1
|
Tan K, Zhang H, Yang J, Wang H, Li Y, Ding G, Gu P, Yang S, Li J, Fan X. Organelle-oriented nanomedicines in tumor therapy: Targeting, escaping, or collaborating? Bioact Mater 2025; 49:291-339. [PMID: 40161442 PMCID: PMC11953998 DOI: 10.1016/j.bioactmat.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Precise tumor therapy is essential for improving treatment specificity, enhancing efficacy, and minimizing side effects. Targeting organelles is a key strategy for achieving this goal and is a frontier research area attracting a considerable amount of attention. The concept of organelle targeting has a significant effect on the structural design of the nanodrugs employed. Most notably, the intricate interactions among different organelles in a tumor cell essentially create a unified system. Unfortunately, this aspect might have been somewhat overlooked when existing organelle-targeting nanodrugs were designed. In this review, we underscore the synergistic relationship among the various organelles and advocate for a holistic view of organelle-targeting design. Through the integration of biology and material science, recent advancements in organelle targeting, escaping, and collaborating are consolidated to offer fresh perspectives for the development of antitumor nanomedicines.
Collapse
Affiliation(s)
- Kexin Tan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Haiyang Zhang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Jianyuan Yang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Hang Wang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuits, Joint Laboratory of Graphene Materials and Applications, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
| | - Jipeng Li
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, and Center for Basic Medical Research and Innovation in Visual System Diseases of Ministry of Education, Shanghai, 200011, PR China
| |
Collapse
|
2
|
Wang Z, Mierxiati A, Zhu W, Li T, Xu H, Wan F, Ye D. FOXA1-dependent NSUN2 facilitates the advancement of prostate cancer by preserving TRIM28 mRNA stability in a m5C-dependent manner. NPJ Precis Oncol 2025; 9:127. [PMID: 40319192 PMCID: PMC12049421 DOI: 10.1038/s41698-025-00904-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 04/06/2025] [Indexed: 05/07/2025] Open
Abstract
RNA epigenetics is gaining increased attention for its role in the initiation, metastasis, and drug resistance of tumors. These studies have primarily focused on m6A modification. However, despite being the second most abundant modification found in RNA, the role of m5C modification in prostate cancer remains largely unexplored. Here, we predict an RNA m5C methyltransferase, NSUN2, as a potential therapeutic target for prostate cancer using various bioinformatics approaches, and verify the potential of NSUN2 as a target through multiple preclinical models. Mechanistically, NSUN2 enhances the stability of TRIM28 mRNA by adding m5C modification, promoting the expression of TRIM28. Concurrently, FOXA1, a prostate cancer lineage-specific transcription factor, transcriptionally activates the expression of NSUN2. Our study confirms the clinical potential of targeting RNA epigenetics for the treatment of prostate cancer and elucidates, mechanistically, how RNA epigenetics participates in the complex biological activities within tumors via the FOXA1-NSUN2-TRIM28 axis.
Collapse
Affiliation(s)
- Zhenda Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Wenkai Zhu
- Department of Urology, First People's Hospital of Kashi, Kashi, China
| | - Tian Li
- Tianjin Medical University, Tianjin, China.
| | - Hua Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Klümper N, Cox A, Sjödahl G, Roghmann F, Bolenz C, Hartmann A, Grünwald V, Faltas BM, Hölzel M, Eckstein M. Pre-treatment metastatic biopsy: a step towards precision oncology for urothelial cancer. Nat Rev Urol 2025; 22:256-267. [PMID: 39472646 DOI: 10.1038/s41585-024-00951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2024] [Indexed: 05/10/2025]
Abstract
Early metastatic spread and clonal expansion of individual mutations result in a heterogeneous tumour landscape in metastatic urothelial cancer (mUC). Substantial molecular heterogeneity of common drug targets, such as membranous NECTIN4, FGFR3 mutations, PDL1 or immune phenotypes, has been documented between primary and metastatic tumours. However, translational and clinical studies frequently do not account for such heterogeneity and often investigate primary tumour samples that might not be representative in patients with mUC. We propose this as a potential factor for why many biomarkers for mUC have failed to be integrated into clinical practice. Fresh pre-treatment metastatic biopsies enable the capturing of prevailing tumour biology in real time. The characterization of metastatic tumour samples can improve response prediction to immunotherapy, the anti-NECTIN4 antibody-drug conjugate enfortumab vedotin and the FGFR inhibitor erdafitinib. Routine metastatic biopsy can thus improve the precision of identifying driver druggable alterations, thus improving treatment selection for patients with mUC.
Collapse
Affiliation(s)
- Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany.
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany.
| | - Alexander Cox
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
| | - Gottfrid Sjödahl
- Department of Translational Medicine, Division of Urological Research, Lund University, Lund, Sweden
| | - Florian Roghmann
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Christian Bolenz
- Department of Urology and Paediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Viktor Grünwald
- Clinic for Internal Medicine (Tumour Research) and Clinic for Urology, Interdisciplinary Genitourinary Oncology at the West-German Cancer Center, Essen University Hospital, Essen, Germany
| | - Bishoy M Faltas
- Department of Hematology/Oncology, Weill-Cornell Medicine, New York, NY, USA
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Markus Eckstein
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
4
|
Mansouri A, Ozair A, Bhanja D, Wilding H, Mashiach E, Haque W, Mikolajewicz N, de Macedo Filho L, Mahase SS, Machtay M, Metellus P, Dhermain F, Sheehan J, Kondziolka D, Lunsford LD, Niranjan A, Minniti G, Li J, Kalkanis SN, Wen PY, Kotecha R, McDermott MW, Bettegowda C, Woodworth GF, Brown PD, Sahgal A, Ahluwalia MS. Stereotactic radiosurgery for patients with brain metastases: current principles, expanding indications and opportunities for multidisciplinary care. Nat Rev Clin Oncol 2025; 22:327-347. [PMID: 40108412 DOI: 10.1038/s41571-025-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The management of brain metastases is challenging and should ideally be coordinated through a multidisciplinary approach. Stereotactic radiosurgery (SRS) has been the cornerstone of management for most patients with oligometastatic central nervous system involvement (one to four brain metastases), and several technological and therapeutic advances over the past decade have broadened the indications for SRS to include polymetastatic central nervous system involvement (>4 brain metastases), preoperative application and fractionated SRS, as well as combinatorial approaches with targeted therapy and immune-checkpoint inhibitors. For example, improved imaging and frameless head-immobilization technologies have facilitated fractionated SRS for large brain metastases or postsurgical cavities, or lesions in proximity to organs at risk. However, these opportunities come with new challenges and questions, including the implications of tumour histology as well as the role and sequencing of concurrent systemic treatments. In this Review, we discuss these advances and associated challenges in the context of ongoing clinical trials, with insights from a global group of experts, including recommendations for current clinical practice and future investigations. The updates provided herein are meaningful for all practitioners in clinical oncology.
Collapse
Affiliation(s)
- Alireza Mansouri
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA.
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA.
| | - Ahmad Ozair
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Debarati Bhanja
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Hannah Wilding
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Elad Mashiach
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Waqas Haque
- Division of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Nicholas Mikolajewicz
- Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leonardo de Macedo Filho
- Penn State Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
- Department of Neurosurgery, Penn State College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Sean S Mahase
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Mitchell Machtay
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, PA, USA
| | - Philippe Metellus
- Department of Neurosurgery, Ramsay Santé, Hôpital Privé Clairval, Marseille, France
| | - Frédéric Dhermain
- Radiation Therapy Department, Institut Gustave Roussy, Villejuif, France
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - L Dade Lunsford
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza IRCCS Neuromed, Pozzilli, Italy
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Michael W McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
- Department of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Brain Tumour Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- University of Maryland-Medicine Institute for Neuroscience Discovery, Baltimore, MD, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Manmeet S Ahluwalia
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
5
|
Fan S, Tang Y, Cao J, Peng R, Su B, Tu D, Yu W, Chen C, Wang S, Jin S, Jiang G, Zhang C, Bai D. Integrative Analysis the Role of ENG as a Metabolic and Macrophage-Related Gene in Hepatocellular Carcinoma. Biochem Genet 2025:10.1007/s10528-025-11098-z. [PMID: 40244558 DOI: 10.1007/s10528-025-11098-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
High levels of M2 macrophages often correlate with poor prognosis. Endoglin (ENG) is a potential target for anti-angiogenesis therapy in various cancers, but the link between M2 macrophages and metabolism-related genes (MRGs) in hepatocellular carcinoma (HCC) is unclear. We employed cibersort analysis to identify genes associated with M2 macrophages and metabolic reprogramming in HCC, utilizing data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. TCGA data were stratified basis on ENG expression levels, and the relationships between ENG and relevant genes were assessed alongside clinical features. Furthermore, we validated ENG expression in HCC tissues and its correlation with M2 macrophages via qRT-PCR, Western blotting (WB), and immunohistochemistry (IHC). Patients with high ENG expression presented superior overall survival (OS) and longer progression-free survival (PFS). Univariate and multivariate regression analyses identified ENG as an independent prognostic predictor. Moreover, GSEA, GO, and KEGG analyses suggested a correlation between ENG-related gene expression and immunity, particularly TAMs. Additionally, ENG was found to reshape the tumor microenvironment (TME) of HCC and influence the response to immunotherapy. Single-cell analysis revealed the differential expression and distribution of ENG in the TME. In vitro experiments demonstrated lower ENG expression in HCC tissues than in paracancerous tissues, with a concomitant correlation with M2 macrophages. ENG emerges as a novel predictive marker for HCC, could reshap the TME and impacts the response to immunotherapy and provides a fresh perspective for investigating combined immunotherapy targeting MRGs in HCC.
Collapse
Affiliation(s)
- Songsong Fan
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Yuhong Tang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Jun Cao
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Bingbing Su
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Daoyuan Tu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Weidi Yu
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Shunyi Wang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
| | - Shengjie Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Guoqing Jiang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Chi Zhang
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225000, China.
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, Yangzhou, 225000, China.
| |
Collapse
|
6
|
Arnaudi M, Utichi M, Tiberti M, Papaleo E. Predicting the structure-altering mechanisms of disease variants. Curr Opin Struct Biol 2025; 91:102994. [PMID: 40020537 DOI: 10.1016/j.sbi.2025.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 03/03/2025]
Abstract
Missense variants can affect the severity of disease, choice of treatment, and treatment outcomes. While the number of known variants has been increasing at a rapid pace, available evidence of their clinical effect has been lagging behind, constituting a challenge for clinicians and researchers. Multiplexed assays of variant effects (MAVEs) are important to close the gap; nonetheless, computational predictions of pathogenicity are still often the only available data for scoring variants. Such methods are not designed to provide a mechanistic explanation for the effect of amino acid substitutions. To this purpose, we propose structure-based frameworks as ensemble methodologies, with each method tailored to predict a different aspect among those exerted by amino acid substitutions to link predicted pathogenicity to mechanistic indicators. We review available frameworks, as well as advancements in underlying structure-based methods that predict variant effects on several protein features, such as protein stability, biomolecular interactions, allostery, post-translational modifications, and more.
