1
|
Zhang M, Ren Q, Wu X, Liu M, Zhang L, Yuan Q, Lu N, Cao Y. Biocontrol potential of four Pseudomonas strains against tobacco black shank disease. Antonie Van Leeuwenhoek 2025; 118:83. [PMID: 40418409 DOI: 10.1007/s10482-025-02092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/02/2025] [Indexed: 05/27/2025]
Abstract
Tobacco black shank is a significant disease that poses a severe threat to tobacco production. To identify effective biocontrol agents for combating tobacco black shank disease, a screening of 39 putative Pseudomonas strains was conducted utilizing the plate confrontation assay. Four strains exhibiting inhibitory effects were selected and further evaluated for their disease control potential in pot trials. The effects of the strains on the growth of tobacco seedlings were detected using the root-irrigation method. The results demonstrated that four Pseudomonas strains exhibited significant inhibitory effects against tobacco black shank disease. The inhibition rates of strains YC2140, YC2090, YC2202, and Tr157 against P. nicotianae were determined to be 77.20%, 73.43%, 73.07%, and 32.46%, respectively. Pot trials showed that the biocontrol efficiency of Tr157, YC2090, YC2140, YC2202 against tobacco black shank disease was 96.30%, 66.67%, 62.96%, 62.96%, respectively. In addition, the strain Tr157 was found to be capable of producing indole-3-acetic acid (IAA). Meanwhile, Tr157, YC2140, and YC2202 demonstrated the ability to solubilize phosphorus, while all the four strains were capable of solubilizing potassium and producing siderophores. These strains also promoted tobacco growth increasing the total fresh weight by 146.33%, 153.21%, 87.16% and 239.91%, respectively. Overall, this study underscores the potential of the four Pseudomonas strains as effective biocontrol agents against tobacco black shank disease, offering an eco-friendly and sustainable alternative to chemical fungicides in agriculture.
Collapse
Affiliation(s)
- Mingya Zhang
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China
- College of Tobacco, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Quan Ren
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China
- School of Life Science, Yangtze University, Wuhan, 434023, Hubei, China
| | - Xiuqing Wu
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China
- College of Tobacco, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Meng Liu
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China
- School of Life Science, Yangtze University, Wuhan, 434023, Hubei, China
| | - Lin Zhang
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China
- College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qiong Yuan
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China
- College of Tobacco, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ning Lu
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China
| | - Yi Cao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China.
| |
Collapse
|
2
|
Quiñonero-Coronel MDM, Cabello-Yeves PJ, Haro-Moreno JM, Rodriguez-Valera F, Garcillán-Barcia MP. The type IV secretion system of Patescibacteria is homologous to the bacterial monoderm conjugation machinery. Microb Genom 2025; 11:001409. [PMID: 40408144 PMCID: PMC12102498 DOI: 10.1099/mgen.0.001409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 04/01/2025] [Indexed: 05/25/2025] Open
Abstract
The Candidate Phyla Radiation, also known as Patescibacteria, represents a vast and diverse division of bacteria that has come to light via culture-independent 'omics' technologies. Their limited biosynthetic capacity, along with evidence of their growth as obligate epibionts on other bacteria, suggests a broad reliance on host organisms for their survival. Nevertheless, our understanding of the molecular mechanisms governing their metabolism and lifestyle remains limited. The type IV secretion system (T4SS) represents a superfamily of translocation systems with a wide range of functional roles. T4SS genes have been identified in the Patescibacteria class Saccharimonadia as essential for their epibiotic growth. In this study, we used a comprehensive bioinformatics approach to investigate the diversity and distribution of T4SS within Patescibacteria. The phylogenetic analysis of the T4SS signature protein VirB4 suggests that most of these proteins cluster into a distinct monophyletic group with a shared ancestry to the MPFFATA class of T4SS. This class is found in the conjugative elements of Firmicutes, Actinobacteria, Tenericutes and Archaea, indicating a possible horizontal gene transfer from these monoderm micro-organisms to Patescibacteria. We identified additional T4SS components near virB4, particularly those associated with the MPFFATA class, as well as homologues of other T4SS classes, such as VirB2-like pilins, and observed their varied arrangements across different Patescibacteria classes. The absence of a relaxase in most of these T4SS clusters suggests that the system has been co-opted for other functions in Patescibacteria. The proximity of T4SS components to the origin of replication (gene dnaA) in some Patescibacteria suggests a potential mechanism for increased expression. The broad ubiquity of a phylogenetically distinct T4SS, combined with its chromosomal location, underscores the significance of T4SS in the biology of Patescibacteria.
Collapse
Affiliation(s)
- María del Mar Quiñonero-Coronel
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain
| | - Pedro J. Cabello-Yeves
- School of Life Sciences, University of Warwick, Coventry, UK
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Jose M. Haro-Moreno
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento Producción Vegetal y Microbiología, Universidad Miguel Hernández, Alicante, Spain
| | - M. Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas-Universidad de Cantabria, Santander, Spain
| |
Collapse
|
3
|
Sonam W, Liu Y, Ren L. Differentiation and Interconnection of the Bacterial Community Associated with Silene nigrescens Along the Soil-To-Plant Continuum in the Sub-Nival Belt of the Qiangyong Glacier. PLANTS (BASEL, SWITZERLAND) 2025; 14:1190. [PMID: 40284077 PMCID: PMC12030249 DOI: 10.3390/plants14081190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025]
Abstract
Plant microbiomes provide significant fitness advantages to their plant hosts, especially in the sub-nival belt. Studies to date have primarily focused on belowground communities in this region. Here, we utilized high-throughput DNA sequencing to quantify bacterial communities in the rhizosphere soil as well as in the root and leaf endosphere compartments of Silene nigrescens to uncover the differentiation and interconnections of these bacterial communities along the soil-to-plant continuum. Our findings reveal that the bacterial communities exhibit notable variation across different plant compartment niches: the rhizosphere soil, root endosphere, and leaf endosphere. There was a progressive decline in diversity, network complexity, network modularity, and niche breadth from the rhizosphere soil to the root endosphere, and further to the leaf endosphere. Conversely, both the host plant selection effect and the stability of these communities showed an increasing trend. Total nitrogen and total potassium emerged as crucial factors accounting for the observed differences in diversity and composition, respectively. Additionally, 3.6% of the total amplicon sequence variants (ASVs) were shared across the rhizosphere soil, root endosphere, and leaf endosphere. Source-tracking analysis further revealed bacterial community migration among these compartments. The genera Pseudomonas, IMCC26256, Mycobacterium, Phyllobacterium, and Sphingomonas constituted the core of the bacterial microbiome. These taxa are shared across all three compartment niches and function as key connector species. Notably, Pseudomonas stands out as the predominant taxon among these bacteria, with nitrogen being the most significant factor influencing its relative abundance. These findings deepen our understanding of the assembly principles and ecological dynamics of the plant microbiome in the sub-nival belt, offering an integrated framework for its study.
