1
|
Przybylski C, Brocorens P, Xerri LE, Perennes A, Gontard G, Lazzaroni R, Raynal M, Bouteiller L. Ion Mobility Mass Spectrometry to Probe Sequences in Supramolecular Copolymers. Angew Chem Int Ed Engl 2025; 64:e202421328. [PMID: 39841627 DOI: 10.1002/anie.202421328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 01/24/2025]
Abstract
The analysis of the microstructure of supramolecular copolymers is difficult because of their dynamic character. Here, benzene-1,3,5-tricarboxamide (BTA) co-assemblies are analysed by ion mobility - mass spectrometry (IM-MS) to reveal the presence of various sequences. For example, the IM-MS mobilogram for hexamers composed of 4 units from a first monomer and 2 units from a second monomer is a broad distribution due to the presence of 9 possible isomeric sequences, which can be sorted out based on calculated collision cross-sections. This approach gives unprecedented information on supramolecular copolymer sequences.
Collapse
Affiliation(s)
- Cédric Przybylski
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025, Evry-Courcouronnes, France
| | - Patrick Brocorens
- Service de Chimie des Matériaux Nouveaux, Institut de Recherche sur les Matériaux, Université de Mons, Place du Parc, 20, B-7000, Mons, Belgium
| | - Laetitia-Eiko Xerri
- Service de Chimie des Matériaux Nouveaux, Institut de Recherche sur les Matériaux, Université de Mons, Place du Parc, 20, B-7000, Mons, Belgium
| | - Antoine Perennes
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Roberto Lazzaroni
- Service de Chimie des Matériaux Nouveaux, Institut de Recherche sur les Matériaux, Université de Mons, Place du Parc, 20, B-7000, Mons, Belgium
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, IPCM, 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
2
|
Yang CN, Liu W, Liu HT, Zhang JC, Long YT, Ying YL. Electrochemical kinetic fingerprinting of single-molecule coordinations in confined nanopores. Faraday Discuss 2025; 257:29-43. [PMID: 39556019 DOI: 10.1039/d4fd00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metal centers are essential for enzyme catalysis, stabilizing the active site, facilitating electron transfer, and maintaining the structure through coordination with amino acids. In this study, K238H-AeL nanopores with histidine sites were designed as single-molecule reactors for the measurement of single-molecule coordination reactions. The coordination mechanism of Au(III) with histidine and glutamate in biological nanopore confined space was explored. Specifically, Au(III) interacts with the nitrogen (N) atom in the histidine imidazole ring of the K238H-AeL nanopore and the oxygen (O) atom in glutamate to form a stable K238H-Au-Cl2 complex. The formation mechanism of this complex was further validated through single-molecule nanopore analysis, mass spectrometry, and molecular dynamics simulations. Introducing histidine and negative charge amino acids with carboxyl group into different positions within the nanopore revealed that the formation of the histidine-Au coordination bond in the confined space requires a suitable distance between the ligand and the central metal atom. By analyzing the association and dissociation rates of the single Au(III) ion under the applied voltages, it was found that a confined nanopore increased the bonding rate constant of Au(III)-histidine coordination reactions by around 10-100 times compared to that in the bulk solution and the optimal voltage for single-molecule. Therefore, nanopore techniques for tracking single-molecule reactions could offer valuable insights into designing metalloenzymes in metal-catalyzed organic reactions.
Collapse
Affiliation(s)
- Chao-Nan Yang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Wei Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Hao-Tian Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Ji-Chang Zhang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, P. R. China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, P. R. China
| |
Collapse
|
3
|
Szakály P, Papp D, Steckel A, Varga E, Schlosser G. Characterization of Sugammadex-Related Isomeric Cyclodextrin Impurities Using Cyclic Ion Mobility High-Resolution Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:258-264. [PMID: 39855639 PMCID: PMC11808773 DOI: 10.1021/jasms.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
Cyclic ion mobility-mass spectrometry (cIM-MS) is a powerful technique for separating and identifying isomeric mixtures of compounds. When coupled with chromatography, cIM-MS creates a multidimensional separation system, with high resolving power and peak capacity. In this study, we report the cyclic ion mobility separation and high-resolution mass spectrometry identification of four regioisomers of a Sugammadex-related impurity, abbreviated as Di-OH-SGM. Separation using multipass cyclic ion mobility was achieved by selecting the [M + 2Na]2+ ion, while other adducts, such as [M + Na]+, [M + 2H]2+, [M + H + Na]2+, and [M - 2H]2- did not yield isomer separation. Two methods were developed for ion mobility separation of the isomers: a conventional multipass method and a slicing method. Isomer assignment was based on the characteristic fragment ions. The collision cross section values (cTWCCSN2) of the resolved cyclodextrin isomers were also determined. Ion mobility separation of structurally different fragment ions was demonstrated. Additionally, by coupling cIM-MS with reversed-phase liquid chromatography (HPLC-cIM-MS), two-dimensional separation of the isomers was achieved. The isomers, separated using HPLC-cIM-MS, were identified with the same approach as with cIM-MS alone, and their elution order provided insights into their relative hydrophobicity.
Collapse
Affiliation(s)
- Péter
S. Szakály
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Institute of Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
- CycloLab
Cyclodextrin Research and Development Laboratory, Ltd., Illatos út 7, H-1097 Budapest, Hungary
- MTA-ELTE
Lendület (Momentum) Ion Mobility Mass Spectrometry Research
Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
| | - Dávid Papp
- Hevesy
György PhD School of Chemistry, ELTE
Eötvös Loránd University, Institute of Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
- MTA-ELTE
Lendület (Momentum) Ion Mobility Mass Spectrometry Research
Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
| | - Arnold Steckel
- MTA-ELTE
Lendület (Momentum) Ion Mobility Mass Spectrometry Research
Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
| | - Erzsébet Varga
- CycloLab
Cyclodextrin Research and Development Laboratory, Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | - Gitta Schlosser
- MTA-ELTE
Lendület (Momentum) Ion Mobility Mass Spectrometry Research
Group, ELTE Eötvös Loránd University, Institute of Chemistry, Department of Analytical Chemistry, Pázmány Péter
sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
4
|
Yu J, Gaedke M, Das S, Stares DL, Schalley CA, Schaufelberger F. Boronic ester-templated pre-rotaxanes as versatile intermediates for rotaxane endo-functionalisation. Chem Sci 2024; 15:19443-19451. [PMID: 39568865 PMCID: PMC11575644 DOI: 10.1039/d4sc04879b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
We report on the synthesis of [2]rotaxanes from vicinal diols through dynamic covalent boronic ester templates, as well as the use of the boronic ester for rotaxane post-functionalisation. A boronic acid pincer ligand with two alkene-appended arms was condensed with a linear diol-containing thread, and ring-closing metathesis established a pre-rotaxane architecture along with a non-entangled isomer. Advanced NMR spectroscopy and mass spectrometry unambiguously assigned the isomers and revealed that the pre-rotaxane was in equilibrium with its hydrolyzed free [2]rotaxane form. The boronic ester handle in the pre-rotaxane could be synthetically addressed in a multitude of ways to obtain different endo-functionalised [2]rotaxanes, including with direct oxidation reactions, protodeboronation, functional group interconversions and Pd-catalysed cross-couplings.