Collapse
Affiliation(s)
- Matteo Arnaudi
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Cancer Systems Biology, Section of Bioinformatics, Health and Technology Department, Technical University of Denmark, Lyngby, Denmark
| | - Mattia Utichi
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Cancer Systems Biology, Section of Bioinformatics, Health and Technology Department, Technical University of Denmark, Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Cancer Systems Biology, Section of Bioinformatics, Health and Technology Department, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
7
|
Sahin TK, Guven DC, Durukan M, Kavgaci G, Kaygusuz Y, Arik Z, Dizdar O, Erman M, Yalcin S, Aksoy S. The association between blood sodium levels and survival in patients treated with immune checkpoint inhibitors. Expert Rev Mol Diagn 2025; 25:129-137. [PMID: 40007200 DOI: 10.1080/14737159.2025.2472946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for solid tumors, offering substantial survival benefits. Despite this progress, many patients do not achieve durable responses, highlighting the need for novel prognostic biomarkers. This study investigates the association between serum sodium levels and survival outcomes in patients treated with ICIs. RESEARCH DESIGN AND METHODS We conducted a retrospective cohort study involving 509 patients with metastatic solid tumors treated with ICIs. We assessed overall survival (OS), progression-free survival (PFS), and response rates using Kaplan-Meier survival analysis and multivariate cox regression analysis. RESULTS The median age was 62 years (interquartile range (IQR): 54-69), and 76.6% of the patients were male. Multivariate analysis revealed that serum sodium levels between 135-140 mmol/L were an independent predictor of improved OS (HR: 0.58; 95% CI: 0.44-0.77) and PFS (HR: 0.76; 95%CI: 0.58-0.99) and those with levels > 140 mmol/L had an even lower HR of 0.43 (95% CI:0.31-0.62) for OS and HR of 0.62 (95% CI:0.45-0.86) for PFS. CONCLUSION This study highlights that ICI-treated patients with higher sodium levels had significantly better OS, PFS, and anti-tumor responses. Baseline serum sodium levels could be cost-effective and valuable predictive biomarker for ICIs across diverse tumor types and ICI agents.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Deniz Can Guven
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Mert Durukan
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Gozde Kavgaci
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Yunus Kaygusuz
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Zafer Arik
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Omer Dizdar
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Mustafa Erman
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Suayib Yalcin
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Sercan Aksoy
- Department of Medical Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
8
|
Boos LA, Doerig C, Gut G, Miglino N, Fábregas Ibáñez L, Rizzo S, Schärfe Fruechtenicht C, Chitale N, Lu C, Zoche M, Bodenmiller B, Chevrier S, Eklund AS, Nowak M, Rahmani Khajouei S, Berardo CG, Kaczmarek L, Bosshard K, Archey W, Bodmer M, Glinz D, Camarillo-Retamosa E, Hempel CL, Rahimzadeh P, Gosztonyi B, Richter U, Bankel L, Wicki A. Precision Oncology Program (POP), an observational study using real-world data and imaging mass cytometry to explore decision support for the Molecular Tumor Board: study protocol. BMJ Open 2025; 15:e096591. [PMID: 40139698 PMCID: PMC11950961 DOI: 10.1136/bmjopen-2024-096591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Precision oncology aims to provide individualised treatment recommendations based on patient-specific characteristics. In this rapidly evolving field with increasing numbers of biomarkers and potential therapeutic targets, there is a growing unmet need for evidence guiding these individualised treatment recommendations. The Precision Oncology Program (POP) harnesses real-world data (RWD) and imaging mass cytometry (IMC) to evaluate the feasibility and utility of integrating different data modalities to inform personalised treatment recommendations. This program uses patient-matched clinicogenomic data and spatial single-cell proteomics analysis to support profiling-driven decision-making for patients with cancer at the Molecular Tumor Board. METHODS AND ANALYSIS The collaborative POP project recruits patients across all tumour entities and stages at the Comprehensive Cancer Center Zurich (CCCZ). For patients in the POP, a clinically and molecularly matched cohort is identified within the nationwide (US-based) de-identified Flatiron Health-Foundation Medicine clinicogenomic database (CGDB). It assesses whether clinical, genomic and outcome data of the CGDB cohort can inform treatment recommendations. In addition, multiplexed imaging mass cytometry (IMC) is performed in formalin-fixed paraffin-embedded tissue to assess the potential impact of spatial proteomics on personalised treatment decisions. RWD and IMC information is reviewed in the Molecular Tumor Board to assess the potential impact of this information on therapy decisions. However, since this is an observational study, these additional recommendations remain nonprescriptive and will not be forwarded to the treating physician. ETHICS AND DISSEMINATION The study is registered at ClinicalTrials.gov (NCT06680726) and approved by the Canton of Zurich Ethics Committee (Project ID: 2022-02289). Project-specific informed consent is obtained from all participants. Deceased patients may also be included. In this case, a signed general consent form must be available. Data privacy is ensured by unique patient numbers for pseudo-anonymised data. Study findings will be disseminated through international peer-reviewed journals, conferences, and direct communication with participants and relevant organisations. TRIAL REGISTRATION NUMBER NCT06680726.
Collapse
Affiliation(s)
- Laura Amanda Boos
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | - Gabriele Gut
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Nicola Miglino
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Luis Fábregas Ibáñez
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Shemra Rizzo
- Personalized Healthcare Data Science, Genentech Inc, South San Francisco, California, USA
| | | | | | - Charles Lu
- Personalized Healthcare Data Science, Genentech Inc, South San Francisco, California, USA
| | - Martin Zoche
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | | | | | - Marta Nowak
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Sepehr Rahmani Khajouei
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | - Eva Camarillo-Retamosa
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Chiara Louisa Hempel
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Ulrich Richter
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Lorenz Bankel
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Cui J, Ruan S, Zhang Z, Wang H, Yan Q, Chen Y, Yang J, Fang J, Wu Q, Chen S, Huang S, Zhang C, Hou B. Pan-cancer analysis of the prognosis and immune infiltration of NSUN7 and its potential function in renal clear cell carcinoma. Discov Oncol 2025; 16:345. [PMID: 40100478 PMCID: PMC11920486 DOI: 10.1007/s12672-025-02061-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND NSUN7, an enzyme responsible for the RNA m5c modification, has been recognized as a valuable indicator for predicting and diagnosing an array of cancer. Nevertheless, there is still a scarcity of thorough analyses exploring its diagnostic, predictive, and immune system-related importance in various types of cancer. METHODS We integrated multiple publicly available databases, including TCGA, TISIDB, TISCH2, and UALCAN, to comprehensively investigate the role of NSUN7 in pan-cancer across various omics data types. The research included examining survival rates, genetic mutations, immune cell presence in tumors, analyzing differences in gene expression, and studying individual cells, among other things. RESULTS NSUN7 expression showed an increase across 12 cancer types and a decrease in another 12 types. NSUN7 was discovered to be linked with enhanced survival rates in bladder urothelial carcinoma (BLCA), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), lung adenocarcinoma (LUAD), pheochromocytoma and paraganglioma (PCPG), skin cutaneous melanoma (SKCM), and uveal melanoma (UVM).On the other hand, NSUN7 seemed to have a detrimental impact on the prognosis of glioblastoma multiforme/brain lower grade glioma (GBMLGG), adrenocortical carcinoma (ACC),acute myeloid leukemia (LAML), stomach adenocarcinoma (STAD), and brain lower grade glioma (LGG). Furthermore, our experimental validation confirmed the inhibitory effect of NSUN7 on proliferation of renal clear cell carcinoma while elucidating its specific part in blocking cell cycle progression. CONCLUSIONS The findings underscore the potential utility of NSUN7 as a valuable prognostic indicator for patients and offer insights into the mechanisms underlying cancer initiation and progression.
Collapse
Affiliation(s)
- Jinwei Cui
- South China University of Technology School of Medicine, Guangzhou, 51000, China
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Shiye Ruan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Zhongyan Zhang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Hailiang Wang
- Department of Hepatobiliary Surgery, Weihai Central Hospital, Qingdao University, Weihai, 264400, China
| | - Qian Yan
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Yubin Chen
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Jiayu Yang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Jike Fang
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Qianlong Wu
- Department of General Surgery, Heyuan People's Hospital, Heyuan, 517000, China
- Heyuan Key Laboratory of Molecular Diagnosis and Disease Prevention and Treatment, Heyuan People's Hospital, Heyuan, 517000, China
| | - Sheng Chen
- South China University of Technology School of Medicine, Guangzhou, 51000, China
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China
| | - Shanzhou Huang
- South China University of Technology School of Medicine, Guangzhou, 51000, China.
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China.
| | - Chuanzhao Zhang
- South China University of Technology School of Medicine, Guangzhou, 51000, China.
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China.
| | - Baohua Hou
- South China University of Technology School of Medicine, Guangzhou, 51000, China.
- Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, 510080, China.
| |
Collapse
|
10
|
El-Deiry WS, Bresson C, Wunder F, Carneiro BA, Dizon DS, Warner JL, Graff SL, Azzoli CG, Wong ET, Cheng L, Mani SA, Safran HP, Williams C, Meissner T, Solomon B, Rubin E, Porgador A, Berchem G, Saintigny P, Onn A, Bar J, Berger R, Gantenbein M, Chen Z, Souza CDP, Reis RMV, Sekacheva M, Cervantes A, Dahut WL, Annunziata CM, Gober K, Musallam KM, Al-Shamsi HO, Abu-Gheida I, Salazar R, Limaye S, Aref AT, Reddel RR, Homsi MUA, Rouf A, Dermime S, Suwaidi JA, Vlad C, Buiga R, Omari AA, Abdel-Razeq H, Oñate-Ocaña LF, Nielsen FC, Graham L, Rueter J, Joshua AM, Girda E, Libutti S, Riedlinger G, Salem ME, Farhangfar CJ, Mesa RA, Faltas BM, Elemento O, Pramesh C, Sengar M, Aoyama S, Ikeda S, Berindan-Neagoe I, Gaddipati H, Kulkarni M, Auzias E, Gerogianni M, Wolikow N, Istolainen S, Schlafrig P, Frankel NZ, Ferraro AR, Palma J, Gimenez AP, Hernando-Calvo A, Felip E, Tsimberidou AM, Herbst RS, Tabernero J, Schilsky RL, Liu J, Lussier Y, Raynaud J, Batist G, Magidi S, Kurzrock R. Worldwide Innovative Network (WIN) Consortium in Personalized Cancer Medicine: Bringing next-generation precision oncology to patients. Oncotarget 2025; 16:140-162. [PMID: 40073368 PMCID: PMC11907938 DOI: 10.18632/oncotarget.28703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
The human genome project ushered in a genomic medicine era that was largely unimaginable three decades ago. Discoveries of druggable cancer drivers enabled biomarker-driven gene- and immune-targeted therapy and transformed cancer treatment. Minimizing treatment not expected to benefit, and toxicity-including financial and time-are important goals of modern oncology. The Worldwide Innovative Network (WIN) Consortium in Personalized Cancer Medicine founded by Drs. John Mendelsohn and Thomas Tursz provided a vision for innovation, collaboration and global impact in precision oncology. Through pursuit of transcriptomic signatures, artificial intelligence (AI) algorithms, global precision cancer medicine clinical trials and input from an international Molecular Tumor Board (MTB), WIN has led the way in demonstrating patient benefit from precision-therapeutics through N-of-1 molecularly-driven studies. WIN Next-Generation Precision Oncology (WINGPO) trials are being developed in the neoadjuvant, adjuvant or metastatic settings, incorporate real-world data, digital pathology, and advanced algorithms to guide MTB prioritization of therapy combinations for a diverse global population. WIN has pursued combinations that target multiple drivers/hallmarks of cancer in individual patients. WIN continues to be impactful through collaboration with industry, government, sponsors, funders, academic and community centers, patient advocates, and other stakeholders to tackle challenges including drug access, costs, regulatory barriers, and patient support. WIN's collaborative next generation of precision oncology trials will guide treatment selection for patients with advanced cancers through MTB and AI algorithms based on serial liquid and tissue biopsies and exploratory omics including transcriptomics, proteomics, metabolomics and functional precision medicine. Our vision is to accelerate the future of precision oncology care.