Collapse
Affiliation(s)
- Wangchen Sonam
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Luming Ren
- Nanning Garden Expo Park Management Center, Nanning Institute of Tropical Botany, Nanning 530299, China;
| |
Collapse
|
4
|
Tian R, Tian Y, Mi Q, Huang L. Histocytological analysis reveals the biocontrol activity of a rhizospheric bacterium Pseudomonas rhizophila Z98 against kiwifruit bacterial canker. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 208:106251. [PMID: 40015847 DOI: 10.1016/j.pestbp.2024.106251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 03/01/2025]
Abstract
Kiwifruit bacterial canker (KBC), caused by Pseudomonas syringae pv. actinidiae (Psa), poses a significant threat to the global kiwifruit industry. Currently, there is a scarcity of highly efficient biocontrol agents for the prevention and control of KBC, which limits the comprehensive management of the disease. This study investigates the biocontrol potential of P. rhizophila Z98, isolated from kiwifruit rhizosphere, which exhibits significant inhibitory effects on Psa. The in vitro leaf disc and vein assays demonstrated Z98's potent preventive effect, achieving a 98.89 % reduction in KBC and its ability to limit Psa's vascular spread. Microscopic analysis showed that Psa cells exposed to Z98 underwent significant morphological changes, including cell wall depressions, wrinkling, tumorous protrusions, and intracellular disruptions like cytoplasmic disintegration and vacuolization, culminating in cell death. These effects were were mirrored with Z98's fermentation broth crude extract, suggesting that Z98 combats Psa through the secretion of bioactive substances. Additionally, Z98 successfully colonizes kiwifruit tissues, achieving a biomass of 3.78 × 105 CFU·g-1 without compromising tissue integrity. Moreover, Z98 induces the upregulation of defense-related genes and callose deposition in kiwifruit, thereby activating plant immune responses. These findings elucidate the cellular mechanisms underlying the biocontrol effects of rhizosphere bacteria and offer a novel biological resource for managing bacterial canker in woody plants.
Collapse
Affiliation(s)
- Runze Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yujie Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qianqian Mi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Cheng Y, Zhang X, Zhang W, Dong J, Ma Y, Zhang A, Han F, Peng H, Kong W. Microbial Community Structure and Diversity of Endophytic Bacteria and Fungi in the Healthy and Diseased Roots of Angelica sinensis, and Identification of Pathogens Causing Root Rot. Microorganisms 2025; 13:417. [PMID: 40005782 PMCID: PMC11858288 DOI: 10.3390/microorganisms13020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Angelica sinensis (Oliv.) Diels is an important traditional Chinese herbal medicine, and its main medicinal part is the root. In recent years, root rot has become one of the bottlenecks hindering the healthy and green development of Angelica cultivation due to the inappropriate application of chemical fertilizers, pesticides, plant growth regulators, and continuous cropping. In this study, high-throughput sequencing technology was adopted to reveal the differences in the community structure and diversity of endophytic bacteria and fungi in the roots of healthy and diseased A. sinensis. The results showed that the diversity index of endophytic bacterial communities was significantly higher in healthy root than in diseased Angelica root systems. There was a significant difference in endophytic fungal community diversity only at the m1 sampling site. There was a significant difference in the β-diversity of bacterial communities, but not of fungi. In terms of community composition, Proteobacteria was the dominant phylum of bacteria, and Sphingobium and Pseudomonas were the dominant genera; Ascomycota and Basidiomycota were the dominant phyla of fungi, and Plectosphaerella, Paraphoma, and Fusarium were the dominant genera. In addition, the relative abundance of the genera Sphingobium and Pseudomonas was higher in healthy roots, while Fusarium was higher in diseased samples. Among the five pathogens isolated from diseased root, four strains were Fusarium sp., and one was Paraphoma chrysanthemicola, which is reported for the first time. Our findings indicate that the endophyte community structure of A. sinensis infected with root rot changed significantly compared with healthy plants, and Fusarium is an important pathogenic factor, which provides a valuable microbiological basis for the targeted biocontrol of Angelica root rot.
Collapse
Affiliation(s)
- Yaya Cheng
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Xiaoyun Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Wenwen Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Jianmei Dong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Yanjun Ma
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Aimei Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
| | - Fujun Han
- Institute of Forestry, Fruit and Flower, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (F.H.); (H.P.)
| | - Hai Peng
- Institute of Forestry, Fruit and Flower, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China; (F.H.); (H.P.)
| | - Weibao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou 730070, China; (Y.C.); (X.Z.); (W.Z.); (J.D.); (Y.M.); (A.Z.)
- Gansu Engineering Research Center of High Value-Added Utilization of Distinctive Agricultural Products, Lanzhou 730070, China
| |
Collapse
|
6
|
Romanov KA, O'Connor TJ. Legionella pneumophila, a Rosetta stone to understanding bacterial pathogenesis. J Bacteriol 2024; 206:e0032424. [PMID: 39636264 PMCID: PMC11656745 DOI: 10.1128/jb.00324-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Legionella pneumophila is an environmentally acquired pathogen that causes respiratory disease in humans. While the discovery of L. pneumophila is relatively recent compared to other bacterial pathogens, over the past 50 years, L. pneumophila has emerged as a powerhouse for studying host-pathogen interactions. In its natural habitat of fresh water, L. pneumophila interacts with a diverse array of protozoan hosts and readily evolve to expand their host range. This has led to the accumulation of the most extensive arsenal of secreted virulence factors described for a bacterial pathogen and their ability to infect humans. Within amoebae and human alveolar macrophages, the bacteria replicate within specialized membrane-bound compartments, establishing L. pneumophila as a model for studying intracellular vacuolar pathogens. In contrast, the virulence factors required for intracellular replication are specifically tailored to individual host cells types, allowing the pathogen to adapt to variation between disparate niches. The broad host range of this pathogen, combined with the extensive diversity and genome plasticity across the Legionella genus, has thus established this bacterium as an archetype to interrogate pathogen evolution, functional genomics, and ecology. In this review, we highlight the features of Legionella that establish them as a versatile model organism, new paradigms in bacteriology and bacterial pathogenesis resulting from the study of Legionella, as well as current and future questions that will undoubtedly expand our understanding of the complex and intricate biology of the microbial world.
Collapse
Affiliation(s)
- Katerina A. Romanov
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tamara J. O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Zhao Q, Wang R, Song Y, Lu J, Zhou B, Song F, Zhang L, Huang Q, Gong J, Lei J, Dong S, Gu Q, Borriss R, Gao X, Wu H. Pyoluteorin-deficient Pseudomonas protegens improves cooperation with Bacillus velezensis, biofilm formation, co-colonizing, and reshapes rhizosphere microbiome. NPJ Biofilms Microbiomes 2024; 10:145. [PMID: 39663366 PMCID: PMC11634903 DOI: 10.1038/s41522-024-00627-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024] Open
Abstract
Plant-beneficial Pseudomonas and Bacillus have been extensively studied and applied in biocontrol of plant diseases. However, there is less known about their interaction within two-strain synthetic communities (SynCom). Our study revealed that Pseudomonas protegens Pf-5 inhibits the growth of several Bacillus species, including Bacillus velezensis. We established a two-strain combination of Pf-5 and DMW1 to elucidate the interaction. In this combination, pyoluteorin conferred the competitive advantage of Pf-5. Noteworthy, pyoluteorin-deficient Pf-5 cooperated with DMW1 in biofilm formation, production of metabolites, root colonization, tomato bacterial wilt disease control, as well as in cooperation with beneficial bacteria in tomato rhizosphere, such as Bacillus spp. RNA-seq analysis and RT-qPCR also proved the pyoluteorin-deficient Pf-5 mutant improved cell motility and metabolite production. This study suggests that the cooperative effect of Bacillus-Pseudomonas consortia depends on the balance of pyoluteorin. Our finding needs to be considered in developing efficient SynCom in sustainable agriculture.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Ruoyi Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Yan Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Juan Lu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Bingjie Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Fang Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Lijuan Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Qianqian Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Jing Gong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Jingjing Lei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Qin Gu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China
| | - Rainer Borriss
- Institut für Biologie, Humboldt University Berlin, Berlin, Germany.