Collapse
Affiliation(s)
- Jingjing Yu
- KTH Royal Institute of Technology, Department of Chemistry Teknikringen 30 10044 Stockholm Sweden
| | - Marius Gaedke
- KTH Royal Institute of Technology, Department of Chemistry Teknikringen 30 10044 Stockholm Sweden
| | - Satyajit Das
- KTH Royal Institute of Technology, Department of Chemistry Teknikringen 30 10044 Stockholm Sweden
| | - Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin Arnimallee 20 14195 Berlin Germany
| | - Fredrik Schaufelberger
- KTH Royal Institute of Technology, Department of Chemistry Teknikringen 30 10044 Stockholm Sweden
| |
Collapse
|
5
|
Lloyd Williams OH, Cox CS, Zhang MY, Lessio M, Rusli O, Donald WA, Jekimovs L, Marshall DL, Pfrunder MC, Poad BLJ, Brotin T, Rijs NJ. Cation induced changes to the structure of cryptophane cages. Dalton Trans 2024; 53:18473-18483. [PMID: 39352246 DOI: 10.1039/d4dt01824a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Here the monocation complexes of seven anti-cryptophanes are examined with high-resolution ion-mobility mass spectrometry. The relative size of the [cation + cryptophane]+ complexes were compared based on their measured mobilities and derived collisional cross sections. A paradoxical trend of structural contraction was observed for complexes of increasing cation size. Density functional theory confirmed encapsulation occurs for cation = Na+, K+, Rb+, Cs+ and NH4+. However, cation = Li+ preferred oxygen coordination at a linker over encapsulation within the cavity, leading to a slightly larger gas phase structure overall. Protonated cryptophanes yielded much larger collision cross sections via imploded cryptophane structures. Thus, competing physical effects led to the observed non-periodic size trend of the complexes. Trends in complexation from isothermal titration calorimetry and other condensed phase techniques were borne out by the gas phase studies. Further, predicted cavity sizes compared with the gas phase experimental findings reveal more about the encapsulation mechanisms themselves.
Collapse
Affiliation(s)
| | - Claudia S Cox
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Meng Yuan Zhang
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Martina Lessio
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | - Olivia Rusli
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| | | | - Lachlan Jekimovs
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4001 Australia
| | - Michael C Pfrunder
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, 4001 Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane 4001, Queensland, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4001 Australia
| | - Thierry Brotin
- ENS Lyon, CNRS, Laboratoire de Chimie, UMR 5182, 46 Allée d'Italie, 69364 Lyon, France
| | - Nicole J Rijs
- School of Chemistry, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
6
|
Drechsler C, Baksi A, Platzek A, Acar M, Holstein JJ, Stein CJ, Clever GH. London dispersion driven compaction of coordination cages in the gas-phase - a combined ion mobility and theoretical study. Chem Sci 2024:d4sc04786a. [PMID: 39479161 PMCID: PMC11520353 DOI: 10.1039/d4sc04786a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/12/2024] [Indexed: 11/02/2024] Open
Abstract
Large self-assembled systems (such as metallosupramolecular rings and cages) can be difficult to structurally characterize, in particular when they show a highly dynamic behavior. In the gas-phase, Ion Mobility Spectrometry (IMS), in tandem with Electrospray Ionization Mass Spectrometry (ESI MS), can yield valuable insights into the size, shape and dynamics of such supramolecular assemblies. However, the detailed relationship between experimental IMS data and the actual gas-phase structure is still poorly understood for soft and flexible self-assemblies. In this study, we combine high resolution Trapped Ion Mobility Spectrometry (TIMS), yielding collisional cross section data (CCS), with computational modeling and theoretical CCS calculations to obtain and interpret gas-phase structural data for a series of palladium-based coordination cages. We focus on derivatives of a homoleptic lantern-shaped [Pd2L4]4+ cage and its interpenetrated dimer ([3X@Pd4L8]5+, X = Cl, Br) to study the influence of flexible side chains of different lengths, counter anions and π-stacking tendencies between the ligands in the absence of solvent. The gained insights as well as the presented CCS calculation and evaluation workflow establish a basis for the systematic gas-phase characterization of a wider range of flexible, chain-decorated and guest-modulated assemblies.
Collapse
Affiliation(s)
- Christoph Drechsler
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Ananya Baksi
- Department of Chemistry, Jadavpur University Kolkata-700032 West Bengal India
| | - André Platzek
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Mert Acar
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Julian J Holstein
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Christopher J Stein
- Technical University of Munich, TUM School of Natural Sciences and Catalysis Research Center, Department of Chemistry Lichtenbergstr. 4 85748 Garching Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Str. 6 44227 Dortmund Germany
| |
Collapse
|
7
|
Jurček O, Chattopadhyay S, Kalenius E, Linnanto JM, Kiesilä A, Jurček P, Radiměřský P, Marek R. Unsymmetric Chiral Ligands for Large Metallo-Macrocycles: Selectivity of Orientational Self-Sorting. Angew Chem Int Ed Engl 2024; 63:e202409134. [PMID: 38845398 DOI: 10.1002/anie.202409134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 08/02/2024]
Abstract
Nature uses various chiral and unsymmetric building blocks to form substantial and complex supramolecular assemblies. In contrast, the majority of organic ligands used in metallosupramolecular chemistry are symmetric and achiral. Here we extend the group of unsymmetric chiral bile acids used as a scaffold for organic bispyridyl ligands by employing chenodeoxycholic acid (CDCA), an epimer of the previously used ursodeoxycholic acid (UDCA). The epimerism, flexibility, and bulkiness of the ligands leads to large structural differences in coordination products upon reaction with Pd(NO3)2. The UDCA-bispyridyl ligand self-assembles quantitatively into a single crown-like Pd3L6 complex, whereas the CDCA ligand provides a mixture of coordination complexes of general formula PdnL2n, i.e., Pd2L4, Pd3L6, Pd4L8, Pd5L10, and even Pd6L12 containing an impressive 120 chiral centers. The coordination products were studied by a combination of analytical methods, with ion-mobility mass spectrometry (IM-MS) providing valuable details on their structure and allowed an effective separation of m/z 1461 to individual signals according to the arrival time distribution, thereby revealing four different ions of [Pd3L6(NO3)3]3+, [Pd4L8(NO3)4]4+, [Pd5L10(NO3)5]5+, and [Pd6L12(NO3)6]6+. The structures of all the complexes were modelled using DFT calculations. Finally, the challenges and conclusions in determining the specific structural identity of these unsymmetric species are discussed.
