaryotes such as bacteria and eukaryotes such as protists. Additionally, several ARG-dominant horizontal gene transfer events between Protist and Prokaryote have been identified, indicating the potential roles of ARG in shaping the ocean microbial communities. For a deeper insight into the role of ARGs in ocean microbial communities on a global scale, we identified 1926 unique types of ARGs and discovered that the ARGs are more abundant and diverse in the mesopelagic zone than other water layers, potentially caused by limited resources. Finally, we found that ARG-enriched genera were often more abundant compared to their ARG-less neighbors in the same environment (e.g. coastal oceans). A deeper understanding of the ARG-microbiome relationships could help in the conservation of the oceanic ecosystem.
Collapse
Affiliation(s)
- Pengshuo Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shiguang Hao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Maozhen Han
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Junjie Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shaojun Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chaoyun Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Houjin Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Kang Ning
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
47
|
Genomic Evidence for the Recycling of Complex Organic Carbon by Novel
Thermoplasmatota
Clades in Deep-Sea Sediments. mSystems 2022; 7:e0007722. [PMID: 35430893 PMCID: PMC9239135 DOI: 10.1128/msystems.00077-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Thermoplasmatota have been widely reported in a variety of ecosystems, but their distribution and ecological role in marine sediments are still elusive. Here, we obtained four draft genomes affiliated with the former RBG-16-68-12 clade, which is now considered a new order, “Candidatus Yaplasmales,” of the Thermoplasmatota phylum in sediments from the South China Sea. The phylogenetic trees based on the 16S rRNA genes and draft genomes showed that “Ca. Yaplasmales” archaea are composed of three clades: A, B, and C. Among them, clades A and B are abundantly distributed (up to 10.86%) in the marine anoxic sediment layers (>10-cm depth) of six of eight cores from 1,200- to 3,400-m depths. Metabolic pathway reconstructions indicated that all clades of “Ca. Yaplasmales” have the capacity for alkane degradation by predicted alkyl-succinate synthase. Clade A of “Ca. Yaplasmales” might be mixotrophic microorganisms for the identification of the complete Wood-Ljungdahl pathway and putative genes involved in the degradation of aromatic and halogenated organic compounds. Clades B and C were likely heterotrophic, especially with the potential capacity of the spermidine/putrescine and aromatic compound degradation, as suggested by a significant negative correlation between the concentrations of aromatic compounds and the relative abundances of clade B. The sulfide-quinone oxidoreductase and pyrophosphate-energized membrane proton pump were encoded by all genomes of “Ca. Yaplasmales,” serving as adaptive strategies for energy production. These findings suggest that “Ca. Yaplasmales” might synergistically transform benthic pollutant and detrital organic matter, possibly playing a vital role in the marine and terrestrial sedimentary carbon cycle. IMPORTANCE Deep oceans receive large amounts of complex organic carbon and anthropogenic pollutants. The deep-sea sediments of the continental slopes serve as the biggest carbon sink on Earth. Particulate organic carbons and detrital proteins accumulate in the sediment. The microbially mediated recycling of complex organic carbon is still largely unknown, which is an important question for carbon budget in global oceans and maintenance of the deep-sea ecosystem. In this study, we report the prevalence (up to 10.86% of the microbial community) of archaea from a novel order of Thermoplasmatota, “Ca. Yaplasmales,” in six of eight cores from 1,200- to 3,400-m depths in the South China Sea. We provide genomic evidence of “Ca. Yaplasmales” in the anaerobic microbial degradation of alkanes, aliphatic and monoaromatic hydrocarbons, and halogenated organic compounds. Our study identifies the key archaeal players in anoxic marine sediments, which are probably critical in recycling the complex organic carbon in global oceans.
Collapse
|
48
|
Song J, Beule L, Jongmans-Hochschulz E, Wichels A, Gerdts G. The travelling particles: community dynamics of biofilms on microplastics transferred along a salinity gradient. ISME COMMUNICATIONS 2022; 2:35. [PMID: 37938248 PMCID: PMC9723596 DOI: 10.1038/s43705-022-00117-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 05/28/2023]
Abstract
Microplastics (MP), as novel substrata for microbial colonization within aquatic ecosystems, are a matter of growing concern due to their potential to propagate foreign or invasive species across different environments. MP are known to harbour a diversity of microorganisms, yet little is understood of the dynamics of their biofilms and their capacity to successfully displace these microorganisms across different aquatic ecosystems typically marked by steep salinity gradients. To address this, we performed an in situ sequential incubation experiment to simulate MP transport from riverine to coastal seawaters using synthetic (high-density polyethylene, HDPE and tyre wear, TW) and natural (Wood) substrata. Bacterial communities on incubated particles were compared to each other as well as to those in surrounding waters, and their dynamics along the gradient investigated. All communities differed significantly from each other in their overall structure along the salinity gradient and were shaped by different ecological processes. While HDPE communities were governed by environmental selection, those on TW and Wood were dominated by stochastic events of dispersal and drift. Upon transfer into coastal seawaters, an almost complete turnover was observed among HDPE and TW communities. While synthetic particles displaced a minor proportion of communities across the salinity gradient, some of these comprised putatively pathogenic and resistant taxa. Our findings present an extensive assessment of MP biofilms and their dynamics upon displacement across different aquatic systems, presenting new insights into the role of MP as transport vectors.
