1
|
Hu X, Liu X, Xu Q, Ikkala O, Peng B. Mechanosensing of Stimuli Changes with Magnetically Gated Adaptive Sensitivity. ACS MATERIALS LETTERS 2025; 7:862-868. [PMID: 40051972 PMCID: PMC11881142 DOI: 10.1021/acsmaterialslett.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 01/28/2025] [Indexed: 03/09/2025]
Abstract
Inspired by biological sensors that characteristically adapt to varying stimulus ranges, efficiently detecting stimulus changes sooner than the absolute stimulus values, we propose a mechanosensing concept in which the resolution can be adapted by magnetic field (H) gating to detect small pressure-changes under a wide range of compressive stimuli. This is realized with resistive sensing by pillared H-driven assemblies of soft ferromagnetic electrically conducting particles between planar electrodes under a voltage bias. By modulation of H, the pillars respond with mechanically adaptable sensitivity. Higher H enhances current resolution, while it increases scatter among repeating measurements due to increased magnetic structural jamming between colloids in their assembly. To manage the trade-off between electrical resolution and scatter, machine learning is introduced for searching optimum H gatings, thus facilitating efficient pressure prediction. This approach suggests bioinspired pathways for developing adaptive stimulus-responsive mechanosensors, detecting subtle changes across varying stimuli levels with enhanced effectiveness through machine learning.
Collapse
Affiliation(s)
- Xichen Hu
- Department
of Applied Physics, Aalto University, P.O. Box 15100, FI 02150 Espoo, Finland
- Center
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Materials Science and Engineering Research Center for Advanced
Coatings of Ministry of Education, Fudan
University, Shanghai 200433, China
| | - Xianhu Liu
- Department
of Applied Physics, Aalto University, P.O. Box 15100, FI 02150 Espoo, Finland
- Center
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Materials Science and Engineering Research Center for Advanced
Coatings of Ministry of Education, Fudan
University, Shanghai 200433, China
| | - Quan Xu
- State
Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Beijing 102249, China
| | - Olli Ikkala
- Department
of Applied Physics, Aalto University, P.O. Box 15100, FI 02150 Espoo, Finland
- Center
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Bo Peng
- Department
of Applied Physics, Aalto University, P.O. Box 15100, FI 02150 Espoo, Finland
- Center
of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department
of Materials Science and Engineering Research Center for Advanced
Coatings of Ministry of Education, Fudan
University, Shanghai 200433, China
| |
Collapse
|
2
|
Yang Y, Fang Q, Wang J, Li M, Li Z, Xu H, Huang S, Chen J, Guo B. Glucose-Activated Programmed Hydrogel with Self-Switchable Enzyme-Like Activity for Infected Diabetic Wound Self-Adaptive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419158. [PMID: 39945084 DOI: 10.1002/adma.202419158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/30/2025] [Indexed: 03/27/2025]
Abstract
The defective blood glucose regulation ability of diabetic patients leading to bacterial infection, cellular oxidative stress, and vascular damage results in delayed healing of chronic diabetic wounds. Here, a glucose-activated self-switching enzyme-like activity programmed hydrogel is proposed to provide self-regulated timely intelligent insulin release affected by blood glucose fluctuations, thereby forming feedback blood glucose management and exerting a full-stage wound healing. The hydrogel is composed of Au─MoS2─phenylboronic acid nanozyme and insulin-loaded nitroimidazole-modified sodium alginate hypoxia-sensitive microcapsules and penylboronic-acid-modified chitosan. It utilizes glucose as a sacrificial agent to generate antibacterial reactive oxygen species by recognizing the hyperglycemia environment, and releasing insulin for blood glucose regulation for up to 12 h with the help of the enzyme-like catalysis-generated hypoxia environment. In a normoglycemia environment, the hydrogel switches the enzyme-like activity to supply oxygen, inhibiting further insulin release. The hydrogel achieves ≈3 times the wound recovery rate of commercial dressings through blood glucose regulation and improved wound microenvironment. The hydrogel has been proven to significantly improve the healing of chronic diabetic wounds by regulating the body's blood glucose homeostasis and implementing a staged healing treatment plan, providing a powerful solution for diabetic wound care.
Collapse
Affiliation(s)
- Yutong Yang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qingqing Fang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiaxin Wang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zhenlong Li
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Huiru Xu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shengfei Huang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jueying Chen
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
3
|
Li W, Ding Q, Li M, Zhang T, Li C, Qi M, Dong B, Fang J, Wang L, Kim JS. Stimuli-responsive and targeted nanomaterials: Revolutionizing the treatment of bacterial infections. J Control Release 2025; 377:495-523. [PMID: 39580080 DOI: 10.1016/j.jconrel.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/13/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Bacterial infections have emerged as a major threat to global public health. The effectiveness of traditional antibiotic treatments is waning due to the increasing prevalence of antimicrobial resistance, leading to an urgent demand for alternative antibacterial technologies. In this context, antibacterial nanomaterials have proven to be powerful tools for treating antibiotic-resistant and recurring infections. Targeting nanomaterials not only enable the precise delivery of bactericidal agents but also ensure controlled release at the infection site, thereby reducing potential systemic side effects. This review collates and categorizes nanomaterial-based responsive and precision-targeted antibacterial strategies into three key types: exogenous stimuli-responsive (including light, ultrasound, magnetism), bacterial microenvironment-responsive (such as pH, enzymes, hypoxia), and targeted antibacterial action (involving electrostatic interaction, covalent bonding, receptor-ligand mechanisms). Furthermore, we discuss recent advances, potential mechanisms, and future prospects in responsive and targeted antimicrobial nanomaterials, aiming to provide a comprehensive overview of the field's development and inspire the formulation of novel, precision-targeted antimicrobial strategies.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Qihang Ding
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Meiqi Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Tianshou Zhang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Chunyan Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| | - Jiao Fang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China.
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China.
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Yin X, Shan J, Dou L, Cheng Y, Liu S, Hassan RY, Wang Y, Wang J, Zhang D. Multiple bacteria recognition mechanisms and their applications. Coord Chem Rev 2024; 517:216025. [DOI: 10.1016/j.ccr.2024.216025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
5
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Zhang Y, Qian Y, Wen Y, Gui Q, Xu Y, Lu X, Zhang L, Song W. In Situ Preparation of Chlorine-Regenerable Antimicrobial Polymer Molecular Sieve Membranes. Molecules 2024; 29:2980. [PMID: 38998932 PMCID: PMC11243515 DOI: 10.3390/molecules29132980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable antimicrobial polymer molecular sieve membranes through combining post-crosslinking and nucleophilic substitution reaction. The cross-linking PS membranes underwent a reaction with 5,5-dimethylhydantoin (DMH), leading to the formation of polymeric N-halamine precursors (PS-DMH). These hydantoinyl groups within PS-DMH were then efficiently converted into biocidal N-halamine structures (PS-DMH-Cl) via a simple chlorination process. ATR-FTIR and XPS spectra were recorded to confirm the chemical composition of the as-prepared PS-DMH-Cl membranes. SEM analyses revealed that the chlorinated PS-DMH-Cl membranes displayed a rough surface with a multitude of humps. The effect of chlorination temperature and time on the oxidative chlorine content in the PS-DMH-Cl membranes was systematically studied. The antimicrobial assays demonstrated that the PS-DMH-Cl membranes could achieve a 6-log inactivation of E. coli and S. aureus within just 4 min of contact time. Additionally, the resulting PS-DMH-Cl membranes exhibited excellent stability and regenerability of the oxidative chlorine content.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yiduo Qian
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yuheng Wen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiudi Gui
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yixin Xu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Li Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Lin Z, Haataja JS, Hu X, Hong X, Ikkala O, Peng B. Randomizing the growth of silica nanofibers for whiteness. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:102021. [PMID: 38947181 PMCID: PMC11211975 DOI: 10.1016/j.xcrp.2024.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 07/02/2024]
Abstract
In colloids, the shape influences the function. In silica, straight nanorods have already been synthesized from water-in-oil emulsions. By contrast, curly silica nanofibers have been less reported because the underlying growth mechanism remains unexplored, hindering further morphology control for applications. Herein, we describe the synthetic protocol for silica nanofibers with a tunable curliness based on the control of the water-in-oil emulsion droplets. Systematically decreasing the droplet size and increasing their contact angle, the Brownian motion of the droplets intensifies during the silica growth, thus increasing the random curliness of the nanofibers. This finding is supported by simplistic theoretical arguments and experimentally verified by varying the temperature to finely tune the curliness. Assembling these nanofibers toward porous disordered films enhances multiple scattering in the visible range, resulting in increased whiteness in contrast to films constructed by spherical and rod-like building units, which can be useful for, e.g., coatings and pigments.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| | - Johannes S. Haataja
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland
| | - Xichen Hu
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| | - Xiaodan Hong
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland
| | - Bo Peng
- Department of Applied Physics, Aalto University, P.O. Box 15100, 02150 Espoo, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Luo D, Liu X, Dai S, Yi J, Tang N, Cai Y, Bao X, Hu M, Liu Z. Highly Crystalline Copper Aluminum-Layered Double Hydroxides with Intrinsic Fenton-Like Catalytic Activity for Robust Oral Health Management. Inorg Chem 2024; 63:10691-10704. [PMID: 38805682 DOI: 10.1021/acs.inorgchem.4c01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
As the main challenge of dental healthcare, oral infectious diseases are highly associated with the colonization of pathogenic microbes. However, current antibacterial treatments in the field of stomatology still lack a facile, safe, and universal approach. Herein, we report the controllable synthesis of copper aluminum-layered double hydroxides (CuAl-LDHs) with high Fenton-like catalytic activity, which can be utilized in the treatment of oral infectious diseases with negligible side effects. Our strategy can efficiently avoid the unwanted doping of other divalent metal ions in the synthesis of Cu-contained LDHs and result in the formation of binary CuAl-LDHs with high crystallinity and purity. Evidenced by experimental and theoretical results, CuAl-LDHs exhibit excellent catalytic ability toward the ·OH generation in the presence of H2O2 and hold strong affinity toward bacteria, endowing them with great catalytic sterilization against both Gram-positive and Gram-negative bacteria. As expected, these CuAl-LDHs provide outstanding treatments for mucosal infection and periodontitis by promoting wound healing and remodeling of the periodontal microenvironment. Moreover, toxicity investigation demonstrates the overall safety. Accordingly, the current study not only provides a convenient and economic strategy for treating oral infectious diseases but also extends the development of novel LDH-based Fenton or Fenton-like antibacterial reagents for further biomedical applications.