Collapse
Affiliation(s)
- Ondřej Jurček
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, CZ-61200, Brno, Czechia
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Subhasis Chattopadhyay
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Elina Kalenius
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, FI-40014, Jyväskylä, Finland
| | - Juha M Linnanto
- Institute of Physics, University of Tartu, W. Ostwald Street 1, 50411, Tartu, Estonia
| | - Anniina Kiesilä
- Department of Chemistry, University of Jyvaskyla P. O. Box 35, FI-40014, Jyväskylä, Finland
| | - Pia Jurček
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Petr Radiměřský
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| | - Radek Marek
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czechia
| |
Collapse
|
8
|
Benoit F, Wang X, Dai J, Geue N, England RM, Bristow AWT, Barran PE. Exploring the Conformational Landscape of Poly(l-lysine) Dendrimers Using Ion Mobility Mass Spectrometry. Anal Chem 2024; 96:9390-9398. [PMID: 38812282 PMCID: PMC11170554 DOI: 10.1021/acs.analchem.4c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Ion mobility mass spectrometry (IM-MS) measures the mass, size, and shape of ions in the same experiment, and structural information is provided via collision cross-section (CCS) values. The majority of commercially available IM-MS instrumentation relies on the use of CCS calibrants, and here, we present data from a family of poly(l-lysine) dendrimers and explore their suitability for this purpose. In order to test these compounds, we employed three different IM-MS platforms (Agilent 6560 IM-QToF, Waters Synapt G2, and a home-built variable temperature drift tube IM-MS) and used them to investigate six different generations of dendrimers in two buffer gases (helium and nitrogen). Each molecule gives a highly discrete CCS distribution suggestive of single conformers for each m/z value. The DTCCSN2 values of this series of molecules (molecular weight: 330-16,214 Da) range from 182 to 2941 Å2, which spans the CCS range that would be found by many synthetic molecules including supramolecular compounds and many biopolymers. The CCS values for each charge state were highly reproducible in day-to-day analysis on each instrument, although we found small variations in the absolute CCS values between instruments. The rigidity of each dendrimer was probed using collisionally activated and high-temperature IM-MS experiments, where no evidence for a significant CCS change ensued. Taken together, this data indicates that these polymers are candidates for CCS calibration and could also help to reconcile differences found in CCS measurements on different instrument geometries.
Collapse
Affiliation(s)
- Florian Benoit
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Xudong Wang
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Junxiao Dai
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Niklas Geue
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Richard M. England
- Advanced
Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Anthony W. T. Bristow
- Chemical
Development, Pharmaceutical Technology and Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
9
|
Geue N. Modern Electrospray Ionization Mass Spectrometry Techniques for the Characterization of Supramolecules and Coordination Compounds. Anal Chem 2024; 96:7332-7341. [PMID: 38686955 PMCID: PMC11099892 DOI: 10.1021/acs.analchem.4c01028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Mass spectrometry is routinely used for myriad applications in clinical, industrial, and research laboratories worldwide. Developments in the areas of ionization sources, high-resolution mass analyzers, tandem mass spectrometry, and ion mobility have significantly extended the repertoire of mass spectrometrists; however, for coordination compounds and supramolecules, mass spectrometry remains underexplored and arguably underappreciated. Here, the reader is guided through different tools of modern electrospray ionization mass spectrometry that are suitable for larger inorganic complexes. All steps, from sample preparation and technical details to data analysis and interpretation are discussed. The main target audience of this tutorial is synthetic chemists as well as technicians/mass spectrometrists with little experience in characterizing labile inorganic compounds.
Collapse
Affiliation(s)
- Niklas Geue
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, Department
of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
10
|
Zimnicka MM. Structural studies of supramolecular complexes and assemblies by ion mobility mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:526-559. [PMID: 37260128 DOI: 10.1002/mas.21851] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/02/2023]
Abstract
Recent advances in instrumentation and development of computational strategies for ion mobility mass spectrometry (IM-MS) studies have contributed to an extensive growth in the application of this analytical technique to comprehensive structural description of supramolecular systems. Apart from the benefits of IM-MS for interrogation of intrinsic properties of noncovalent aggregates in the experimental gas-phase environment, its merits for the description of native structural aspects, under the premises of having maintained the noncovalent interactions innate upon the ionization process, have attracted even more attention and gained increasing interest in the scientific community. Thus, various types of supramolecular complexes and assemblies relevant for biological, medical, material, and environmental sciences have been characterized so far by IM-MS supported by computational chemistry. This review covers the state-of-the-art in this field and discusses experimental methods and accompanying computational approaches for assessing the reliable three-dimensional structural elucidation of supramolecular complexes and assemblies by IM-MS.
Collapse
Affiliation(s)
- Magdalena M Zimnicka
- Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
11
|
Geue N, Winpenny REP, Barran PE. Ion Mobility Mass Spectrometry for Large Synthetic Molecules: Expanding the Analytical Toolbox. J Am Chem Soc 2024; 146:8800-8819. [PMID: 38498971 PMCID: PMC10996010 DOI: 10.1021/jacs.4c00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
Understanding the composition, structure and stability of larger synthetic molecules is crucial for their design, yet currently the analytical tools commonly used do not always provide this information. In this perspective, we show how ion mobility mass spectrometry (IM-MS), in combination with tandem mass spectrometry, complementary techniques and computational methods, can be used to structurally characterize synthetic molecules, make and predict new complexes, monitor disassembly processes and determine stability. Using IM-MS, we present an experimental and computational framework for the analysis and design of complex molecular architectures such as (metallo)supramolecular cages, nanoclusters, interlocked molecules, rotaxanes, dendrimers, polymers and host-guest complexes.
Collapse
Affiliation(s)
- Niklas Geue
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Richard E. P. Winpenny
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
12
|
Stares DL, Szumna A, Schalley CA. Encapsulation in Charged Droplets Generates Distorted Host-Guest Complexes. Chemistry 2023; 29:e202302112. [PMID: 37724745 DOI: 10.1002/chem.202302112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
The ability of various hydrogen-bonded resorcinarene-based capsules to bind α,ω-alkylbisDABCOnium (DnD) guests of different lengths was investigated in solution and in the gas-phase. While no host-guest interactions were detected in solution, encapsulation could be achieved in the charged droplets formed during electrospray ionisation (ESI). This included guests, which are far too long in their most stable conformation to fit inside the cavity of the capsules. A combination of three mass spectrometric techniques, namely, collision-induced dissociation, hydrogen/deuterium exchange, and ion-mobility mass spectrometry, together with computational modelling allow us to determine the binding mode of the DnD guests inside the cavity of the capsules. Significant distortions of the guest into horseshoe-like arrangements are required to optimise cation-π interactions with the host, which also adopt distorted geometries with partially open hydrogen-bonding seams when binding longer guests. Such quasi "spring-loaded" capsules can form in the charged droplets during the ESI process as there is no competition between guest encapsulation and ion pair formation with the counterions that preclude encapsulation in solution. The encapsulation complexes are sufficiently stable in the gas-phase - even when strained - because non-covalent interactions significantly strengthen in the absence of solvent.