Collapse
Affiliation(s)
- Wafik S. El-Deiry
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Chevilly-Larue, France
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA
| | - Catherine Bresson
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Chevilly-Larue, France
| | - Fanny Wunder
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Chevilly-Larue, France
| | | | - Don S. Dizon
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA
| | - Jeremy L. Warner
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA
| | | | | | - Eric T. Wong
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA
| | - Liang Cheng
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA
| | - Sendurai A. Mani
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA
| | - Howard P. Safran
- Legorreta Cancer Center at Brown University, Providence, RI 02912, USA
| | | | | | | | - Eitan Rubin
- Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | | | - Guy Berchem
- Centre Hospitalier du Luxembourg, Luxembourg
- University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health, Luxembourg
| | - Pierre Saintigny
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- University of Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France
| | - Amir Onn
- Jusidman Cancer Center, Sheba Medical Center, Ramat Gan, Israel
| | - Jair Bar
- Jusidman Cancer Center, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Raanan Berger
- Jusidman Cancer Center, Sheba Medical Center, Ramat Gan, Israel
| | | | - Zhen Chen
- Fudan University Shanghai Cancer Center, Shanghai, China
| | | | - Rui Manuel Vieira Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
| | - Marina Sekacheva
- I.M Sechenov First Medical State University, Moscow, Russian Federation
| | | | | | | | - Kerri Gober
- American Cancer Society, Atlanta, Georgia, MD 21742, USA
| | | | | | | | - Ramon Salazar
- Medical Oncology Deparment. Institut Català d'Oncologia. Oncobell Program (IDIBELL), Universitat de Barcelona (Campus Bellvitge), CIBERONC, Barcelona, Spain
| | - Sewanti Limaye
- Sir H.N. Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - Adel T. Aref
- ProCan, Children’s Medical Research Institute, The University of Sydney, Australia
| | - Roger R. Reddel
- ProCan, Children’s Medical Research Institute, The University of Sydney, Australia
| | | | - Abdul Rouf
- National Center for Cancer Care and Research Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Center for Cancer Care and Research Hamad Medical Corporation, Doha, Qatar
| | - Jassim Al Suwaidi
- National Center for Cancer Care and Research Hamad Medical Corporation, Doha, Qatar
| | | | - Rares Buiga
- Oncology Institute Ion Chiricuta, Cluj, Romania
| | | | | | | | | | - Leah Graham
- The Jackson Laboratory, The Maine Cancer Genomics Initiative, Bar Harbor, ME 04609, USA
| | - Jens Rueter
- The Jackson Laboratory, The Maine Cancer Genomics Initiative, Bar Harbor, ME 04609, USA
| | - Anthony M. Joshua
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Eugenia Girda
- Rutgers Cancer Institute, New Brunswick, NJ 08901, USA
| | | | | | - Mohammed E. Salem
- Wake Forest University Health Sciences/Atrium Health (WFUHS), Winston-Salem, NC 27157, USA
| | - Carol J. Farhangfar
- Wake Forest University Health Sciences/Atrium Health (WFUHS), Winston-Salem, NC 27157, USA
| | - Ruben A. Mesa
- Wake Forest University Health Sciences/Atrium Health (WFUHS), Winston-Salem, NC 27157, USA
| | | | | | - C.S. Pramesh
- Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, Mumbai, India
| | - Manju Sengar
- Tata Memorial Centre, Affiliated to Homi Bhabha National Institute, Mumbai, India
| | | | | | - Ioana Berindan-Neagoe
- University of Medicine and Pharmacy Iuliu Hatieganu, Cluj, Romania
- Academy of Medical Sciences, Bucharest, Romania
| | - Himabindu Gaddipati
- Vyas Cancer Research (VCR Park), Maharanipeta, Visakhpatnam, Andhra Pradesh, India
| | - Mandar Kulkarni
- Vyas Cancer Research (VCR Park), Maharanipeta, Visakhpatnam, Andhra Pradesh, India
| | | | | | | | | | | | | | | | - Jim Palma
- TargetCancer Foundation, Cambridge, MA 02139, USA
| | | | | | - Enriqueta Felip
- Vall d’Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | - Josep Tabernero
- Vall d’Hebron Hospital Campus and Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Jia Liu
- ProCan, Children’s Medical Research Institute, The University of Sydney, Australia
- The Kinghorn Cancer Centre, St Vincent’s Hospital, Darlinghurst, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| | - Yves Lussier
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Chevilly-Larue, France
- The University of Utah, Salt Lake City, UT 84112, USA
| | - Jacques Raynaud
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Chevilly-Larue, France
| | - Gerald Batist
- Segal Cancer Centre, Jewish Hospital, McGill University, Montreal, Quebec, Canada
| | - Shai Magidi
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Chevilly-Larue, France
| | - Razelle Kurzrock
- Worldwide Innovative Network (WIN) Association – WIN Consortium, Chevilly-Larue, France
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
11
|
Wahida A, Kurzrock R. The Molecular Tumor Board Turns 10: The Age of Complexity. Oncologist 2025; 30:oyae271. [PMID: 39419766 PMCID: PMC11954507 DOI: 10.1093/oncolo/oyae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Gene sequencing has brought a titanic of complex data into clinical precision oncology. Deciphering this complexity for practice requires new constructs. In 2014, the Molecular Tumor Board (MTB) was introduced into the literature by a publication in The Oncologist. Ten years later, MTBs have become globally established vehicles that integrate rapidly emerging "omic" information, helping to transform cancer management.
Collapse
Affiliation(s)
- Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Centre Munich, Neuherberg, Germany
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, United States
- WIN Consortium, Paris, France
| |
Collapse
|
12
|
Chen J, Wu X, Luo H, Wang D, Dong M, Wang Y, Ou Y, Sun S, Liu Z, Zhang Q, Guan Q. Pan-cancer investigation regarding the prognostic predictive and immunological regulation functions of PGK1 and experimental validation in esophageal squamous cell carcinoma. Funct Integr Genomics 2025; 25:54. [PMID: 40047969 DOI: 10.1007/s10142-025-01555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 05/13/2025]
Abstract
Phosphoglycerate kinase 1 (PGK1), a pivotal enzyme in the glycolysis pathway, contributes to tumor progression through diverse biological activities like cell metabolism, angiogenesis, proliferation, and epithelial-mesenchymal transformation (EMT). Although PGK1 has been intensively researched in specific cancer types, its overarching significance in pan-cancer contexts remains underexplored. This study leveraged various public database resources, including the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), Tumor Immune Estimation Resource (TIMER2.0), and cBioPortal, to analyze the gene expression, gene alteration characteristics, prognostic value, subcellular localization, biological function, immune characteristics, and drug sensitivity of PGK1 in 33 different cancer types. R software was used to visualize these data. Furthermore, the effects of PGK1 on the proliferation, apoptosis, migration, and invasion of esophageal squamous cell carcinoma (ESCC) cells were also examined in vitro using 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, CCK-8 assay, Annexin V-FITC/PI assay, migration assay, and invasion assay. The findings suggested that PGK1 is upregulated in various cancer types and closely associated with poor prognosis. In terms of functional enrichment analysis, PGK1 primarily plays a role in glycolysis, hypoxia, EMT, and immune-related pathways. Furthermore, PGK1 is highly expressed in immune and malignant cells in the tumor microenvironment. Notably, PGK1 expression varied significantly among immune cells with distinct activation states. The results of experiments in vitro showed that PGK1 was significantly upregulated in ESCC cells, and its knockdown led to significant inhibition of proliferation, migration, and invasion while increasing cell apoptosis; conversely, overexpression promoted proliferation, migration, and invasion while reducing apoptosis. PGK1 can serve as a prognostic biomarker and therapy target for various cancers, and it may be a promising focal point of immunological studies.
Collapse
Affiliation(s)
- Junru Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Xun Wu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Hongtao Luo
- Radiotherapy Department, Gansu Provincial Hospital of TCM, Lanzhou, 730000, Gansu, China
| | - Dandan Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Meng Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Yuhang Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Yuhong Ou
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Shilong Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Zhiqiang Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China
| | - Qiuning Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, Gansu, China.
| | - Quanlin Guan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
13
|
Zhang L, Wang S, Hou Y. Magnetic Micro/nanorobots in Cancer Theranostics: From Designed Fabrication to Diverse Applications. ACS NANO 2025; 19:7444-7481. [PMID: 39970007 DOI: 10.1021/acsnano.4c10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Cancer poses a substantial threat and a serious challenge to public human health, driving the promotion of sophisticated technologies for cancer therapy. While conventional chemotherapy has bottlenecks such as low delivery efficiency, strong toxic side effects, and tumor enrichment barriers, magnetic micro/nanorobots (MNRs) emerge as promising therapeutic candidates that provide alternative strategies for cancer therapy. MNR is a kind of human-made machine that is micro- or nanosized, is reasonably designed, and performs command tasks through self-actuated or externally controlled propulsion mechanisms, which can be potentially applied in cancer theranostics. Here, this review first introduces the components that constitute a typical magnetic MNR, including the body part, the driving part, the control part, the function part, and the sensing part. Subsequently, this review elucidates representative fabrication methods to construct magnetic MNRs from top-down approaches to bottom-up approaches, covering injection molding, self-rolling, melt electrospinning writing, deposition, biotemplate method, lithography, assembling, 3D printing, and chemical synthesis. Furthermore, this review focuses on multiple applications of magnetic MNRs facing cancer diagnosis and treatment, encompassing imaging, quantification, drug release, synergy with typical therapies, cell manipulation, and surgical assistance. Then, this review systematically elaborates on the biocompatibility and biosafety of magnetic MNRs. Finally, the challenges faced by magnetic MNRs are discussed alongside future research directions. This review is intended to provide scientific guidance that may improve the comprehension and cognition of cancer theranostics through the platform of magnetic MNRs, promoting and prospering the practical application development of magnetic MNRs.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuren Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| |
Collapse
|
14
|
Xiao H, Wang A, Shuai W, Qian Y, Wu C, Wang X, Yang P, Sun Q, Wang G, Ouyang L, Sun Q. A first-in-class selective inhibitor of ERK1/2 and ERK5 overcomes drug resistance with a single-molecule strategy. Signal Transduct Target Ther 2025; 10:70. [PMID: 39979271 PMCID: PMC11842588 DOI: 10.1038/s41392-025-02169-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Despite significant advancements in kinase-targeted therapy, the emergence of acquired drug resistance to targets such as KRAS and MEK remains a challenge. Extracellular-regulated kinase 1/2 (ERK1/2), positioned at the terminus of this pathway, is highly conserved and less susceptible to mutations, thereby garnering attention as a crucial therapeutical target. However, attempts to use monotherapies that target ERK1/2 have achieved only limited clinical success, mainly due to the issues of limited efficacy and the emergence of drug resistance. Herein, we present a proof of concept that extracellular-regulated kinase 5 (ERK5) acts as a compensatory pathway after ERK1/2 inhibition in triple-negative breast cancer (TNBC). By utilizing the principle of polypharmacology, we computationally designed SKLB-D18, a first-in-class molecule that selectively targets ERK1/2 and ERK5, with nanomolar potency and high specificity for both targets. SKLB-D18 demonstrated excellent tolerability in mice and demonstrated superior in vivo anti-tumor efficacy, not only exceeding the existing clinical ERK1/2 inhibitor BVD-523, but also the combination regimen of BVD-523 and the ERK5 inhibitor XMD8-92. Mechanistically, we showed that SKLB-D18, as an autophagy agonist, played a role in mammalian target of rapamycin (mTOR)/70 ribosomal protein S6 kinase (p70S6K) and nuclear receptor coactivator 4 (NCOA4)-mediated ferroptosis, which may mitigate multidrug resistance.
Collapse
Affiliation(s)
- Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Yuping Qian
- Department of Pathology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chengyong Wu
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xin Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Qian Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Xu Y, Jiang X, Hu Z. Synergizing metabolomics and artificial intelligence for advancing precision oncology. Trends Mol Med 2025:S1471-4914(25)00016-4. [PMID: 39956738 DOI: 10.1016/j.molmed.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/18/2025]
Abstract
Metabolomics has emerged as a transformative tool in precision oncology, with substantial potential for advancing biomarker discovery, monitoring treatment responses, and aiding drug development. Integrating artificial intelligence (AI) into metabolomics optimizes data acquisition and analysis, facilitating the interpretation of complex metabolic networks and enabling more effective multiomics integration. In this opinion, we explore recent advances in the application of metabolomics within precision oncology, emphasizing the unique advantages that AI-driven metabolomics offers. We propose that AI not only complements but also amplifies the potential of current platforms, accelerating research progress and ultimately improving patient outcomes. Finally, we discuss the opportunities and challenges involved in translating AI-driven metabolomics into clinical practice for precision oncology.
Collapse
Affiliation(s)
- Yipeng Xu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiaojuan Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Barghout SH, Meti N, Chotai S, Kim CJH, Patel D, Brown MC, Hueniken K, Zhan LJ, Raptis S, Al-Agha F, Deutschman C, Grant B, Pienkowski M, Moriarty P, de Almeida J, Goldstein DP, Bratman SV, Shepherd FA, Tsao MS, Freedman AN, Xu W, Liu G. Adaptive Universal Principles for Real-world Observational Studies (AUPROS): an approach to designing real-world observational studies for clinical, epidemiologic, and precision oncology research. Br J Cancer 2025; 132:139-153. [PMID: 39572762 PMCID: PMC11746990 DOI: 10.1038/s41416-024-02899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 01/22/2025] Open
Abstract
The field of precision oncology has witnessed several advances that stimulated the development of new clinical trial designs and the emergence of real-world data (RWD) as an important resource for evidence generation in healthcare decision-making. Here, we highlight our experience with an innovative approach to a set of Adaptive, Universal Principles for Real-world Observational Studies (AUPROS). To demonstrate the utility of these principles, we used a mixed-methods approach to assess three studies that follow AUPROS at Princess Margaret Cancer Centre: (1) Molecular Epidemiology of ThorAcic Lesions (METAL), (2) Translational Head And NecK Study (THANKS), and (3) CAnadian CAncers With Rare Molecular Alterations (CARMA; NCT04151342). We performed resource assessments, stakeholder-directed surveys and discussions, analysis of funding, research output, collaborations, and a Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis. Based on these analyses, AUPROS is an approach that is applicable to a wide range of observational study designs. The universality of AUPROS allows for multi-purpose analyses of various RWD, and the adaptive nature creates opportunities for multi-source funding and collaborations. Following AUPROS can offer cost and logistical benefits and may lead to increased research productivity. Several challenges were identified pertinent to ethics approvals, sustainability, complex coordination, and data quality that require local adaptation of these principles.