Collapse
Affiliation(s)
- Jessica Song
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany.
| | - Lukas Beule
- Julius Kühn Institute-Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Königin-Luise-Strasse 19, 14195, Berlin, Germany
| | - Elanor Jongmans-Hochschulz
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| | - Antje Wichels
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| | - Gunnar Gerdts
- Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27498, Helgoland, Germany
| |
Collapse
|
49
|
Cui Z, Luan X, Li S, Li Y, Bian X, Li G, Wei Q, Ran X, Bao M, Valentine DL. Occurrence and distribution of cyclic-alkane-consuming psychrophilic bacteria in the Yellow Sea and East China Sea. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128129. [PMID: 34991007 DOI: 10.1016/j.jhazmat.2021.128129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Cyclic alkanes (c-alkanes) are toxic compounds that are abundant in subsurface oil reservoirs and spilled condensate; hence, their environmental risk is significant. Although numerous studies have focused on the decomposition of other compound classes, e.g., acyclic alkanes and aromatic hydrocarbons, very little is known about the biodegradation of c-alkanes in the marine environment. Here, we enriched methylcyclohexane (MCH)-degrading bacteria derived from the cold bottom water (10-20 °C) of China's marginal seas in summer and characterized the changes to the bacterial community using high-throughput amplicon sequencing. MCH-consuming bacteria failed to grow from the warmer surface water (25-29 °C) in the same geographic sites and seasons. Notably, MCH-consuming communities derived from the cold bottom water in the Yellow Sea exhibit distinct structures compared to the other treatments. Furthermore, almost all dominant species in this setting appear to be specifically adapted to deeper cold water as indicated by significantly negative correlations to temperature (P < 0.01). From these results, we proposed that the biodegradation of MCH is effectively limited to the colder waters (10-20 °C) of China's marginal seas, with uncultured psychrophiles acting as the key taxa for MCH decomposition. Overall, this study indicates key functions for uncultivated microbes in the marine environment.
Collapse
Affiliation(s)
- Zhisong Cui
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China.
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Shujun Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Yingchao Li
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Xinqi Bian
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Guoqing Li
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Qinsheng Wei
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Xiangbin Ran
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
50
|
Khot V, Zorz J, Gittins DA, Chakraborty A, Bell E, Bautista MA, Paquette AJ, Hawley AK, Novotnik B, Hubert CRJ, Strous M, Bhatnagar S. CANT-HYD: A Curated Database of Phylogeny-Derived Hidden Markov Models for Annotation of Marker Genes Involved in Hydrocarbon Degradation. Front Microbiol 2022; 12:764058. [PMID: 35069469 PMCID: PMC8767102 DOI: 10.3389/fmicb.2021.764058] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/08/2021] [Indexed: 02/04/2023] Open
Abstract
Many pathways for hydrocarbon degradation have been discovered, yet there are no dedicated tools to identify and predict the hydrocarbon degradation potential of microbial genomes and metagenomes. Here we present the Calgary approach to ANnoTating HYDrocarbon degradation genes (CANT-HYD), a database of 37 HMMs of marker genes involved in anaerobic and aerobic degradation pathways of aliphatic and aromatic hydrocarbons. Using this database, we identify understudied or overlooked hydrocarbon degradation potential in many phyla. We also demonstrate its application in analyzing high-throughput sequence data by predicting hydrocarbon utilization in large metagenomic datasets from diverse environments. CANT-HYD is available at https://github.com/dgittins/CANT-HYD-HydrocarbonBiodegradation.
Collapse
Affiliation(s)
- Varada Khot
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jackie Zorz
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Daniel A Gittins
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Anirban Chakraborty
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Emma Bell
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - María A Bautista
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Alexandre J Paquette
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Alyse K Hawley
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Breda Novotnik
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Casey R J Hubert
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Marc Strous
- Energy Bioengineering and Geomicrobiology Group, Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Srijak Bhatnagar
- Energy Bioengineering and Geomicrobiology Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|