Collapse
Affiliation(s)
- Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, Poland
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, 14195, Berlin, Germany
| |
Collapse
|
13
|
Assaf KI, Nau WM. Dispersion Interactions in Condensed Phases and inside Molecular Containers. Acc Chem Res 2023; 56:3451-3461. [PMID: 37956240 DOI: 10.1021/acs.accounts.3c00523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
ConspectusThe past decade has seen significant progress in the understanding and appreciation of the importance of London dispersion interactions (LDIs) in supramolecular systems and solutions. The Slater-Kirkwood formula relates LDIs to the molecular polarizabilities of the two interacting molecular species (α) and their interaction distance (a dependence of R-6). When advancing arguments related to intermolecular interactions, it is frequently assumed that molecules with larger molecular polarizabilities are more amenable to larger LDIs. However, arguments related to molecular polarizabilities are not always transferable to the condensed phase. In fact, the underlying bulk and molecular polarizabilities of common solvents show opposing trends. The intuitive concept that aromatic molecules are more polarizable than saturated hydrocarbons and that perfluorinated molecules are less polarizable than saturated hydrocarbons applies to the condensed phase only. When treating association phenomena in solution, where LDIs are generally very attenuated, the use of bulk polarizabilities is recommended, which are experimentally accessible through either refractive index measurements or suitable solvatochromic probes. Such probes can also be used to assess polarizabilities inside molecular container compounds, such as cucurbit[n]urils (CBn), cyclodextrins, calixarenes, and hemicarcerands. These macrocyclic cavities can have extreme microenvironments. For example, the inner concave phase of CB7 has been shown to be weakly polarizable, falling in between the gas phase and perfluorohexane; those of β-cyclodextrin and p-sulfonatocalix[4]arene have been found to be similarly polarizable as water and alkanes, respectively, and the inside of hemicarcerands displays a very large bulk polarizability, exceeding that of diiodomethane. CBn compounds are privileged molecular container compounds, which we exemplify in this Account through case studies. (1) CBn macrocycles are prime water-soluble receptors for hydrocarbons, allowing for the reduction of the binding free energies to two components: the hydrophobic effect and dispersion interactions. To understand hydrocarbon binding, we initiated the HYDROPHOBE challenge, which revealed the shortcomings of both quantum-chemical and molecular dynamics approaches. (2) The smallest CBn receptor, CB5, is uniquely suited to bind the entire noble gas series, where hydrophobic effects and dispersion interactions operate in opposite directions. CB5 was revaled to be a unique synthetic receptor for noble gases, with the dominant driving force being the recovery of the cavitation energies for the hydration of noble gases in aqueous solution. Computational methods that encounter challenges in predicting hydrocarbon affinities and trends for CB6 and CB7 perform well for noble gases binding to CB5. (3) The larger homologue, CB8, allows one to set up intermolecular interaction chambers by the encapsulation of a (first) aromatic guest, thereby tuning LDIs inside the receptor cavity. In this manner, CB8 can be modulated to preferentially bind unsaturated and aromatic rather than saturated hydrocarbons, while the unmodified cavities of the smaller macrocycles CB6 and CB7 show selective binding of saturated hydrocarbons. (4) The (charged) host-guest complexes of CBn hosts are sufficiently stable in the gas phase, allowing for the study of the influence of LDIs on inner-phase chemical reactions. These studies are particularly interesting for the theoretical analysis of isolated host-guest LDIs, as experimental and computational data are directly comparable in the gas phase due to the absence of the solvation effect.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Al-Balqa Applied University, Faculty of Science, Department of Chemistry, 19117 Al-Salt, Jordan
| | - Werner M Nau
- Constructor University, School of Science, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
14
|
Stares DL, Mozaceanu C, Ward MD, Schalley CA. Binding modes of high stoichiometry guest complexes with a Co 8L 12 cage uncovered by mass spectrometry. Chem Commun (Camb) 2023; 59:11811-11814. [PMID: 37721711 DOI: 10.1039/d3cc04291j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
We demonstrate how different modes of guest binding with a Co8L12 cubic cage can be determined using ESI-MS. High stoichiometry guest binding was observed, with the guests preferentially binding externally, but internal guest inclusion was also seen at higher guest loading.
Collapse
Affiliation(s)
- Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin, 14195, Germany.
| | | | - Michael D Ward
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin, 14195, Germany.
| |
Collapse
|
15
|
Duez Q, Tinnemans P, Elemans JAAW, Roithová J. Kinetics of ligand exchange in solution: a quantitative mass spectrometry approach. Chem Sci 2023; 14:9759-9769. [PMID: 37736645 PMCID: PMC10510763 DOI: 10.1039/d3sc03342b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Complex speciation and exchange kinetics of labile ligands are critical parameters for understanding the reactivity of metal complexes in solution. We present a novel approach to determine ligand exchange parameters based on electrospray ionization mass spectrometry (ESI-MS). The introduction of isotopically labelled ligands to a solution of metal host and unlabelled ligands allows the quantitative investigation of the solution-phase equilibria. Furthermore, ion mobility separation can target individual isomers, such as ligands bound at specific sites. As a proof of concept, we investigate the solution equilibria of labile pyridine ligands coordinated in the cavity of macrocyclic porphyrin cage complexes bearing diamagnetic or paramagnetic metal centres. The effects of solvent, porphyrin coordination sphere, transition metal, and counterion on ligand dissociation are discussed. Rate constants and activation parameters for ligand dissociation in the solution can be derived from our ESI-MS approach, thereby providing mechanistic insights that are not easily obtained from traditional solution-phase techniques.
Collapse
Affiliation(s)
- Quentin Duez
- Radboud University, Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Paul Tinnemans
- Radboud University, Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Johannes A A W Elemans
- Radboud University, Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Jana Roithová
- Radboud University, Institute for Molecules and Materials Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|
16
|
Eaton RM, Zercher BP, Wageman A, Bush MF. A Flexible, Modular Platform for Multidimensional Ion Mobility of Native-like Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1175-1185. [PMID: 37171243 PMCID: PMC10548348 DOI: 10.1021/jasms.3c00112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Native ion mobility (IM) mass spectrometry (MS) is used to probe the size, shape, and assembly of biomolecular complexes. IM-IM-MS can increase the amount of information available in structural studies by isolating subpopulations of structures for further analysis. Previously, IM-IM-MS has been implemented using the Structures for Lossless Ion Manipulations (SLIM) architecture to probe the structural stability of gas-phase protein ions. Here, a new multidimensional IM instrument constructed from SLIM devices is characterized using multiple operational modes. In this new design, modular devices are used to perform all ion manipulations, including initial accumulation, injection, separation, selection, and trapping. Using single-dimension IM, collision cross section (Ω) values are determined for a set of native-like ions. These Ω values are within 3% of those reported previously based on measurements using RF-confining drift cells. Tandem IM experiments are performed on a sample of ubiquitin ions that contains both compact and partially unfolded structures, demonstrating that this platform can isolate subpopulations of structures. Finally, additional modes of analysis, including multiplexed IM and inverse IM, are demonstrated using this platform. The ability of this platform to quickly switch between different modes of IM analysis makes it a highly flexible tool for studying protein structures and dynamics.
