1
|
Qiu G, Liu L, Wang D, He F, Gao M, Lin LL, Ye J, Wang J, Yang GZ. Thermoplasmonic Regulation and In Situ Detection of Biomolecules with a Photothermal-Enhanced Plasmonic Biosensing System. ACS NANO 2025; 19:16706-16717. [PMID: 40275487 DOI: 10.1021/acsnano.5c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Label-free biosensing via plasmonic near-fields is a promising tool for quantitative analysis of biomolecular substances for disease diagnosis, pathogen biodefense, and environmental monitoring. For complex samples, however, the competence of molecular sensing with plasmonics is hampered by nonspecific interferences. The near-field thermoplasmonic effect, characterized by an interrelated and synergistic phenomenon of Localized Surface Plasmon Resonance (LSPR), empowers the potential multifunctionality of plasmonic biosensing. This work presented the photothermal-enhanced plasmonic (PTEP) sensing system, which enabled near-field photothermal heating regulation, in situ temperature monitoring, biomolecular regulation, and parallel biosensing at the plasmonic interface. The photothermal near-fields constructed through homogenized laser excitation were characterized and thermoregulated in situ by the PTEP system with a high spatiotemporal resolution. Notably, the proposed PTEP biosensor system exhibited improved sensitivity attributed to the thermoplasmonic-enhanced refractive index contrast. Moreover, precise spatiotemporal programming of the thermoplasmonic field contributed to active antifouling and specific identification of target molecules. Based on the PTEP biosensors, a thermoplasmonic biosensing strategy was proposed for rapid analysis of trace IL-6 molecules in complex cerebrospinal fluid samples from mouse models, with a detection limit down to 0.1 pM. Our proposed PTEP biosensing method offers a versatile and adaptable strategy that potentially enhances the functionality and utility of nanoplasmonic biosensors.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Linlin Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Danhua Wang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fei He
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Min Gao
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Nano Particles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Linley Li Lin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jian Ye
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Nano Particles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Guang-Zhong Yang
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
2
|
Mejía-Salazar JR, Oliveira ON. Plasmonic nanoarchitectured systems for biomedical application. Adv Colloid Interface Sci 2025; 342:103520. [PMID: 40267654 DOI: 10.1016/j.cis.2025.103520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
In this paper we discuss the latest developments in colloidal plasmonics, a field with over a century of history, applied to the biomedical sector. Emphasis is placed on the nanoarchitectonic nature of plasmonic systems that can be used for sensing, drug delivery and manipulation of biomolecules. For instance, quantum effects linked to plasmonic phenomena are being used to enhance monitoring of chiral particles and their interaction with light, which is essential for the pharmaceutical industry in reaching the required enantiopurity in some drugs. In diagnostics, radiofrequency waves can excite surface plasmon resonance through amplified photoacoustic effects, thus permitting thermo-acoustic imaging. An example of enhanced therapy was introduced in carefully designed nanoarchitectures where a multi-branched gold nanooctopus was surrounded by a mesoporous polydopamine and loaded with ribonucleoproteins for the target delivery into tumor cells. Moreover, the longstanding challenge of heating due to Ohmic losses, which has hindered the use of plasmonic tweezers for manipulating biologically relevant analytes, is now being exploited for enhanced trapping, manipulation, and transport of cells and other biological particles. The combination of magnetic materials and plasmonic colloids in the realms of magnetoplasmonics can also be explored in sensing and enhanced drug delivery, which further exemplifies the versatility of nanoarchitectonics.
Collapse
Affiliation(s)
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, CP 369, 13560-970, SP, Brazil.
| |
Collapse
|
3
|
Fan YA, Li X, Wei S, Li Y, Long X, Liu H, Nie X, Ng J, Lu D. Solving non-Hermitian physics for optical manipulation on a quantum computer. LIGHT, SCIENCE & APPLICATIONS 2025; 14:132. [PMID: 40118826 PMCID: PMC11928612 DOI: 10.1038/s41377-025-01769-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 03/24/2025]
Abstract
Intense laser light, with its ability to trap small particles, is providing us unprecedented access to the microscopic world. Nevertheless, owing to its open nature, optical force is nonconservative and can only be described by a non-Hermitian theory. This non-Hermiticity sets such system apart from conventional systems and has offered rich physics, such as the possession of the exceptional points. Consequently, analyzing and demonstrating the dynamics of large optically-bound clusters becomes an intricate challenge. Here, we developed a scalable quantum approach that allows us to predict the trajectories of optically trapped particles and tackle the associated non-Hermitian physics. This approach is based on the linear combination of unitary operations. With this, we experimentally revealed the non-Hermiticity and exceptional point for a single or multiple particles trapped by optical force fields, using a nuclear magnetic resonance quantum processor. Our method's scalability and stability have offering a promising path for large-scale optical manipulation with non-Hermitian dynamics.
Collapse
Affiliation(s)
- Yu-Ang Fan
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Li
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shijie Wei
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Yishan Li
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinyue Long
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen, 518045, China
| | - Hongfeng Liu
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xinfang Nie
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen, 518045, China
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Dawei Lu
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen, 518045, China.
- International Quantum Academy, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Qin J, Wu X, Krueger A, Hecht B. Light-driven plasmonic microrobot for nanoparticle manipulation. Nat Commun 2025; 16:2570. [PMID: 40089456 PMCID: PMC11910605 DOI: 10.1038/s41467-025-57871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/06/2025] [Indexed: 03/17/2025] Open
Abstract
Recently light-driven microdrones have been demonstrated, making use of plasmonic nanomotors based on directional resonant chiral light scattering. These nanomotors can be addressed individually, without requiring the tracking of a focused laser, leading to exceptional 2D maneuverability which renders microdrones a versatile robotic platform in aqueous environments. Here, we incorporate a light-operated manipulator, a plasmonic nano-tweezer, into the microdrone platform, rendering it a microrobot by enabling precise, all-optical transport and delivery of single nanoparticles suspended in solution. The plasmonic nano-tweezer consists of a resonant cross-antenna nanostructure exhibiting a central near-field hot spot, extending the ability of traditional optical tweezers based on focused laser beams to the trapping of nanoparticles. However, most of plasmonic nano-tweezers are fixed to the substrates and lack mobility. Our plasmonic microrobot utilizes circularly polarized light to control both motors and for stable trapping of a 70-nanometer fluorescent nanodiamond in the cross-antenna center. Complex sequences of microrobot operations, including trap-transport-release-trap-transport actions, demonstrate the microrobot's versatility and precision in picking up and releasing nanoparticles. Our microrobot design opens potential avenues in advancing nanotechnology and life sciences, with applications in targeted drug delivery, single-cell manipulation, and by providing an advanced quantum sensing platform, facilitating interdisciplinary research at the nanoscale.
Collapse
Affiliation(s)
- Jin Qin
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg, Germany.
| | - Xiaofei Wu
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, Jena, Germany
| | - Anke Krueger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, Stuttgart, Germany
| | - Bert Hecht
- Nano-Optics and Biophotonics Group, Experimentelle Physik 5, Physikalisches Institut, Universität Würzburg, Am Hubland, Würzburg, Germany.
| |
Collapse
|
5
|
Kirya P, Mestre‐Farrera A, Yang J, Poulikakos LV. Leveraging Optical Anisotropy of the Morpho Butterfly Wing for Quantitative, Stain-Free, and Contact-Free Assessment of Biological Tissue Microstructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2407728. [PMID: 39811986 PMCID: PMC11937990 DOI: 10.1002/adma.202407728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/27/2024] [Indexed: 01/16/2025]
Abstract
Changes in the density and organization of fibrous biological tissues often accompany the progression of serious diseases ranging from fibrosis to neurodegenerative diseases, heart disease and cancer. However, challenges in cost, complexity, or precision faced by existing imaging methodologies and materials pose barriers to elucidating the role of tissue microstructure in disease. Here, we leverage the intrinsic optical anisotropy of the Morpho butterfly wing and introduce Morpho-Enhanced Polarized Light Microscopy (MorE-PoL), a stain- and contact-free imaging platform that enhances and quantifies the birefringent material properties of fibrous biological tissues. We develop a mathematical model, based on Jones calculus, which describes fibrous tissue density and organization. As a representative example, we analyzed collagen-dense and collagen-sparse human breast cancer tissue sections and leverage our technique to assess the microstructural properties of distinct regions of interest. We compare our results with conventional Hematoxylin and Eosin (H&E) staining procedures and second harmonic generation (SHG) microscopy for fibrillar collagen detection. Our findings demonstrate that our MorE-PoL technique provides a robust, quantitative, and accessible route toward analyzing biological tissue microstructures, with great potential for application to a broad range of biological materials.