| | - Xuewen Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China.
| | - Huijun Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
8
|
Wang K, Wang Q, Hong L, Liu Y, Yang J, Asiegbu FO, Wu P, Huang L, Ma X. Distribution and characterization of endophytic and rhizosphere bacteriome of below-ground tissues in Chinese fir plantation. TREE PHYSIOLOGY 2024; 44:tpae137. [PMID: 39423250 DOI: 10.1093/treephys/tpae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Plantations of Chinese fir, a popular woody tree species, face sustainable issues, such as nutrient deficiency and increasing disease threat. Rhizosphere and endophytic bacteria play important roles in plants' nutrient absorption and stress alleviation. Our understanding of the microbiome structure and functions is proceeding rapidly in model plants and some crop species. Yet, the spatial distribution and functional patterns of the bacteriome for the woody trees remain largely unexplored. In this study, we collected rhizosphere soil, non-rhizosphere soil, fine root, thick root and primary root samples of Chinese fir and investigated the structure and distribution of bacteriome, as well as the beneficial effects of endophytic bacterial isolates. We discovered that Burkholderia and Paraburkholderia genera were overwhelmingly enriched in rhizosphere soil, and the abundance of Pseudomonas genus was significantly enhanced in fine root. By isolating and testing the nutrient absorption and pathogen antagonism functions of representative endophytic bacteria species in Pseudomonas and Burkholderia, we noticed that phosphorus-solubilizing functional isolates were enriched in fine root, while pathogen antagonism isolates were enriched in thick root. As a conclusion, our study revealed that the endophytic and rhizosphere environments of Chinese fir hold distinct structure and abundance of bacteriomes, with potential specific functional enrichment of some bacterial clades. These findings assist us to further study the potential regulation mechanism of endophytic functional bacteria by the host tree, which will contribute to beneficial microbe application in forestry plantations and sustainable development.
Collapse
Affiliation(s)
- Kai Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Qingao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Liang Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Yuxin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Jiyun Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, PO Box 27, FIN-00014 Helsinki, Finland
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| | - Lin Huang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Chinese Fir Engineering Research Center of National Forestry and Grassland Administration, Fuzhou, 350002, China
| |
Collapse
|
9
|
Du X, Li P, Fan C, Tian J, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yuan M, Yu X, Tsuda K, Li B. Holliday junction resolvase RuvC targets biofilm eDNA and confers plant resistance to vascular pathogens. NATURE PLANTS 2024; 10:1710-1723. [PMID: 39384943 DOI: 10.1038/s41477-024-01817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
A biofilm lifestyle is critical for bacterial pathogens to colonize and protect themselves from host immunity and antimicrobial chemicals in plants and animals. The formation and regulation mechanisms of phytobacterial biofilm are still obscure. Here we found that the protein Ralstonia solanacearum resistance to ultraviolet C (RuvC) is highly abundant in biofilm and positively regulates pathogenicity by controlling systemic movement in tomato xylem. RuvC protein accumulates at the later stage of biofilm development and specifically targets Holliday junction (HJ)-like structures to disrupt the biofilm extracellular DNA (eDNA) lattice, thus facilitating biofilm dispersal. Recombinant RuvC protein can resolve extracellular HJ to prevent bacterial biofilm formation. Heterologous expression of R. solanacearum or Xanthomonas oryzae pv. oryzae RuvC with plant secretion signal in tomato or rice confers resistance to bacterial wilt or bacterial blight disease, respectively. Plant chloroplast-localized HJ resolvase monokaryotic chloroplast 1 (MOC1), which shares structural similarity with bacterial RuvC, shows a strong inhibitory effect on bacterial biofilm formation. Relocalization of SlMOC1 to apoplast in tomato roots leads to increased resistance to bacterial wilt. Our novel finding reveals a critical pathogenesis mechanism of R. solanacearum and provides an efficient biotechnology strategy to improve plant resistance to bacterial vascular disease.
Collapse
Affiliation(s)
- Xinya Du
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Pengyue Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Changqiu Fan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jingjing Tian
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Meng Yuan
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
10
|
Kouzai Y, Sagehashi Y, Watanabe R, Kajiwara H, Suzuki N, Ono H, Naito K, Akimoto-Tomiyama C. BglaTNB6, a tailocin produced by a plant-associated nonpathogenic bacterium, prevents rice seed-borne bacterial diseases. PLoS Pathog 2024; 20:e1012645. [PMID: 39423232 PMCID: PMC11524443 DOI: 10.1371/journal.ppat.1012645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 10/30/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
Rice seed-borne diseases caused by the bacterial pathogens Burkholderia glumae and B. plantarii pose a major threat to rice production worldwide. To manage these diseases in a sustainable manner, a biocontrol strategy is crucial. In this study, we showed that B. gladioli NB6 (NB6), a nonpathogenic bacterium, strongly protects rice from infection caused by the above-mentioned pathogens. NB6 was isolated from the indica rice cultivar Nona Bokra seedlings, which possesses genetic resistance to B. glumae. We discovered that cell suspensions of NB6 and its culture filtrate suppressed the disease symptoms caused by B. glumae and B. plantarii in rice seedlings, which indicated that NB6 secretes a plant-protective substance extracellularly. Through purification and mass spectrometry analysis of the culture filtrate, combined with transmission electron microscopy and mutant analysis, the substance was identified as a tailocin and named BglaTNB6. Tailocins are bacteriotoxic multiprotein structures morphologically similar to headless phage tails. BglaTNB6 exhibited antibacterial activity against several Burkholderia species, including B. glumae, B. plantarii, and B. gladioli, suggesting it can prevent pathogen infection. Interestingly, BglaTNB6 greatly contributed only to the biocontrol activity of NB6 cell suspensions against B. plantarii, and not against B. glumae. BglaTNB6 was shown to be encoded by a prophage locus lacking genes for phage head proteins, and a B. gladioli strain with the coded BglaTNB6-like locus equipped with phage head proteins failed to prevent rice seedlings from being infected with B. plantarii. These results suggested that BglaTNB6 may enhance the competitiveness of NB6 against a specific range of bacteria. Our study also highlights the potential of tailocin-producing endophytes for managing crop bacterial diseases.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Yoshiyuki Sagehashi
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Riku Watanabe
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| | - Hideyuki Kajiwara
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Suzuki
- Biomacromolecules Research Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ono
- Bioactive Chemical Analysis Unit, Research Center for Advanced Analysis, NARO, Tsukuba, Ibaraki, Japan
| | - Ken Naito
- Plant Resources Unit, Research Center of Genetic Resources, NARO, Tsukuba, Ibaraki, Japan
| | - Chiharu Akimoto-Tomiyama
- Crop Stress Management Group, Division of Plant Molecular Regulation Research, Institute of Agrobiological Sciences, NARO, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Xu Y, Zhang D, Li H, Ye H, Bai M, Jiang G, Li X. Unraveling the determinants of antibiotic resistance evolution in farmland under fertilizations. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134802. [PMID: 38838525 DOI: 10.1016/j.jhazmat.2024.134802] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Organic fertilization is a major driver potentiating soil antibiotic resistance in farmland. However, it remains unclear how bacterial antibiotic resistance evolves in fertilized soils and even spreads to crops. Compared with no fertilizer and commercial fertilizer treatments, organic fertilizers markedly increased the abundance of soil antibiotic resistance genes (ARGs) but the relatively weaker transfer of resistance genes from soil to crops. The introduction of organic fertilizers enriches the soil with nutrients, driving indigenous microorganisms towards a K-strategy. The pH, EC, and nutrients as key drivers influenced the ARGs abundance. The neutral (pH 7.2), low salt (TDS 1.4 %) and mesotrophic (carbon content 3.54 g/L) habitats similar to the soil environment conditioned by organic fertilizers. These environmental conditions clearly prolonged the persistence of resistant plasmids, and facilitated their dissemination to massive conjugators soil microbiome but not to plant endophytes. This suggested that organic fertilizers inhibited the spread of ARGs to crops. Moreover, the composition of conjugators showed differential selection of resistant plasmids by endophytes under these conditions. This study sheds light on the evolution and dissemination of antibiotic resistance in farmlands and can aid in the development of antimicrobial resistance control strategies in agriculture.