Collapse
Affiliation(s)
- Rachel M. Eaton
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Benjamin P. Zercher
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - AnneClaire Wageman
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
17
|
Zlibut E, May JC, Wei Y, Gessmann D, Wood CS, Bernat BA, Pugh TE, Palmer-Jones L, Cosquer RP, Dybeck E, McLean JA. Noncovalent Host-Guest Complexes of Artemisinin with α-, β-, and γ- Cyclodextrin Examined by Structural Mass Spectrometry Strategies. Anal Chem 2023; 95:8180-8188. [PMID: 37184072 DOI: 10.1021/acs.analchem.2c05076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides with amphiphilic properties, which can improve the stability, solubility, and bioavailability of therapeutic compounds. There has been growing interest in the advancement of efficient and reliable analytical methods that assist with elucidating CD host-guest drug complexation. In this study, we investigate the noncovalent ion complexes formed between naturally occurring dextrins (αCD, βCD, γCD, and maltohexaose) with the poorly water-soluble antimalarial drug, artemisinin, using a combination of ion mobility-mass spectrometry (IM-MS), tandem MS/MS, and theoretical modeling approaches. This study aims to determine if the drug can complex within the core dextrin cavity forming an inclusion complex or nonspecifically bind to the periphery of the dextrins. We explore the use of group I alkali earth metal additives to promote the formation of various noncovalent gas-phase ion complexes with different drug/dextrin stoichiometries (1:1, 1:2, 1:3, 1:4, and 2:1). Broad IM-MS collision cross section (CCS) mapping (n > 300) and power-law regression analysis were used to confirm the stoichiometric assignments. The 1:1 drug:αCD and drug:βCD complexes exhibited strong preferences for Li+ and Na+ charge carriers, whereas drug:γCD complexes preferred forming adducts with the larger alkali metals, K+, Rb+, and Cs+. Although the ion-measured CCS increased with cation size for the unbound artemisinin and CDs, the 1:1 drug:dextrin complexes exhibit near-identical CCS values regardless of the cation, suggesting these are inclusion complexes. Tandem MS/MS survival yield curves of the [artemisinin:βCD + X]+ ion (X = H, Li, Na, K) showed a decreased stability of the ion complex with increasing cation size. Empirical CCS measurements of the [artemisinin:βCD + Li]+ ion correlated with predicted CCS values from the low-energy theoretical structures of the drug incorporated within the βCD cavity, providing further evidence that gas-phase inclusion complexes are formed in these experiments. Taken together, this work demonstrates the utility of combining analytical information from IM-MS, MS/MS, and computational approaches in interpreting the presence of gas-phase inclusion phenomena.
Collapse
Affiliation(s)
- Emanuel Zlibut
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Jody C May
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| | - Yansheng Wei
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Dennis Gessmann
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Constance S Wood
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Bryan A Bernat
- Worldwide Research, Development & Medical, Pfizer, Inc., Lake Forest, Illinois 60045, United States
| | - Teresa E Pugh
- Pfizer, R&D UK Ltd, PSSM ARD, Sandwich CT13 9NJ, U.K
| | | | | | - Eric Dybeck
- Worldwide Research, Development & Medical, Pfizer, Inc., Cambridge, Massachusetts 02139, United States
| | - John A McLean
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235-1822, United States
| |
Collapse
|
18
|
Chakraborty P, Neumaier M, Weis P, Kappes MM. Exploring Isomerism in Isolated Cyclodextrin Oligomers through Trapped Ion Mobility Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:676-684. [PMID: 36952473 DOI: 10.1021/jasms.2c00351] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cyclodextrin (CD) macrocycles are used to create a wide range of supramolecular architectures which are also of interest in applications such as selective gas adsorption, drug delivery, and catalysis. However, predicting their assemblies and identifying the possible isomers in CD oligomers have always remained challenging due to their dynamic nature. Herein, we interacted CDs (α, β, and γ) with a divalent metal ion, Cu2+, to create a series of Cu2+-linked CD oligomers, from dimers to pentamers. We characterized these oligomers using electrospray ionization mass spectrometry and probed isomerism in each of these isolated oligomers using high resolution trapped ion mobility spectrometry. Using this technique, we separated multiple isomers for each of the Cu2+-interlinked CD oligomers and estimated their relative population, which was not accessible previously using other characterization techniques. We further carried out structural analysis of the observed isomers by comparing the experimental collision cross sections (CCSs) to that of modeled structures. We infer that the isomeric heterogeneity reflects size-specific packing patterns of individual CDs (e.g., close-packed/linear). In some cases, we also reveal the existence of kinetically trapped structures in the gas phase and study their transformation to thermodynamically controlled forms by examining the influence of activation of the ions on isomer interconversion.
Collapse
Affiliation(s)
- Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
19
|
Wang Z, Mei L, Guo C, Huang S, Shi WQ, Li X, Feng W, Li X, Yang C, Yuan L. Supramolecular Shish Kebabs: Higher Order Dimeric Structures from Ring-in-Rings Complexes with Conformational Adaptivity. Angew Chem Int Ed Engl 2023; 62:e202216690. [PMID: 36652350 DOI: 10.1002/anie.202216690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Use of abiotic chemical systems for understanding higher order superstructures is challenging. Here we report a ring-in-ring(s) system comprising a hydrogen-bonded macrocycle and cyclobis(paraquat-o-phenylene) tetracation (o-Box) or cyclobis(paraquat-p-phenylene) tetracation (CBPQT4+ , p-Box) that assembles to construct discrete higher order structures with adaptive conformation. As indicated by mass spectrometry, computational modeling, NMR spectroscopy, and single-crystal X-ray diffraction analysis, this ring-in-ring(s) system features the box-directed aggregation of multiple macrocycles, leading to generation of several stable species such as H4G (1 a/o-Box) and H5G (1 a/o-Box). Remarkably, a dimeric shish-kebab-like ring-in-rings superstructure H7G2 (1 a/o-Box) or H8G2 (1 a/p-Box) is formed from the coaxial stacking of two ring-in-rings units. The formation of such unique dimeric superstructures is attributed to the large π-surface of this 2D planar macrocycle and the conformational variation of both host and guest.
Collapse
Affiliation(s)
- Zhenwen Wang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China
| | - Song Huang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaowei Li
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Wen Feng
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518071, China.,University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| | - Lihua Yuan
- College of Chemistry, Key Laboratory of Radiation Physics and Technology of Ministry of Education, Sichuan University, Chengdu, Sichuan, 610064, China) (The first email address should be
| |
Collapse
|
20
|
Li M, Shi YQ, Gan X, Su L, Liang J, Wu H, You Y, Che M, Su P, Wu T, Zhang Z, Zhang W, Yao LY, Wang P, Xie TZ. Coordination-Driven Tetragonal Prismatic Cage and the Investigation on Host-Guest Complexation. Inorg Chem 2023; 62:4393-4398. [PMID: 36892430 DOI: 10.1021/acs.inorgchem.2c03999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
A coordination-driven host has been reported to encapsulate guests by noncovalent interactions. Herein, we present the design and synthesis of a new type of prism combining porphyrin and terpyridine moieties with a long cavity. The prism host can contain bisite or monosite guests through axial coordination binding of porphyrin and aromatic π interactions of terpyridine. The ligands and prismatic complexes were characterized by electrospray ionization mass spectrometry (ESI-MS), TWIM-MS, NMR spectrometry, and single-crystal X-ray diffraction analysis. The guest encapsulation was investigated through ESI-MS, NMR spectrometry, and transient absorption spectroscopy analysis. The binding constant and stability were determined by UV-Vis spectrometry and gradient tandem MS (gMS2) techniques. Based on the prism, a selectively confined condensation reaction was also performed and detected by NMR spectrometry. This study provides a new type of porphyrin- and terpyridine-based host that could be used for the detection of pyridyl- and amine-contained molecules and confined catalysis.