Collapse
Affiliation(s)
- Danfeng Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiaocan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Shuang Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingzheng Yi
- Western Dental, Fresno, California 93726, United States
| | - Nan Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanting Cai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Min Hu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zhen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Omran BA, Tseng BS, Baek KH. Nanocomposites against Pseudomonas aeruginosa biofilms: Recent advances, challenges, and future prospects. Microbiol Res 2024; 282:127656. [PMID: 38432017 DOI: 10.1016/j.micres.2024.127656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/10/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that causes life-threatening and persistent infections in immunocompromised patients. It is the culprit behind a variety of hospital-acquired infections owing to its multiple tolerance mechanisms against antibiotics and disinfectants. Biofilms are sessile microbial aggregates that are formed as a result of the cooperation and competition between microbial cells encased in a self-produced matrix comprised of extracellular polymeric constituents that trigger surface adhesion and microbial aggregation. Bacteria in biofilms exhibit unique features that are quite different from planktonic bacteria, such as high resistance to antibacterial agents and host immunity. Biofilms of P. aeruginosa are difficult to eradicate due to intrinsic, acquired, and adaptive resistance mechanisms. Consequently, innovative approaches to combat biofilms are the focus of the current research. Nanocomposites, composed of two or more different types of nanoparticles, have diverse therapeutic applications owing to their unique physicochemical properties. They are emerging multifunctional nanoformulations that combine the desired features of the different elements to obtain the highest functionality. This review assesses the recent advances of nanocomposites, including metal-, metal oxide-, polymer-, carbon-, hydrogel/cryogel-, and metal organic framework-based nanocomposites for the eradication of P. aeruginosa biofilms. The characteristics and virulence mechanisms of P. aeruginosa biofilms, as well as their devastating impact and economic burden are discussed. Future research addressing the potential use of nanocomposites as innovative anti-biofilm agents is emphasized. Utilization of nanocomposites safely and effectively should be further strengthened to confirm the safety aspects of their application.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), PO 11727, Nasr City, Cairo, Egypt
| | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA.
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
10
|
Bai Z, Zhao Y, Cui C, Yan J, Qin D, Tong J, Peng H, Liu Y, Sun L, Wu X, Li B, Li X. Multifaceted Materials for Enhanced Osteogenesis and Antimicrobial Properties on Bioplastic Polyetheretherketone Surfaces: A Review. ACS OMEGA 2024; 9:17784-17807. [PMID: 38680314 PMCID: PMC11044237 DOI: 10.1021/acsomega.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
Implant-associated infections and the increasing number of bone implants loosening and falling off after implantation have become urgent global challenges, hence the need for intelligent alternative solutions to combat implant loosening and falling off. The application of polyetheretherketone (PEEK) in biomedical and medical therapy has aroused great interest, especially because its elastic modulus close to bone provides an effective alternative to titanium implants, thereby preventing the possibility of bone implants loosening and falling off due to the mismatch of elastic modulus. In this Review, we provide a comprehensive overview of recent advances in surface modifications to prevent bone binding deficiency and bacterial infection after implantation of bone implants, starting with inorganics for surface modification, followed by organics that can effectively promote bone integration and antimicrobial action. In addition, surface modifications derived from cells and related products of biological activity have been proposed, and there is increasing evidence of clinical potential. Finally, the advantages and future challenges of surface strategies against medical associated poor osseointegration and infection are discussed, with promising prospects for developing novel osseointegration and antimicrobial PEEK materials.
Collapse
Affiliation(s)
- Ziyang Bai
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yifan Zhao
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Chenying Cui
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jingyu Yan
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Danlei Qin
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Jiahui Tong
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Hongyi Peng
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Yingyu Liu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Lingxiang Sun
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Bing Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| | - Xia Li
- Shanxi
Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
- Shanxi
Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, China
| |
Collapse
|
11
|
Liu X, Tan H, Stråka E, Hu X, Chen M, van Dijken S, Scacchi A, Sammalkorpi M, Ikkala O, Peng B. Trainable bioinspired magnetic sensitivity adaptation using ferromagnetic colloidal assemblies. CELL REPORTS. PHYSICAL SCIENCE 2024; 5:101923. [PMID: 38680545 PMCID: PMC11043831 DOI: 10.1016/j.xcrp.2024.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
Nature has already suggested bioinspired functions. Beyond them, adaptive and trainable functions could be the inspiration for novel responsive soft matter beyond the state-of-the-art classic static bioinspired, stimulus-responsive, and shape-memory materials. Here, we describe magnetic assembly/disassembly of electrically conducting soft ferromagnetic nickel colloidal particles into surface topographical pillars for bistable electrical trainable memories. They allow magnetic sensing with adaptable and rescalable sensitivity ranges, enabled by bistable memories and kinetic concepts inspired by biological sensory adaptations. Based on the soft ferromagnetism of the nanogranular composition and the resulting rough particle surfaces prepared via a solvothermal synthesis, triggerable structural memory is achieved by the magnetic field-driven particle assembly and disassembly, promoted by interparticle jamming. Electrical conversion from current to frequency for electrical spikes facilitates rescalable and trainable frequency-based sensitivity on magnetic fields. This work suggests an avenue for designing trainable and adaptable life-inspired materials, for example, for soft robotics and interactive autonomous devices.
Collapse
Affiliation(s)
- Xianhu Liu
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Hongwei Tan
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Emil Stråka
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Xichen Hu
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Min Chen
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| | - Sebastiaan van Dijken
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Alberto Scacchi
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
| | - Bo Peng
- Department of Applied Physics, Aalto University, P.O. Box 15100, 00076 Aalto, Finland
- Department of Materials Science, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Ren J, Qiao Y, Jin L, Mao C, Wang C, Wu S, Zheng Y, Li Z, Cui Z, Jiang H, Zhu S, Liu X. A Smart Bacteria-Capture-Killing Vector for Effectively Treating Osteomyelitis Through Synergy Under Microwave Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307406. [PMID: 38009734 DOI: 10.1002/smll.202307406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/03/2023] [Indexed: 11/29/2023]
Abstract
Osteomyelitis caused by deep tissue infections is difficult to cure through phototherapy due to the poor penetration depth of the light. Herein, Cu/C/Fe3O4-COOH nanorod composites (Cu/C/Fe3O4-COOH) with nanoscale tip convex structures are successfully fabricated as a microwave-responsive smart bacteria-capture-killing vector. Cu/C/Fe3O4-COOH exhibited excellent magnetic targeting and bacteria-capturing ability due to its magnetism and high selectivity affinity to the amino groups on the surface of Staphylococcus aureus (S. aureus). Under microwave irradiation, Cu/C/Fe3O4-COOH efficiently treated S. aureus-infected osteomyelitis through the synergistic effects of microwave thermal therapy, microwave dynamic therapy, and copper ion therapy. It is calculated the electric field intensity in various regions of Cu/C/Fe3O4-COOH under microwave irradiation, demonstrating that it obtained the highest electric field intensity on the surface of copper nanoparticles of Cu/C/Fe3O4-COOH due to its high-curvature tips and metallic properties. This led to copper nanoparticles attracted more charged particles compared with other areas in Cu/C/Fe3O4-COOH. These charges are easier to escape from the high curvature surface of Cu/C/Fe3O4-COOH, and captured by adsorbed oxygen, resulting in the generation of reactive oxygen species. The Cu/C/Fe3O4-COOH designed in this study is expected to provide insight into the treatment of deep tissue infections under the irradiation of microwave.
Collapse
Affiliation(s)
- Jinzhi Ren
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Yuqian Qiao
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Liguo Jin
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Chaofeng Wang
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| | - Shuilin Wu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Yi-He-Yuan Road 5#, Beijing, 100871, China
| | - Zhaoyang Li
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhenduo Cui
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shengli Zhu
- School of Materials Science and Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science and Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
13
|
Abbas HA, Taha AA, Sulaiman GM, Al Ali A, Shmrany HA, Stamatis H, Mohammed HA, Khan RA. Antibacterial and hemocompatibility potentials of nano-gold-cored alginate preparation against anaerobic bacteria from acne vulgaris. Sci Rep 2024; 14:6984. [PMID: 38523189 PMCID: PMC10961324 DOI: 10.1038/s41598-024-57643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024] Open
Abstract
Acne is a prevalent dermatological disease, with high global incidence, and is a health menace. The current study aimed to isolate and characterize the anaerobic bacteria responsible for the condition. Causes of a total of 70 acne-based bacterium isolates obtained from patients of mild, moderate, and severe acne, 24 were Clostridium innocuum, 21 were Lactobacillus plantarum, 13 were Anaerococcus prevotii, and 12 were Peptoniphilus asaccharolyticus. Nearly 69% of males were suffering, while the rest were females at 31%. The 15-30 years old age group was the most affected. The gold/alginate nanoparticles' nanopreparation (GANPs) produced from chloroauric acid and sodium alginate was an effective treatment against the acne conditions under the experimental conditions. The nanopreparation exhibited significant inhibitory activity against anaerobic bacterial isolates, with a minimum inhibitory concentration of 200 µg/ml for A. prevotii and P. asaccharolyticus, and 400 µg/ml for C. innocuum and L. plantarum. The in vitro efficacy of the GANPs on human blood parameters was also assessed. The concurrent results suggested potential antibacterial activity and hemocompatibility of the product, which has promise to be used as a successful antibacterial agent for acne.