Collapse
Affiliation(s)
- Paula Kirya
- Department of Mechanical and Aerospace EngineeringProgram of Materials Science and EngineeringUniversity of California San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Aida Mestre‐Farrera
- Department of PharmacologyMoores Cancer CenterUniversity of California San Diego3855 Health Sciences DriveLa JollaCA92093USA
- Department of PediatricsUniversity of California San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Jing Yang
- Department of PharmacologyMoores Cancer CenterUniversity of California San Diego3855 Health Sciences DriveLa JollaCA92093USA
- Department of PediatricsUniversity of California San Diego9500 Gilman DriveLa JollaCA92093USA
| | - Lisa V. Poulikakos
- Department of Mechanical and Aerospace EngineeringProgram of Materials Science and EngineeringUniversity of California San Diego9500 Gilman DriveLa JollaCA92093USA
| |
Collapse
|
6
|
Yang M, Shi Y, Song Q, Wei Z, Dun X, Wang Z, Wang Z, Qiu CW, Zhang H, Cheng X. Optical sorting: past, present and future. LIGHT, SCIENCE & APPLICATIONS 2025; 14:103. [PMID: 40011460 DOI: 10.1038/s41377-024-01734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 02/28/2025]
Abstract
Optical sorting combines optical tweezers with diverse techniques, including optical spectrum, artificial intelligence (AI) and immunoassay, to endow unprecedented capabilities in particle sorting. In comparison to other methods such as microfluidics, acoustics and electrophoresis, optical sorting offers appreciable advantages in nanoscale precision, high resolution, non-invasiveness, and is becoming increasingly indispensable in fields of biophysics, chemistry, and materials science. This review aims to offer a comprehensive overview of the history, development, and perspectives of various optical sorting techniques, categorised as passive and active sorting methods. To begin, we elucidate the fundamental physics and attributes of both conventional and exotic optical forces. We then explore sorting capabilities of active optical sorting, which fuses optical tweezers with a diversity of techniques, including Raman spectroscopy and machine learning. Afterwards, we reveal the essential roles played by deterministic light fields, configured with lens systems or metasurfaces, in the passive sorting of particles based on their varying sizes and shapes, sorting resolutions and speeds. We conclude with our vision of the most promising and futuristic directions, including AI-facilitated ultrafast and bio-morphology-selective sorting. It can be envisioned that optical sorting will inevitably become a revolutionary tool in scientific research and practical biomedical applications.
Collapse
Affiliation(s)
- Meng Yang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Xiong Dun
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Hui Zhang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai, 200092, China.
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai, 200092, China.
- Shanghai Frontiers Science Center of Digital Optics, Shanghai, 200092, China.
| |
Collapse
|
7
|
Zhou LM, Sun W, Tao ZQ, Xiong NJ, Huang C, Jiang XY, Ren YX, Yang Y, Shi YZ, Hu JG, Zhan Q. Subwavelength-scale off-axis optical nanomanipulation within Gaussian-beam traps. NANOPHOTONICS (BERLIN, GERMANY) 2025; 14:219-228. [PMID: 39927206 PMCID: PMC11806509 DOI: 10.1515/nanoph-2024-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/19/2024] [Indexed: 02/11/2025]
Abstract
It is generally recognized that there is only a single optical potential-well near the focus in optical traps with a focused Gaussian beam. In this work, we show that this classic Gaussian-beam optical trap has additional optical potential-wells for optical manipulation at the subwavelength scale in the off-focus transverse plane. The additional optical potential-wells are formed by the synergy of both the gradient trapping force and the transverse scattering force, though in previous studies the scattering force usually has adverse effect such as reducing trapping stability. These potential-wells work for not only the metallic particles, but also the high refractive-index dielectric particles. By engineering the contribution of the gradient force and scattering force through the particle size, the particle material and the position of the manipulation transverse plane, the force field and trapping potential-well can be tailored to trap/manipulate nanoparticles at different off-axis distance at the subwavelength scale. Our work provides new insight into optical tweezers and promises applications in optical nanomanipulation, nanoparticle sorting/separation, particle patterning and micro-fabrication on substrates.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Wan Sun
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Zong-Qiang Tao
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Ning-Jun Xiong
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Chan Huang
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Xiao-Yun Jiang
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Yu-Xuan Ren
- Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yuanjie Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Yu-Zhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai200092, China
| | - Ji-Gang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei, Anhui230601, China
| | - Qiwen Zhan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
| |
Collapse
|
8
|
Yang-Schulz A, Zacharopoulou M, Yilmaz SZ, Banerjee A, Saha S, Nietlispach D, Ohlmeyer M, Gur M, Itzhaki LS, Bahar I, Gordon R. Direct observation of small molecule activator binding to single PR65 protein. NPJ BIOSENSING 2025; 2:2. [PMID: 39830999 PMCID: PMC11738983 DOI: 10.1038/s44328-024-00018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/28/2024] [Indexed: 01/22/2025]
Abstract
The reactivation of heterotrimeric protein phosphatase 2A (PP2A) through small molecule activators is of interest to therapeutic intervention due to its dysregulation, which is linked to chronic conditions. This study focuses on the PP2A scaffold subunit PR65 and a small molecule activator, ATUX-8385, designed to bind directly to this subunit. Using a label-free single-molecule approach with nanoaperture optical tweezers (NOT), we quantify its binding, obtaining a dissociation constant of 13.6 ± 2.5 μM, consistent with ensemble fluorescence anisotropy results but challenging to achieve with other methods due to low affinity. Single-molecule NOT measurements reveal that binding increases optical scattering, indicating PR65 elongation. This interpretation is supported by all-atom molecular dynamics simulations showing PR65 adopts more extended conformations upon binding. This work highlights NOT's utility in quantifying binding kinetics and structural impact, offering insights valuable for drug discovery.
Collapse
Affiliation(s)
- Annie Yang-Schulz
- Department of Electrical Engineering, University of Victoria, Victoria, BC V8W 3P6 Canada
| | - Maria Zacharopoulou
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Sema Zeynep Yilmaz
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, 34437 Turkey
| | - Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Satyaki Saha
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794 USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW UK
| | | | - Mert Gur
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Laura S. Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD UK
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794 USA
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY 11794 USA
| | - Reuven Gordon
- Department of Electrical Engineering, University of Victoria, Victoria, BC V8W 3P6 Canada
| |
Collapse
|
9
|
Yang S, Hong C, Zhu G, Anyika T, Hong I, Ndukaife JC. Recent Advancements in Nanophotonics for Optofluidics. ADVANCES IN PHYSICS: X 2024; 9:2416178. [PMID: 39554474 PMCID: PMC11563312 DOI: 10.1080/23746149.2024.2416178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 10/08/2024] [Indexed: 11/19/2024] Open
Abstract
Optofluidics is dedicated to achieving integrated control of particle and fluid motion, particularly on the micrometer scale, by utilizing light to direct fluid flow and particle motion. The field has seen significant growth recently, driven by the concerted efforts of researchers across various scientific disciplines, notably for its successful applications in biomedical science. In this review, we explore a range of optofluidic architectures developed over the past decade, with a primary focus on mechanisms for precise control of micro and nanoscale biological objects and their applications in sensing. Regarding nanoparticle manipulation, we delve into mechanisms based on optical nanotweezers using nanolocalized light fields and light-based hybrid effects with dramatically improved performance and capabilities. In the context of sensing, we emphasize those works that used optofluidics to aggregate molecules or particles to promote sensing and detection. Additionally, we highlight emerging research directions, encompassing both fundamental principles and practical applications in the field.