Collapse
Affiliation(s)
- Yan Xu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| | - Dandan Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China; College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Houyu Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Huike Ye
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Mohan Bai
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China
| | - Gaofei Jiang
- Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA, Tianjin and Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin 300191, China.
| |
Collapse
|
13
|
Cobe BL, Dey S, Minasov G, Inniss N, Satchell KJF, Cianciotto NP. Bactericidal effectors of the Stenotrophomonas maltophilia type IV secretion system: functional definition of the nuclease TfdA and structural determination of TfcB. mBio 2024; 15:e0119824. [PMID: 38832773 PMCID: PMC11253643 DOI: 10.1128/mbio.01198-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024] Open
Abstract
Stenotrophomonas maltophilia expresses a type IV protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria and does so partly by secreting the effector TfcB. Here, we report the structure of TfcB, comprising an N-terminal domain similar to the catalytic domain of glycosyl hydrolase (GH-19) chitinases and a C-terminal domain for recognition and translocation by the T4SS. Utilizing a two-hybrid assay to measure effector interactions with the T4SS coupling protein VirD4, we documented the existence of five more T4SS substrates. One of these was protein 20845, an annotated nuclease. A S. maltophilia mutant lacking the gene for 20845 was impaired for killing Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Moreover, the cloned 20845 gene conferred robust toxicity, with the recombinant E. coli being rescued when 20845 was co-expressed with its cognate immunity protein. The 20845 effector was an 899 amino-acid protein, comprised of a GHH-nuclease domain in its N-terminus, a large central region of indeterminant function, and a C-terminus for secretion. Engineered variants of the 20845 gene that had mutations in the predicted catalytic site did not impede E. coli, indicating that the antibacterial effect of 20845 involves its nuclease activity. Using flow cytometry with DNA staining, we determined that 20845, but not its mutant variants, confers a loss in DNA content of target bacteria. Database searches revealed that uncharacterized homologs of 20845 occur within a range of bacteria. These data indicate that the S. maltophilia T4SS promotes interbacterial competition through the action of multiple toxic effectors, including a potent, novel DNase.IMPORTANCEStenotrophomonas maltophilia is a multi-drug-resistant, Gram-negative bacterium that is an emerging pathogen of humans. Patients with cystic fibrosis are particularly susceptible to S. maltophilia infection. In hospital water systems and various types of infections, S. maltophilia co-exists with other bacteria, including other pathogens such as Pseudomonas aeruginosa. We previously demonstrated that S. maltophilia has a functional VirB/D4 type VI protein secretion system (T4SS) that promotes contact-dependent killing of other bacteria. Since most work on antibacterial systems involves the type VI secretion system, this observation remains noteworthy. Moreover, S. maltophilia currently stands alone as a model for a human pathogen expressing an antibacterial T4SS. Using biochemical, genetic, and cell biological approaches, we now report both the discovery of a novel antibacterial nuclease (TfdA) and the first structural determination of a bactericidal T4SS effector (TfcB).
Collapse
Affiliation(s)
- Brandi L. Cobe
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Supratim Dey
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicole Inniss
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Structural Biology of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
14
|
Wang Z, Dai Q, Su D, Zhang Z, Tian Y, Tong J, Chen S, Yan C, Yang J, Cui X. Comparative analysis of the microbiomes of strawberry wild species Fragaria nilgerrensis and cultivated variety Akihime using amplicon-based next-generation sequencing. Front Microbiol 2024; 15:1377782. [PMID: 38873161 PMCID: PMC11169695 DOI: 10.3389/fmicb.2024.1377782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Fragaria nilgerrensis is a wild strawberry species widely distributed in southwest China and has strong ecological adaptability. Akihime (F. × ananassa Duch. cv. Akihime) is one of the main cultivated strawberry varieties in China and is prone to infection with a variety of diseases. In this study, high-throughput sequencing was used to analyze and compare the soil and root microbiomes of F. nilgerrensis and Akihime. Results indicate that the wild species F. nilgerrensis showed higher microbial diversity in nonrhizosphere soil and rhizosphere soil and possessed a more complex microbial network structure compared with the cultivated variety Akihime. Genera such as Bradyrhizobium and Anaeromyxobacter, which are associated with nitrogen fixation and ammonification, and Conexibacter, which is associated with ecological toxicity resistance, exhibited higher relative abundances in the rhizosphere and nonrhizosphere soil samples of F. nilgerrensis compared with those of Akihime. Meanwhile, the ammonia-oxidizing archaea Candidatus Nitrososphaera and Candidatus Nitrocosmicus showed the opposite tendencies. We also found that the relative abundances of potential pathogenic genera and biocontrol bacteria in the Akihime samples were higher than those in the F. nilgerrensis samples. The relative abundances of Blastococcus, Nocardioides, Solirubrobacter, and Gemmatimonas, which are related to pesticide degradation, and genus Variovorax, which is associated with root growth regulation, were also significantly higher in the Akihime samples than in the F. nilgerrensis samples. Moreover, the root endophytic microbiomes of both strawberry species, especially the wild F. nilgerrensis, were mainly composed of potential biocontrol and beneficial bacteria, making them important sources for the isolation of these bacteria. This study is the first to compare the differences in nonrhizosphere and rhizosphere soils and root endogenous microorganisms between wild and cultivated strawberries. The findings have great value for the research of microbiomes, disease control, and germplasm innovation of strawberry.
Collapse
Affiliation(s)
- Zongneng Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Qingzhong Dai
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Daifa Su
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | | | - Yunxia Tian
- Kunming Academy of Agricultural Science, Kunming, China
| | - Jiangyun Tong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Shanyan Chen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Congwen Yan
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junyu Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
15
|
Barone GD, Zhou Y, Wang H, Xu S, Ma Z, Cernava T, Chen Y. Implications of bacteria‒bacteria interactions within the plant microbiota for plant health and productivity. J Zhejiang Univ Sci B 2024; 25:1-16. [PMID: 38773879 DOI: 10.1631/jzus.b2300914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 05/24/2024]
Abstract
Crop production currently relies on the widespread use of agrochemicals to ensure food security. This practice is considered unsustainable, yet has no viable alternative at present. The plant microbiota can fulfil various functions for its host, some of which could be the basis for developing sustainable protection and fertilization strategies for plants without relying on chemicals. To harness such functions, a detailed understanding of plant‒microbe and microbe‒microbe interactions is necessary. Among interactions within the plant microbiota, those between bacteria are the most common ones; they are not only of ecological importance but also essential for maintaining the health and productivity of the host plants. This review focuses on recent literature in this field and highlights various consequences of bacteria‒bacteria interactions under different agricultural settings. In addition, the molecular and genetic backgrounds of bacteria that facilitate such interactions are emphasized. Representative examples of commonly found bacterial metabolites with bioactive properties, as well as their modes of action, are given. Integrating our understanding of various binary interactions into complex models that encompass the entire microbiota will benefit future developments in agriculture and beyond, which could be further facilitated by artificial intelligence-based technologies.