Collapse
Affiliation(s)
- Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Nicholas Meti
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Simren Chotai
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Royal College of Surgeons, Dublin, Ireland
| | - Christina J H Kim
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of General Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Katrina Hueniken
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Luna J Zhan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Stavroula Raptis
- Applied Health Research Centre, Unity Health, Toronto, ON, Canada
| | - Faisal Al-Agha
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - Benjamin Grant
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Martha Pienkowski
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | | | - John de Almeida
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David P Goldstein
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ming S Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Andrew N Freedman
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, Rockville, MD, USA
| | - Wei Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Huang J, Huang S, Li G, Huang G, Huang Z, Su S, Zhong T. Structure and expression of FAPP2 protein in hepatocellular carcinoma: Its effect and molecular mechanism on HepG2 and MHCC97H in clinical treatment. Int J Biol Macromol 2025; 290:139073. [PMID: 39710035 DOI: 10.1016/j.ijbiomac.2024.139073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common and lethal malignancy of the liver. The aim of this study was to reveal the structural characteristics of FAPP2, evaluate its expression in HepG2 and MHCC97H cells, and explore its potential role and molecular mechanism in the clinical treatment of hepatocellular carcinoma. The role of FAPP2 in these two cell lines was evaluated using cell function tests, such as cell proliferation, migration, and invasion tests. The interaction between FAPP2 and other related signaling pathways was further explored by bioinformatics analysis. The structural analysis of FAPP2 shows that it has specific domains and functional sites, which are closely related to its biological function in the cell. FAPP2 expression in HepG2 cells was significantly higher than that in MHCC97H cells. Functional experiments showed that overexpression of FAPP2 promoted the proliferation and migration of HepG2 cells, but no such effect was seen in MHCC97H cells. Bioinformatics analysis revealed a potential association between FAPP2 and the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Junling Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China; Guangxi Clinical Medical Research Center for Hepatobiliary Diseases, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Senping Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Guangzhi Li
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Guiliu Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Zansong Huang
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Shixiang Su
- Department of General practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Tengmeng Zhong
- Department of Hepatobiliary Surgery, Baise Peoles's Hospital, Baise 533000, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
18
|
Adashek JJ, Munoz JL, Kurzrock R. If it is a solid tumor target, then it may be a hematologic cancer target: Bridging the great divide. MED 2025; 6:100550. [PMID: 39689708 PMCID: PMC11725447 DOI: 10.1016/j.medj.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 12/19/2024]
Abstract
Tumor-agnostic US Food and Drug Administration approvals are transforming oncology. They include larotrectinib/entrectinib/repotrectinib (NTRK fusions), selpercatinib (RET fusions), dabrafenib/trametinib (BRAFV600E mutations), pembrolizumab/dostarlimab (microsatellite instability), pembrolizumab (high tumor mutational burden), and trastuzumab deruxtecan (HER2 3+ expression) (all solid cancers). Pemigatinib is approved for FGFR1-rearranged myeloid/lymphoid neoplasms. The genomically driven tissue-agnostic approach has a strong biological rationale (cancer is a disease of the genome), yields remarkably high response rates, and provides drug access to patients with an unmet need (rare/ultra-rare malignancies). Despite the solid tumor focus, both solid and hematologic cancers can harbor identical driver molecular abnormalities and respond to cognate therapies. For example, BRAFV600E and IDH1/2 mutations; ALK, FGFR, and NTRK fusions; PD-L1 amplification; and CD70 antigens are druggable in both solid and blood malignancies by gene-/immune-targeted therapies/chimeric antigen receptor T cells. Future biomarker-based tissue-agnostic basket studies/approvals should bridge the great divide and include both solid and hematologic cancers.
Collapse
Affiliation(s)
- Jacob J Adashek
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Hospital, Baltimore, MD, USA.
| | - Javier L Munoz
- Department of Hematology, Mayo Clinic Arizona, Phoenix, AZ, USA.
| | - Razelle Kurzrock
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Omaha, NE, USA.
| |
Collapse
|
19
|
Ahmed G, Hamadani M, Al-Juhaishi T. The potential of antibody-drug conjugates for effective therapy in diffuse large B-cell lymphoma. Expert Opin Biol Ther 2025; 25:161-173. [PMID: 39798075 DOI: 10.1080/14712598.2025.2453524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.a. payload) attached through a linker to a monoclonal antibody specific to a particular cancer antigen. Payloads include microtubule disruptors or DNA damaging chemicals. After attaching to the antigen, the ADCs are internalized, and the payload is dissociated from ADC by lysozymes and delivered to the intended site for exerting cytotoxic effects. This unique molecular design permits a better balance of efficacy and safety. Loncastuximab tesirine and polatuzumab vedotin are two ADCs approved in the U.S.A. for treatment of DLBCL. AREAS COVERED This review covers the efficacy and safety data of these two drugs. We will review new ADC-based combination regimens and novel constructs in development. EXPERT OPINION ADCs have made a significant impact in improving outcomes of DLBCL patients. Both polatuzumab vedotin and loncastuximab tesirine are established as useful therapeutics options, with polatuzumab vedotin currently approved in first line and relapsed/refractory setting, while loncastuximab tesirine is approved in relapsed setting. ADCs are effective with tolerable safety profile and currently many more ADCs are undergoing clinical trials.
Collapse
MESH Headings
- Humans
- Immunoconjugates/adverse effects
- Immunoconjugates/administration & dosage
- Immunoconjugates/therapeutic use
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/immunology
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/therapeutic use
- Animals
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Agents/adverse effects
- Antineoplastic Agents/therapeutic use
- Benzodiazepines
Collapse
Affiliation(s)
- Gulrayz Ahmed
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
20
|
El Khaled El Faraj R, Chakraborty S, Zhou M, Sobol M, Thiele D, Shatford-Adams LM, Correa Cassal M, Kaster AK, Dietrich S, Levkin PA, Popova AA. Drug-Induced Differential Gene Expression Analysis on Nanoliter Droplet Microarrays: Enabling Tool for Functional Precision Oncology. Adv Healthc Mater 2025; 14:e2401820. [PMID: 39444094 DOI: 10.1002/adhm.202401820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/01/2024] [Indexed: 10/25/2024]
Abstract
Drug-induced differential gene expression analysis (DGEA) is essential for uncovering the molecular basis of cell phenotypic changes and understanding individual tumor responses to anticancer drugs. Performing high throughput DGEA is challenging due to the high cost and labor-intensive multi-step sample preparation protocols. In particular, performing drug-induced DGEA on cancer cells derived from patient biopsies is even more challenging due to the scarcity of available cells. A novel, miniaturized, nanoliter-scale method for drug-induced DGEA is introduced, enabling high-throughput and parallel analysis of patient-derived cell drug responses, overcoming the limitations and laborious nature of traditional protocols. The method is based on the Droplet Microarray (DMA), a microscope glass slide with hydrophilic spots on a superhydrophobic background, facilitating droplet formation for cell testing. DMA allows microscopy-based phenotypic analysis, cDNA extraction, and DGEA. The procedure includes cell lysis for mRNA isolation and cDNA conversion followed by droplet pooling for qPCR analysis. In this study, the drug-induced DGEA protocol on the DMA platform is demonstrated using patient-derived chronic lymphocytic leukemia (CLL) cells. This methodology is critical for DGEA with limited cell numbers and promise for applications in functional precision oncology. This method enables molecular profiling of patient-derived samples after drug treatment, crucial for understanding individual tumor responses to anticancer drugs.
Collapse
Affiliation(s)
- Razan El Khaled El Faraj
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Shraddha Chakraborty
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Meijun Zhou
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Morgan Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - David Thiele
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | | - Maximiano Correa Cassal
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sascha Dietrich
- Department for Hematology, Immunology and Clinical Oncology, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Pavel A Levkin
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Anna A Popova
- Institute of Biological and Chemical Systems-Functional Molecular Systems, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
21
|
Wahida A, George B, Kurzrock R. At the right time: Moving precision therapy to newly diagnosed cancer. MED 2024; 5:1463-1465. [PMID: 39674173 DOI: 10.1016/j.medj.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 12/16/2024]
Abstract
Precision oncology aims to match the right drug(s) to the right patient. Equally important is ensuring that precision therapies are offered at the right time. Transformative, rather than incremental, outcome improvement may require treatment at diagnosis rather than in the advanced/metastatic setting after genomic evolution.
Collapse
Affiliation(s)
- Adam Wahida
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Ben George
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Razelle Kurzrock
- MCW Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France.
| |
Collapse
|
22
|
Koval A, Boudou C, Katanaev VL. Challenging Reported Frizzled-Targeting Compounds in Selective Assays Reveals Lack of Functional Inhibition and Claimed Profiles. ACS Pharmacol Transl Sci 2024; 7:4144-4154. [PMID: 39698282 PMCID: PMC11650735 DOI: 10.1021/acsptsci.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Selective inhibitors of Frizzled (FZD) GPCRs are highly sought after as potentially highly efficacious and safe treatments for cancer as well as tools in regenerative medicine and fundamental science. In recent years, there have been several reports claiming the identification of small molecule agents that are selective toward certain FZD proteins using a variety of approaches. However, the majority of these studies lacked a selective functional assay to validate their functionality. In this study, we describe the development and application of a selective assay for individual FZD proteins. Our findings indicate that the majority of reported compounds lack the capacity to inhibit the functioning of the claimed FZD proteins when stimulated by a Wnt ligand in the canonical pathway. Instead, the compounds demonstrate a broad range of off-target effects, including inhibition of downstream pathway component(s) (3235-0367, SRI35959, carbamazepine, niclosamide), lack of activity (FzM1), and surprising antagonism of firefly luciferase (F7H). The only compound that fulfills the expected selectivity profile is peptide Fz7-21. These results highlight the necessity of implementing rigorous testing of the screening-derived compounds in selective functional assays and are important for the field of drug discovery and development targeting the highly demanded Wnt-FZD pathway.
Collapse
Affiliation(s)
- Alexey Koval
- Department of Cell Physiology
and Metabolism, Translational Research Centre in Oncohaematology,
Faculty of Medicine, University of Geneva,1206 Geneva, Switzerland
| | - Cédric Boudou
- Department of Cell Physiology
and Metabolism, Translational Research Centre in Oncohaematology,
Faculty of Medicine, University of Geneva,1206 Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology
and Metabolism, Translational Research Centre in Oncohaematology,
Faculty of Medicine, University of Geneva,1206 Geneva, Switzerland
| |
Collapse
|
23
|
Papargyriou A, Najajreh M, Cook DP, Maurer CH, Bärthel S, Messal HA, Ravichandran SK, Richter T, Knolle M, Metzler T, Shastri AR, Öllinger R, Jasper J, Schmidleitner L, Wang S, Schneeweis C, Ishikawa-Ankerhold H, Engleitner T, Mataite L, Semina M, Trabulssi H, Lange S, Ravichandra A, Schuster M, Mueller S, Peschke K, Schäfer A, Dobiasch S, Combs SE, Schmid RM, Bausch AR, Braren R, Heid I, Scheel CH, Schneider G, Zeigerer A, Luecken MD, Steiger K, Kaissis G, van Rheenen J, Theis FJ, Saur D, Rad R, Reichert M. Heterogeneity-driven phenotypic plasticity and treatment response in branched-organoid models of pancreatic ductal adenocarcinoma. Nat Biomed Eng 2024:10.1038/s41551-024-01273-9. [PMID: 39658630 DOI: 10.1038/s41551-024-01273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/26/2024] [Indexed: 12/12/2024]
Abstract
In patients with pancreatic ductal adenocarcinoma (PDAC), intratumoural and intertumoural heterogeneity increases chemoresistance and mortality rates. However, such morphological and phenotypic diversities are not typically captured by organoid models of PDAC. Here we show that branched organoids embedded in collagen gels can recapitulate the phenotypic landscape seen in murine and human PDAC, that the pronounced molecular and morphological intratumoural and intertumoural heterogeneity of organoids is governed by defined transcriptional programmes (notably, epithelial-to-mesenchymal plasticity), and that different organoid phenotypes represent distinct tumour-cell states with unique biological features in vivo. We also show that phenotype-specific therapeutic vulnerabilities and modes of treatment-induced phenotype reprogramming can be captured in phenotypic heterogeneity maps. Our methodology and analyses of tumour-cell heterogeneity in PDAC may guide the development of phenotype-targeted treatment strategies.