Collapse
Affiliation(s)
- Sen Yang
- Institute of Physics, Chinese Academy of Sciences/Beijing National Laboratory for Condensed Matter Physics, Beijing 100190, China
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| | - Chuchuan Hong
- Department of Chemistry and Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Guodong Zhu
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Theodore Anyika
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, Tennessee 37240, USA
| |
Collapse
|
10
|
Khosravi B, Gordon R. Accessible Double Nanohole Raman Tweezer Analysis of Single Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:15048-15053. [PMID: 39291273 PMCID: PMC11404487 DOI: 10.1021/acs.jpcc.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/27/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024]
Abstract
Raman spectroscopy allows for material characterization of nanoparticles; however, probing individual nanoparticles requires an efficient way of isolating and enhancing the signal. Past works have used optical trapping with nanoapertures in metal films to measure the Raman spectra of individual nanoparticles; however, those works required custom laser tweezer systems that provided a transmission signal to verify trapping events as well as costly top-down nanofabrication. Here, we trapped Titania nanoparticles in a commercial Raman system using double nanoholes (DNH) and measured their spectra while trapped. The microscope camera allowed for measuring the trapping event in reflection mode, and a simultaneous Raman spectrum was recorded to allow for material characterization. The Raman signal was comparable to a past work that used particles a million times larger in volume without utilizing double nanoholes, and all other features were similar. The DNHs were created with a colloidal lithography technique and identified in the microscope, as confirmed by electron microscopy registration. Therefore, this approach allows a simple way of characterizing the Raman signal of individual nanoparticles while in solution by using existing commercial Raman systems.
Collapse
Affiliation(s)
- Behnam Khosravi
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
11
|
Liu C, Huang Z, Huang S, Zhang Y, Li B, Nan F, Zheng Y. Robotic Nanomanipulation Based on Spatiotemporal Modulation of Optical Gradients. ACS NANO 2024; 18:19391-19400. [PMID: 38904270 DOI: 10.1021/acsnano.4c06596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Robotic nanomanipulation emerges as a cutting-edge technique pivotal for in situ nanofabrication, advanced sensing, and comprehensive material characterization. In this study, we develop an optical robotic platform (ORP) for the dynamic manipulation of colloidal nanoparticles (NPs). The ORP incorporates a human-in-the-loop control mechanism enhanced by real-time visual feedback. This feature enables the generation of custom optical landscapes with adjustable intensity and phase configurations. Based on the ORP, we achieve the parallel and reconfigurable manipulation of multiple NPs. Through the application of spatiotemporal phase gradient-reversals, our platform demonstrates capabilities in trapping, binding, rotating, and transporting NPs across custom trajectories. This presents a previously unidentified paradigm in the realm of in situ nanomanipulation. Additionally, the ORP facilities a "capture-and-print" assembly process, utilizing a strategic interplay of phase and intensity gradients. This process operates under a constant laser power setting, streamlining the assembly of NPs into any targeted configuration. With its precise positioning and manipulation capabilities, underpinned by the spatiotemporal modulation of optical gradients, the ORP will facilitate the development of colloid-based sensors and on-demand fabrication of nanodevices.
Collapse
Affiliation(s)
- Chenchen Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Zongpeng Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Siyuan Huang
- Walker Department of Mechanical Engineering, Texas Materials Institute, and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Key Laboratory of Optoelectronic Information and Sensing Technologies of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
| | - Fan Nan
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 511443, China
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Texas Materials Institute, and Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
12
|
Hong C, Hong I, Jiang Y, Ndukaife JC. Plasmonic dielectric antennas for hybrid optical nanotweezing and optothermoelectric manipulation of single nanosized extracellular vesicles. ADVANCED OPTICAL MATERIALS 2024; 12:2302603. [PMID: 38899010 PMCID: PMC11185818 DOI: 10.1002/adom.202302603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 06/21/2024]
Abstract
This paper showcases an experimental demonstration of near-field optical trapping and dynamic manipulation of an individual extracellular vesicle. This is accomplished through the utilization of a plasmonic dielectric nanoantenna designed to support an optical anapole state-a non-radiating optical state resulting from the destructive interference between electric and toroidal dipoles in the far-field, leading to robust near-field enhancement. To further enhance the field intensity associated with the optical anapole state, a plasmonic mirror is incorporated, thereby boosting trapping capabilities. In addition to demonstrating near-field optical trapping, the study achieves dynamic manipulation of extracellular vesicles by harnessing the thermoelectric effect. This effect is induced in the presence of an ionic surfactant, cetyltrimethylammonium chloride (CTAC), combined with plasmonic heating. Furthermore, the thermoelectric effect improves trapping stability by introducing a wide and deep trapping potential. In summary, our hybrid plasmonic-dielectric trapping platform offers a versatile approach for actively transporting, stably trapping, and dynamically manipulating individual extracellular vesicles.
Collapse
Affiliation(s)
- Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ikjun Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuxi Jiang
- Department of Electrical and Computer Engineering, University of Maryland College Park, MD, USA
- Institute for Research in Electronics and Applied Physics (IREAP), University of Maryland College Park, MD, USA
| | - Justus C. Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institution of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
13
|
Chen J, Zhou J, Peng Y, Dai X, Tan Y, Zhong Y, Li T, Zou Y, Hu R, Cui X, Ho HP, Gao BZ, Zhang H, Chen Y, Wang M, Zhang X, Qu J, Shao Y. Highly-Adaptable Optothermal Nanotweezers for Trapping, Sorting, and Assembling across Diverse Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309143. [PMID: 37944998 DOI: 10.1002/adma.202309143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Optical manipulation of various kinds of nanoparticles is vital in biomedical engineering. However, classical optical approaches demand higher laser power and are constrained by diffraction limits, necessitating tailored trapping schemes for specific nanoparticles. They lack a universal and biocompatible tool to manipulate nanoparticles of diverse sizes, charges, and materials. Through precise modulation of diffusiophoresis and thermo-osmotic flows in the boundary layer of an optothermal-responsive gold film, highly adaptable optothermal nanotweezers (HAONTs) capable of manipulating a single nanoparticle as small as sub-10 nm are designed. Additionally, a novel optothermal doughnut-shaped vortex (DSV) trapping strategy is introduced, enabling a new mode of physical interaction between cells and nanoparticles. Furthermore, this versatile approach allows for the manipulation of nanoparticles in organic, inorganic, and biological forms. It also offers versatile function modes such as trapping, sorting, and assembling of nanoparticles. It is believed that this approach holds the potential to be a valuable tool in fields such as synthetic biology, optofluidics, nanophotonics, and colloidal science.
Collapse
Affiliation(s)
- Jiajie Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jianxing Zhou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yuhang Peng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoqi Dai
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yan Tan
- School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yili Zhong
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tianzhong Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanhua Zou
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Rui Hu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, 999077, Hong Kong
| | - Bruce Zhi Gao
- Department of Bioengineering and COMSET, Clemson University, Clemson, SC, 29634, USA
| | - Han Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meiting Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yonghong Shao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronics Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
14
|
Peters M, McIntosh D, Branzan Albu A, Ying C, Gordon R. Label-Free Tracking of Proteins through Plasmon-Enhanced Interference. ACS NANOSCIENCE AU 2024; 4:69-75. [PMID: 38406310 PMCID: PMC10885339 DOI: 10.1021/acsnanoscienceau.3c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 02/27/2024]
Abstract
Single unmodified biomolecules in solution can be observed and characterized by interferometric imaging approaches; however, Rayleigh scattering limits this to larger proteins (typically >30 kDa). We observe real-time image tracking of unmodified proteins down to 14 kDa using interference imaging enhanced by surface plasmons launched at an aperture in a metal film. The larger proteins show slower diffusion, quantified by tracking. When the diffusing protein is finally trapped by the nanoaperture, we perform complementary power spectral density and noise amplitude analysis, which gives information about the protein. This approach allows for rapid protein characterization with minimal sample preparation and opens the door to characterizing protein interactions in real time.