Collapse
Affiliation(s)
| | - Yaqi Zhou
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Sunde Xu
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Tomislav Cernava
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK.
| | - Yun Chen
- State Key Laboratory of Rice Biology and Breeding; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects; Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects; Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Gordils-Valentin L, Ouyang H, Qian L, Hong J, Zhu X. Conjugative type IV secretion systems enable bacterial antagonism that operates independently of plasmid transfer. Commun Biol 2024; 7:499. [PMID: 38664513 PMCID: PMC11045733 DOI: 10.1038/s42003-024-06192-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Bacterial cooperation and antagonism mediated by secretion systems are among the ways in which bacteria interact with one another. Here we report the discovery of an antagonistic property of a type IV secretion system (T4SS) sourced from a conjugative plasmid, RP4, using engineering approaches. We scrutinized the genetic determinants and suggested that this antagonistic activity is independent of molecular cargos, while we also elucidated the resistance genes. We further showed that a range of Gram-negative bacteria and a mixed bacterial population can be eliminated by this T4SS-dependent antagonism. Finally, we showed that such an antagonistic property is not limited to T4SS sourced from RP4, rather it can also be observed in a T4SS originated from another conjugative plasmid, namely R388. Our results are the first demonstration of conjugative T4SS-dependent antagonism between Gram-negative bacteria on the genetic level and provide the foundation for future mechanistic studies.
Collapse
Affiliation(s)
- Lois Gordils-Valentin
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, 77843, TX, US
| | - Huanrong Ouyang
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
| | - Liangyu Qian
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US
| | - Joshua Hong
- Department of Biology, Texas A&M University, College Station, 77843, TX, US
| | - Xuejun Zhu
- Department of Chemical Engineering, Texas A&M University, College Station, 77843, TX, US.
- Interdisciplinary Graduate Program in Genetics & Genomics, Texas A&M University, College Station, 77843, TX, US.
| |
Collapse
|
17
|
Shi W, Li J, Xie S, Wang X, Zhang Y, Yao H, Chen M, Li J, Deng Z. Selection of the Dominant Endophytes Based on Illumina Sequencing Analysis for Controlling Bacterial Wilt of Patchouli Caused by Ralstonia solanacearum. PLANT DISEASE 2024; 108:996-1004. [PMID: 38613135 DOI: 10.1094/pdis-09-23-1722-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Bacterial wilt caused by Ralstonia solanacearum (RS) is one of the most devastating diseases in patchouli (Pogostemon cablin [Blanco] Benth.), which results in low yield and quality of patchouli. However, no stable and effective control methods have been developed yet. To evaluate the potential of dominant bacterial endophytes in biocontrol, the endophytic bacterial diversity of patchouli was investigated based on Illumina sequencing analysis, and the ability of isolates belonging to the dominant bacterial genera to control RS wilt of patchouli was explored in pot experiments. A total of 245 bacterial genera were detected in patchouli plants, with the highest relative abundance of operational taxonomic units belonging to the genus Pseudomonas detected in roots, leaves, and stems. The Pseudomonas isolates S02, S09, and S26 showed antagonistic activity against RS in vitro and displayed many plant growth-promoting characteristics, including production of indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic acid deaminase and phosphate- and potassium-solubilizing capability. Inoculation of patchouli plants with the isolates S02, S09, and S26 significantly improved shoot growth and decreased the incidence of bacterial wilt caused by RS. The results suggest that screening of dominant bacterial endophytes for effective biocontrol agents based on Illumina sequencing analysis is more efficient than random isolation and screening procedures.
Collapse
Affiliation(s)
- Wenguang Shi
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Junyan Li
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Siyun Xie
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Xing Wang
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Yuxin Zhang
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Huaxiong Yao
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Meiqi Chen
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Jianbin Li
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Zujun Deng
- School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| |
Collapse
|
18
|
Bernal P. How are microbes helping end hunger? Microb Biotechnol 2024; 17:e14432. [PMID: 38465536 PMCID: PMC10926054 DOI: 10.1111/1751-7915.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
This article explores the potential of microbiology to positively impact all aspects of the food supply chain, improving the quantity, quality, safety, and nutritional value of food products by providing innovative ways of growing, processing, and preserving food and thus contributing to Zero Hunger, one of the Sustainable Development Goals (SDGs) of the United Nations.
Collapse
Affiliation(s)
- Patricia Bernal
- Departamento de Microbiología, Facultad de BiologíaUniversidad de SevillaSevilleSpain
| |
Collapse
|
19
|
Gupta G, Chauhan PS, Jha PN, Verma RK, Singh S, Yadav VK, Sahoo DK, Patel A. Secretory molecules from secretion systems fine-tune the host-beneficial bacteria (PGPRs) interaction. Front Microbiol 2024; 15:1355750. [PMID: 38468848 PMCID: PMC10925705 DOI: 10.3389/fmicb.2024.1355750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/05/2024] [Indexed: 03/13/2024] Open
Abstract
Numerous bacterial species associate with plants through commensal, mutualistic, or parasitic association, affecting host physiology and health. The mechanism for such association is intricate and involves the secretion of multiple biochemical substances through dedicated protein systems called secretion systems SS. Eleven SS pathways deliver protein factors and enzymes in their immediate environment or host cells, as well as in competing microbial cells in a contact-dependent or independent fashion. These SS are instrumental in competition, initiation of infection, colonization, and establishment of association (positive or negative) with host organisms. The role of SS in infection and pathogenesis has been demonstrated for several phytopathogens, including Agrobacterium, Xanthomonas, Ralstonia, and Pseudomonas. Since there is overlap in mechanisms of establishing association with host plants, several studies have investigated the role of SSs in the interaction of plant and beneficial bacteria, including symbiotic rhizobia and plant growth bacteria (PGPB). Therefore, the present review updates the role of different SSs required for the colonization of beneficial bacteria such as rhizobia, Burkholderia, Pseudomonas, Herbaspirillum, etc., on or inside plants, which can lead to a long-term association. Most SS like T3SS, T4SS, T5SS, and T6SS are required for the antagonistic activity needed to prevent competing microbes, including phytopathogens, ameliorate biotic stress in plants, and produce substances for successful colonization. Others are required for chemotaxis, adherence, niche formation, and suppression of immune response to establish mutualistic association with host plants.