Collapse
Affiliation(s)
- Aristeidis Papargyriou
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Mulham Najajreh
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - David P Cook
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Carlo H Maurer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
| | - Stefanie Bärthel
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hendrik A Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Sakthi K Ravichandran
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Till Richter
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
| | - Moritz Knolle
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Akul R Shastri
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Rupert Öllinger
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jacob Jasper
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Laura Schmidleitner
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Surui Wang
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Christian Schneeweis
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hellen Ishikawa-Ankerhold
- Department of Medicine I, University Hospital of the Ludwig-Maximilians-University Munich, Munich, Germany
| | - Thomas Engleitner
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Laura Mataite
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Mariia Semina
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Hussein Trabulssi
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Sebastian Lange
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Aashreya Ravichandra
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Maximilian Schuster
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sebastian Mueller
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Peschke
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Arlett Schäfer
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
| | - Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich, Munich, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany
- Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Andreas R Bausch
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany
- Lehrstuhl für Zell Biophysik E27, Physik Department, Technische Universität München, Garching, Germany
| | - Rickmer Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Irina Heid
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
- Department of Dermatology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Comprehensive Pneumology Center (CPC-M), München, Germany
| | - Katja Steiger
- Comparative Experimental Pathology, Institut für Allgemeine Pathologie und Pathologische Anatomie, School of Medicine, Technical University of Munich, Munich, Germany
| | - Georgios Kaissis
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar München, Technical University of Munich, Munich, Germany
- Artificial Intelligence in Medicine and Healthcare, Technical University of Munich, Munich, Germany
- Institute for Machine Learning in Biomedical Imaging, Helmholtz Zentrum München, München, Germany
- Department of Computing, Imperial College London, London, UK
- Munich Center for Machine Learning (MCML), München, Germany
- School of Computation, Information and Technology, Technische Universität München, München, Germany
| | - Jacco van Rheenen
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- Cellular Genetics Programme, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Chair for Translational Cancer Research and Institute of Experimental Cancer Therapy, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, München, Germany.
- Center for Functional Protein Assemblies, Technical University of Munich, Garching, Germany.
- Center for Organoid Systems (COS), Technical University of Munich, Garching, Germany.
- Bavarian Cancer Research Center (BZKF), Munich, Germany.
- German Cancer Consortium (DKTK), partner site Munich, Munich, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Munich, Germany.
| |
Collapse
|
24
|
Li Y, Yu J, Zhang Y, Peng C, Song Y, Liu S. Advances in targeted therapy of cholangiocarcinoma. Ann Med 2024; 56:2310196. [PMID: 38359439 PMCID: PMC10877652 DOI: 10.1080/07853890.2024.2310196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/20/2024] [Indexed: 02/17/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a malignant tumor originating in the bile duct and its branching epithelium. Due to its high heterogeneity, there are no specific clinical indications at the early stage, the diagnosis is often in advanced CCA. With surgical resection, the 5-year postoperative survival rate (long-term survival rate) is very poor. The regimen of gemcitabine combined with platinum has been used as the first-line chemotherapy for advanced patients. In recent years, targeted therapy for a variety of malignant tumors has made great progress, showing good efficacy and safety in advanced CCA. However, the current targeted therapy of CCA still has many challenges, such as adverse reactions, drug resistance, and individual differences. Therefore, the researches need to further explore the targeted therapy mechanism of CCA malignancies in depth, develop more effective and safe drugs, and accurately formulate plans based on patient characteristics to further improve patient prognosis in the future. This article reviews the recent progress of targeted therapy for CCA, aiming to provide a strategy for the research and clinical work of targeted therapy for CCA.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Jianfeng Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Yujing Zhang
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| | - Yinghui Song
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
| | - Sulai Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
- Central Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, China
- Hunan Provincial Key Laboratory of Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
- Clinical Medical Technology Research Center of Hunan Provincial for Biliary Disease Prevention and Treatment, Changsha, Hunan Province, China
| |
Collapse
|
25
|
Chen S, Zhong Q, Zhang S, Zhang Y, Hou L, Ma H, He S, Lian M, He Y, Wang R, Fang J. Neoadjuvant immunochemotherapy in locally advanced laryngeal cancer and hypopharyngeal cancer: higher objective response rate and organ-preservation rate. Invest New Drugs 2024; 42:694-702. [PMID: 39607584 DOI: 10.1007/s10637-024-01456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/28/2024] [Indexed: 11/29/2024]
Abstract
This study retrospectively analyzed the curative effect of neoadjuvant PD-1 inhibitors combined with chemotherapy of locally advanced laryngeal and hypopharyngeal cancer and compared with chemotherapy plus EGFR inhibitors and chemotherapy alone. From January 1 2018 to October 1 2023, a total of 113 patients in Beijing Tongren Hospital, who were diagnosed with locally advanced laryngeal cancer and hypopharyngeal cancer and received neoadjuvant immunochemotherapy, were enrolled. The primary outcome measures included objective response rate, organ-preservation rate, downstaging rate, and overall survival. Of 113 patients, including 34 patients were given immunochemotherapy, 38 patients chemotherapy plus EGFR inhibitor, and 41 patients chemotherapy. Most were male, and the median follow-up time in the immunochemotherapy group was 12 months. Neoadjuvant immunochemotherapy could improve the objective response rate (88.2%, p < 0.05), downstaging rate (79.41%, p < 0.05), and organ-preservation rate (97.1%, p < 0.05). However, compared with chemotherapy and chemotherapy plus EGFR inhibitors, immunochemotherapy did not significantly improve patients' 1-year and 2-year survival rates. Neoadjuvant PD-1 inhibitor combined with chemotherapy could improve the objective response rate, downstaging rate, and organ-preservation rate in patients with locally advanced laryngeal and hypopharyngeal cancer. Our study showed that this treatment regimen could more effectively protect the laryngeal function of patients. It provided a new treatment mode for patients with a strong desire to preserve the larynx. Further prospective studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Shaoshi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi Zhong
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shurong Zhang
- Department of Oncology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lizhen Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongzhi Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shizhi He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yurong He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ru Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
26
|
Jiménez-Santos M, García-Martín S, Rubio-Fernández M, Gómez-López G, Al-Shahrour F. Spatial transcriptomics in breast cancer reveals tumour microenvironment-driven drug responses and clonal therapeutic heterogeneity. NAR Cancer 2024; 6:zcae046. [PMID: 39703753 PMCID: PMC11655296 DOI: 10.1093/narcan/zcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
Breast cancer patients are categorized into three subtypes with distinct treatment approaches. Precision oncology has increased patient outcomes by targeting the specific molecular alterations of tumours, yet challenges remain. Treatment failure persists due to the coexistence of several malignant subpopulations with different drug sensitivities within the same tumour, a phenomenon known as intratumour heterogeneity (ITH). This heterogeneity has been extensively studied from a tumour-centric view, but recent insights underscore the role of the tumour microenvironment in treatment response. Our research utilizes spatial transcriptomics data from breast cancer patients to predict drug sensitivity. We observe diverse response patterns across tumour, interphase and microenvironment regions, unveiling a sensitivity and functional gradient from the tumour core to the periphery. Moreover, we find tumour therapeutic clusters with different drug responses associated with distinct biological functions driven by unique ligand-receptor interactions. Importantly, we identify genetically identical subclones with different responses depending on their location within the tumour ducts. This research underscores the significance of considering the distance from the tumour core and microenvironment composition when identifying suitable treatments to target ITH. Our findings provide critical insights into optimizing therapeutic strategies, highlighting the necessity of a comprehensive understanding of tumour biology for effective cancer treatment.
Collapse
Affiliation(s)
- María José Jiménez-Santos
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Santiago García-Martín
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Marcos Rubio-Fernández
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, Madrid 28029, Spain
- Lung-H120 Group, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, Madrid 28029, Spain
| | - Fátima Al-Shahrour
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, Madrid 28029, Spain
| |
Collapse
|
27
|
Xu G, Yu J, Lyu J, Zhan M, Xu J, Huang M, Zhao R, Li Y, Zhu J, Feng J, Tan S, Ran P, Su Z, Liu X, Zhao J, Zhang H, Xu C, Chang J, Hou Y, Ding C. Proteogenomic Landscape of Breast Ductal Carcinoma Reveals Tumor Progression Characteristics and Therapeutic Targets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401041. [PMID: 39418072 PMCID: PMC11633542 DOI: 10.1002/advs.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Multi-omics studies of breast ductal carcinoma (BRDC) have advanced the understanding of the disease's biology and accelerated targeted therapies. However, the temporal order of a series of biological events in the progression of BRDC is still poorly understood. A comprehensive proteogenomic analysis of 224 samples from 168 patients with malignant and benign breast diseases is carried out. Proteogenomic analysis reveals the characteristics of linear multi-step progression of BRDC, such as tumor protein P53 (TP53) mutation-associated estrogen receptor 1 (ESR1) overexpression is involved in the transition from ductal hyperplasia (DH) to ductal carcinoma in situ (DCIS). 6q21 amplification-associated nuclear receptor subfamily 3 group C member 1 (NR3C1) overexpression helps DCIS_Pure (pure DCIS, no histologic evidence of invasion) cells avoid immune destruction. The T-cell lymphoma invasion and metastasis 1, androgen receptor, and aldo-keto reductase family 1 member C1 (TIAM1-AR-AKR1C1) axis promotes cell invasion and migration in DCIS_adjIDC (DCIS regions of invasive cancers). In addition, AKR1C1 is identified as a potential therapeutic target and demonstrated the inhibitory effect of aspirin and dydrogesterone as its inhibitors on tumor cells. The integrative multi-omics analysis helps to understand the progression of BRDC and provides an opportunity to treat BRDC in different stages.
Collapse
Affiliation(s)
- Ganfei Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Juan Yu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jiacheng Lyu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Mengna Zhan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jie Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Minjing Huang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Rui Zhao
- Institute for Developmental and Regenerative Cardiovascular MedicineMOE‐Shanghai Key Laboratory of Children's Environmental HealthXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Yan Li
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jiajun Zhu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jinwen Feng
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Subei Tan
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Peng Ran
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Zhenghua Su
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Xinhua Liu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular MedicineMOE‐Shanghai Key Laboratory of Children's Environmental HealthXinhua HospitalShanghai Jiao Tong University School of MedicineShanghai200092China
| | - Hongwei Zhang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Chen Xu
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Jun Chang
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Yingyong Hou
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
| | - Chen Ding
- State Key Laboratory of Genetic EngineeringSchool of Life SciencesHuman Phenome InstituteDepartment of PathologyZhongshan Hospital, Fudan UniversityShanghai200433China
- Departments of Cancer Research InstituteAffiliated Cancer Hospital of Xinjiang Medical UniversityXinjiang Key Laboratory of Translational Biomedical EngineeringUrumqi830000P. R. China
| |
Collapse
|
28
|
Zhang W, Wei W, Ma L, Du H, Jin A, Luo J, Li X. Mapping the landscape: a bibliometric study of global chimeric antigen receptor T cell immunotherapy research. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9227-9241. [PMID: 38953967 DOI: 10.1007/s00210-024-03258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The rise of immunotherapy provided new approaches to cancer treatment. We aimed to describe the contribution of chimeric antigen receptor T cell immunotherapy to future prospects. We analyzed 8035 articles from the Web of Science Core Collection with CiteSpace that covered with various aspects with countries, institutions, authors, co-cited authors, journals, keywords, and references. The USA was the most prolific country, with the University of Pennsylvania being the most published institution. Among individual authors, June Carl H published the most articles, while Maude SL was the most frequently co-cited author. "Blood" emerged as the most cited journal. Keyword clustering revealed six core themes: "Expression," "Chimeric Antigen Receptor," "Tumor Microenvironment," "Blinatumomab," "Multiple Myeloma," and "Cytokine Release Syndrome." In the process of researching the timeline chart of keywords and references, "Large B-cell lymphoma" was located on the right side of the timeline. In the keyword prominence analysis, we found that the keywords "biomarkers," "pd-1," "antibody drug conjugate," "BCMA," and "chimeric antigen" had high explosive intensity in the recent past. We found that in terms of related diseases, "large B-cell lymphoma" and "cytokine release syndrome" are still difficult problems in the future. In the study of therapeutic methods, "BCMA," "PD-1," "chimeric antigen," and "antibody drug conjugate" deserve more attention from researchers in the future.
Collapse
Affiliation(s)
- Wenhao Zhang
- Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
- Department of Clinical Medical, First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wenzhuo Wei
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Lijun Ma
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - He Du
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Anran Jin
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Jinyi Luo
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China
| | - Xiaoming Li
- Centre for Translational Medicine, Second Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China.