Collapse
Affiliation(s)
- Miao Li
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yu-Qi Shi
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xinye Gan
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Longbin Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Jialin Liang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Huiqi Wu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiting You
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Meizi Che
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Tun Wu
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
21
|
Zhou X, Wang Z, Fan J, Ouyang Z. High-resolution separation of bioisomers using ion cloud profiling. Nat Commun 2023; 14:1535. [PMID: 36941278 PMCID: PMC10027677 DOI: 10.1038/s41467-023-37281-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023] Open
Abstract
Elucidation of complex structures of biomolecules plays a key role in the field of chemistry and life sciences. In the past decade, ion mobility, by coupling with mass spectrometry, has become a unique tool for distinguishing isomers and isoforms of biomolecules. In this study, we develop a concept for performing ion mobility analysis using an ion trap, which enables isomer separation under ultra-high fields to achieve super high resolutions over 10,000. The potential of this technology has been demonstrated for analysis of isomers for biomolecules including disaccharides, phospholipids, and peptides with post-translational modifications.
Collapse
Affiliation(s)
- Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China
| | - Zhuofan Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Jingjin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China.
- Institute for Precision Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
22
|
Lu S, Morrow DJ, Li Z, Guo C, Yu X, Wang H, Schultz JD, O'Connor JP, Jin N, Fang F, Wang W, Cui R, Chen O, Su C, Wasielewski MR, Ma X, Li X. Encapsulating Semiconductor Quantum Dots in Supramolecular Cages Enables Ultrafast Guest-Host Electron and Vibrational Energy Transfer. J Am Chem Soc 2023; 145:5191-5202. [PMID: 36745391 DOI: 10.1021/jacs.2c11981] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the field of supramolecular chemistry, host-guest systems have been extensively explored to encapsulate a wide range of substrates, owing to emerging functionalities in nanoconfined space that cannot be achieved in dilute solutions. However, host-guest chemistry is still limited to encapsulation of small guests. Herein, we construct a water-soluble metallo-supramolecular hexagonal prism with a large hydrophobic cavity by anchoring multiple polyethylene glycol chains onto the building blocks. Then, assembled prisms are able to encapsulate quantum dots (QDs) with diameters of less than 5.0 nm. Furthermore, we find that the supramolecular cage around each QD strongly modifies the photophysics of the QD by universally increasing the rates of QD relaxation processes via ultrafast electron and vibrational energy transfer. Taken together, these efforts expand the scope of substrates in host-guest systems and provide a new approach to tune the optical properties of QDs.
Collapse
Affiliation(s)
- Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Darien J Morrow
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - James P O'Connor
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Na Jin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wu Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ran Cui
- Key Laboratory of Analytical Chemistry for Biology and Medicine, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ou Chen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208, United States
| | - Xuedan Ma
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Center for Molecular Quantum Transduction, Northwestern-Argonne Institute of Science and Engineering, 2205 Tech Drive, Evanston, Illinois 60208, United States.,Consortium for Advanced Science and Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
24
|
Geue N, Bennett TS, Ramakers LAI, Timco GA, McInnes EJL, Burton NA, Armentrout PB, Winpenny REP, Barran PE. Adduct Ions as Diagnostic Probes of Metallosupramolecular Complexes Using Ion Mobility Mass Spectrometry. Inorg Chem 2023; 62:2672-2679. [PMID: 36716284 PMCID: PMC9930111 DOI: 10.1021/acs.inorgchem.2c03698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Following electrospray ionization, it is common for analytes to enter the gas phase accompanied by a charge-carrying ion, and in most cases, this addition is required to enable detection in the mass spectrometer. These small charge carriers may not be influential in solution but can markedly tune the analyte properties in the gas phase. Therefore, measuring their relative influence on the target molecule can assist our understanding of the structure and stability of the analyte. As the formed adducts are usually distinguishable by their mass, differences in the behavior of the analyte resulting from these added species (e.g., structure, stability, and conformational dynamics) can be easily extracted. Here, we use ion mobility mass spectrometry, supported by density functional theory, to investigate how charge carriers (H+, Na+, K+, and Cs+) as well as water influence the disassembly, stability, and conformational landscape of the homometallic ring [Cr8F8(O2CtBu)16] and the heterometallic rotaxanes [NH2RR'][Cr7MF8(O2CtBu)16], where M = MnII, FeII, CoII, NiII, CuII, ZnII, and CdII. The results yield new insights on their disassembly mechanisms and support previously reported trends in cavity size and transition metal properties, demonstrating the potential of adduct ion studies for characterizing metallosupramolecular complexes in general.
Collapse
Affiliation(s)
- Niklas Geue
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Tom S. Bennett
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lennart A. I. Ramakers
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Grigore A. Timco
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Eric J. L. McInnes
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Neil A. Burton
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - P. B. Armentrout
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richard E. P. Winpenny
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Perdita E. Barran
- Michael
Barber Centre for Collaborative Mass Spectrometry, Manchester Institute
of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK,
| |
Collapse
|
25
|
Jin Y, Mandal PK, Wu J, Böcher N, Huc I, Otto S. (Re-)Directing Oligomerization of a Single Building Block into Two Specific Dynamic Covalent Foldamers through pH. J Am Chem Soc 2023; 145:2822-2829. [PMID: 36705469 PMCID: PMC9912251 DOI: 10.1021/jacs.2c09325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic foldamers are synthetic folded molecules which can change their conformation in response to an external stimulus and are currently at the forefront of foldamer chemistry. However, constitutionally dynamic foldamers, which can change not only their conformation but also their molecular constitution in response to their environment, are without precedent. We now report a size- and shape-switching small dynamic covalent foldamer network which responds to changes in pH. Specifically, acidic conditions direct the oligomerization of a dipeptide-based building block into a 16-subunit macrocycle with well-defined conformation and with high selectivity. At higher pH the same building block yields another cyclic foldamer with a smaller ring size (9mer). The two foldamers readily and repeatedly interconvert upon adjustment of the pH of the solution. We have previously shown that addition of a template can direct oligomerization of the same building block to yet other rings sizes (including a 12mer and a 13mer, accompanied by a minor amount of 14mer). This brings the total number of discrete foldamers that can be accessed from a single building block to five. For a single building block system to exhibit such highly diverse structure space is unique and sets this system of foldamers apart from proteins. Furthermore, the emergence of constitutional dynamicity opens up new avenues to foldamers with adaptive behavior.