Collapse
Affiliation(s)
- Garima Gupta
- Institute of Biosciences and Technology, Shri Ramswaroop Memorial University, Barabanki, Uttar Pradesh, India
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Group, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Prabhat Nath Jha
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, SLAS Mody University of Science and Technology, Sikar, Rajasthan, India
| | - Sachidanand Singh
- Department of Biotechnology, School of Energy Technology, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Virendra Kumar Yadav
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ashish Patel
- Department of Lifesciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| |
Collapse
|
20
|
Ragland CJ, Shih KY, Dinneny JR. Choreographing root architecture and rhizosphere interactions through synthetic biology. Nat Commun 2024; 15:1370. [PMID: 38355570 PMCID: PMC10866969 DOI: 10.1038/s41467-024-45272-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Climate change is driving extreme changes to the environment, posing substantial threats to global food security and bioenergy. Given the direct role of plant roots in mediating plant-environment interactions, engineering the form and function of root systems and their associated microbiota may mitigate these effects. Synthetic genetic circuits have enabled sophisticated control of gene expression in microbial systems for years and a surge of advances has heralded the extension of this approach to multicellular plant species. Targeting these tools to affect root structure, exudation, and microbe activity on root surfaces provide multiple strategies for the advancement of climate-ready crops.
Collapse
Affiliation(s)
- Carin J Ragland
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Kevin Y Shih
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
21
|
Wang B, Xu F, Zhang Z, Shen D, Wang L, Wu H, Yan Q, Cui C, Wang P, Wei Q, Shao X, Wang M, Qian G. Type IV secretion system effector sabotages multiple defense systems in a competing bacterium. THE ISME JOURNAL 2024; 18:wrae121. [PMID: 38959853 PMCID: PMC11253431 DOI: 10.1093/ismejo/wrae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
Effector proteins secreted by bacteria that infect mammalian and plant cells often subdue eukaryotic host cell defenses by simultaneously affecting multiple targets. However, instances when a bacterial effector injected in the competing bacteria sabotage more than a single target have not been reported. Here, we demonstrate that the effector protein, LtaE, translocated by the type IV secretion system from the soil bacterium Lysobacter enzymogenes into the competing bacterium, Pseudomonas protegens, affects several targets, thus disabling the antibacterial defenses of the competitor. One LtaE target is the transcription factor, LuxR1, that regulates biosynthesis of the antimicrobial compound, orfamide A. Another target is the sigma factor, PvdS, required for biosynthesis of another antimicrobial compound, pyoverdine. Deletion of the genes involved in orfamide A and pyoverdine biosynthesis disabled the antibacterial activity of P. protegens, whereas expression of LtaE in P. protegens resulted in the near-complete loss of the antibacterial activity against L. enzymogenes. Mechanistically, LtaE inhibits the assembly of the RNA polymerase complexes with each of these proteins. The ability of LtaE to bind to LuxR1 and PvdS homologs from several Pseudomonas species suggests that it can sabotage defenses of various competitors present in the soil or on plant matter. Our study thus reveals that the multi-target effectors have evolved to subdue cell defenses not only in eukaryotic hosts but also in bacterial competitors.
Collapse
Affiliation(s)
- Bingxin Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fugui Xu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Zeyu Zhang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Danyu Shen
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Limin Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huijun Wu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, United States
| | - Chuanbin Cui
- Department of Plant Pathology, Shaanxi Provincial Tobacco Corporation of CNTC, Xi'an 710061, China
| | - Pingping Wang
- Department of Plant Pathology, Shaanxi Provincial Tobacco Corporation of CNTC, Xi'an 710061, China
| | - Qi Wei
- Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Xiaolong Shao
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Mengcen Wang
- State Key Laboratory of Rice Biology and Breeding, Zhejiang University, Hangzhou 310058, China
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
22
|
Ishii T, Tsuchida N, Hemelda NM, Saito K, Bao J, Watanabe M, Toyoda A, Matsubara T, Sato M, Toyooka K, Ishihama N, Shirasu K, Matsui H, Toyoda K, Ichinose Y, Hayashi T, Kawaguchi A, Noutoshi Y. Rhizoviticin is an alphaproteobacterial tailocin that mediates biocontrol of grapevine crown gall disease. THE ISME JOURNAL 2024; 18:wrad003. [PMID: 38365227 PMCID: PMC10811719 DOI: 10.1093/ismejo/wrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 02/18/2024]
Abstract
Tailocins are headless phage tail structures that mediate interbacterial antagonism. Although the prototypical tailocins, R- and F-pyocins, in Pseudomonas aeruginosa, and other predominantly R-type tailocins have been studied, their presence in Alphaproteobacteria remains unexplored. Here, we report the first alphaproteobacterial F-type tailocin, named rhizoviticin, as a determinant of the biocontrol activity of Allorhizobium vitis VAR03-1 against crown gall. Rhizoviticin is encoded by a chimeric prophage genome, one providing transcriptional regulators and the other contributing to tail formation and cell lysis, but lacking head formation genes. The rhizoviticin genome retains a nearly intact early phage region containing an integrase remnant and replication-related genes critical for downstream gene transcription, suggesting an ongoing transition of this locus from a prophage to a tailocin-coding region. Rhizoviticin is responsible for the most antagonistic activity in VAR03-1 culture supernatant against pathogenic A. vitis strain, and rhizoviticin deficiency resulted in a significant reduction in the antitumorigenic activity in planta. We identified the rhizoviticin-coding locus in eight additional A. vitis strains from diverse geographical locations, highlighting a unique survival strategy of certain Rhizobiales bacteria in the rhizosphere. These findings advance our understanding of the evolutionary dynamics of tailocins and provide a scientific foundation for employing rhizoviticin-producing strains in plant disease control.
Collapse
Affiliation(s)
- Tomoya Ishii
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Natsuki Tsuchida
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
- Present address: Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Niarsi Merry Hemelda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Department of Biology, University of Indonesia, Depok 16424, Indonesia
| | - Kirara Saito
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Present address: Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization, Miyakonojo, Miyazaki 885-0091, Japan
| | - Jiyuan Bao
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Megumi Watanabe
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Takehiro Matsubara
- Okayama University Hospital Biobank, Okayama University Hospital, Okayama 700-8558, Japan
| | - Mayuko Sato
- Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Kiminori Toyooka
- Mass Spectrometry and Microscopy Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Nobuaki Ishihama
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Graduate School of Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hidenori Matsui
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Akira Kawaguchi
- Western Region Agricultural Research Center (WARC), National Agricultural and Food Research Organization (NARO), Fukuyama, Hiroshima 721-8514, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Faculty of Agriculture, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
23
|
Jian Y, Gong D, Wang Z, Liu L, He J, Han X, Tsuda K. How plants manage pathogen infection. EMBO Rep 2024; 25:31-44. [PMID: 38177909 PMCID: PMC10897293 DOI: 10.1038/s44319-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.