- Department of Medical Psychology, School of Mental Health and Psychological Science, Anhui Medical University, Hefei, China.
| |
Collapse
|
29
|
Song J, Wang H, Meng X, Li W, Qi J. A hypoxia-activated and microenvironment-remodeling nanoplatform for multifunctional imaging and potentiated immunotherapy of cancer. Nat Commun 2024; 15:10395. [PMID: 39613774 PMCID: PMC11607447 DOI: 10.1038/s41467-024-53906-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/26/2024] [Indexed: 12/01/2024] Open
Abstract
Activatable theranostic systems combining precise diagnosis and robust immune activation have significant potential in cancer treatment. Herein, we develop a versatile nanoplatform integrating hypoxia-activatable molecular imaging with effective photoimmunotherapy for cancer treatment. Our molecular probe features turn-on near-infrared-II (NIR-II) fluorescence and photoacoustic signals in hypoxic tumor environments. It also induces hypoxia-triggered photodynamic and photothermal effects, promoting immunogenic cell death and activating the STING pathway, engaging both innate and adaptive immunity. The molecular probe is formulated with a vascular disrupting agent to amplify the hypoxia-responsive phototheranostic properties, on which M1-like macrophage membrane is camouflaged to shield against premature release while conferring cancer-targeting affinity. The activatable NIR-II fluorescence and photoacoustic imaging enable precise tumor delineation, while the enhanced phototherapy activates tumor-specific cytotoxic T cells, impeding both primary and distant tumor progression and providing protective immunity against rechallenge in 4T1 tumor-bearing female mice. This work advances activatable theranostic protocols for image-guided immunotherapy.
Collapse
Affiliation(s)
- Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - He Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xue Meng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
30
|
Jiao Y, Ye J, Zhao W, Fan Z, Kou Y, Guo S, Chao M, Fan C, Ji P, Liu J, Zhai Y, Wang Y, Wang N, Wang L. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data. Comput Biol Med 2024; 182:109185. [PMID: 39341114 DOI: 10.1016/j.compbiomed.2024.109185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE Develop a time-dependent deep learning model to accurately predict the prognosis of pediatric glioma patients, which can assist clinicians in making precise treatment decisions and reducing patient risk. STUDY DESIGN The study involved pediatric glioma patients from the Surveillance, Epidemiology, and End Results (SEER) Registry (2000-2018) and Tangdu Hospital in China (2010-2018) within specific time frames. For training, we selected two neural network-based algorithms (DeepSurv, neural multi-task logistic regression [N-MTLR]) and one ensemble learning-based algorithm (random survival forest [RSF]). Additionally, a multivariable Cox proportional hazard (CoxPH) model was developed for comparison purposes. The SEER dataset was randomly divided into 80 % for training and 20 % for testing, while the Tangdu Hospital dataset served as an external validation cohort. Super-parameters were fine-tuned through 1000 repeated random searches and 5-fold cross-validation on the training cohort. Model performance was assessed using the concordance index (C-index), Brier score, and Integrated Brier Score (IBS). Furthermore, the accuracy of predicting survival at 1, 3, and 5 years was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and the area under the ROC curves (AUC). The generalization ability of the model was assessed using the C-index of the Tangdu Hospital data, ROC curves for 1, 3, and 5 years, and AUC values. Lastly, decision curve analysis (DCA) curves for 1, 3, and 5-year time frames are provided to assess the net benefits across different models. RESULTS A total of 9532 patients with pediatric glioma were included in this study, comprising 9274 patients from the SEER database and 258 patients from Tangdu Hospital in China. The average age at diagnosis was 9.4 ± 6.2 years, and the average survival time was 96 ± 66 months. Through comprehensive performance comparison, the DeepSurv model demonstrated the highest effectiveness, with a C-index of 0.881 on the training cohort. Furthermore, it exhibited excellent accuracy in predicting the 1-year, 3-year, and 5-year survival rates (AUC: 0.903-0.939). Notably, the DeepSurv model also achieved remarkable performance and accuracy on the Chinese dataset (C-index: 0.782, AUC: 0.761-0.852). Comprehensive analysis of DeepSurv, N-MTLR, and RSF revealed that tumor stage, radiotherapy, histological type, tumor size, chemotherapy, age, and surgical method are all significant factors influencing the prognosis of pediatric glioma. Finally, an online version of the pediatric glioma survival predictor based on the DeepSurv model has been established and can be accessed through https://pediatricglioma-tangdu.streamlit.app. CONCLUSIONS The DeepSurv model exhibits exceptional efficacy in predicting the survival of pediatric glioma patients, demonstrating strong performance in discrimination, calibration, stability, and generalization. By utilizing the online version of the pediatric glioma survival predictor, which is based on the DeepSurv model, clinicians can accurately predict patient survival and offer personalized treatment options.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Jianan Ye
- School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wenjian Zhao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Zhicheng Fan
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yunpeng Kou
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Shaochun Guo
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Min Chao
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Chao Fan
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Peigang Ji
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Jinghui Liu
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yulong Zhai
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Na Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China
| | - Liang Wang
- Department of Neurosurgery, Tangdu Hospital of Air Force Medical University, Xi'an, China.
| |
Collapse
|
31
|
Wang X, Bai J, Yan J, Li B. The clinical outcome, pathologic spectrum, and genomic landscape for 454 cases of salivary mucoepidermoid carcinoma. NPJ Precis Oncol 2024; 8:238. [PMID: 39438706 PMCID: PMC11496733 DOI: 10.1038/s41698-024-00735-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Mucoepidermoid carcinoma (MEC) is the most common malignant salivary tumor. A complete understanding of the high heterogeneity of MEC in histology and genetics would help in accurate diagnosis and treatment. Therefore, We evaluated the clinical features, treatment outcomes, and pathological parameters of 454 MECs and analyzed their genomic features using whole-exome sequencing and whole-transcriptome sequencing. We found that MECs predominantly occurred in females and those in their 4th-5th decades. The parotid gland was the most frequently affected site. All patients underwent complete mass resection with lobectomy; 414 patients were alive without relapse at follow-up, after an average period of 62 months (1-116 months). The disease progressed after initial treatment in 40 patients. The lungs were the most common site of distant metastasis. For classical MECs, histologic gradings of the AFIP, modified Healey, and MSK systems were significantly associated with recurrence and lymph nodal metastasis; these gradings were significantly related to lymph nodal metastasis for the subtypes. Older age, minor salivary gland involvement, clinical symptoms, high TNM stage, high-grade tumor, and improper surgical modality were the main prognostic factors. BAP1 was the most frequently mutated gene in MEC. Mutations in CDKN2A, MET, and TP53 were more frequently found in aggressive tumor phenotypes. MAML2 rearrangement was observed in 42% of patients, and EWSR1 rearrangement in 8%. Specific genetic events (in TP53 and FBXW7) with CRTC1::MAML2 fusion superimposed might be associated with unfavorable prognosis. This study provides new insights into precision therapeutic strategies for MEC.
Collapse
Affiliation(s)
- Xi Wang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Jiaying Bai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Jing Yan
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China
| | - Binbin Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, PR China.
| |
Collapse
|
32
|
Tirone B, Scarabosio A, Surico PL, Parodi PC, D’Esposito F, Avitabile A, Foti C, Gagliano C, Zeppieri M. Targeted Drug Delivery in Periorbital Non-Melanocytic Skin Malignancies. Bioengineering (Basel) 2024; 11:1029. [PMID: 39451404 PMCID: PMC11504966 DOI: 10.3390/bioengineering11101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
Targeted drug delivery has emerged as a transformative approach in the treatment of periorbital skin malignancies, offering the potential for enhanced efficacy and reduced side effects compared to traditional therapies. This review provides a comprehensive overview of targeted therapies in the context of periorbital malignancies, including basal cell carcinoma, squamous cell carcinoma, sebaceous gland carcinoma, and Merkel cell carcinoma. It explores the mechanisms of action for various targeted therapies, such as monoclonal antibodies, small molecule inhibitors, and immunotherapies, and their applications in treating these malignancies. Additionally, this review addresses the management of ocular and periocular side effects associated with these therapies, emphasizing the importance of a multidisciplinary approach to minimize impact and ensure patient adherence. By integrating current findings and discussing emerging trends, this review aims to highlight the advancements in targeted drug delivery and its potential to improve treatment outcomes and quality of life for patients with periorbital skin malignancies.
Collapse
Affiliation(s)
- Benedetta Tirone
- Dermatology and Venerology Section, Department of Precision and Regenerative Medicine and Ionan Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Anna Scarabosio
- Clinic of Plastic and Reconstructive Surgery, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy
- Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
- Department of Ophthalmology, Campus Bio-Medico University, 00128 Rome, Italy
| | - Pier Camillo Parodi
- Clinic of Plastic and Reconstructive Surgery, Ospedale Santa Maria della Misericordia, 33100 Udine, Italy
| | - Fabiana D’Esposito
- Imperial College Ophthalmic Research Group (ICORG) Unit, Imperial College, 153-173 Marylebone Rd, London NW15QH, UK
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples Federico II, Via Pansini 5, 80131 Napoli, Italy
| | - Alessandro Avitabile
- Eye Clinic Catania San Marco Hospital, Viale Carlo Azeglio Ciampi, 95121 Catania, Italy
| | - Caterina Foti
- Dermatology and Venerology Section, Department of Precision and Regenerative Medicine and Ionan Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Caterina Gagliano
- Mediterranean Foundation “G.B. Morgagni”, 95125 Catania, Italy
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, p.le S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
33
|
Man Y, Liu Y, Chen Q, Zhang Z, Li M, Xu L, Tan Y, Liu Z. Organoids-On-a-Chip for Personalized Precision Medicine. Adv Healthc Mater 2024:e2401843. [PMID: 39397335 DOI: 10.1002/adhm.202401843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Indexed: 10/15/2024]
Abstract
The development of personalized precision medicine has become a pivotal focus in modern healthcare. Organoids-on-a-Chip (OoCs), a groundbreaking fusion of organoid culture and microfluidic chip technology, has emerged as a promising approach to advancing patient-specific treatment strategies. In this review, the diverse applications of OoCs are explored, particularly their pivotal role in personalized precision medicine, and their potential as a cutting-edge technology is highlighted. By utilizing patient-derived organoids, OoCs offer a pathway to optimize treatments, create precise disease models, investigate disease mechanisms, conduct drug screenings, and individualize therapeutic strategies. The emphasis is on the significance of this technological fusion in revolutionizing healthcare and improving patient outcomes. Furthermore, the transformative potential of personalized precision medicine, future prospects, and ongoing advancements in the field, with a focus on genomic medicine, multi-omics integration, and ethical frameworks are discussed. The convergence of these innovations can empower patients, redefine treatment approaches, and shape the future of healthcare.
Collapse
Affiliation(s)
- Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410013, P. R. China
| |
Collapse
|
34
|
Zhao M, Chen YL, Yang LH. Advancements in the study of glucose metabolism in relation to tumor progression and treatment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 192:11-18. [PMID: 39111717 DOI: 10.1016/j.pbiomolbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Sugar serves as the primary energy source for mammals, with glucose metabolism facilitating energy acquisition in human cells. The proper functioning of intracellular glucose metabolism is essential for the maintenance of orderly and healthy physiological activities. Tumor cells, characterized by uncontrolled growth, exhibit dysregulated proliferation and apoptosis processes, leading to abnormal alterations in glucose metabolism. Specifically, tumor cells exhibit a shift towards aerobic glycolysis, resulting in the production of lactic acid that can be utilized as a metabolic intermediate for sustained tumor cell growth. This article provides a comprehensive overview of the enzymes involved in glucose metabolism and the alterations in gene expression that occur during tumor progression. It also examines the current research on targeting abnormal glucose metabolism processes for tumor treatment and discusses potential future directions for utilizing glucose metabolism as a therapeutic target.
Collapse
Affiliation(s)
- Meng Zhao
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Department of Pathophysiology, College of Traditional Chinese Medicine, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Lian-He Yang
- Clinical Biochemistry Teaching and Research Office, Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| |
Collapse
|
35
|
Kunimasa K, Sugimoto N, Yamasaki T, Kukita Y, Fujisawa F, Inoue T, Yamaguchi Y, Kitasaka M, Sakai D, Honma K, Wakamatsu T, Yamamoto S, Hayashi T, Mabuchi S, Okuno J, Kawamura T, Kai Y, Urabe M, Nishimura K. Real-world assessment of comprehensive genome profiling impact on clinical outcomes: A single-institution study in Japan. Cancer Med 2024; 13:e70249. [PMID: 39315676 PMCID: PMC11420830 DOI: 10.1002/cam4.70249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Comprehensive genome profiling (CGP) has revolutionized healthcare by offering personalized medicine opportunities. However, its real-world utility and impact remain incompletely understood. This study examined the extent to which CGP leads to genomically matched therapy and its effectiveness. METHODS We analyzed data from advanced solid tumor patients who underwent CGP panel between December 2019 and May 2023 at the Osaka International Cancer Institute. Patient demographics, specimen details, and expert panel assessments were collected. Turnaround time (TAT) and genomically matched therapy outcomes were analyzed. Gene alterations and their co-occurrence patterns were also assessed. RESULTS Among 1437 patients, 1096 results were available for analysis. The median TAT was 63 [28-182] days. There were 667 (60.9%) cases wherein recommended clinical trials were presented and there were 12 (1.1%) cases that could be enrolled in the trial and 25 (2.3%) cases that could lead to therapies under insurance reimbursement. The median progression free survival of the trial treatment was 1.58 months (95% CI: 0.66-4.37) in clinical trials and 3.66 months (95% CI: 2.14-7.13) in treatment under insurance. Pathologic germline variants were confirmed in 15 patients (1.3%). Co-alteration of CDKN2A, CDKN2B, and MTAP was significantly observed in overall population. CONCLUSION The effectiveness of the genomically matched therapy based on the CGP panel was unsatisfactory. Expansion of clinical trials and utilization of remote clinical trials are required to ensure that the results of the CGP panel can be fully returned to patients.