Collapse
Affiliation(s)
- Matthew Peters
- Department
of Electrical Engineering, University of
Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Centre
for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Declan McIntosh
- Department
of Electrical Engineering, University of
Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandra Branzan Albu
- Department
of Electrical Engineering, University of
Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Cuifeng Ying
- Advanced
Optics and Photonics Laboratory, Department of Engineering, School
of Science & Technology, Nottingham
Trent University, Nottingham NG11 8NS, U.K.
| | - Reuven Gordon
- Department
of Electrical Engineering, University of
Victoria, Victoria, British Columbia V8W 2Y2, Canada
- Centre
for Advanced Materials & Related Technologies (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
15
|
Hong C, Hong I, Yang S, Ndukaife JC. Towards rapid colorimetric detection of extracellular vesicles using optofluidics-enhanced color-changing optical metasurface. OPTICS EXPRESS 2024; 32:4769-4777. [PMID: 38439221 DOI: 10.1364/oe.506686] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/09/2023] [Indexed: 03/06/2024]
Abstract
Efficient transportation and delivery of analytes to the surface of optical sensors are crucial for overcoming limitations in diffusion-limited transport and analyte sensing. In this study, we propose a novel approach that combines metasurface optics with optofluidics-enabled active transport of extracellular vesicles (EVs). By leveraging this combination, we show that we can rapidly capture EVs and detect their adsorption through a color change generated by a specially designed optical metasurface that produces structural colors. Our results demonstrate that the integration of optofluidics and metasurface optics enables spectrometer-less and label-free colorimetric read-out for EV concentrations as low as 107 EVs/ml, achieved within a short incubation time of two minutes.
Collapse
|
16
|
Zhao K, Li Z, Zhong Y, Dai Q. Photothermal metasurface with polarization and wavelength multiplexing. OPTICS EXPRESS 2024; 32:3551-3560. [PMID: 38297573 DOI: 10.1364/oe.514130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Controlling temperature distribution at the micro/nano-scale brings new applications in many fields such as physics, chemistry and biology. This paper proposes a photothermal metasurface that employs polarization and wavelength multiplexing to regulate various temperature distributions at the micro/nano-scale. Such a photothermal metasurface is numerically validated by the finite element method. Firstly, the inversion algorithm is used to calculate the thermal power density distribution, which is decided by a given temperature distribution. Then, based on the bottom-up design method, (a) the library of absorption cross sections of gold nanoparticles is established by resizing nanoparticles; (b) the single pixel is constructed for wavelength and polarization multiplexing; (c) the overall structure of a photothermal metasurface is optimized and established. Finally, four given temperature distributions, combining the multiplexing of two orthogonal polarizations and two wavelengths, are achieved in the same area. The simulation results well confirm the feasibility of photothermal multiplexing. Such photothermal metasurface provides solutions for flexible control of temperature distribution at the micro/nano-scale.
Collapse
|
17
|
Chen X, Zhao Y, Zhang Y, Li B, Li Y, Jiang L. Optical Manipulation of Soft Matter. SMALL METHODS 2023:e2301105. [PMID: 37818749 DOI: 10.1002/smtd.202301105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Optical manipulation has emerged as a pivotal tool in soft matter research, offering superior applicability, spatiotemporal precision, and manipulation capabilities compared to conventional methods. Here, an overview of the optical mechanisms governing the interaction between light and soft matter materials during manipulation is provided. The distinct characteristics exhibited by various soft matter materials, including liquid crystals, polymers, colloids, amphiphiles, thin liquid films, and biological soft materials are highlighted, and elucidate their fundamental response characteristics to optical manipulation techniques. This knowledge serves as a foundation for designing effective strategies for soft matter manipulation. Moreover, the diverse range of applications and future prospects that arise from the synergistic collaboration between optical manipulation and soft matter materials in emerging fields are explored.
Collapse
Affiliation(s)
- Xixi Chen
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yanan Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yao Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
18
|
Squires AH. Electrokinetic manipulation of a nanowire. NATURE NANOTECHNOLOGY 2023; 18:1128-1129. [PMID: 37500781 DOI: 10.1038/s41565-023-01459-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Affiliation(s)
- Allison H Squires
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Wang H, Wang T, Yuan X, Wang Y, Yue X, Wang L, Zhang J, Wang J. Plasmonic Nanostructure Biosensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8156. [PMID: 37836985 PMCID: PMC10575025 DOI: 10.3390/s23198156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Plasmonic nanostructure biosensors based on metal are a powerful tool in the biosensing field. Surface plasmon resonance (SPR) can be classified into localized surface plasmon resonance (LSPR) and propagating surface plasmon polariton (PSPP), based on the transmission mode. Initially, the physical principles of LSPR and PSPP are elaborated. In what follows, the recent development of the biosensors related to SPR principle is summarized. For clarity, they are categorized into three groups according to the sensing principle: (i) inherent resonance-based biosensors, which are sensitive to the refractive index changes of the surroundings; (ii) plasmon nanoruler biosensors in which the distances of the nanostructure can be changed by biomolecules at the nanoscale; and (iii) surface-enhanced Raman scattering biosensors in which the nanostructure serves as an amplifier for Raman scattering signals. Moreover, the advanced application of single-molecule detection is discussed in terms of metal nanoparticle and nanopore structures. The review concludes by providing perspectives on the future development of plasmonic nanostructure biosensors.
Collapse
Affiliation(s)
- Huimin Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Tao Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xuyang Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Yuandong Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Xinzhao Yue
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Lu Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jinyan Zhang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| | - Jian Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China; (H.W.); (X.Y.); (Y.W.); (X.Y.); (L.W.); (J.Z.)
- Optics Valley Laboratory, Wuhan 430074, China
| |
Collapse
|
20
|
Chu J, Romero A, Taulbee J, Aran K. Development of Single Molecule Techniques for Sensing and Manipulation of CRISPR and Polymerase Enzymes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300328. [PMID: 37226388 PMCID: PMC10524706 DOI: 10.1002/smll.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/20/2023] [Indexed: 05/26/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and polymerases are powerful enzymes and their diverse applications in genomics, proteomics, and transcriptomics have revolutionized the biotechnology industry today. CRISPR has been widely adopted for genomic editing applications and Polymerases can efficiently amplify genomic transcripts via polymerase chain reaction (PCR). Further investigations into these enzymes can reveal specific details about their mechanisms that greatly expand their use. Single-molecule techniques are an effective way to probe enzymatic mechanisms because they may resolve intermediary conformations and states with greater detail than ensemble or bulk biosensing techniques. This review discusses various techniques for sensing and manipulation of single biomolecules that can help facilitate and expedite these discoveries. Each platform is categorized as optical, mechanical, or electronic. The methods, operating principles, outputs, and utility of each technique are briefly introduced, followed by a discussion of their applications to monitor and control CRISPR and Polymerases at the single molecule level, and closing with a brief overview of their limitations and future prospects.
Collapse
Affiliation(s)
- Josephine Chu
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Andres Romero
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Jeffrey Taulbee
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea, San Diego, CA, 92121, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
21
|
Hong C, Ndukaife JC. Scalable trapping of single nanosized extracellular vesicles using plasmonics. Nat Commun 2023; 14:4801. [PMID: 37558710 PMCID: PMC10412615 DOI: 10.1038/s41467-023-40549-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Heterogeneous nanoscale extracellular vesicles (EVs) are of significant interest for disease detection, monitoring, and therapeutics. However, trapping these nano-sized EVs using optical tweezers has been challenging due to their small size. Plasmon-enhanced optical trapping offers a solution. Nevertheless, existing plasmonic tweezers have limited throughput and can take tens of minutes for trapping for low particle concentrations. Here, we present an innovative approach called geometry-induced electrohydrodynamic tweezers (GET) that overcomes these limitations. GET generates multiple electrohydrodynamic potentials, allowing parallel transport and trapping of single EVs within seconds. By integrating nanoscale plasmonic cavities at the center of each GET trap, single EVs can be placed near plasmonic cavities, enabling instant plasmon-enhanced optical trapping upon laser illumination without detrimental heating effects. These non-invasive scalable hybrid nanotweezers open new horizons for high-throughput tether-free plasmon-enhanced single EV trapping and spectroscopy. Other potential areas of impact include nanoplastics characterization, and scalable hybrid integration for quantum photonics.