Collapse
Affiliation(s)
- Hanan A Abbas
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ali A Taha
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad, Iraq.
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, 255, 67714, Bisha, Saudi Arabia
| | - Humood Al Shmrany
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Alkharj, Saudi Arabia
| | - Haralambos Stamatis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, 51452, Qassim, Saudi Arabia
| |
Collapse
|
14
|
Kumar N, Nakaji-Hirabayashi T, Kato M, Matsumura K, Rajan R. Design of Highly Selective Zn-Coordinated Polyampholyte for Cancer Treatment and Inhibition of Tumor Metastasis. Biomacromolecules 2024; 25:1481-1490. [PMID: 38343080 DOI: 10.1021/acs.biomac.3c01044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Developing anticancer agents with negligible cytotoxicity against normal cells while mitigating multidrug resistance and metastasis is challenging. Previously reported cationic polymers have effectively eradicated cancers but are clinically unsuitable due to their limited selectivity. Herein, a series of poly(l-lysine)- and nicotinic acid-based polymers were synthesized using varying amounts of dodecylsuccinic anhydride. Zn-coordinating polymers concealed their cationic charge and enhanced selectivity. These Zn-bound polymers were highly effective against liver and colon cancer cells (HepG2 and Colon 26, respectively) and prevented cancer cell migration. They also displayed potent anticancer activity against drug-resistant cell lines (COR-L23/R): their cationic structure facilitated cancer cell membrane disruption. Compared to these polymers, doxorubicin was less selective and less efficacious against drug-resistant cell lines and was unable to prevent cell migration. These polymers are potential cancer treatment agents, offering a promising solution for mitigating drug resistance and tumor metastasis and representing a novel approach to designing cancer therapeutics.
Collapse
Affiliation(s)
- Nishant Kumar
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Tadashi Nakaji-Hirabayashi
- Faculty of Engineering, Academic Assembly, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Moe Kato
- Graduate School of Innovative Life Science, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Robin Rajan
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
15
|
Yu R, Chen H, He J, Zhang Z, Zhou J, Zheng Q, Fu Z, Lu C, Lin Z, Caruso F, Zhang X. Engineering Antimicrobial Metal-Phenolic Network Nanoparticles with High Biocompatibility for Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307680. [PMID: 37997498 DOI: 10.1002/adma.202307680] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Antibiotic-resistant bacteria pose a global health threat by causing persistent and recurrent microbial infections. To address this issue, antimicrobial nanoparticles (NPs) with low drug resistance but potent bactericidal effects have been developed. However, many of the developed NPs display poor biosafety and their synthesis often involves complex procedures and the antimicrobial modes of action are unclear. Herein, a simple strategy is reported for designing antimicrobial metal-phenolic network (am-MPN) NPs through the one-step assembly of a seeding agent (diethyldithiocarbamate), natural polyphenols, and metal ions (e.g., Cu2+ ) in aqueous solution. The Cu2+ -based am-MPN NPs display lower Cu2+ antimicrobial concentrations (by 10-1000 times) lower than most reported nanomaterials and negligible toxicity across various models, including, cells, blood, zebrafish, and mice. Multiple antimicrobial modes of the NPs have been identified, including bacterial wall disruption, reactive oxygen species production, and quinoprotein formation, with the latter being a distinct pathway identified for the antimicrobial activity of the polyphenol-based am-MPN NPs. The NPs exhibit excellent performance against multidrug-resistant bacteria (e.g., methicillin-resistant Staphylococcus aureus (MRSA)), efficiently inhibit and destroy bacterial biofilms, and promote the healing of MRSA-infected skin wounds. This study provides insights on the antimicrobial properties of metal-phenolic materials and the rational design of antimicrobial metal-organic materials.
Collapse
Affiliation(s)
- Rongxin Yu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Jian He
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Zhichao Zhang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jiajing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhouping Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| | - Zhixing Lin
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
| |
Collapse
|
16
|
Du T, Wang S, Feng J, Shen Y, Wang J, Zhang W. Dual-Mechanism Tuned Engineered Polyphenols with Cascade Photocatalytic Self-Fenton Reaction for Sustainable Biocidal Coatings. NANO LETTERS 2023; 23:9563-9570. [PMID: 37819937 DOI: 10.1021/acs.nanolett.3c03142] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Traditional disposable personal protective equipment (PPE) only blocks pathogenic bacteria by mechanical filtration, with the risk of recontamination and transmission remaining. Herein, inspired by phenolic-enabled nanotechnology (PEN), we proposed engineered polyphenol coatings by plant-derived aromatic aldehydes and metal involvement, denoted as FQM, to obtain the desired photocatalysis-self-Fenton antibacterial performance. Experiments and theoretical analysis proved the dual mechanism of Fe-induced enhancement: (1) tuning of molecular structure realized improved optical properties; (2) Fe(III)/Fe(II) triggered photocatalytic cascade self-Fenton reaction. Mechanism study reveals FQM killing bacteria by direct-contact ROS attack and gene regulation. Further, the FQM was developed as the ideal antibacterial coating on different fabrics (cloth cotton, polyester, and N95 mask), killing more than 93% of bacteria after 5 cycles of use. Such photocatalysis-self-Fenton coatings based on engineered polyphenols endowed with desirable safety, sustainability, and efficient antibacterial features are promising solutions to meet the challenges of the currently available PPE.
Collapse
Affiliation(s)
- Ting Du
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Shaochi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Jianxing Feng
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei 230009, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, P. R. China
| |
Collapse
|
17
|
Zhang ZJ, Liu ZT, Huang YP, Nguyen W, Wang YX, Cheng L, Zhou H, Wen Y, Xiong L, Chen W. Magnetic resonance and fluorescence imaging superparamagnetic nanoparticles induce apoptosis and ferroptosis through photodynamic therapy to treat colorectal cancer. MATERIALS TODAY PHYSICS 2023; 36:101150. [DOI: 10.1016/j.mtphys.2023.101150] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
18
|
Diogo P, Amparo F Faustino M, Palma PJ, Rai A, Graça P M S Neves M, Miguel Santos J. May carriers at nanoscale improve the Endodontic's future? Adv Drug Deliv Rev 2023; 195:114731. [PMID: 36787865 DOI: 10.1016/j.addr.2023.114731] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/29/2022] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Nanocarriers (NCs) are dynamic nanovehicles used to transport bioactive derivatives like therapeutical formulations, drugs and/or dyes. The current review assists in understanding the mechanism of action of several recent developed NCs with antimicrobial purposes. Here, nine NCs varieties are portrayed with focus on nineteen approaches that are fulfil described based on outcomes obtained from in vitro antimicrobial assays. All approaches have previously been verified and we underline the biochemical challenges of all NCs, expecting that the present data may encourage the application of NCs in endodontic antimicrobial basic research. Methodological limitations and the evident base gaps made not possible to draw a definite conclusion about the best NCs for achieving efficient antimicrobial outcomes in endodontic studies. Due to the lack of pre-clinical trials and the scarce number of clinical trials in this emergent area, there is still much room for improvement on several fronts.
Collapse
Affiliation(s)
- Patrícia Diogo
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal.
| | - M Amparo F Faustino
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo J Palma
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | - Akhilesh Rai
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal
| | | | - João Miguel Santos
- Institute of Endodontics, Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Center for Innovation and Research in Oral Sciences (CIROS), Faculty of Medicine, University of Coimbra, 3000-075 Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) and Center of Investigation on Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine and Clinical Academic Center of Coimbra (CACC), 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Phakatkar AH, Yurkiv V, Ghildiyal P, Wang Y, Amiri A, Sorokina LV, Zachariah MR, Shokuhfar T, Shahbazian-Yassar R. In Situ Microscopic Studies on the Interaction of Multi-Principal Element Nanoparticles and Bacteria. ACS NANO 2023; 17:5880-5893. [PMID: 36921123 DOI: 10.1021/acsnano.2c12799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multi-principal element nanoparticles are an emerging class of materials with potential applications in medicine and biology. However, it is not known how such nanoparticles interact with bacteria at nanoscale. In the present work, we evaluated the interaction of multi-principal elemental alloy (FeNiCu) nanoparticles with Escherichia coli (E. coli) bacteria using the in situ graphene liquid cell (GLC) scanning transmission electron microscopy (STEM) approach. The imaging revealed the details of bacteria wall damage in the vicinity of nanoparticles. The chemical mappings of S, P, O, N, C, and Cl elements confirmed the cytoplasmic leakage of the bacteria. Our results show that there is selective release of metal ions from the nanoparticles. The release of copper ions was much higher than that for nickel while the iron release was the lowest. In addition, the binding affinity of bacterial cell membrane protein functional groups with Cu, Ni, and Fe cations is found to be the driving force behind the selective metal cations' release from the multi-principal element nanoparticles. The protein functional groups driven dissolution of multielement nanoparticles was evaluated using the density functional theory (DFT) computational method, which confirmed that the energy required to remove Cu atoms from the nanoparticle surface was the least in comparison with those for Ni and Fe atoms. The DFT results support the experimental data, indicating that the energy to dissolve metal atoms exposed to oxidation and/or the to presence of oxygen atoms at the surface of the nanoparticle catalyzes metal removal from the multielement nanoparticle. The study shows the potential of compositional design of multi-principal element nanoparticles for the controlled release of metal ions to develop antibacterial strategies. In addition, GLC-STEM is a promising approach for understanding the nanoscale interaction of metallic nanoparticles with biological structures.