Collapse
Affiliation(s)
- Yinan Jian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lijun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jingjing He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
24
|
Shao X, Wu Q, Li L, He W, He X, Cheng D, Murero A, Lin L, Wang L, Zhong C, Huang L, Qian G. Adapting the inoculation methods of kiwifruit canker disease to identify efficient biocontrol bacteria from branch microbiome. MOLECULAR PLANT PATHOLOGY 2024; 25:e13399. [PMID: 37921929 PMCID: PMC10788592 DOI: 10.1111/mpp.13399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa), the bacterium that causes kiwifruit bacterial canker, is a common field occurrence that is difficult to control globally. Currently, exploring the resources for efficient biocontrol bacteria is a hot spot in the field. The common strategy for isolating biocontrol bacteria is to directly isolate biocontrol bacteria that can secrete diffusible antibacterial substances, most of which are members of Bacillus, Pseudomonas and Streptomycetaceae, from disease samples or soil. Here, we report a new approach by adapting the typical isolation methods of kiwifruit canker disease to identify efficient biocontrol bacteria from the branch microbiome. Using this unique approach, we isolated a group of kiwifruit biocontrol agents (KBAs) from the branch microbiome of Psa-resistant varieties. Thirteen of these showed no antagonistic activity in vitro, which depends on the secretion of antibacterial compounds. However, they exhibited antibacterial activity via cell-to-cell contacts mimicked by co-culture on agar plates. Through biocontrol tests on plants, two isolates, KBA13 and KBA19, demonstrated their effectiveness by protecting kiwifruit branches from Psa infection. Using KBA19, identified as Pantoea endophytica, as a representative, we found that this bacterium uses the type VI secretion system (T6SS) as the main contact-dependent antibacterial weapon that acts via translocating toxic effector proteins into Psa cells to induce cell death, and that this capacity expressed by KBA19 is common to various Psa strains from different countries. Our findings highlight a new strategy to identify efficient biocontrol agents that use the T6SS to function in an antibacterial metabolite-independent manner to control wood diseases.
Collapse
Affiliation(s)
- Xiaolong Shao
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Qianhua Wu
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Li Li
- CAS Engineering Laboratory for Kiwifruit Industrial Technology, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhanHubei ProvinceChina
| | - Weimei He
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Xueting He
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Dongjin Cheng
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Aprodisia Murero
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Long Lin
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Limin Wang
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| | - Caihong Zhong
- CAS Engineering Laboratory for Kiwifruit Industrial Technology, CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhanHubei ProvinceChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant Protection, Northwest A&F UniversityYanglingShanxiChina
| | - Guoliang Qian
- Key Laboratory of Integrated Management of Crop Diseases and PestsCollege of Plant Protection, State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural UniversityNanjingChina
| |
Collapse
|
25
|
Wang B, Zhang Z, Xu F, Yang Z, Li Z, Shen D, Wang L, Wu H, Li T, Yan Q, Wei Q, Shao X, Qian G. Soil bacterium manipulates antifungal weapons by sensing intracellular type IVA secretion system effectors of a competitor. THE ISME JOURNAL 2023; 17:2232-2246. [PMID: 37838821 PMCID: PMC10689834 DOI: 10.1038/s41396-023-01533-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Soil beneficial bacteria can effectively inhibit bacterial pathogens by assembling contact-dependent killing weapons, such as the type IVA secretion system (T4ASS). It's not clear whether these antibacterial weapons are involved in biotrophic microbial interactions in soil. Here we showed that an antifungal antibiotic 2,4-DAPG production of the soil bacterium, Pseudomonas protegens can be triggered by another soil bacterium, Lysobacter enzymogenes, via T4ASS by co-culturing on agar plates to mimic cell-to-cell contact. We demonstrated that the induced 2,4-DAPG production of P. protegens is achieved by intracellular detection of the T4ASS effector protein Le1519 translocated from L. enzymogenes. We defined Le1519 as LtaE (Lysobacter T4E triggering antifungal effects), which specifically stimulates the expression of 2,4-DAPG biosynthesis genes in P. protegens, thereby protecting soybean seedlings from infection by the fungus Rhizoctonia solani. We further found that LtaE directly bound to PhlF, a pathway-specific transcriptional repressor of the 2,4-DAPG biosynthesis, then activated the 2,4-DAPG production. Our results highlight a novel pattern of microbial interspecies and interkingdom interactions, providing a unique case for expanding the diversity of soil microbial interactions.
Collapse
Affiliation(s)
- Bingxin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zeyu Zhang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Fugui Xu
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zixiang Yang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Zihan Li
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Danyu Shen
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Limin Wang
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Huijun Wu
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, PR China
| | - Qing Yan
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA
| | - Qi Wei
- Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Xiaolong Shao
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China
| | - Guoliang Qian
- College of Plant Protection (State Key Laboratory of Biological interactions and Crop Health; Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, P.R. China.
| |
Collapse
|
26
|
Russ D, Fitzpatrick CR, Teixeira PJPL, Dangl JL. Deep discovery informs difficult deployment in plant microbiome science. Cell 2023; 186:4496-4513. [PMID: 37832524 DOI: 10.1016/j.cell.2023.08.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field.
Collapse
Affiliation(s)
- Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo J P L Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Espinosa-Urgel M, Ramos-González MI. Becoming settlers: Elements and mechanisms for surface colonization by Pseudomonas putida. Environ Microbiol 2023; 25:1575-1593. [PMID: 37045787 DOI: 10.1111/1462-2920.16385] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Pseudomonads are considered to be among the most widespread culturable bacteria in mesophilic environments. The evolutive success of Pseudomonas species can be attributed to their metabolic versatility, in combination with a set of additional functions that enhance their ability to colonize different niches. These include the production of secondary metabolites involved in iron acquisition or having a detrimental effect on potential competitors, different types of motility, and the capacity to establish and persist within biofilms. Although biofilm formation has been extensively studied using the opportunistic pathogen Pseudomonas aeruginosa as a model organism, a significant body of knowledge is also becoming available for non-pathogenic Pseudomonas. In this review, we focus on the mechanisms that allow Pseudomonas putida to colonize biotic and abiotic surfaces and adapt to sessile life, as a relevant persistence strategy in the environment. This species is of particular interest because it includes plant-beneficial strains, in which colonization of plant surfaces may be relevant, and strains used for environmental and biotechnological applications, where the design and functionality of biofilm-based bioreactors, for example, also have to take into account the efficiency of bacterial colonization of solid surfaces. This work reviews the current knowledge of mechanistic and regulatory aspects of biofilm formation by P. putida and pinpoints the prospects in this field.
Collapse
Affiliation(s)
- Manuel Espinosa-Urgel
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Granada, Spain
| | | |
Collapse
|
28
|
Ali M, Cybulska J, Frąc M, Zdunek A. Application of polysaccharides for the encapsulation of beneficial microorganisms for agricultural purposes: A review. Int J Biol Macromol 2023; 244:125366. [PMID: 37327939 DOI: 10.1016/j.ijbiomac.2023.125366] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/25/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Intensive farming practices have increased the consumption of chemical-based pesticides and fertilizers thereby creating health issues for humans and animals and also causing a deterioration in the natural ecosystem. The promotion of biomaterials synthesis could potentially lead to the replacement of synthetic products and improve soil fertility, protect plants from pathogen attacks, and enhance the productivity of the agricultural sector resulting in less environmental pollution. Microbial bioengineering involving the use and improvement of encapsulation using polysaccharides has the required potential to address environmental issues and promote green chemistry. This article describes various encapsulation techniques and polysaccharides which have an immense applicable capability to encapsulate microbial cells. The review elucidates the factors that may result in a reduced viable cell count during encapsulation, particularly using the spray drying method, where a high temperature is required to dry the suspension, this may damage the microbial cells. The environmental advantage of the application of polysaccharides as carriers of beneficial microorganisms, which do not pose a risk for soil due to their full biodegradability, was also shown. The encapsulated microbial cells may assist in addressing certain environmental problems such as ameliorating the unfavourable effects of plant pests and pathogens, and promoting agricultural sustainability.