Collapse
Affiliation(s)
- Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
22
|
González-Gómez CD, Rica RA, Ruiz-Reina E. Electrothermoplasmonic flow in gold nanoparticles suspensions: Nonlinear dependence of flow velocity on aggregate concentration. J Colloid Interface Sci 2023; 648:397-405. [PMID: 37302223 DOI: 10.1016/j.jcis.2023.05.198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Efficient mixing and pumping of liquids at the microscale is a technology that is still to be optimized. The combination of an AC electric field with a small temperature gradient leads to a strong electrothermal flow that can be used for multiple purposes. Combining simulations and experiments, an analysis of the performance of electrothermal flow is provided when the temperature gradient is generated by illuminating plasmonic nanoparticles in suspension with a near-resonance laser. Fluid flow is measured by tracking the velocity of fluorescent tracer microparticles in suspension as a function of the electric field, laser power, and concentration of plasmonic particles. Among other results, a non-linear relationship is found between the velocity of the fluid and particle concentration, which is justified in terms of multiple scattering-absorption events, involving aggregates of nanoparticles, that lead to enhanced absorption when the concentration is raised. Simulations provide a description of the phenomenon that is compatible with experiments and constitute a way to understand and estimate the absorption and scattering cross-sections of both dispersed particles and/or aggregates. A comparison of experiments and simulations suggests that there is some aggregation of the gold nanoparticles by forming clusters of about 2-7 particles, but no information about their structure can be obtained without further theoretical and experimental developments. This nonlinear behavior could be useful to get very high ETP velocities by inducing some controlled aggregation of the particles.
Collapse
Affiliation(s)
- Carlos David González-Gómez
- Universidad de Granada, Department of Applied Physics, Nanoparticles Trapping Laboratory, 18071, Granada, Spain; Universidad de Málaga, Department of Applied Physics II, 29071, Málaga, Spain
| | - Raúl A Rica
- Universidad de Granada, Department of Applied Physics, Nanoparticles Trapping Laboratory, 18071, Granada, Spain; Universidad de Granada, Research Unit "Modeling Nature" (MNat), 18071, Granada, Spain
| | - Emilio Ruiz-Reina
- Universidad de Málaga, Department of Applied Physics II, 29071, Málaga, Spain; Universidad de Málaga, Department of Applied Physics II, Institute Carlos I for Theoretical and Computational Physics (iC1), 29071, Málaga, Spain.
| |
Collapse
|
23
|
Hong C, Yang S, Ndukaife JC. Exosomes trapping, manipulation and size-based separation using opto-thermo-electrohydrodynamic tweezers. NANOSCALE ADVANCES 2023; 5:2973-2978. [PMID: 37260502 PMCID: PMC10228344 DOI: 10.1039/d3na00101f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
Owing to the heterogeneity of exosomes in size and biomolecular composition, there is a need for new approaches for trapping, manipulating, and sorting of single exosomes in solution. Due to their small size ranging from 30 nm to 150 nm and their relatively low refractive index, their stable trapping using optical tweezers has been met with challenges. Trapping exosomes in an optical trap requires nearly 100 mW of input power, which predisposes them to photo-induced damage and membrane rupture at the laser focus. Here, we report a high stability opto-thermo-electrohydrodynamic tweezer for the stable stand-off trapping of single exosomes based on a concentric nanohole array (CNA) using laser illumination and an a.c. field. The CNA system generates two regions of electrohydrodynamic potentials several microns away from the laser focus where single exosomes are trapped. We demonstrate the rapid trapping within seconds, and selective dynamic manipulation of exosomes based on size using only 4.2 mW of input laser power. The proposed platform opens up a promising approach for stabilizing single exosomes in solution and controlling their distribution based on size without the risk of photo-induced damage.
Collapse
Affiliation(s)
- Chuchuan Hong
- Electrical and Computer Engineering Department, Vanderbilt University Nashville TN 37212 USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University Nashville TN 37212 USA
| | - Sen Yang
- Electrical and Computer Engineering Department, Vanderbilt University Nashville TN 37212 USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University Nashville TN 37212 USA
| | - Justus C Ndukaife
- Electrical and Computer Engineering Department, Vanderbilt University Nashville TN 37212 USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University Nashville TN 37212 USA
- Interdisciplinary Material Science, Vanderbilt University Nashville TN 37212 USA
| |
Collapse
|
24
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
25
|
Ding H, Kollipara PS, Yao K, Chang Y, Dickinson DJ, Zheng Y. Multimodal Optothermal Manipulations along Various Surfaces. ACS NANO 2023; 17:9280-9289. [PMID: 37017427 PMCID: PMC10391738 DOI: 10.1021/acsnano.3c00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Optical tweezers have provided tremendous opportunities for fundamental studies and applications in the life sciences, chemistry, and physics by offering contact-free manipulation of small objects. However, it requires sophisticated real-time imaging and feedback systems for conventional optical tweezers to achieve controlled motion of micro/nanoparticles along textured surfaces, which are required for such applications as high-resolution near-field characterizations of cell membranes with nanoparticles as probes. In addition, most optical tweezers systems are limited to single manipulation modes, restricting their broader applications. Herein, we develop an optothermal platform that enables the multimodal manipulation of micro/nanoparticles along various surfaces. Specifically, we achieve the manipulation of micro/nanoparticles through the synergy between the optical and thermal forces, which arise due to the temperature gradient self-generated by the particles absorbing the light. With a simple control of the laser beam, we achieve five switchable working modes [i.e., tweezing, rotating, rolling (toward), rolling (away), and shooting] for the versatile manipulation of both synthesized particles and biological cells along various substrates. More interestingly, we realize the manipulation of micro/nanoparticles on rough surfaces of live worms and their embryos for localized control of biological functions. By enabling the three-dimensional control of micro/nano-objects along various surfaces, including topologically uneven biological tissues, our multimodal optothermal platform will become a powerful tool in life sciences, nanotechnology, and colloidal sciences.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yiran Chang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel J Dickinson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
26
|
Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, Zhang S, Zhang W, Zhang X, Wang H, Xiang D. Plasmon-Assisted Trapping of Single Molecules in Nanogap. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3230. [PMID: 37110065 PMCID: PMC10144347 DOI: 10.3390/ma16083230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
The manipulation of single molecules has attracted extensive attention because of their promising applications in chemical, biological, medical, and materials sciences. Optical trapping of single molecules at room temperature, a critical approach to manipulating the single molecule, still faces great challenges due to the Brownian motions of molecules, weak optical gradient forces of laser, and limited characterization approaches. Here, we put forward localized surface plasmon (LSP)-assisted trapping of single molecules by utilizing scanning tunneling microscope break junction (STM-BJ) techniques, which could provide adjustable plasmonic nanogap and characterize the formation of molecular junction due to plasmonic trapping. We find that the plasmon-assisted trapping of single molecules in the nanogap, revealed by the conductance measurement, strongly depends on the molecular length and the experimental environments, i.e., plasmon could obviously promote the trapping of longer alkane-based molecules but is almost incapable of acting on shorter molecules in solutions. In contrast, the plasmon-assisted trapping of molecules can be ignored when the molecules are self-assembled (SAM) on a substrate independent of the molecular length.
Collapse
Affiliation(s)
- Maoning Wang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Jieyi Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Adila Adijiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xueyan Zhao
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Min Tan
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xiaona Xu
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Surong Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Wei Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Xinyue Zhang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Haoyu Wang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
| | - Dong Xiang
- Institute of Modern Optics and Center of Single-Molecule Science, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Nankai University, Tianjin 300350, China
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| |
Collapse
|
27
|
Babaei E, Wright D, Gordon R. Fringe Dielectrophoresis Nanoaperture Optical Trapping with Order of Magnitude Speed-Up for Unmodified Proteins. NANO LETTERS 2023; 23:2877-2882. [PMID: 36999922 DOI: 10.1021/acs.nanolett.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single molecule analysis of proteins in an aqueous environment without modification (e.g., labels or tethers) elucidates their biophysics and interactions relevant to drug discovery. By combining fringe-field dielectrophoresis with nanoaperture optical tweezers we demonstrate an order of magnitude faster time-to-trap for proteins when the counter electrode is outside of the solution. When the counter electrode is inside the solution (the more common configuration found in the literature), electrophoresis speeds up the trapping of polystyrene nanospheres, but this was not effective for proteins in general. Since time-to-trap is critical for high-thoughput analysis, these findings are a major advancement to the nanoaperture optical trapping technique for protein analysis.