Collapse
Affiliation(s)
- Kei Kunimasa
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Naotoshi Sugimoto
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Tomoyuki Yamasaki
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Endocrinology and Metabolism, Clinical Laboratory, Osaka International Cancer Institute, Osaka, Japan
| | - Yoji Kukita
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Laboratory of Genomic Pathology, Osaka International Cancer Institute, Osaka, Japan
| | - Fumie Fujisawa
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Medical Oncology, Shiga General Hospital, Shiga, Japan
| | - Tazuko Inoue
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuko Yamaguchi
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Mitsuko Kitasaka
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Daisuke Sakai
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Medical Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Keiichiro Honma
- Department of Diagnostic Pathology and Cytology, Osaka International Cancer Institute, Osaka, Japan
| | - Toru Wakamatsu
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Sachiko Yamamoto
- Department of Gastrointestinal Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Takuji Hayashi
- Department of Urology, Osaka International Cancer Institute, Osaka, Japan
| | - Seiji Mabuchi
- Department of Gynecology, Osaka International Cancer Institute, Osaka, Japan
| | - Jun Okuno
- Department of Breast and Endocrine Surgery, Osaka International Cancer Institute, Osaka, Japan
| | - Takahisa Kawamura
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yugo Kai
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Makiko Urabe
- Department of Hepatobiliary and Pancreatic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Kazuo Nishimura
- Department of Genetic Oncology, Osaka International Cancer Institute, Osaka, Japan
- Department of Urology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
36
|
Jiang A, Liu W, Liu Y, Hu J, Zhu B, Fang Y, Zhao X, Qu L, Lu J, Liu B, Qi L, Cai C, Luo P, Wang L. DCS, a novel classifier system based on disulfidptosis reveals tumor microenvironment heterogeneity and guides frontline therapy for clear cell renal carcinoma. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:263-279. [PMID: 39281723 PMCID: PMC11401502 DOI: 10.1016/j.jncc.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 04/26/2024] [Accepted: 06/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Emerging evidence suggests that cell deaths are involved in tumorigenesis and progression, which may be treated as a novel direction of cancers. Recently, a novel type of programmed cell death, disulfidptosis, was discovered. However, the detailed biological and clinical impact of disulfidptosis and related regulators remains largely unknown. Methods In this work, we first enrolled pancancer datasets and performed multi-omics analysis, including gene expression, DNA methylation, copy number variation and single nucleic variation profiles. Then we deciphered the biological implication of disulfidptosis in clear cell renal cell carcinoma (ccRCC) by machine learning. Finally, a novel agent targeting at disulfidptosis in ccRCC was identified and verified. Results We found that disulfidptosis regulators were dysregulated among cancers, which could be explained by aberrant DNA methylation and genomic mutation events. Disulfidptosis scores were depressed among cancers and negatively correlated with epithelial mesenchymal transition. Disulfidptosis regulators could satisfactorily stratify risk subgroups in ccRCC, and a novel subtype, DCS3, owning with disulfidptosis depression, insensitivity to immune therapy and aberrant genome instability were identified and verified. Moreover, treating DCS3 with NU1025 could significantly inhibit ccRCC malignancy. Conclusion This work provided a better understanding of disulfidptosis in cancers and new insights into individual management based on disulfidptosis.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenqiang Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Junyi Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Baohua Zhu
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xuenan Zhao
- Center for Translational Medicine, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Le Qu
- Department of Urology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Lu
- Vocational Education Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Bing Liu
- Department of Urology, The Third Affiliated Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Changsha, China
| | - Chen Cai
- Department of Special Clinic, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
37
|
Ghosh S, Bhaskar R, Mishra R, Arockia Babu M, Abomughaid MM, Jha NK, Sinha JK. Neurological insights into brain-targeted cancer therapy and bioinspired microrobots. Drug Discov Today 2024; 29:104105. [PMID: 39029869 DOI: 10.1016/j.drudis.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Richa Mishra
- Department of Computer Science and Engineering, Parul University, Vadodara, Gujrat 391760, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
38
|
Feng F, Li Q, Sun X, Yao L, Wang X. Tumor Microenvironment-Responsive Magnetotactic Bacteria-Based Multi-Drug Delivery Platform for MRI-Visualized Tumor Photothermal Chemodynamic Therapy. BIOLOGY 2024; 13:658. [PMID: 39336086 PMCID: PMC11428741 DOI: 10.3390/biology13090658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
Cancer cells display elevated reactive oxygen species (ROS) and altered redox status. Herein, based on these characteristics, we present a multi-drug delivery platform, AMB@PDAP-Fe (APPF), from the magnetotactic bacterium AMB-1 and realize MRI-visualized tumor-microenvironment-responsive photothermal-chemodynamic therapy. The Fe3+ in PDAP-Fe is reduced by the GSH at the tumor site and is released in the form of highly active Fe2+, which catalyzes the generation of ROS through the Fenton reaction and inhibits tumor growth. At the same time, the significant absorption of the mineralized magnetosomes in AMB-1 cells in the NIR region enables them to efficiently convert near-infrared light into heat energy for photothermal therapy (PTT), to which PDAP also contributes. The heat generated in the PTT process accelerates the process of Fe2+ release, thereby achieving an enhanced Fenton reaction in the tumor microenvironment. In addition, the magnetosomes in AMB-1 are used as an MRI contrast agent, and the curing process is visualized. This tumor microenvironment-responsive MTB-based multi-drug delivery platform displays the potency to combat tumors and demonstrates the utility and practicality of understanding the cooperative molecular mechanism when designing multi-drug combination therapies.
Collapse
Affiliation(s)
- Feng Feng
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qilong Li
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xuefei Sun
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Li Yao
- Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Xiuyu Wang
- Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
39
|
Vernieri C, Ligorio F, Tripathy D, Longo VD. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab 2024; 36:1644-1667. [PMID: 39059383 DOI: 10.1016/j.cmet.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
In preclinical tumor models, cyclic fasting and fasting-mimicking diets (FMDs) produce antitumor effects that become synergistic when combined with a wide range of standard anticancer treatments while protecting normal tissues from treatment-induced adverse events. More recently, results of phase 1/2 clinical trials showed that cyclic FMD is safe, feasible, and associated with positive metabolic and immunomodulatory effects in patients with different tumor types, thus paving the way for larger clinical trials to investigate FMD anticancer activity in different clinical contexts. Here, we review the tumor-cell-autonomous and immune-system-mediated mechanisms of fasting/FMD antitumor effects, and we critically discuss new metabolic interventions that could synergize with nutrient starvation to boost its anticancer activity and prevent or reverse tumor resistance while minimizing toxicity to patients. Finally, we highlight potential future applications of FMD approaches in combination with standard anticancer strategies as well as strategies to implement the design and conduction of clinical trials.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| | - Francesca Ligorio
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
40
|
Almalki WH, Almujri SS. Circular RNAs and the JAK/STAT pathway: New frontiers in cancer therapeutics. Pathol Res Pract 2024; 260:155408. [PMID: 38909403 DOI: 10.1016/j.prp.2024.155408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Circular RNAs, known as circRNAs, have drawn more attention to cancer biology in the last few years. Novel functions of circRNAs in cancer therapy open promising prospects for personalized medicine. This review focuses on the molecular properties and potential of circRNAs as biomarkers or therapeutic targets in cancer treatment. Unique properties of circular RNAs associated with a circular form provide stability and resilience to RNA exonuclease degradation. Circular RNAs' most important characteristic is that they are involved in the JAK/STAT pathway associated with oncogenesis. Notably, their deregulation has been reported in multiple carcinomas due to involvement in JAK/STAT signaling cascade modulation. Increased knowledge about circRNAs' interaction with the JAK/STAT pathway leads to the emergence of new possibilities for targeted cancer therapy. In addition, since circRNAs demonstrate tissue-relatedness of expression, they may be a reliable biomarker for predicting and diagnosing cancer. With the development of new technologies for targeting circRNAs, novel therapeutics can be produced that offer more personalized cancer treatment options based on the nature of the patient. The present review explores the exciting prospects of circRNAs for transforming cancer treatment into personalized medicine. It describes the current understanding of circRNA biology, its relationship to tumorigenesis, and possible targeting methods.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia
| |
Collapse
|
41
|
Chen K, Zhai Y, Wang Y, Xu Z, Chen X, Zhang Y, Zhou Z, Zheng X, Lin F. H 2O 2 promotes photodynamic efficacy of TMPyP4 against ovarian cancer in vitro by downregulating HIF-1α expression. Biomed Pharmacother 2024; 177:117110. [PMID: 39002439 DOI: 10.1016/j.biopha.2024.117110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/15/2024] Open
Abstract
Photodynamic therapy (PDT), employing photosensitizers to induce formation of reactive oxygen species (ROS) for tumor elimination, is emerging as a promising treatment modality in oncology due to its unique benefits. However, the PDT application in ovarian cancer, the most prevalent and lethal type of gynecological malignancy with a severe hypoxic microenvironment, remains unknown. This study revealed that photosensitizer TMPyP4 exhibited enhanced efficacy under H2O2 stimulation, with minimal change in cytotoxicity compared to TMPyP4 alone. The results showed that H2O2 increased ROS production induced by TMPyP4, leading to exacerbated mitochondrial dysfunction and DNA damage, ultimately inhibiting proliferation and inducing apoptosis in ovarian cancer cells. Mechanistically, H2O2 primarily enhanced the therapeutic efficacy of PDT with TMPyP4 against ovarian cancer cells by degrading HIF-1α, which subsequently modulated the HIF-1 signaling pathway, thereby alleviating the hypoxic environment in ovarian cancer cells. Our findings underscore the therapeutic potential of targeting HIF-1α within the hypoxic microenvironment for PDT in ovarian cancer and propose a novel integrated strategy for PDT treatment of this malignancy in vitro.
Collapse
Affiliation(s)
- Kejie Chen
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yihui Zhai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuanqiu Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zichuang Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaojian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yixin Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou Medical University Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhengyi Zhou
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Wenzhou Medical University Renji College, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
42
|
Takahashi H, Cohen NA, Sasaki K, Gunasekaran G. Editorial: Clinical management of cholangiocarcinoma: surgical approaches and therapies. Front Oncol 2024; 14:1456958. [PMID: 39135993 PMCID: PMC11317458 DOI: 10.3389/fonc.2024.1456958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Hideo Takahashi
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Noah A. Cohen
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kazunari Sasaki
- Division of Abdominal Transplant, Department of Surgery, Stanford University, Palo Alto, CA, United States
| | - Ganesh Gunasekaran
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
43
|
Klümper N, Tran NK, Zschäbitz S, Hahn O, Büttner T, Roghmann F, Bolenz C, Zengerling F, Schwab C, Nagy D, Toma M, Kristiansen G, Heers H, Ivanyi P, Niegisch G, Grunewald CM, Darr C, Farid A, Schlack K, Abbas M, Aydogdu C, Casuscelli J, Mokry T, Mayr M, Niedersüß-Beke D, Rausch S, Dietrich D, Saal J, Ellinger J, Ritter M, Alajati A, Kuppe C, Meeks J, Vera Badillo FE, Nakauma-González JA, Boormans J, Junker K, Hartmann A, Grünwald V, Hölzel M, Eckstein M. NECTIN4 Amplification Is Frequent in Solid Tumors and Predicts Enfortumab Vedotin Response in Metastatic Urothelial Cancer. J Clin Oncol 2024; 42:2446-2455. [PMID: 38657187 PMCID: PMC11227306 DOI: 10.1200/jco.23.01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
PURPOSE The anti-NECTIN4 antibody-drug conjugate enfortumab vedotin (EV) is approved for patients with metastatic urothelial cancer (mUC). However, durable benefit is only achieved in a small, yet uncharacterized patient subset. NECTIN4 is located on chromosome 1q23.3, and 1q23.3 gains represent frequent copy number variations (CNVs) in urothelial cancer. Here, we aimed to evaluate NECTIN4 amplifications as a genomic biomarker to predict EV response in patients with mUC. MATERIALS AND METHODS We established a NECTIN4-specific fluorescence in situ hybridization (FISH) assay to assess the predictive value of NECTIN4 CNVs in a multicenter EV-treated mUC patient cohort (mUC-EV, n = 108). CNVs were correlated with membranous NECTIN4 protein expression, EV treatment responses, and outcomes. We also assessed the prognostic value of NECTIN4 CNVs measured in metastatic biopsies of non-EV-treated mUC (mUC-non-EV, n = 103). Furthermore, we queried The Cancer Genome Atlas (TCGA) data sets (10,712 patients across 32 cancer types) for NECTIN4 CNVs. RESULTS NECTIN4 amplifications are frequent genomic events in muscle-invasive bladder cancer (TCGA bladder cancer data set: approximately 17%) and mUC (approximately 26% in our mUC cohorts). In mUC-EV, NECTIN4 amplification represents a stable genomic alteration during metastatic progression and associates with enhanced membranous NECTIN4 protein expression. Ninety-six percent (27 of 28) of patients with NECTIN4 amplifications demonstrated objective responses to EV compared with 32% (24 of 74) in the nonamplified subgroup (P < .001). In multivariable Cox analysis adjusted for age, sex, and Bellmunt risk factors, NECTIN4 amplifications led to a 92% risk reduction for death (hazard ratio, 0.08 [95% CI, 0.02 to 0.34]; P < .001). In the mUC-non-EV, NECTIN4 amplifications were not associated with outcomes. TCGA Pan-Cancer analysis demonstrated that NECTIN4 amplifications occur frequently in other cancers, for example, in 5%-10% of breast and lung cancers. CONCLUSION NECTIN4 amplifications are genomic predictors of EV responses and long-term survival in patients with mUC.