Collapse
Affiliation(s)
- Abhijit H Phakatkar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Vitaliy Yurkiv
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Pankaj Ghildiyal
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yujie Wang
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Azadeh Amiri
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Lioudmila V Sorokina
- Department of Civil, Materials, and Environmental Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Michael R Zachariah
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Tolou Shokuhfar
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Reza Shahbazian-Yassar
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
20
|
Sun P, Li K, Liu X, Wang J, Qiu X, Wei W, Zhao J. Peptide-mediated Aqueous Synthesis of NIR-II Emitting Ag 2 S Quantum Dots for Rapid Photocatalytic Bacteria Disinfection. Angew Chem Int Ed Engl 2023; 62:e202300085. [PMID: 36772842 DOI: 10.1002/anie.202300085] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Pathogenic microorganisms in the environment are a great threat to global human health. The development of disinfection method with rapid and effective antibacterial properties is urgently needed. In this study, a biomimetic silver binding peptide AgBP2 was introduced to develop a facile synthesis of biocompatible Ag2 S quantum dots (QDs). The AgBP2 capped Ag2 S QDs exhibited excellent fluorescent emission in the second near-infrared (NIR-II) window, with physical stability and photostability in the aqueous phase. Under 808 nm NIR laser irradiation, AgBP2-Ag2 S QDs can serve not only as a photothermal agent to realize NIR photothermal conversion but also as a photocatalyst to generate reactive oxygen species (ROS). The obtained AgBP2-Ag2 S QDs achieved a highly effective disinfection efficacy of 99.06 % against Escherichia coli within 25 min of NIR irradiation, which was ascribed to the synergistic effects of photogenerated ROS during photocatalysis and hyperthermia. Our work demonstrated a promising strategy for efficient bacterial disinfection.
Collapse
Affiliation(s)
- Peiqing Sun
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518000, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210023, China
| | - Kunlun Li
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiao Liu
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xusheng Qiu
- Department of Orthopedics, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210023, China
| | - Wei Wei
- School of Life Sciences, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518000, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Shenzhen Research Institute, Nanjing University, Shenzhen, 518000, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, 210023, China
| |
Collapse
|
21
|
Oxygen-vacancy-rich molybdenum carbide MXene nanonetworks for ultrasound-triggered and capturing-enhanced sonocatalytic bacteria eradication. Biomaterials 2023; 296:122074. [PMID: 36889145 DOI: 10.1016/j.biomaterials.2023.122074] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Incurable bacterial infection and intractable multidrug resistance remain critical challenges in public health. A prevalent approach against bacterial infection is phototherapy including photothermal and photodynamic therapy, which is unfortunately limited by low penetration depth of light accompanied with inevitable hyperthermia and phototoxicity damaging healthy tissues. Thus, eco-friendly strategy with biocompatibility and high antimicrobial efficacy against bacteria is urgently desired. Herein, we propose and develop an oxygen-vacancy-rich MoOxin situ on fluorine-free Mo2C MXene with unique neural-network-like structure, namely MoOx@Mo2C nanonetworks, in which their desirable antibacterial effectiveness originates from bacteria-capturing ability and robust reactive oxygen species (ROS) generation under precise ultrasound (US) irradiation. The high-performance, broad-spectrum microbicidal activity of MoOx@Mo2C nanonetworks without damaging normal tissues is validated based on systematic in vitro and in vivo assessments. Additionally, RNA sequencing analysis illuminates that the underlying bactericidal mechanism is attributed to the chaotic homeostasis and disruptive peptide metabolisms on bacteria instigated by MoOx@Mo2C nanonetworks under US stimulation. Considering antibacterial efficiency and a high degree of biosafety, we envision that the MoOx@Mo2C nanonetworks can serve as a distinct antimicrobial nanosystem to fight against diverse pathogenic bacteria, especially eradicating multidrug-resistant bacteria-induced deep tissue infection.
Collapse
|
22
|
Kang Y, Liang Y, Sun H, Dan J, Zhang Q, Su Z, Wang J, Zhang W. Selective Enrichment of Gram-positive Bacteria from Apple Juice by Magnetic Fe3O4 Nanoparticles Modified with Phytic Acid. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02984-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
23
|
Liu X, Tan H, Rigoni C, Hartikainen T, Asghar N, van Dijken S, Timonen JVI, Peng B, Ikkala O. Magnetic field-driven particle assembly and jamming for bistable memory and response plasticity. SCIENCE ADVANCES 2022; 8:eadc9394. [PMID: 36367936 PMCID: PMC9651856 DOI: 10.1126/sciadv.adc9394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Unlike classic synthetic stimulus-responsive and shape-memory materials, which remain limited to fixed responses, the responses of living systems dynamically adapt based on the repetition, intensity, and history of stimuli. Such plasticity is ubiquitous in biology, which is profoundly linked to memory and learning. Concepts thereof are searched for rudimentary forms of "intelligent materials." Here, we show plasticity of electroconductivity in soft ferromagnetic nickel colloidal supraparticles with spiny surfaces, assembling/disassembling to granular conducting micropillars between two electrodes driven by magnetic field B. Colloidal jamming leads to conduction hysteresis and bistable memory upon increasing and subsequently decreasing B. Abrupt B changes induce larger conduction changes than gradual B-changes. Periodic B pulsing drives to frequency-dependent facilitation or suppression of conductivity compared to exposing the same constant field. The concepts allow remotely controlled switching plasticity, illustrated by a rudimentary device. More generally, we foresee adaptive functional materials inspired by response plasticity and learning.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bo Peng
- Corresponding author. (B.P.); (O.I.)
| | | |
Collapse
|
24
|
Li Q, Jiang S, Jia W, Wang F, Wang Z, Cao X, Shen X, Yao Z. Novel silver-modified carboxymethyl chitosan antibacterial membranes using environment-friendly polymers. CHEMOSPHERE 2022; 307:136059. [PMID: 35977569 DOI: 10.1016/j.chemosphere.2022.136059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The rapid reproduction of foodborne bacteria in food packaging threatens the health of consumers, the massive use and waste of packaging also causes serious environmental pollution. In this study, novel biodegradable antibacterial membranes based on silver-modified carboxymethyl chitosan (Ag-CMCS) were prepared. Polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT) were used as the base membrane materials. Characterization of the prepared membranes was performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), water contact angle, and so on. Especially, the silver on the surface of Ag-CMCS was proved to be metallic silver. For the first cycle of zone of inhibition test, the diameter of inhibition zone could reach up to 17 mm while the mass of silver released was negligible. The prepared antibacterial membranes could kill almost 100% of bacteria under certain conditions and inhibition zone still existed after more than 7 cycles of tests, indicating the prepared antibacterial membranes were effective. This study could provide new ideas for preparing efficient and environment-friendly antibacterial food packaging membranes.
Collapse
Affiliation(s)
- Qirun Li
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Wenting Jia
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Zeru Wang
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing, Technology and Business University, Beijing 100048, China.
| |
Collapse
|
25
|
Wang G, Hao C, Chen C, Kuang H, Xu C, Xu L. Six-Pointed Star Chiral Cobalt Superstructures with Strong Antibacterial Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204219. [PMID: 36038354 DOI: 10.1002/smll.202204219] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Chiral inorganic nanomaterials have shown promise as a potential means of combating bacteria due to their high levels of biocompatibility, easy surface modification, and excellent optical properties. In this study, a diverse range of chiral hierarchical nanomaterials are prepared from Co2+ and L/D-Tartaric acid (Tar) ligands. By combining the ligands in different ratios, chiral Co superstructures (Co SS) are obtained with different morphologies, including chiral nanoflowers, chiral nanohanamaki, a chiral six-pointed star, a chiral fan shape, and a chiral fusiform shape. It is found that the chiral six-pointed star structures exhibit chiroptical activity across a broad range of wavelengths from 300 to 1300 nm and that the g-factor is as high as 0.033 with superparamagnetic properties. Under the action of electromagnetic fields, the chiral six-pointed star Co SS shows excellent killing ability against Gram-positive Staphylococcus aureus (ATCC 25923). Compared to L-Co SS, D-Co SS shows stronger levels of antibacterial ability. It is found that the levels of reactive oxygen species generated by D-Co SS are 1.59-fold higher than L-Co SS which is attributed to chiral-induced spin selectivity effects. These findings are of significance for the further development of chiral materials with antibacterial properties.
Collapse
Affiliation(s)
- Gaoyang Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chen Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
| |
Collapse
|
26
|
Du T, Cao J, Xiao Z, Liu J, Wei L, Li C, Jiao J, Song Z, Liu J, Du X, Wang S. Van-mediated self-aggregating photothermal agents combined with multifunctional magnetic nickel oxide nanoparticles for precise elimination of bacterial infections. J Nanobiotechnology 2022; 20:325. [PMID: 35836225 PMCID: PMC9281033 DOI: 10.1186/s12951-022-01535-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Building a novel and efficient photothermal antibacterial nanoplatform is a promising strategy for precise bacterial elimination. Herein, a nanocomposite NiO NPs@AuNPs@Van (NAV) for selective MRSA removal was constructed by electrostatic self-assembly of highly photothermal magnetic NiO NPs and vancomycin (Van)-modified gold nanoparticles (AuNPs). In the presence of MRSA and under NIR irradiation, Van-mediated AuNPs can self-aggregate on MRSA surface, generating photothermal effect in situ and killing 99.6% MRSA in conjunction with magnetic NiO NPs. Additionally, the photothermal efficiency can be improved by magnetic enrichment due to the excellent magnetism of NAV, thereby enhancing the bactericidal effect at a lower experimental dose. In vitro antibacterial experiments and full-thickness skin wound healing test demonstrated that this combination therapy could effectively accelerate wound healing in MRSA-infected mice, increase collagen coverage, reduce IL-6 and TNF-α content, and upregulate VEGF expression. Biological safety experiments confirmed that NAV has good biocompatibility in vivo and in vitro. Overall, this work reveals a new type of nanocomposite with enhanced photothermal antibacterial activity as a potential nano-antibacterial agent for treating bacteria-infected wounds.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiangli Cao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zehui Xiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiaqi Liu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lifei Wei
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chunqiao Li
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
27
|
Basina G, Diamantopoulos G, Devlin E, Psycharis V, Alhassan SM, Pissas M, Hadjipanayis G, Tomou A, Bouras A, Hadjipanayis C, Tzitzios V. LAPONITE® nanodisk-"decorated" Fe 3O 4 nanoparticles: a biocompatible nano-hybrid with ultrafast magnetic hyperthermia and MRI contrast agent ability. J Mater Chem B 2022; 10:4935-4943. [PMID: 35535802 DOI: 10.1039/d2tb00139j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Magnetic Fe3O4 nanoparticles "decorated" by LAPONITE® nanodisks have been materialized utilizing the Schikorr reaction following a facile approach and tested as mediators of heat for localized magnetic hyperthermia (MH) and as magnetic resonance imaging (MRI) agents. The synthetic protocol involves the interaction between two layered inorganic compounds, ferrous hydroxide, Fe(OH)2, and the synthetic smectite LAPONITE® clay Na0.7+[(Si8Mg5.5Li0.3)O20(OH)4]0.7-, towards the formation of superparamagnetic Fe3O4 nanoparticles, which are well decorated by the diamagnetic clay nanodisks. The latter imparts high negative ζ-potential values (up to -34.1 mV) to the particles, which provide stability against flocculation and precipitation, resulting in stable water dispersions. The obtained LAPONITE®-"decorated" Fe3O4 nanohybrids were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Mössbauer spectroscopy, dynamic light scattering (DLS) and vibrating sample magnetometry (VSM) at room temperature, revealing superior magnetic hyperthermia performance with specific absorption rate (SAR) values reaching 540 W gFe-1 (28 kA m-1, 150 kHz) for the hybrid material with a magnetic loading of 50 wt% Fe3O4/LAPONITE®. Toxicity studies were also performed with human glioblastoma (GBM) cells and human foreskin fibroblasts (HFF), which show negligible to no toxicity. Furthermore, T2-weighted MR imaging of rodent brain shows that the LAPONITE®-"decorated" Fe3O4 nanohybrids predominantly affected the transverse T2 relaxation time of tissue water, which resulted in a signal drop on the MRI T2-weighted imaging, allowing for imaging of the magnetic nanoparticles.