Collapse
Affiliation(s)
- Elham Babaei
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Demelza Wright
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| | - Reuven Gordon
- Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8P5C2
| |
Collapse
|
28
|
Yang S, Allen JA, Hong C, Arnold KP, Weiss SM, Ndukaife JC. Multiplexed Long-Range Electrohydrodynamic Transport and Nano-Optical Trapping with Cascaded Bowtie Photonic Crystal Nanobeams. PHYSICAL REVIEW LETTERS 2023; 130:083802. [PMID: 36898095 DOI: 10.1103/physrevlett.130.083802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Photonic crystal cavities with bowtie defects that combine ultrahigh Q and ultralow mode volume are theoretically studied for low-power nanoscale optical trapping. By harnessing the localized heating of the water layer near the bowtie region, combined with an applied alternating current electric field, this system provides long-range electrohydrodynamic transport of particles with average radial velocities of 30 μm/s towards the bowtie region on demand by switching the input wavelength. Once transported to a given bowtie region, synergistic interaction of optical gradient and attractive negative thermophoretic forces stably trap a 10 nm quantum dot in a potential well with a depth of 10 k_{B}T using a mW input power.
Collapse
Affiliation(s)
- Sen Yang
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Joshua A Allen
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Chuchuan Hong
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Kellen P Arnold
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Sharon M Weiss
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Justus C Ndukaife
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, Tennessee 37235, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
29
|
Hameed N, Zeghdoudi T, Guichardaz B, Mezeghrane A, Suarez M, Courjal N, Bernal MP, Belkhir A, Baida FI. Stand-alone optical spinning tweezers with tunable rotation frequency. OPTICS EXPRESS 2023; 31:4379-4392. [PMID: 36785408 DOI: 10.1364/oe.480961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/08/2023] [Indexed: 06/18/2023]
Abstract
Advances in optical trapping design principles have led to tremendous progress in manipulating nanoparticles (NPs) with diverse functionalities in different environments using bulky systems. However, efficient control and manipulation of NPs in harsh environments require a careful design of contactless optical tweezers. Here, we propose a simple design of a fibered optical probe allowing the trapping of dielectric NP as well as a transfer of the angular momentum of light to the NP inducing its mechanical rotation. A polarization conversion from linearly-polarized incident guided to circularly transmitted beam is provoked geometrically by breaking the cylindrical symmetry of a coaxial nano-aperture that is engraved at the apex of a tapered metal coated optical fiber. Numerical simulations show that this simple geometry tip allows powerful light transmission together with efficient polarization conversion. This guarantees very stable trapping of quasi spherical NPs in a non-contact regime as well as potentially very tunable and reversible rotation frequencies in both directions (up to 45 Hz in water and 5.3 MHz in air for 10 mW injected power in the fiber). This type of fiber probe opens the way to a new generation of miniaturized tools for total manipulation (trapping, sorting, spinning) of NPs.
Collapse
|
30
|
Saha S, Hong C, Fomra D, Ozgur U, Avrutin V, Ndukaife JC, Kinsey N. On-chip integrated quantum emitter with 'trap-enhance-guide': a simulation approach. OPTICS EXPRESS 2022; 30:48051-48060. [PMID: 36558720 DOI: 10.1364/oe.477164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
To address the challenges of developing a scalable system of an on-chip integrated quantum emitter, we propose to leverage the loss in our hybrid plasmonic-photonic structure to simultaneously achieve Purcell enhancement as well as on-chip maneuvering of nanoscale emitter via optical trapping with guided excitation-emission routes. In this report, we have analyzed the feasibility of the functional goals of our proposed system in the metric of trapping strength (∼8KBT), Purcell factor (>1000∼), and collection efficiency (∼10%). Once realized, the scopes of the proposed device can be advanced to develop a scalable platform for integrated quantum technology.
Collapse
|
31
|
Jia P, Wang X, Cai X, Guo Q, Zhang D, Sun Y, Yang J. Freestanding Metal Nanomembranes and Nanowires by Template Transfer with a Soluble Adhesive. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3988. [PMID: 36432274 PMCID: PMC9694887 DOI: 10.3390/nano12223988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/11/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The fabrication of nanostructures usually involves chemical processes that have in certain steps. Especially, it is necessary to use the chemical etching method to release the as-patterned structures from the substrate in most of the transfer techniques. Here, a novel scheme of template transfer as developed for the fabrication of freestanding Au nanomembranes and nanowires by using a soluble PVP adhesive. The nanomembranes feature the periodic nanohole arrays with high uniformity. Without the substrates, these plasmonic nanohole arrays show symmetric and antisymmetric resonance modes with bright and dark spectral features, respectively, in transmission. Through the spectral analysis for reflection, we have disclosed that the usual dark mode in transmission is not really dark, but it reveals a distinct feature in reflection. Two coupling modes present distinct spectral features in transmission and reflection due to their different loss channels. To show their versatility, the freestanding nanomembranes were also employed as secondary templates to form Si nanowire arrays by the metal-assisted chemical etching method.
Collapse
Affiliation(s)
- Peipei Jia
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Xinzhong Wang
- Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Xiaobing Cai
- School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Dongxing Zhang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Yong Sun
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| | - Jun Yang
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China
| |
Collapse
|
32
|
Zhang T, Wu S, Qin H, Wu H, Liu X, Li B, Zheng X. An Optically Controlled Virtual Microsensor for Biomarker Detection In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205760. [PMID: 36074977 DOI: 10.1002/adma.202205760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Current technologies for the real-time analysis of biomarkers in vivo, such as needle-type microelectrodes and molecular imaging methods based on exogenous contrast agents, are still facing great challenges in either invasive detection or lack of active control of the imaging probes. In this study, by combining the design concepts of needle-type microelectrodes and the fluorescence imaging method, a new technique is developed for detecting biomarkers in vivo, named as "optically controlled virtual microsensor" (OCViM). OCViM is established by the organic integration of a specially shaped laser beam and fluorescent nanoprobe, which serve as the virtual handle and sensor tip, respectively. The laser beam can trap and manipulate the nanoprobe in a programmable manner, and meanwhile excite it to generate fluorescence emission for biosensing. On this basis, fully active control of the nanoprobe is achieved noninvasively in vivo, and multipoint detection can be realized at sub-micrometer resolution by shifting a nanoprobe among multiple positions. By using OCViM, the overexpression and heterogenous distribution of biomarkers in the thrombus is studied in living zebrafish, which is further utilized for the evaluation of antithrombotic drugs. OCViM may provide a powerful tool for the mechanism study of thrombus progression and the evaluation of antithrombotic drugs.
Collapse
Affiliation(s)
- Tiange Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Shuai Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Haifeng Qin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Huaying Wu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiaoshuai Liu
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xianchuang Zheng
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
33
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
34
|
Affiliation(s)
- Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
35
|
Zhou LM, Shi Y, Zhu X, Hu G, Cao G, Hu J, Qiu CW. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS NANO 2022; 16:13264-13278. [PMID: 36053722 DOI: 10.1021/acsnano.2c05634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
| | - Xiaoyu Zhu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangtao Cao
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
| | - Jigang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
36
|
Tsuji T, Doi K, Kawano S. Optical trapping in micro- and nanoconfinement systems: Role of thermo-fluid dynamics and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
37
|
Kim H, Kang Y, Lim B, Kim K, Yoon J, Ali A, Torati SR, Kim C. Tailoring matter orbitals mediated using a nanoscale topographic interface for versatile colloidal current devices. MATERIALS HORIZONS 2022; 9:2353-2363. [PMID: 35792087 DOI: 10.1039/d2mh00523a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional micro-particle manipulation technologies have been used for various biomedical applications using dynamics on a plane without vertical movement. In this case, irregular topographic structures on surfaces could be a factor that causes the failure of the intended control. Here, we demonstrated a novel colloidal particle manipulation mediated by the topographic effect generated by the "micro hill" and "surface gradient" around a micro-magnet. The magnetic landscape, matter orbital, created by periodically arranged circular micro-magnets, induces a symmetric orbit of magnetic particle flow under a rotating magnetic field. The topographic effect can break this symmetry of the energy distribution by controlling the distance between the source of the driving force and target particles by several nanometers on the surface morphology. The origin symmetric orbit of colloidal flow can be distorted by modifying the symmetry in the energy landscape at the switching point without changing the driving force. The enhancement of the magnetic effect of the micro-magnet array can lead to the recovery of the symmetry of the orbit. Also, this effect on the surfaces of on-chip-based devices configured by symmetry control was demonstrated for selective manipulation, trapping, recovery, and altering the direction using a time-dependent magnetic field. Hence, the developed technique could be used in various precise lab-on-a-chip applications, including where the topographic effect is required as an additional variable without affecting the existing control method.