Collapse
Affiliation(s)
- Mohsin Ali
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland.
| | - Madgalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Poland
| |
Collapse
|
29
|
Todorović I, Abrouk D, Kyselková M, Lavire C, Rey M, Raičević V, Jovičić-Petrović J, Moënne-Loccoz Y, Muller D. Two novel species isolated from wheat rhizospheres in Serbia: Pseudomonas serbica sp. nov. and Pseudomonas serboccidentalis sp. nov. Syst Appl Microbiol 2023; 46:126425. [PMID: 37146562 DOI: 10.1016/j.syapm.2023.126425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/07/2023]
Abstract
Pseudomonas strains IT-194P, IT-215P, IT-P366T and IT-P374T were isolated from the rhizospheres of wheat grown in soils sampled from different fields (some of them known to be disease-suppressive) located near Mionica, Serbia. Phylogenetic analysis of the 16S rRNA genes and of whole genome sequences showed that these strains belong to two potentially new species, one containing strains IT-P366T and IT-194P and clustering (whole genome analysis) next to P. umsongensis DSM16611T, and another species containing strains IT-P374T and IT-215P and clustering next to P. koreensis LMG21318T. Genome analysis confirmed the proposition of novel species, as ANI was below the threshold of 95% and dDDH below 70% for strains IT-P366T (compared with P. umsongensis DSM16611T) and IT-P374T (compared with P. koreensis LMG21318T). Unlike P. umsongensis DSM16611T, strains of P. serbica can grow on D-mannitol, but not on pectin, D-galacturonic acid, L-galactonic acid lactone and α-hydroxybutyric acid. In contrary to P. koreensis LMG21318T, strains of P. serboccidentalis can use sucrose, inosine and α-ketoglutaric acid (but not L-histidine) as carbon sources. Altogether, these results indicate the existence of two novel species for which we propose the names Pseudomonas serbica sp. nov., with the type strain IT-P366T (=CFBP 9060 T = LMG 32732 T = EML 1791 T) and Pseudomonas serboccidentalis sp. nov., with the type strain IT-P374T (=CFBP 9061 T = LMG 32734 T = EML 1792 T). Strains from this study presented a set of phytobeneficial functions modulating plant hormonal balance, plant nutrition and plant protection, suggesting a potential as Plant Growth-Promoting Rhizobacteria (PGPR).
Collapse
Affiliation(s)
- Irena Todorović
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France; University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Danis Abrouk
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Martina Kyselková
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220, Prague 4, Czech Republic
| | - Céline Lavire
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Marjolaine Rey
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Vera Raičević
- University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Jelena Jovičić-Petrović
- University of Belgrade, Faculty of Agriculture, Department of Microbial Ecology, Nemanjina 6, 11080 Zemun, Belgrade, Serbia
| | - Yvan Moënne-Loccoz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| | - Daniel Muller
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
30
|
Maphosa S, Moleleki LN, Motaung TE. Bacterial secretion system functions: evidence of interactions and downstream implications. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37083586 DOI: 10.1099/mic.0.001326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Unprecedented insights into the biology and functions of bacteria have been and continue to be gained through studying bacterial secretion systems in isolation. This method, however, results in our understanding of the systems being primarily based on the idea that they operate independently, ignoring the subtleties of downstream interconnections. Gram-negative bacteria are naturally able to adapt to and navigate their frequently varied and dynamic surroundings, mostly because of the covert connections between secretion systems. Therefore, to comprehend some of the linked downstream repercussions for organisms that follow this discourse, it is vital to have mechanistic insights into how the intersecretion system functions in bacterial rivalry, virulence, and survival, among other things. To that purpose, this paper discusses a few key instances of molecular antagonistic and interdependent relationships between bacterial secretion systems and their produced functional products.
Collapse
Affiliation(s)
- Silindile Maphosa
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lucy N Moleleki
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Thabiso E Motaung
- Division of Microbiology, Department of Biochemistry, Genetics, and Microbiology, University of Pretoria, Hatfield, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, Pretoria, South Africa
| |
Collapse
|
31
|
Poppeliers SW, Sánchez-Gil JJ, de Jonge R. Microbes to support plant health: understanding bioinoculant success in complex conditions. Curr Opin Microbiol 2023; 73:102286. [PMID: 36878082 DOI: 10.1016/j.mib.2023.102286] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
A promising, sustainable way to enhance plant health and productivity is by leveraging beneficial microbes. Beneficial microbes are natural soil residents with proven benefits for plant performance and health. When applied in agriculture to improve crop yield and performance, these microbes are commonly referred to as bioinoculants. Yet, despite their promising properties, bioinoculant efficacy can vary dramatically in the field, hampering their applicability. Invasion of the rhizosphere microbiome is a critical determinant for bioinoculant success. Invasion is a complex phenomenon that is shaped by interactions with the local, resident microbiome and the host plant. Here, we explore all of these dimensions by cross-cutting ecological theory and molecular biology of microbial invasion in the rhizosphere. We refer to the famous Chinese philosopher and strategist Sun Tzu, who believed that solutions for problems require deep understanding of the problems themselves, to review the major biotic factors determining bioinoculant effectiveness.
Collapse
Affiliation(s)
- Sanne Wm Poppeliers
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Juan J Sánchez-Gil
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Schnyder A, Eberl L, Agnoli K. Investigating the Biocontrol Potential of the Natural Microbiota of the Apple Blossom. Microorganisms 2022; 10:microorganisms10122480. [PMID: 36557734 PMCID: PMC9784478 DOI: 10.3390/microorganisms10122480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Erwinia amylovora, the causative agent of fire blight, leads to important economic losses of apple and pear crops worldwide. This study aimed to investigate the potential of the resident microbiota of the apple blossom in combatting plant disease-causing organisms, with a focus on controlling fire blight. We obtained 538 isolates from sites around Canton Zurich, which we tested for activity against Pectobacterium carotovorum and E. amylovora. We also evaluated the isolates' activity against oomycete and fungal pathogens. Nine isolates showed activity against P. carotovorum, and eight of these against E. amylovora. Furthermore, 117 showed antifungal, and 161 anti-oomycete, activity. We assigned genera and in some cases species to 238 of the isolates by sequencing their 16S RNA-encoding gene. Five strains showed activity against all pathogens and were tested in a detached apple model for anti-E. amylovora activity. Of these five strains, two were able to antagonize E. amylovora, namely Bacillus velezensis #124 and Pantoea agglomerans #378. We sequenced the P. agglomerans #378 genome and analyzed it for secondary metabolite clusters using antiSMASH, revealing the presence of a putative bacteriocin cluster. We also showed that B. velezensis #124 exhibits strong activity against three different fungi and two oomycetes in vitro, suggesting a broader capacity for biocontrol. Our results showcase the protective potential of the natural apple blossom microbiota. We isolated two candidate biocontrol strains from apple blossoms, suggesting that they might persist at the most common entry point for the causative agent of fire blight. Furthermore, they are probably already part of the human diet, suggesting they might be safe for consumption, and thus are promising candidates for biocontrol applications.
Collapse
Affiliation(s)
- Anya Schnyder
- Institut für Veterinärbakteriologie, Universität Bern, 3001 Bern, Switzerland
| | - Leo Eberl
- Department of Microbiology, Institute of Plant and Microbial Biology, University of Zürich, 8008 Zurich, Switzerland
| | - Kirsty Agnoli
- Department of Microbiology, Institute of Plant and Microbial Biology, University of Zürich, 8008 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
33
|
Affiliation(s)
- Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| |
Collapse
|