Collapse
Affiliation(s)
- Georgia Basina
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA. .,Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - George Diamantopoulos
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Eamonn Devlin
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - Saeed M Alhassan
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Michael Pissas
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece.
| | - George Hadjipanayis
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19711, USA.
| | - Aphrodite Tomou
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece. .,Goodfellow Cambridge Ltd., Ermine Business Park, Huntingdon PE29 6WR, Cambridge, UK
| | - Alexandros Bouras
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Constantinos Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Vasileios Tzitzios
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15310, Athens, Greece. .,Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
28
|
Zhang X, He J, Qiao L, Wang Z, Zheng Q, Xiong C, Yang H, Li K, Lu C, Li S, Chen H, Hu X. 3D
printed
PCLA
scaffold with nano‐hydroxyapatite coating doped green tea
EGCG
promotes bone growth and inhibits multidrug‐resistant bacteria colonization. Cell Prolif 2022; 55:e13289. [PMID: 35791492 PMCID: PMC9528762 DOI: 10.1111/cpr.13289] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Jian He
- College of Medical, Henan University of Science and Technology Luoyang China
| | - Liang Qiao
- The First Affiliated Hospital College of Clinical Medicine of Henan University of Science and Technology Luoyang People's Republic of China
| | - Ziqi Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Qinqin Zheng
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu Sichuan China
| | - Hui Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and West China Hospital of Stomatology Sichuan University Chengdu China
| | - Kainan Li
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University Chengdu China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Sanqiang Li
- College of Medical, Henan University of Science and Technology Luoyang China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences Hangzhou China
| | - Xulin Hu
- Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University Chengdu China
| |
Collapse
|
29
|
Du T, Huang B, Cao J, Li C, Jiao J, Xiao Z, Wei L, Ma J, Du X, Wang S. Ni Nanocrystals Supported on Graphene Oxide: Antibacterial Agents for Synergistic Treatment of Bacterial Infections. ACS OMEGA 2022; 7:18339-18349. [PMID: 35694481 PMCID: PMC9178720 DOI: 10.1021/acsomega.2c00508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
The effects of antibiotics on bacterial infections are gradually weakened, leading to the wide development of nanoparticle-based antibacterial agents with unique physical and chemical properties and antibacterial mechanisms different from antibiotics. In this study, we fabricated the uniform and stable graphene oxide (GO)/Ni colloidal nanocrystal cluster (NCNC) nanocomposite by electrostatic self-assembly and investigated its synergistic antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) in vitro. The GO/NCNC nanocomposite was shown to possess higher inhibition efficiency than a pure NCNC or GO suspension, with 99.5 and 100% inhibition against S. aureus and E. coli at a 125 μg/mL concentration, respectively. Antibacterial mechanism analysis revealed that (i) NCNCs decorated on GO can further enhance the antibacterial properties of GO by binding and capturing bacteria, (ii) the leaching of Ni2+ was detected during the interaction of GO/NCNCs and bacteria, resulting in a decrease in the number of bacteria, and (iii) the GO/NCNC nanocomposite can synergistically destroy the bacterial membrane through physical action and induce the reactive oxygen species generation, so as to further damage the cell membrane and affect ATPase, leakage of intercellular contents, and ultimately bacterial growth inhibition. Meanwhile, cell culture experiments demonstrated no adverse effect of GO/NCNCs on cell growth. These preliminary results indicate the high antibacterial efficiency of the GO/NCNC nanocomposite, suggesting the possibility to develop it into an effective antibacterial agent in the future against bacterial infections.
Collapse
Affiliation(s)
- Ting Du
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Baojia Huang
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jiangli Cao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Chunqiao Li
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jingbo Jiao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Zehui Xiao
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Lifei Wei
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Jing Ma
- College
of Life Science, Yangtze University, Jingzhou, 434023 Hubei, PR China
| | - Xinjun Du
- State
Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food
Nutrition and Safety, Ministry of Education, College of Food Science
and Engineering, Tianjin University of Science
and Technology, Tianjin 300457, PR China
| | - Shuo Wang
- Tianjin
Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
30
|
Ali SR, De M. Superparamagnetic Nickel Nanocluster-Embedded MoS 2 Nanosheets for Gram-Selective Bacterial Adhesion and Antibacterial Activity. ACS Biomater Sci Eng 2022; 8:2932-2942. [PMID: 35666676 DOI: 10.1021/acsbiomaterials.2c00257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ever increasing infectious diseases caused by pathogenic bacteria are creating one of the greatest health problems. The extensive use of numerous antibiotics and antimicrobial agents has prompted the growth of multidrug-resistant bacterial strains. The ancient biomedical application of metals and the recent advancement in the field of nanotechnology have encouraged us to explore the antimicrobial activity of nanomaterials. Herein, we have synthesized a magnetically separable superparamagnetic nickel nanocluster-loaded two-dimensional molybdenum disulfide nanocomposite (Ni@2D-MoS2). It can selectively bind with Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis over Gram-negative bacteria such as Escherichia coli and Pseudomonas aeruginosa. After the functionalization of Ni@2D-MoS2 with a positively charged ligand, it showed an excellent Gram-selective antibacterial activity toward MRSA and E. faecalis. Furthermore, the superparamagnetic property of the synthesized material can be used for the simultaneous removal and killing of the microbes and recycled for further use. This study demonstrates strategies to develop hybrid antimicrobial nanomaterial systems for selective antibacterial activity with recyclability.
Collapse
Affiliation(s)
- Sk Rajab Ali
- Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, CV Raman Road, Bangalore 560012, India
| |
Collapse
|
31
|
Microwave assisted antibacterial action of Garcinia nanoparticles on Gram-negative bacteria. Nat Commun 2022; 13:2461. [PMID: 35513402 PMCID: PMC9072325 DOI: 10.1038/s41467-022-30125-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 04/07/2022] [Indexed: 11/08/2022] Open
Abstract
Owing to the existence of the outer membrane barrier, most antibacterial agents cannot penetrate Gram-negative bacteria and are ineffective. Here, we report a general method for narrow-spectrum antibacterial Garcinia nanoparticles that can only be effective to kill Gram-positive bacteria, to effectively eliminate Gram-negative bacteria by creating transient nanopores in bacterial outer membrane to induce drug entry under microwaves assistance. In vitro, under 15 min of microwaves irradiation, the antibacterial efficiency of Garcinia nanoparticles against Escherichia coli can be enhanced from 6.73% to 99.48%. In vivo, MV-assisted GNs can effectively cure mice with bacterial pneumonia. The combination of molecular dynamics simulation and experimental results reveal that the robust anti-E. coli effectiveness of Garcinia nanoparticles is attributed to the synergy of Garcinia nanoparticles and microwaves. This work presents a strategy for effectively treating both Gram-negative and Gram-positive bacteria co-infected pneumonia using herbal medicine nanoparticles with MV assistance as an exogenous antibacterial auxiliary.