Collapse
Affiliation(s)
- Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea.
| |
Collapse
|
38
|
Chen Z, Cai Z, Liu W, Yan Z. Optical trapping and manipulation for single-particle spectroscopy and microscopy. J Chem Phys 2022; 157:050901. [DOI: 10.1063/5.0086328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Optical tweezers can control the position and orientation of individual colloidal particles in solution. Such control is often desirable but challenging for single-particle spectroscopy and microscopy, especially at the nanoscale. Functional nanoparticles that are optically trapped and manipulated in a three-dimensional (3D) space can serve as freestanding nanoprobes, which provide unique prospects of sensing and mapping the surrounding environment of the nanoparticles and studying their interactions with biological systems. In this perspective, we will first describe the optical forces underlying the optical trapping and manipulation of microscopic particles, then review the combinations and applications of different spectroscopy and microscopy techniques with optical tweezers. Finally, we will discuss the challenges of performing spectroscopy and microscopy on single nanoparticles with optical tweezers, the possible routes to address these challenges, and the new opportunities that will arise.
Collapse
Affiliation(s)
- Zhenzhen Chen
- The University of North Carolina at Chapel Hill, United States of America
| | - Zhewei Cai
- Clarkson University, United States of America
| | - Wenbo Liu
- The University of North Carolina at Chapel Hill, United States of America
| | - Zijie Yan
- University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
39
|
Chen J, Zeng Y, Zhou J, Wang X, Jia B, Miyan R, Zhang T, Sang W, Wang Y, Qiu H, Qu J, Ho HP, Gao BZ, Shao Y, Gu Y. Optothermophoretic flipping method for biomolecule interaction enhancement. Biosens Bioelectron 2022; 204:114084. [DOI: 10.1016/j.bios.2022.114084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 01/04/2022] [Accepted: 02/06/2022] [Indexed: 12/01/2022]
|
40
|
Kotsifaki DG, Nic Chormaic S. The role of temperature-induced effects generated by plasmonic nanostructures on particle delivery and manipulation: a review. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:2199-2218. [PMID: 39678096 PMCID: PMC11636517 DOI: 10.1515/nanoph-2022-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/17/2024]
Abstract
Plasmonic optical tweezers that stem from the need to trap and manipulate ever smaller particles using non-invasive optical forces, have made significant contributions to precise particle motion control at the nanoscale. In addition to the optical forces, other effects have been explored for particle manipulation. For instance, the plasmonic heat delivery mechanism generates micro- and nanoscale optothermal hydrodynamic effects, such as natural fluid convection, Marangoni fluid convection and thermophoretic effects that influence the motion of a wide range of particles from dielectric to biomolecules. In this review, a discussion of optothermal effects generated by heated plasmonic nanostructures is presented with a specific focus on applications to optical trapping and particle manipulation. It provides a discussion on the existing challenges of optothermal mechanisms generated by plasmonic optical tweezers and comments on their future opportunities in life sciences.
Collapse
Affiliation(s)
- Domna G. Kotsifaki
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
- Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan, Jiangsu, China
| | - Síle Nic Chormaic
- Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan
| |
Collapse
|
41
|
Automated estimation of cancer cell deformability with machine learning and acoustic trapping. Sci Rep 2022; 12:6891. [PMID: 35477742 PMCID: PMC9046201 DOI: 10.1038/s41598-022-10882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 11/28/2022] Open
Abstract
Cell deformability is a useful feature for diagnosing various diseases (e.g., the invasiveness of cancer cells). Existing methods commonly inflict pressure on cells and observe changes in cell areas, diameters, or thickness according to the degree of pressure. Then, the Young’s moduli (i.e., a measure of deformability) of cells are estimated based on the assumption that the degrees of the changes are inversely proportional to Young’s moduli. However, manual measurements of the physical changes in cells are labor-intensive, and the subjectivity of the operators can intervene during this step, thereby causing considerable uncertainty. Further, because the shapes of cells are nonuniform, we cannot ensure the assumption for linear correlations of physical changes in cells with their deformability. Therefore, this study aims at measuring non-linear elastic moduli of live cells (degrees of cell deformability) automatically by employing conventional neural networks (CNN) and multilayer perceptrons (MLP) while preserving (or enhancing) the accuracy of the manual methods. First, we obtain photomicrographs of cells on multiple pressure levels using single-beam acoustic tweezers, and then, we suggest an image preprocessing method for emphasizing changes in cell areas on the photomicrographs. The CNN model is trained to measure the ratios of the cell area change at each pressure level. Then, we apply the multilayer perceptron (MLP) to learn the correlations of the cell area change ratios according to the pressure levels with cell deformability. The accuracy of the CNN was evaluated using two types of breast cancer cells: MDA-MB-231 (invasive) and MCF-7 (noninvasive). The MLP was assessed using five different beads (Young’s moduli from 0.214 to 9.235 kPa), which provides standardized reference data of the non-linear elastic moduli of live cells. Finally, we validated the practicality of the proposed system by examining whether the non-linear elastic moduli estimated by the proposed system can distinguish invasive breast cancer cells from noninvasive ones.
Collapse
|
42
|
Lee G, Yu ES, Ryu YS, Seo M. The perspectives of broadband metasurfaces and photo-electric tweezer applications. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:1783-1808. [PMID: 39633930 PMCID: PMC11501245 DOI: 10.1515/nanoph-2021-0711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/07/2024]
Abstract
With strong demands of real-time monitoring of biomolecules or environmental pollutants, overcoming technical hurdles on control and detection of freely diffusive nanoscale objects become a question of issue to solve in a variety of research fields. Most existing optical techniques inevitably require labeling to the target material, which sometimes denature the measuring biomaterials. For highly efficient real-time monitoring without complicated pretreatment or labeling, many successes in development of label-free or non-destructive detection techniques via increased sensitivity were accomplished by the additional structures. Metasurface-based two-dimensional photonic/electric devices have recently represented extraordinary performances in both manipulation and sensing for various small particles and biochemical species, repeatedly overcoming the limit of detection achieved right before. In parallel, various metasurface-based devices were also introduced promoting transportation of targets into optical hotspot sites, overcoming diffusion limits. We noted this point, therefore, reviewed two major research fields such as metasurface-assisted material sensing and transportation technologies that have contributed to present prospective sensing technologies, then showed perspective views on how great synergy can be created when two technologies are cleverly integrated. Recently, a trend of conceptual merging of optical detection and transporting schemes beyond both diffraction limit and diffusion limit leads to a creation of exceptional performance in molecular detections. In this review, the trends of the latest technologies accomplishing this purpose by hybridization of various composite materials and functional metasurfaces will be introduced.
Collapse
Affiliation(s)
- Geon Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul08826, Republic of Korea
| | - Eui-Sang Yu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Yong-Sang Ryu
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| | - Minah Seo
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul02841, Republic of Korea
| |
Collapse
|
43
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
44
|
Fränzl M, Cichos F. Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows. Nat Commun 2022; 13:656. [PMID: 35115502 PMCID: PMC8813924 DOI: 10.1038/s41467-022-28212-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
Manipulation of nano-objects at the microscale is of great technological importance for constructing new functional materials, manipulating tiny amounts of fluids, reconfiguring sensor systems, or detecting tiny concentrations of analytes in medical screening. Here, we show that hydrodynamic boundary flows enable the trapping and manipulation of nano-objects near surfaces. We trigger thermo-osmotic flows by modulating the van der Waals and double layer interactions at a gold-liquid interface with optically generated local temperature fields. The hydrodynamic flows, attractive van der Waals and repulsive double layer forces acting on the suspended nanoparticles enable precise nanoparticle positioning and guidance. A rapid multiplexing of flow fields permits the parallel manipulation of many nano-objects and the generation of complex flow fields. Our findings have direct implications for the field of plasmonic nanotweezers and other thermo-plasmonic trapping systems, paving the way for nanoscopic manipulation with boundary flows.