Collapse
Affiliation(s)
- Yulong Jin
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, China,Centre
for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Pradeep K. Mandal
- Department
of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians Universität, 81377 Munich, Germany
| | - Juntian Wu
- Centre
for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Niklas Böcher
- Department
of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians Universität, 81377 Munich, Germany
| | - Ivan Huc
- Department
of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians Universität, 81377 Munich, Germany,
| | - Sijbren Otto
- Centre
for Systems Chemistry, Stratingh Institute, Nijenborgh 4, 9747 AG Groningen, The Netherlands,
| |
Collapse
|
26
|
Cucinotta A, Kahlfuss C, Minoia A, Eyley S, Zwaenepoel K, Velpula G, Thielemans W, Lazzaroni R, Bulach V, Hosseini MW, Mali KS, De Feyter S. Metal Ion and Guest-Mediated Spontaneous Resolution and Solvent-Induced Chiral Symmetry Breaking in Guanine-Based Metallosupramolecular Networks. J Am Chem Soc 2023; 145:1194-1205. [PMID: 36576950 DOI: 10.1021/jacs.2c10933] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Two-dimensional (2D) chirality has been actively studied in view of numerous applications of chiral surfaces such as in chiral resolutions and enantioselective catalysis. Here, we report on the expression and amplification of chirality in hybrid 2D metallosupramolecular networks formed by a nucleobase derivative. Self-assembly of a guanine derivative appended with a pyridyl node was studied at the solution-graphite interface in the presence and absence of coordinating metal ions. In the absence of coordinating metal ions, a monolayer that is representative of a racemic compound was obtained. This system underwent spontaneous resolution upon addition of a coordinating ion and led to the formation of a racemic conglomerate. The spontaneous resolution could also be achieved upon addition of a suitable guest molecule. The mirror symmetry observed in the formation of the metallosupramolecular networks could be broken via the use of an enantiopure solvent, which led to the formation of a globally homochiral surface.
Collapse
Affiliation(s)
- Antonino Cucinotta
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Christophe Kahlfuss
- CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
| | - Andrea Minoia
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Samuel Eyley
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Keanu Zwaenepoel
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Gangamallaiah Velpula
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Véronique Bulach
- CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
| | - Mir Wais Hosseini
- CMC UMR 7140, Université de Strasbourg, CNRS, 4 Rue Blaise Pascal, F-67000 Strasbourg, France
| | - Kunal S Mali
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Steven De Feyter
- Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
27
|
Cowart A, Brük ML, Žoglo N, Roithmeyer H, Uudsemaa M, Trummal A, Selke K, Aav R, Kalenius E, Adamson J. Solution- and gas-phase study of binding of ammonium and bisammonium hydrocarbons to oxacalix[4]arene carboxylate. RSC Adv 2023; 13:1041-1048. [PMID: 36686943 PMCID: PMC9812018 DOI: 10.1039/d2ra07614d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Oxacalixarenes represent a distinctive class of macrocyclic compounds, which are closely related to the parent calixarene family, offering binding motifs characteristic of calixarenes and crown ethers. Nevertheless, they still lack extensive characterization in terms of molecular recognition properties and the subsequent practical applicability. We present here the results of binding studies of an oxacalix[4]arene carboxylate macrocycle toward a variety of organic ammonium cationic species. Our results show that the substituents attached to the guest ammonium compound largely influence the binding strengths of the host. Furthermore, we show that the characteristic binding pattern changes upon transition from the gas phase to solution in terms of the governing intermolecular interactions. We identify the key factors affecting host-guest binding efficacy and suggest rules for the important molecular structural motifs of the interacting parts of ammonium guest species and the macrocycle to facilitate sensing of ammonium cations.
Collapse
Affiliation(s)
- Anna Cowart
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia,Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Mari-Liis Brük
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia,Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Nikita Žoglo
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Helena Roithmeyer
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Merle Uudsemaa
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Aleksander Trummal
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Kaspar Selke
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| | - Riina Aav
- Department of Chemistry and Biotechnology, Tallinn University of TechnologyAkadeemia Tee 1512618 TallinnEstonia
| | - Elina Kalenius
- Department of Chemistry, NanoScience Center, University of JyväskyläSurvontie 9BFI-40014 JYFinland
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and BiophysicsAkadeemia Tee 2312618 TallinnEstonia
| |
Collapse
|
28
|
Acter T, Lee S, Uddin N, Mow KM, Kim S. Characterization of petroleum‐related natural organic matter by ultrahigh‐resolution mass spectrometry. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thamina Acter
- Department of Mathematical and Physical Sciences East West University Dhaka Bangladesh
| | - Seulgidaun Lee
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
| | - Nizam Uddin
- Department of Nutrition and Food Engineering, Faculty of Allied Health Science Daffodil International University Dhaka Bangladesh
| | - Kamarum Monira Mow
- Department of Computer Science and Engineering East West University Dhaka Bangladesh
| | - Sunghwan Kim
- Department of Chemistry Kyungpook National University Daegu Republic of Korea
- Mass Spectrometry Based Convergence Research Institute Kyungpook National University Daegu Republic of Korea
- Green‐Nano Materials Research Center, Kyungpook National University Daegu Republic of Korea
| |
Collapse
|
29
|
The increasing role of structural proteomics in cyanobacteria. Essays Biochem 2022; 67:269-282. [PMID: 36503929 PMCID: PMC10070481 DOI: 10.1042/ebc20220095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
Abstract
Abstract
Cyanobacteria, also known as blue–green algae, are ubiquitous organisms on the planet. They contain tremendous protein machineries that are of interest to the biotechnology industry and beyond. Recently, the number of annotated cyanobacterial genomes has expanded, enabling structural studies on known gene-coded proteins to accelerate. This review focuses on the advances in mass spectrometry (MS) that have enabled structural proteomics studies to be performed on the proteins and protein complexes within cyanobacteria. The review also showcases examples whereby MS has revealed critical mechanistic information behind how these remarkable machines within cyanobacteria function.
Collapse
|
30
|
Mollar-Cuni A, Ibáñez-Ibáñez L, Guisado-Barrios G, Mata JA, Vicent C. Introducing Ion Mobility Mass Spectrometry to Identify Site-Selective C-H Bond Activation in N-Heterocyclic Carbene Metal Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2291-2300. [PMID: 36374280 DOI: 10.1021/jasms.2c00257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The activation of C-H bonds in a selective manner still constitutes a major challenge from a synthetic point of view; thus, it remains an active area of fundamental and applied research. Herein, we introduce ion mobility spectrometry mass spectrometry-based (IM-MS) approaches to uncover site-selective C-H bond activation in a series of metal complexes of general formula [(NHC)LMCl]+ (NHC = N-heterocyclic carbene; L = pentamethylcyclopentadiene (Cp*) or p-cymene; M = Pd, Ru, and Ir). The C-H bond activation at the N-bound groups of the NHC ligand is promoted upon collision induced dissociation (CID). The identification of the resulting [(NHC-H)LM]+ isomers relies on the distinctive topology that such cyclometalated isomers adopt upon site-selective C-H bond activation. Such topological differences can be reliably evidenced as different mobility peaks in their respective CID-IM mass spectra. Alternative isomers are also identified via dehydrogenation at the Cp*/p-cymene (L) ligands to afford [(NHC)(L-H)M]+. The fragmentation of the ion mobility-resolved peaks is also investigated by CID-IM-CID. It enables the assignment of mobility peaks to the specific isomers formed from C(sp2)-H or C(sp3)-H bond activation and distinguishes them from the Cp*/p-cymene (L) dehydrogenation isomers. The conformational change of the NHC ligands upon C-H bond activation, concomitant with cyclometalation, is also discussed on the basis of the estimated collision cross section (CCS). A unique conformation change of the pyrene-tagged NHC members is identified that involves the reorientation of the NHC ring accompanied by a folding of the pyrene moiety.