Collapse
|
32
|
Huang Y, Zou L, Wang J, Jin Q, Ji J. Stimuli-responsive nanoplatforms for antibacterial applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1775. [PMID: 35142071 DOI: 10.1002/wnan.1775] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
The continuously increasing bacterial resistance has become a big threat to public health worldwide, which makes it urgent to develop innovative antibacterial strategies. Nanotechnology-based drug delivery systems are considered as promising strategies in combating bacterial infections which are expected to improve the therapeutic efficacy and minimize the side effects. Unfortunately, the conventional nanodrug delivery systems always suffer from practical dilemmas, including incomplete and slow drug release, insufficient accumulation in infected sites, and weak biofilm penetration ability. Stimuli-responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles. In this review, we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area, including planktonic bacteria, intracellular bacteria, and bacterial biofilms. Taking advantage of the specific infected microenvironment (pH, enzyme, redox, and toxin), the mechanisms and strategies of the design of endogenous stimuli-responsive nanoplatforms are discussed, with an emphasis on how to improve the therapeutic efficacy and minimize side effects. How to realize controlled drug delivery using exogenous stimuli-responsive nanoplatforms especially light-responsive nanoparticles for improved antibacterial effects is another topic of this review. We especially highlight photothermal-triggered drug delivery systems by the combination of photothermal agents and thermo-responsive materials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Jia B, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li Y. Nanophysical Antimicrobial Strategies: A Rational Deployment of Nanomaterials and Physical Stimulations in Combating Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105252. [PMID: 35088586 PMCID: PMC8981469 DOI: 10.1002/advs.202105252] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Indexed: 05/02/2023]
Abstract
The emergence of bacterial resistance due to the evolution of microbes under antibiotic selection pressure, and their ability to form biofilm, has necessitated the development of alternative antimicrobial therapeutics. Physical stimulation, as a powerful antimicrobial method to disrupt microbial structure, has been widely used in food and industrial sterilization. With advances in nanotechnology, nanophysical antimicrobial strategies (NPAS) have provided unprecedented opportunities to treat antibiotic-resistant infections, via a combination of nanomaterials and physical stimulations. In this review, NPAS are categorized according to the modes of their physical stimulation, which include mechanical, optical, magnetic, acoustic, and electrical signals. The biomedical applications of NPAS in combating bacterial infections are systematically introduced, with a focus on their design and antimicrobial mechanisms. Current challenges and further perspectives of NPAS in the clinical treatment of bacterial infections are also summarized and discussed to highlight their potential use in clinical settings. The authors hope that this review will attract more researchers to further advance the promising field of NPAS, and provide new insights for designing powerful strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Bingqing Jia
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
| | - Yong‐Qiang Li
- Institute of Advanced Interdisciplinary ScienceSchool of PhysicsShandong UniversityJinan250100China
- Suzhou Research InstituteShandong UniversitySuzhou215123China
| |
Collapse
|
34
|
Kim J, Sun J, Zhao Y, Wen J, Zhou B, Zhang Z, Mo S, Wang J, Liu H, Wang G, Yu Q, Liu M. Electronic Structure Modulation of Ag 2 S by Vacancy Engineering for Efficient Bacterial Infection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107807. [PMID: 35261157 DOI: 10.1002/smll.202107807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Vacancy engineering can modulate the electronic structure of the material and thus contribute to the formation of coordination unsaturated sites, which makes it easier to act on the substrate. Herein, Ag2 S and Ag2 S-100, which mainly have vacancy associates VAgS and VAgSAg , respectively, are prepared and characterized by positron annihilation spectroscopy. Both experimental and theoretical calculation results indicate that Ag2 S-100 exhibits excellent antibacterial activity due to its appropriate bandgap and stronger bacteria-binding ability, which endow it with a superior antibacterial activity compared to Ag2 S in the absence of light. The in vivo antibacterial experiment using a mouse wound-infection model further confirms that Ag2 S-100 has excellent antibacterial and wound-healing properties. This research provides clues for a deeper understanding of modulating electronic structures through vacancy engineering and develops a strategy for effective treatment of bacterial infections.
Collapse
Affiliation(s)
- JongGuk Kim
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jingyu Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yan Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jinghong Wen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Bo Zhou
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Ze Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shudi Mo
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianling Wang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Huajie Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guichang Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and the Tianjin key Lab and Molecule-based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Mingyang Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| |
Collapse
|
35
|
Ai Y, Sun H, Wang C, Zheng W, Han Q, Liang Q. Tunable Assembly of Organic-Inorganic Molecules into Hierarchical Superstructures as Ligase Mimics for Enhancing Tumor Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105304. [PMID: 35032093 DOI: 10.1002/smll.202105304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/03/2021] [Indexed: 06/14/2023]
Abstract
The assembly of molecules into hierarchical superstructures is ubiquitous in the construction of novel geometrically complex hierarchical superstructures, attracting great attention. Herein, a metal-ligand cross-linking strategy is developed for the fabrication of ferric ion-dopamine coordination hierarchical superstructures. A range of superstructures with highly complex morphologies, such as flower-like, octopus-like, and hedgehog-like superstructures, are synthesized. The mechanism for formation of hierarchical superstructures involves the pre-cross-linking of ferric ion with dopamine molecules, the fabrication of iron-dopamine precursors aggregated into the spherical aggregates, the nanoscale aggregates sintering and ordering themselves upon equilibration, the nanodots polymerizing into nanorods, and finally the nanorods self-assembling into hierarchical superstructures. In-depth research illustrates that as the permittivity (ξ) of the reaction system increases, the resulting hierarchical superstructures tend to converge into spherical shape. As a proof of concept, the 0D nanospheres, 1D nanorods, and 3D hierarchical superstructures are fabricated through adjusting system permittivity. The hierarchical superstructure is utilized as peroxidase-like ligase mimics to enhance the effect of tumor photothermal treatment. Further in vitro and in vivo assays demonstrate that the hierarchical superstructure can effectively ablate tumor cells. This work opens new horizons in hierarchical superstructures with complex architectures, and has great potential in nanozymology, biomedical science, and catalysis.
Collapse
Affiliation(s)
- Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Hua Sun
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Chenlong Wang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenchen Zheng
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiang Han
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
36
|
Mo S, Song Y, Lin M, Wang J, Zhang Z, Sun J, Guo D, Liu L. Near-infrared responsive sulfur vacancy-rich CuS nanosheets for efficient antibacterial activity via synergistic photothermal and photodynamic pathways. J Colloid Interface Sci 2022; 608:2896-2906. [PMID: 34785058 DOI: 10.1016/j.jcis.2021.11.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022]
Abstract
Defect engineering has been proven to be an effective approach for electronic structure modulation and plays an important role in the photocatalytic performance of nanomaterials. In this study, a series of CuS nanosheet sulfur vacancies (VS) are constructed by a simple hydrothermal synthesis method. The CuS with the highest VS concentration exhibits strong antibacterial performance, achieving bactericidal rates of 99.9% against the Gram-positive Bacillus subtilis and Gram-negative Escherichia coli bacteria under 808 nm laser irradiation. Under illumination, the temperature of the catalyst increases from 23.5 °C to 53.3 °C, and with a high photothermal conversion efficiency of 41.8%. For E. coli and B. subtilis, the reactive oxygen species (ROS) production that is induced by the CuS group is 8.6 and 9.6 times greater, respectively, than that of the control group. The presence of VS facilitates the enhancement of the light absorption capacity and the separation efficiency of electron-hole pairs, thereby resulting in improved photocatalytic performance. The synergistic effect of photothermal therapy (PTT) and photodynamic therapy (PDT) is aimed at causing oxidative damage and leading to bacterial death. Our findings provide an effective antibacterial strategy and offer new horizons for the application of CuS catalysts with VS in the NIR region.
Collapse
Affiliation(s)
- Shudi Mo
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yunhua Song
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meihong Lin
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianling Wang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ze Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingyu Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Donggang Guo
- Shanxi Laboratory for Yellow River, College of Environment and Resource, Shanxi University, Taiyuan 30006, China.
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
37
|
Honecker D, Bersweiler M, Erokhin S, Berkov D, Chesnel K, Venero DA, Qdemat A, Disch S, Jochum JK, Michels A, Bender P. Using small-angle scattering to guide functional magnetic nanoparticle design. NANOSCALE ADVANCES 2022; 4:1026-1059. [PMID: 36131777 PMCID: PMC9417585 DOI: 10.1039/d1na00482d] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/15/2022] [Indexed: 05/14/2023]
Abstract
Magnetic nanoparticles offer unique potential for various technological, biomedical, or environmental applications thanks to the size-, shape- and material-dependent tunability of their magnetic properties. To optimize particles for a specific application, it is crucial to interrelate their performance with their structural and magnetic properties. This review presents the advantages of small-angle X-ray and neutron scattering techniques for achieving a detailed multiscale characterization of magnetic nanoparticles and their ensembles in a mesoscopic size range from 1 to a few hundred nanometers with nanometer resolution. Both X-rays and neutrons allow the ensemble-averaged determination of structural properties, such as particle morphology or particle arrangement in multilayers and 3D assemblies. Additionally, the magnetic scattering contributions enable retrieving the internal magnetization profile of the nanoparticles as well as the inter-particle moment correlations caused by interactions within dense assemblies. Most measurements are used to determine the time-averaged ensemble properties, in addition advanced small-angle scattering techniques exist that allow accessing particle and spin dynamics on various timescales. In this review, we focus on conventional small-angle X-ray and neutron scattering (SAXS and SANS), X-ray and neutron reflectometry, gracing-incidence SAXS and SANS, X-ray resonant magnetic scattering, and neutron spin-echo spectroscopy techniques. For each technique, we provide a general overview, present the latest scientific results, and discuss its strengths as well as sample requirements. Finally, we give our perspectives on how future small-angle scattering experiments, especially in combination with micromagnetic simulations, could help to optimize the performance of magnetic nanoparticles for specific applications.
Collapse
Affiliation(s)
- Dirk Honecker
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Mathias Bersweiler
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Sergey Erokhin
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Dmitry Berkov
- General Numerics Research Lab Moritz-von-Rohr-Straße 1A D-07745 Jena Germany
| | - Karine Chesnel
- Brigham Young University, Department of Physics and Astronomy Provo Utah 84602 USA
| | - Diego Alba Venero
- ISIS Neutron and Muon Facility, Rutherford Appleton Laboratory Didcot OX11 0QX UK
| | - Asma Qdemat
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Sabrina Disch
- Universität zu Köln, Department für Chemie Luxemburger Straße 116 D-50939 Köln Germany
| | - Johanna K Jochum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| | - Andreas Michels
- Department of Physics and Materials Science, University of Luxembourg 162A Avenue de La Faïencerie L-1511 Luxembourg Grand Duchy of Luxembourg
| | - Philipp Bender
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München Lichtenbergstraße 1 85748 Garching Germany
| |
Collapse
|
38
|
Guo M, Yang C, Li B, Cheng SX, Guo Q, Ming D, Zheng B. Bionic Dormant Body of Timed Wake-Up for Bacteriotherapy in Vivo. ACS NANO 2022; 16:823-836. [PMID: 35025206 DOI: 10.1021/acsnano.1c08377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The microorganism has become a promising therapeutic tool for many diseases because it is a kind of cell factory that can efficiently synthesize a variety of bioactive substances. However, the metabolic destiny of microorganisms is difficult to predict in vivo. Here, a timing bionic dormant body with programmable destiny is reported, which can predict the metabolic time and location of microorganisms in vivo and can prevent it from being damaged by the complex biological environment in vivo. Taking the complex digestive system as an example, the bionic dormant body exists in the upper digestive tract as a nonmetabolic dormant body after oral administration and will be awakened to synthesize bioactive substances about 2 h after reaching the intestine. Compared with oral microorganisms alone, the bioavailability of the biomimetic dormant body in the intestine is almost 3.5 times higher. The utilization rate of the oral bionic dormant body to synthesize drugs is 2.28 times higher than oral drugs. We demonstrated the significant efficacies of treatment using Parkinson's disease (PD) mice by dormant body capable of timed neurotransmitter production after oral delivery. The timed bionic dormant body with programmable destiny may provide an effective technology to generate advanced microbial therapies for the treatment of various diseases.