Collapse
Affiliation(s)
- Martin Fränzl
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
| | - Frank Cichos
- Peter Debye Institute for Soft Matter Physics, Molecular Nanophotonics Group, Universität Leipzig, Linnéstr. 5, 04103, Leipzig, Germany.
| |
Collapse
|
45
|
Tiwari S, Khandelwal U, Sharma V, Kumar GVP. Single Molecule Surface Enhanced Raman Scattering in a Single Gold Nanoparticle-Driven Thermoplasmonic Tweezer. J Phys Chem Lett 2021; 12:11910-11918. [PMID: 34878793 DOI: 10.1021/acs.jpclett.1c03450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface enhanced Raman scattering (SERS) is optically sensitive and chemically specific to detect single-molecule spectroscopic signatures. Facilitating this capability in optically trapped nanoparticles at low laser power remains a significant challenge. In this letter, we show single molecule SERS signatures in reversible assemblies of trapped plasmonic nanoparticles using a single laser excitation (633 nm). Importantly, this trap is facilitated by the thermoplasmonic field of a single gold nanoparticle dropcasted on a glass surface. We employ the bianalyte SERS technique to ascertain the single molecule statistical signatures and identify the critical parameters of the thermoplasmonic tweezer that provide this sensitivity. Furthermore, we show the utility of this low power (≈ 0.1 mW/μm2) tweezer platform to trap a single gold nanoparticle and transport assembly of nanoparticles. Given that our configuration is based on a dropcasted gold nanoparticle, we envisage its utility to create reconfigurable plasmonic metafluids in physiological and catalytic environments and to be potentially adapted as an in vivo plasmonic tweezer.
Collapse
Affiliation(s)
- Sunny Tiwari
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Utkarsh Khandelwal
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - Vandana Sharma
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| | - G V Pavan Kumar
- Department of Physics, Indian Institute of Science Education and Research, Pune, 411008, India
| |
Collapse
|
46
|
Liu Y, Pan T, Wang K, Wang Y, Yan S, Wang L, Zhang S, Du X, Jia W, Zhang P, Chen H, Huang S. Allosteric Switching of Calmodulin in a
Mycobacterium smegmatis
porin A (MspA) Nanopore‐Trap. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Tiezheng Pan
- School of Life Sciences Northwestern Polytechnical University 710072 Xi'an China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Hong‐Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing China
- Chemistry and Biomedicine Innovation Center (ChemBIC) Nanjing University 210023 Nanjing China
| |
Collapse
|
47
|
Liu Y, Pan T, Wang K, Wang Y, Yan S, Wang L, Zhang S, Du X, Jia W, Zhang P, Chen HY, Huang S. Allosteric Switching of Calmodulin in a Mycobacterium smegmatis porin A (MspA) Nanopore-Trap. Angew Chem Int Ed Engl 2021; 60:23863-23870. [PMID: 34449124 DOI: 10.1002/anie.202110545] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/21/2021] [Indexed: 01/23/2023]
Abstract
Recent developments concerning large protein nanopores suggest a new approach to structure profiling of native folded proteins. In this work, the large vestibule of Mycobacterium smegmatis porin A (MspA) and calmodulin (CaM), a Ca2+ -binding protein, were used in the direct observation of the protein structure. Three conformers, including the Ca2+ -free, Ca2+ -bound, and target peptide-bound states of CaM, were unambiguously distinguished. A disease related mutant, CaM D129G was also discriminated by MspA, revealing how a single amino acid replacement can interfere with the Ca2+ -binding capacity of the whole protein. The binding capacity and aggregation effect of CaM induced by different ions (Mg2+ /Sr2+ /Ba2+ /Ca2+ /Pb2+ /Tb3+ ) were also investigated and the stability of MspA in extreme conditions was evaluated. This work demonstrates the most systematic single-molecule investigation of different allosteric conformers of CaM, acknowledging the high sensing resolution offered by the MspA nanopore trap.
Collapse
Affiliation(s)
- Yao Liu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Tiezheng Pan
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Liying Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
48
|
Zhang S, Zhang Y, Fu Y, Zhu Z, Man Z, Bu J, Fang H, Min C, Yuan X. Nonlinearity-modulated single molecule trapping and Raman scattering analysis. OPTICS EXPRESS 2021; 29:32285-32295. [PMID: 34615303 DOI: 10.1364/oe.437647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Single molecule detection and analysis play important roles in many current biomedical researches. The deep-nanoscale hotspots, being excited and confined in a plasmonic nanocavity, make it possible to simultaneously enhance the nonlinear light-matter interactions and molecular Raman scattering for label-free detections. Here, we theoretically show that a nanocavity formed in a tip-enhanced Raman scattering (TERS) system can also achieve valid optical trapping as well as TERS signal detection for a single molecule. In addition, the nonlinear responses of metallic tip and substrate film can change their intrinsic physical properties, leading to the modulation of the optical trapping force and the TERS signal. The results demonstrate a new degree of freedom brought by the nonlinearity for effectively modulating the optical trapping and Raman detection in single molecule level. This proposed platform also shows a great potential in various fields of research that need high-precision surface imaging.
Collapse
|
49
|
Jiang Q, Roy P, Claude JB, Wenger J. Single Photon Source from a Nanoantenna-Trapped Single Quantum Dot. NANO LETTERS 2021; 21:7030-7036. [PMID: 34398613 DOI: 10.1021/acs.nanolett.1c02449] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single photon sources with high brightness and subnanosecond lifetimes are key components for quantum technologies. Optical nanoantennas can enhance the emission properties of single quantum emitters, but this approach requires accurate nanoscale positioning of the source at the plasmonic hotspot. Here, we use plasmonic nanoantennas to simultaneously trap single colloidal quantum dots and enhance their photoluminescence. The nano-optical trapping automatically locates the quantum emitter at the nanoantenna hotspot without further processing. Our dedicated nanoantenna design achieves a high trap stiffness of 0.6 (fN/nm)/mW for quantum dot trapping, together with a relatively low trapping power of 2 mW/μm2. The emission from the nanoantenna-trapped single quantum dot shows 7× increased brightness, 50× reduced blinking, 2× shortened lifetime, and a clear antibunching below 0.5 demonstrating true single photon emission. Combining nano-optical tweezers with plasmonic enhancement is a promising route for quantum technologies and spectroscopy of single nano-objects.
Collapse
Affiliation(s)
- Quanbo Jiang
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Prithu Roy
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jean-Benoît Claude
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, AMUTech, 13013 Marseille, France
| |
Collapse
|
50
|
Zhou Y, Zhu C, Bian K, Yang M, Yang C. Analytical analysis of anisotropic thermophoresis of a charged spheroidal colloid in aqueous media for extremely thin EDL cases. Electrophoresis 2021; 42:2391-2400. [PMID: 34318952 DOI: 10.1002/elps.202100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/29/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022]
Abstract
Thermophoresis of charged spheroids has been widely applied in biology and medical science. In this work, we report an analysis of the anisotropic thermophoresis of diluted spheroidal colloids in aqueous media for extremely thin EDL cases. Under the boundary layer approximation, we formulate the thermophoretic velocity, the thermophoretic force, and the thermodiffusion coefficient of a randomly dispersed spheroid. The parametric studies show that under the aforementioned conditions, the thermophoresis is anisotropic and its thermodiffusion coefficient should be considered as a vector, DT . The thermodiffusion coefficient values and directions of DT are strongly related to the aspect ratio and the angle θ between the externally applied temperature gradient and the particle's axis of revolution: The increasing aspect ratio enlarges the thermodiffusion coefficient value DT of prolate (oblate) spheroids to a constant value when θ < 60° (θ > 45°), and it reduces DT of prolate (oblate) spheroids to a constant value when θ > 60° (θ < 45°). The thermodiffusion coefficient direction of both prolate and oblate spheroids deviates slightly from -∇T∞ for a small aspect ratio, and such deviation becomes serious for a large aspect ratio.
Collapse
Affiliation(s)
- Yi Zhou
- Key Laboratory of High Performance Ship Technology, Ministry of Education, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, P. R. China.,School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, P. R. China
| | - Changxing Zhu
- Key Laboratory of High Performance Ship Technology, Ministry of Education, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, P. R. China
| | - Kun Bian
- Key Laboratory of High Performance Ship Technology, Ministry of Education, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, P. R. China
| | - Mingyuan Yang
- Key Laboratory of High Performance Ship Technology, Ministry of Education, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan, P. R. China
| | - Chun Yang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|