Collapse
Affiliation(s)
- Niklas Klümper
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
| | - Ngoc Khanh Tran
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center for Tumor Disease (NCT), University Hospital, Heidelberg, Germany
| | - Oliver Hahn
- Department of Urology and Pediatric Urology, Julius Maximilians University Medical Center of Würzburg, Würzburg, Germany
| | - Thomas Büttner
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Florian Roghmann
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Department of Urology, Marien Hospital, Ruhr-University Bochum, Herne, Germany
| | - Christian Bolenz
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Department of Urology and Pediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Friedemann Zengerling
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Department of Urology and Pediatric Urology, University Hospital Ulm, University of Ulm, Ulm, Germany
| | - Constantin Schwab
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Dora Nagy
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Marieta Toma
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Glen Kristiansen
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Hendrik Heers
- Department of Urology, University Hospital Marburg, Marburg, Germany
| | - Philipp Ivanyi
- Department of Hemostaseology, Oncology and Stem Cell Transplantation, Medical University Hannover, Hannover, Germany
| | - Günter Niegisch
- Department of Urology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Christopher Darr
- Department of Urology, University Hospital Essen, Essen, Germany
| | - Arian Farid
- Department of Urology, University Medical Center Göttingen, Göttingen, Germany
| | - Katrin Schlack
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Mahmoud Abbas
- Department of Pathology, University Hospital Münster, Münster, Germany
| | - Can Aydogdu
- Department of Urology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jozefina Casuscelli
- Department of Urology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Theresa Mokry
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Mayr
- Clinic Ottakring, Institute of Pathology and Microbiology, Wien, Austria
| | | | - Steffen Rausch
- Department of Urology, Eberhard Karls University, Tübingen, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jonas Saal
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- Medical Clinic III for Oncology, Hematology, Immune-Oncology and Rheumatology, University Medical Center Bonn (UKB), Bonn, Germany
| | - Jörg Ellinger
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Manuel Ritter
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
| | - Abdullah Alajati
- Department of Urology and Pediatric Urology, University Hospital Bonn, Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Christoph Kuppe
- Institute of Experimental Medicine and Systems Biology and Division of Nephrology, RWTH Aachen University, Aachen, Germany
| | - Joshua Meeks
- Department of Urology, Feinberg School of Medicine, Chicago, IL
| | | | - J. Alberto Nakauma-González
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Joost Boormans
- Department of Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Homburg, Germany
| | - Arndt Hartmann
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Bavarian Center for Cancer Research (Bayerisches Zentrum für Krebsforschung, BZKF), Erlangen, Germany
| | - Viktor Grünwald
- Clinic for Internal Medicine (Tumor Research) and Clinic for Urology, Interdisciplinary Genitourinary Oncology at the West-German Cancer Center, Essen University Hospital, Essen, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Medical Center Bonn (UKB), Bonn, Germany
- Center for Integrated Oncology Aachen/Bonn/Cologne/Düsseldorf (CIO-ABCD), Bonn, Germany
| | - Markus Eckstein
- BRIDGE-Consortium Germany e.V., Mannheim, Germany
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center EMN, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Bavarian Center for Cancer Research (Bayerisches Zentrum für Krebsforschung, BZKF), Erlangen, Germany
| |
Collapse
|
44
|
Koivu MKA, Chakroborty D, Airenne TT, Johnson MS, Kurppa KJ, Elenius K. Trans-activating mutations of the pseudokinase ERBB3. Oncogene 2024; 43:2253-2265. [PMID: 38806620 PMCID: PMC11245391 DOI: 10.1038/s41388-024-03070-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Genetic changes in the ERBB family of receptor tyrosine kinases serve as oncogenic driver events and predictive biomarkers for ERBB inhibitor drugs. ERBB3 is a pseudokinase member of the family that, although lacking a fully active kinase domain, is well known for its potent signaling activity as a heterodimeric complex with ERBB2. Previous studies have identified few transforming ERBB3 mutations while the great majority of the hundreds of different somatic ERBB3 variants observed in different cancer types remain of unknown significance. Here, we describe an unbiased functional genetics screen of the transforming potential of thousands of ERBB3 mutations in parallel. The screen based on a previously described iSCREAM (in vitro screen of activating mutations) platform, and addressing ERBB3 pseudokinase signaling in a context of ERBB3/ERBB2 heterodimers, identified 18 hit mutations. Validation experiments in Ba/F3, NIH 3T3, and MCF10A cell backgrounds demonstrated the presence of both previously known and unknown transforming ERBB3 missense mutations functioning either as single variants or in cis as a pairwise combination. Drug sensitivity assays with trastuzumab, pertuzumab and neratinib indicated actionability of the transforming ERBB3 variants.
Collapse
Affiliation(s)
- Marika K A Koivu
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Deepankar Chakroborty
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
- Turku Doctoral Programme of Molecular Medicine, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland
| | - Tomi T Airenne
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Mark S Johnson
- Structural Bioinformatics Laboratory and InFLAMES Research Flagship Center, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | - Kari J Kurppa
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland
| | - Klaus Elenius
- Institute of Biomedicine, and Medicity Research Laboratories, University of Turku, Turku, 20520, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, 20520, Finland.
- Department of Oncology, Turku University Hospital, Turku, 20521, Finland.
| |
Collapse
|
45
|
He G, Liu J, Yu Y, Wei S, Peng X, Yang L, Li H. Revisiting the advances and challenges in the clinical applications of extracellular vesicles in cancer. Cancer Lett 2024; 593:216960. [PMID: 38762194 DOI: 10.1016/j.canlet.2024.216960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Extracellular vesicles (EVs) have been the subject of an exponentially growing number of studies covering their biogenesis mechanisms, isolation and analysis techniques, physiological and pathological roles, and clinical applications, such as biomarker and therapeutic uses. Nevertheless, the heterogeneity of EVs both challenges our understanding of them and presents new opportunities for their potential application. Recently, the EV field experienced a wide range of advances. However, the challenges also remain huge. This review focuses on the recent progress and difficulties encountered in the practical use of EVs in clinical settings. In addition, we also explored the concept of EV heterogeneity to acquire a more thorough understanding of EVs and their involvement in cancer, specifically focusing on the fundamental nature of EVs.
Collapse
Affiliation(s)
- Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
46
|
Zhang D, Ma B, Liu D, Wu W, Zhou T, Gao Y, Yang C, Jian Y, Fan Y, Qian Y, Ma J, Gao Y, Chen Y, Xu S, Li L. Discovery of a peptide proteolysis-targeting chimera (PROTAC) drug of p300 for prostate cancer therapy. EBioMedicine 2024; 105:105212. [PMID: 38954976 PMCID: PMC11261775 DOI: 10.1016/j.ebiom.2024.105212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The E1A-associated protein p300 (p300) has emerged as a promising target for cancer therapy due to its crucial role in promoting oncogenic signaling pathways in various cancers, including prostate cancer. This need is particularly significant in prostate cancer. While androgen deprivation therapy (ADT) has demonstrated promising efficacy in prostate cancer, its long-term use can eventually lead to the development of castration-resistant prostate cancer (CRPC) and neuroendocrine prostate cancer (NEPC). Notably, p300 has been identified as an important co-activator of the androgen receptor (AR), highlighting its significance in prostate cancer progression. Moreover, recent studies have revealed the involvement of p300 in AR-independent oncogenes associated with NEPC. Therefore, the blockade of p300 may emerge as an effective therapeutic strategy to address the challenges posed by both CRPC and NEPC. METHODS We employed AI-assisted design to develop a peptide-based PROTAC (proteolysis-targeting chimera) drug that targets p300, effectively degrading p300 in vitro and in vivo utilizing nano-selenium as a peptide drug delivery system. FINDINGS Our p300-targeting peptide PROTAC drug demonstrated effective p300 degradation and cancer cell-killing capabilities in both CRPC, AR-negative, and NEPC cells. This study demonstrated the efficacy of a p300-targeting drug in NEPC cells. In both AR-positive and AR-negative mouse models, the p300 PROTAC drug showed potent p300 degradation and tumor suppression. INTERPRETATION The design of peptide PROTAC drug targeting p300 is feasible and represents an efficient therapeutic strategy for CRPC, AR-negative prostate cancer, and NEPC. FUNDING The funding details can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Dize Zhang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Donghua Liu
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tianyang Zhou
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yibo Gao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Cunli Yang
- Department of the Operating Theater, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuchen Qian
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jian Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shan Xu
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
47
|
López-Otín C, Maier AB, Kroemer G. Gerogenes and gerosuppression: the pillars of precision geromedicine. Cell Res 2024; 34:463-466. [PMID: 38802575 PMCID: PMC11217286 DOI: 10.1038/s41422-024-00977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Affiliation(s)
- Carlos López-Otín
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France
- Facultad de Ciencias de la Vida y la Naturaleza, Universidad Nebrija, Madrid, Spain
| | - Andrea B Maier
- Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, Amsterdam, the Netherlands
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of, Singapore, Singapore
- Centre for Healthy Longevity, @AgeSingapore, National University Health System, Singapore, Singapore
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Inserm U1138, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Institut, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
48
|
Shen Y, Wang Y, Wang SY, Li C, Han FJ. Research progress on the application of organoids in gynecological tumors. Front Pharmacol 2024; 15:1417576. [PMID: 38989138 PMCID: PMC11234177 DOI: 10.3389/fphar.2024.1417576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024] Open
Abstract
Organoids are in vitro 3D models that maintain their own tissue structure and function. They largely overcome the limitations of traditional tumor models and have become a powerful research tool in the field of oncology in recent years. Gynecological malignancies are major diseases that seriously threaten the life and health of women and urgently require the establishment of models with a high degree of similarity to human tumors for clinical studies to formulate individualized treatments. Currently, organoids are widely studied in exploring the mechanisms of gynecological tumor development as a means of drug screening and individualized medicine. Ovarian, endometrial, and cervical cancers as common gynecological malignancies have high morbidity and mortality rates among other gynecological tumors. Therefore, this study reviews the application of modelling, drug efficacy assessment, and drug response prediction for ovarian, endometrial, and cervical cancers, thereby clarifying the mechanisms of tumorigenesis and development, and providing precise treatment options for gynecological oncology patients.
Collapse
Affiliation(s)
- Ying Shen
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Si-Yu Wang
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chan Li
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- The First School of Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
49
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
50
|
Nussinov R, Yavuz BR, Jang H. Anticancer drugs: How to select small molecule combinations? Trends Pharmacol Sci 2024; 45:503-519. [PMID: 38782689 PMCID: PMC11162304 DOI: 10.1016/j.tips.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
Small molecules are at the forefront of anticancer therapies. Successive treatments with single molecules incur drug resistance, calling for combination. Here, we explore the tough choices oncologists face - not just which drugs to use but also the best treatment plans, based on factors such as target proteins, pathways, and gene expression. We consider the reality of cancer's disruption of normal cellular processes, highlighting why it's crucial to understand the ins and outs of current treatment methods. The discussion on using combination drug therapies to target multiple pathways sheds light on a promising approach while also acknowledging the hurdles that come with it, such as dealing with pathway crosstalk. We review options and provide examples and the mechanistic basis, altogether providing the first comprehensive guide to combinatorial therapy selection.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|