Collapse
Affiliation(s)
- Mingming Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, P. R. China
| | - Chunrui Yang
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, P. R. China
- Department of Pathology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, P. R. China
| | - Shi-Xiang Cheng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, P. R. China
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair, Beijing Tangyi Huikang Biomedical Technology Co., Ltd., Beijing 100010, P. R. China
| | - Qinglu Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, P. R. China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, P. R. China
| | - Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin Key Laboratory of Brain Science and Neural Engineering, Xincheng Hospital of Tianjin University, Tianjin University, Tianjin 300072, P. R. China
- Healthina Academy of Cellular Intelligence Manufacturing & Neurotrauma Repair, Beijing Tangyi Huikang Biomedical Technology Co., Ltd., Beijing 100010, P. R. China
- Wenzhou Safety (Emergency) Institute of Tianjin University, Tianjin University, Wenzhou 325000, P. R. China
| |
Collapse
|
39
|
Jiang S, Wang F, Cao X, Slater B, Wang R, Sun H, Wang H, Shen X, Yao Z. Novel application of ion exchange membranes for preparing effective silver and copper based antibacterial membranes. CHEMOSPHERE 2022; 287:132131. [PMID: 34492413 DOI: 10.1016/j.chemosphere.2021.132131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Ion exchange membranes (IEMs) are widely used in water treatment applications such as electrodialysis. However, the exploration of IEMs as effective antibacterial food contact materials (e.g., food packaging membranes) against pathogenic bacteria to ensure food safety has not been reported. Here, we report a simple but effective method to prepare high performance antibacterial membranes via ion exchange coupled with in-situ reduction. The general membrane properties are characterized using SEM, EDS, FTIR, XPS, XRD, DSC, TGA, water uptake, etc. The distribution of silver and copper in the membranes are generally in line with the distribution of sulfur, indicating that the antibacterial ions are introduced into the membranes via ion exchange and are bonded with the sulfonate groups in the membranes. The antibacterial performance is investigated using zone of inhibition tests and continuous bacteria growth inhibition tests. All of the prepared membranes show obvious antibacterial activities compared to the bare cation exchange membranes. The diameters of inhibition zone against Staphylococcus aureus (S. aureus) are all larger than those of Escherichia coli (E. coli), indicating that the prepared membranes are more efficient in inhibiting S. aureus compared to E. coli. Furthermore, the silver-based membrane shows more sustainable antibacterial activities compared to the copper-based membrane. Especially, the results clearly reveal that the silver-based membrane is capable of killing bacteria instead of just inhibiting the growth of bacteria. We have shown for the first time that membranes derived from IEMs have the potential as food contact materials to inhibit the growth of pathogenic bacteria so as to eliminate the risk of bacterial infections and meanwhile delay food spoilage due to bacteria growth.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Ben Slater
- Institute of Porous Materials, Ecole Normale Supérieure, 24 Rue Lhomond, 75005, Paris, France
| | - Rongrong Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
40
|
Ouafa B, Ifriqya M, Ikram T. Evaluation of Biological Activities of Chamaeleo chamaeleon : A Reptile Used in Traditional Folk Medicine in Algeria. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2022. [DOI: 10.51847/ed9gjaf2j7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Chen P, Wang G, Hao C, Ma W, Xu L, Kuang H, Xu C, Sun M. Peptide-Directed Synthesis of Chiral nano-bipyramides for Controllable antibacterial application. Chem Sci 2022; 13:10281-10290. [PMID: 36277618 PMCID: PMC9473524 DOI: 10.1039/d2sc03443c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic resistance makes the therapeutic effect of traditional antibiotics far from satisfactory. Here, chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology are reported, and used in the fight against bacterial infection. Specifically, the dipeptide of d-/l-Cys-Phe (CF) caused the nano-bipyramids to form a spike shape with an optical anisotropy factor of 0.102 at 573 nm. The antibacterial effects showed that d-GBPs and l-GBPs could efficiently destroy bacteria with a death ratio of 98% and 70% in vitro. Also, both in vivo skin infection and sepsis models showed that the chiral GBPs could effectively promote wound healing and prevent sepsis in mice. Mechanistic studies showed that the binding affinity of d-GBPs (1.071 ± 0.023 × 108 M−1) was 12.39-fold higher than l-GBPs (8.664 ± 0.251 × 106 M−1) to protein A of Staphylococcus aureus, which caused further adsorption of d-GBPs onto the bacterial surface. Moreover, the physical destruction of the bacterial cell wall caused by the spike chiral GBPs, resulted in a stronger antibacterial effect for d-GBPs than l-GBPs. Furthermore, the excellent PTT of d-/l-GBPs further exacerbated the death of bacteria without any side-effect. Overall, chiral nano-bipyramids have opened a new avenue for improved antibacterial efficacy in the treatment of bacterial infections. Chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology and an optical anisotropy factor of 0.102 at 573 nm are reported, and used in the fight against bacterial infection both in vitro and in vivo.![]()
Collapse
Affiliation(s)
- Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Gaoyang Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
42
|
Zheng DW, Deng WW, Song WF, Wu CC, Liu J, Hong S, Zhuang ZN, Cheng H, Sun ZJ, Zhang XZ. Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nat Biomed Eng 2021; 6:32-43. [PMID: 34750535 DOI: 10.1038/s41551-021-00807-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Because a host's immune system is affected by host-microbiota interactions, means of modulating the microbiota could be leveraged to augment the effectiveness of cancer therapies. Here we report that patients with oral squamous cell carcinoma (OSCC) whose tumours contained higher levels of bacteria of the genus Peptostreptococcus had higher probability of long-term survival. We then show that in mice with murine OSCC tumours injected with oral microbiota from patients with OSCCs, antitumour responses were enhanced by the subcutaneous delivery of an adhesive hydrogel incorporating silver nanoparticles (which inhibited the growth of bacteria competing with Peptostreptococcus) alongside the intratumoural delivery of the bacterium P. anaerobius (which upregulated the levels of Peptostreptococcus). We also show that in mice with subcutaneous or orthotopic murine OSCC tumours, combination therapy with the two components (nanoparticle-incorporating hydrogel and exogenous P. anaerobius) synergized with checkpoint inhibition with programmed death-1. Our findings suggest that biomaterials can be designed to modulate human microbiota to augment antitumour immune responses.
Collapse
Affiliation(s)
- Di-Wei Zheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education & Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, P. R. China
| | - Wen-Fang Song
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Cong-Cong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education & Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, P. R. China
| | - Jie Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education & Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, P. R. China
| | - Sheng Hong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Ze-Nan Zhuang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education & Department of Oral Maxillofacial Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, P. R. China.
| |
Collapse
|
43
|
Zhang Z, Sun J, Chen X, Wu G, Jin Z, Guo D, Liu L. The synergistic effect of enhanced photocatalytic activity and photothermal effect of oxygen-deficient Ni/reduced graphene oxide nanocomposite for rapid disinfection under near-infrared irradiation. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126462. [PMID: 34214854 DOI: 10.1016/j.jhazmat.2021.126462] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The rational design of high antibacterial efficiency are urgently needed as the occurrence of drug-resistance issues. Hence, Ni/reduced graphene oxide nanocomposite (Ni/rGO) with different amounts of oxygen vacancies were fabricated for efficient disinfection. The optimized Ni/rGO (A100) exhibited highly effective inactivation efficacy of 99.6% and 99.5% against Escherichia coli and Bacillus subtilis within 8 min near-infrared (NIR) irradiation through the synergistic effects of photothermal therapy and oxidative damage, which were much higher than single treatment. The A100 nanocomposite achieved an extraordinary photothermal conversion efficiency (35.78%) under the 808 nm irradiation for enhanced photothermal hyperthermia, thereby destroying the cell membrane and accelerating the GSH depletion. The radical scavenger experiment confirmed that •O2- and •OH play the chief role in photodisinfection reaction. Besides, A100 could exert significant damage on the ATP synthesis. The excellent photothermal performance and photocatalytic activity can be attributed to the appropriate oxygen vacancy density, which improves the absorption of NIR light and facilitates the separation of photogenerated electron-hole pairs. Besides, the higher NiO content of A100 contributed to improving the photocatalytic effect. Our work demonstrated a promising strategy for efficient water pollution purification caused by pathogenic bacteria.
Collapse
Affiliation(s)
- Ze Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Jingyu Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Xue Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Guizhu Wu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Zhengguo Jin
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Donggang Guo
- Shanxi Laboratory for Yellow River, College of Environment and Resource, Shanxi University, 92 Wucheng Rd., Shanxi 030006, PR China.
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China.
| |
Collapse
|
44
|
Kong H, Zhang W, Shi G, Cui Z, Fu P, Liu M, He Y, Qiao X, Pang X. General Route to Colloidal Nanocrystal Clusters with Precise Hierarchical Control via Star-like Nanoreactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10461-10468. [PMID: 34431681 DOI: 10.1021/acs.langmuir.1c01286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A colloidal nanocrystal cluster (CNC) is a hierarchical nanostructure formed by clustering several nanocrystals into one nano-ensemble, which may exhibit unique optical or catalytic properties different from individual nanocrystals owing to the mutual interactions among neighboring component nanocrystals. However, there is still no universal synthetic route that could be applicable to diverse material compositions with precisely controlled hierarchical structures (i.e., nanocrystal number density, component nanocrystal size, and overall diameter of the CNC) up to now. Herein, a general and novel synthetic strategy was reported for crafting a wide range of inorganic CNCs (i.e., noble metal, semiconductor, and metal oxide) via utilizing amphiphilic star-like poly(4-vinylpyridine)-block-polystyrene diblock copolymers as nanoreactors prepared by sequential atom transfer radical polymerization. The hierarchical structure of rationally designed CNCs could be readily tailored by varying the P4VP molecular weight of star-like nanoreactors and the parameter optimization during the CNC preparation process, which was inaccessible by conventional synthetic methods.
Collapse
Affiliation(s)
- Huimin Kong
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Materials Engineering; Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
45
|
Ostadhossein F, Moitra P, Altun E, Dutta D, Sar D, Tripathi I, Hsiao SH, Kravchuk V, Nie S, Pan D. Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Commun Biol 2021; 4:846. [PMID: 34267305 PMCID: PMC8282845 DOI: 10.1038/s42003-021-02372-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/16/2021] [Indexed: 01/16/2023] Open
Abstract
Dental plaques are biofilms that cause dental caries by demineralization with acidogenic bacteria. These bacteria reside inside a protective sheath which makes any curative treatment challenging. We propose an antibiotic-free strategy to disrupt the biofilm by engineered clustered carbon dot nanoparticles that function in the acidic environment of the biofilms. In vitro and ex vivo studies on the mature biofilms of Streptococcus mutans revealed >90% biofilm inhibition associated with the contact-mediated interaction of nanoparticles with the bacterial membrane, excessive reactive oxygen species generation, and DNA fragmentation. An in vivo examination showed that these nanoparticles could effectively suppress the growth of S. mutans. Importantly, 16S rRNA analysis of the dental microbiota showed that the diversity and richness of bacterial species did not substantially change with nanoparticle treatment. Overall, this study presents a safe and effective approach to decrease the dental biofilm formation without disrupting the ecological balance of the oral cavity.
Collapse
Affiliation(s)
- Fatemeh Ostadhossein
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Esra Altun
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Debapriya Dutta
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Dinabandhu Sar
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Indu Tripathi
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Shih-Hsuan Hsiao
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Valeriya Kravchuk
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA
| | - Shuming Nie
- Departments of Bioengineering, Carle Illinois College of Medicine, Beckman Institute, Department of Chemistry, Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dipanjan Pan
- Departments of Bioengineering, Beckman Institute, University of Illinois at Urbana-Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, IL, USA.
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, Health Sciences Facility III, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.
- Department of Diagnostic Radiology and Nuclear Medicine, Health Sciences Facility III, University of Maryland Baltimore, Baltimore, MD, USA.
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Interdisciplinary Health Sciences Facility, Baltimore, MD, USA.
| |
Collapse
|
46
|
Gao M, Han X, Liu W, Tian Z, Mei Y, Zhang M, Chu PK, Kan E, Hu T, Du Y, Qiao S, Di Z. Graphene-mediated ferromagnetic coupling in the nickel nano-islands/graphene hybrid. SCIENCE ADVANCES 2021; 7:7/30/eabg7054. [PMID: 34301602 PMCID: PMC8302123 DOI: 10.1126/sciadv.abg7054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Nanoscale magnetic structures are fundamental to the design and fabrication of spintronic devices and have exhibited tremendous potential superior to the conventional semiconductor devices. However, most of the magnetic moments in nanostructures are unstable due to size effect, and the possible solution based on exchange coupling between nanomagnetism is still not clear. Here, graphene-mediated exchange coupling between nanomagnets is demonstrated by depositing discrete superparamagnetic Ni nano-islands on single-crystal graphene. The heterostructure exhibits ideal two-dimensional (2D) ferromagnetism with clear hysteresis loops and Curie temperature up to 80 K. The intrinsic ferromagnetism in graphene and antiferromagnetic exchange coupling between graphene and Ni nano-islands are revealed by x-ray magnetic circular dichroism and density functional theory calculations. The artificial 2D ferromagnets constitute a platform to study the coupling mechanism between complex correlated electronic systems and magnetism on the nanoscale, and the results and concept provide insights into the realization of spin manipulation in quantum computing.
Collapse
Affiliation(s)
- Min Gao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaowen Han
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
| | - Ziao Tian
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Miao Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Erjun Kan
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tao Hu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Yongping Du
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Shan Qiao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
47
|
Zheng S, Yang X, Zhang B, Cheng S, Han H, Jin Q, Wang C, Xiao R. Sensitive detection of Escherichia coli O157:H7 and Salmonella typhimurium in food samples using two-channel fluorescence lateral flow assay with liquid Si@quantum dot. Food Chem 2021; 363:130400. [PMID: 34198144 DOI: 10.1016/j.foodchem.2021.130400] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/18/2021] [Accepted: 06/16/2021] [Indexed: 01/02/2023]
Abstract
Here, we proposed a silica-quantum dot (QD)-based fluorescent lateral flow immunoassay (LFA) method with high sensitivity for the simultaneous qualification of Salmonella typhimurium and Escherichia coli O157:H7 in food samples. The silica-QD nanobead (Si@DQD) with dual-QD shell was introduced into the two-channel LFA strip as the advanced fluorescent tag, thus providing superior fluorescence signal, monodispersity, and excellent stability for actual sample detection. The liquid Si@DQD tags were mixed with sample solution and directly loaded onto the LFA strip for the quantitative analysis of target bacteria within 15 min. The detection limit of the proposed assay reached 50 cells/mL for both S. typhi/E. coli and was approximately 200 times more sensitive than the colloidal gold (AuNP)-based LFA strips. The Si@DQD-LFA also exhibited the advantages of good stability, specificity, and easy operation, suggesting its great potential for real bacterial sample detection.
Collapse
Affiliation(s)
- Shuai Zheng
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Xingsheng Yang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Bo Zhang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy Medical Sciences & Peking Union Medical College, Beijing 100730, PR China
| | - Siyun Cheng
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Han Han
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China
| | - Qing Jin
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China.
| | - Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, PR China; Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing 100850, PR China.
| |
Collapse
|
48
|
Zhou Y, Li Y, Fei Y, Zhang M, Wang S, Li F, Bao X. Protein-Inorganic Hybrid Nanoflowers as Efficient Biomimetic Antibiotics in the Treatment of Bacterial Infection. Front Chem 2021; 9:681566. [PMID: 33996771 PMCID: PMC8119892 DOI: 10.3389/fchem.2021.681566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/30/2021] [Indexed: 12/01/2022] Open
Abstract
Nanozymes have been developed as new generation of biomimetic antibiotics against wound infection. However, most of new-developed nanozymes based on inorganic particles or hybrid ones usually originate from incompatible raw materials or unwanted metal salts, highly limiting their further biomedical usages. To overcome above drawbacks, it is highly required to develop novel nanozymes with great antibacterial activity by using biocompatible reagents and endogenous metal species as raw materials. Here, we demonstrated that bovine serum albumin enwrapped copper phosphate-based protein-inorganic hybrid nanoflowers possessed intrinsic peroxidase-like activity, which could be used as efficient biomimetic antibiotics against bacterial infection via the nanozyme-mediated generation of high toxic reactive oxygen species (ROS). With the admirable peroxidase-like activity, our nanoflowers could efficiently kill drug-resistance bacteria under physiological conditions, improve the wound healing after pathogen-induced infection, as well as avoid the potential tissue injury in time. Comprehensive toxicity exploration of these nanoflowers indicated their high biocompatibility and excellent biosafety. Our current strategy toward the design of protein-inorganic hybrid nanozymes with high biosafety and few side effects could provide a new paradigm for the development of nanozyme-based antibacterial platform in future.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Ying Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| | - Yunwei Fei
- Department of Cardiology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Mingrui Zhang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Shuang Wang
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Fuqiu Li
- Department of Dermatology, Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xingfu Bao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
49
|
Yu X, Xia Z, Zhao T, Yuan X, Ren L. Pyrene-Enhanced Ferromagnetic Interaction in a FeCl 4–-Based Poly(ionic liquid)s Organic Magnet. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Xiaoliang Yu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Zhengyi Xia
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Tengda Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Lixia Ren
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
50
|
Zhou Y, Wang Z, Peng Y, Wang F, Deng L. Gold Nanomaterials as a Promising Integrated Tool for Diagnosis and Treatment of Pathogenic Infections-A Review. J Biomed Nanotechnol 2021; 17:744-770. [PMID: 34082865 DOI: 10.1166/jbn.2021.3075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes research on functionalized gold nanomaterials as pathogen detection sensors and pathogen elimination integrated tools. After presenting the challenge of current severe threat from pathogenic bacteria and the increasingly serious growth rate of drug resistance, the first section mainly introduces the conspectus of gold nanostructures from synthesis, characterization, physicochemical properties and applications of gold nanomaterials. The next section deals with gold nanomaterials-based pathogen detection sensors such as colorimetric sensors, fluorescence sensors and Surface-Enhanced Raman Scattering sensors. We then discuss strategies based on gold nanomaterials for eliminating pathogenic infections, such as the dual sterilization strategy for grafting gold nanomaterials with antibacterial substances, photothermal antibacterial and photodynamic antibacterial methods. The fourth part briefly introduces the comprehensive strategy for diagnosis and sterilization of pathogen infection based on gold nanomaterials, such as the diagnosis and treatment strategy for pathogen infection using Roman signals real-time monitoring and photothermal sterilization. A concluding section that summarizes the current status and challenges of the novel diagnosis and treatment integrated strategy for pathogenic infections, gives an outlook on potential future perspectives.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zefeng Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yanling Peng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Feiying Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Le Deng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|