Collapse
Affiliation(s)
- Andrés Mollar-Cuni
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Laura Ibáñez-Ibáñez
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Gregorio Guisado-Barrios
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, 50009Zaragoza, Spain
| | - Jose A Mata
- Institute of Advanced Materials (INAM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Jaume I, Avda. Sos Baynat s/n, 12071, Castellón, Spain
| | - Cristian Vicent
- Serveis Centrals d'Intrumentació Científica (SCIC). Universitat Jaume I, Avda. Sos Baynat s/n, 12071Castellón, Spain
| |
Collapse
|
31
|
Przybylski C, Bonnet V. Probing topology of supramolecular complexes between cyclodextrins and alkali metals by ion mobility-mass spectrometry. Carbohydr Polym 2022; 297:120019. [DOI: 10.1016/j.carbpol.2022.120019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022]
|
32
|
Pfrunder MC, Marshall DL, Poad BLJ, Stovell EG, Loomans BI, Blinco JP, Blanksby SJ, McMurtrie JC, Mullen KM. Exploring the Gas-Phase Formation and Chemical Reactivity of Highly Reduced M 8 L 6 Coordination Cages. Angew Chem Int Ed Engl 2022; 61:e202212710. [PMID: 36102176 PMCID: PMC9827999 DOI: 10.1002/anie.202212710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/12/2023]
Abstract
Coordination cages with well-defined cavities show great promise in the field of catalysis on account of their unique combination of molecular confinement effects and transition-metal redox chemistry. Here, three coordination cages are reduced from their native 16+ oxidation state to the 2+ state in the gas phase without observable structural degradation. Using this method, the reaction rate constants for each reduction step were determined, with no noticeable differences arising following either the incorporation of a C60 -fullerene guest or alteration of the cage chemical structure. The reactivity of highly reduced cage species toward molecular oxygen is "switched-on" after a threshold number of reduction steps, which is influenced by guest molecules and the structure of cage components. These new experimental approaches provide a unique window to explore the chemistry of highly-reduced cage species that can be modulated by altering their structures and encapsulated guest species.
Collapse
Affiliation(s)
- Michael C. Pfrunder
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - David L. Marshall
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Berwyck L. J. Poad
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Ethan G. Stovell
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Benjamin I. Loomans
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - James P. Blinco
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Stephen J. Blanksby
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
- Central Analytical Research Facility (CARF)Queensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - John C. McMurtrie
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| | - Kathleen M. Mullen
- Centre for Materials Science (CFMS)Queensland University of Technology (QUT)2 George StreetBrisbaneQueensland4000Australia
- School of Chemistry and PhysicsQueensland University of Technology2 George StreetBrisbaneQueensland4000Australia
| |
Collapse
|
33
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
34
|
Zoumpoulaki M, Schanne G, Delsuc N, Preud'homme H, Quévrain E, Eskenazi N, Gazzah G, Guillot R, Seksik P, Vinh J, Lobinski R, Policar C. Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022; 61:e202203066. [DOI: 10.1002/anie.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Martha Zoumpoulaki
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Gabrielle Schanne
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
| | - Nicolas Delsuc
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Elodie Quévrain
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | | | - Géraldine Gazzah
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Regis Guillot
- ICMMO UMR CNRS 8182 Université Paris-Saclay 91405 Orsay France
| | - Philippe Seksik
- Centre de Recherche de Saint-Antoine, INSERM, UMRS 938 Sorbonne University, INSERM 75012 Paris France
- Gastroenterology Department Saint-Antoine Hospital Sorbonne Université, APHP Paris France
| | - Joelle Vinh
- SMBP ESPCI Paris PSL University, UMR 8249 CNRS France
| | - Ryszard Lobinski
- Universite de Pau, CNRS, E2S, IPREM-UMR5254, Hélioparc 64053 Pau France
- Chair of Analytical Chemistry Warsaw University of Technology, Noakowskiego 3 00-664 Warsaw Poland
| | - Clotilde Policar
- Laboratoire des biomolécules (LBM) Département de chimie École normale supérieure PSL University, Sorbonne Université, CNRS 75005 Paris France
| |
Collapse
|
35
|
Heravi T, Arslanian AJ, Johnson SD, Dearden DV. Ion Mobility and Fourier Transform Ion Cyclotron Resonance Collision Cross Section Techniques Yield Long-Range and Hard-Sphere Results, Respectively. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1644-1652. [PMID: 35960880 DOI: 10.1021/jasms.2c00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We determined collision cross section (CCS) values for singly and doubly charged cucurbit[n]uril (n = 5-7), decamethylcucurbit[5]uril, and cyclohexanocucurbit[5]uril complexes of alkali metal cations (Li+-Cs+). These hosts are relatively rigid. CCS values calculated using the projection approximation (PA) for computationally modeled structures of a given host are nearly identical for +1 and +2 complexes, with weak metal ion dependence, whereas trajectory method (TM) calculations of CCS for the same structures consistently yield values 7-10% larger for the +2 complexes than for the corresponding +1 complexes and little metal ion dependence. Experimentally, we measured relative CCS values in SF6 for pairs of +1 and +2 complexes of the cucurbituril hosts using the cross-sectional areas by Fourier transform ion cyclotron resonance ("CRAFTI") method. At center-of-mass collision energies <∼30 eV, CRAFTI CCS values are sensitive to the relative binding energies in the +1 and +2 complexes, but at collision energies >∼40 eV (sufficient that ion decoherence occurs on essentially every collision) that dependence is not evident. Consistent with the PA calculations, these experiments found that the +2 complex ions have CCS values ranging between 94 and 105% of those of their +1 counterparts (increasing with metal ion size). In contrast, but consistent with the TM CCS calculations, ion mobility measurements of the same complexes at close to thermal energies in much less polarizable N2 find the CCS of +2 complexes to be in all cases 9-12% larger than those of the corresponding +1 complexes, with little metal ion dependence.
Collapse
Affiliation(s)
- Tina Heravi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Spencer D Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
36
|
Velosa DC, Dunham AJ, Rivera ME, Neal SP, Chouinard CD. Improved Ion Mobility Separation and Structural Characterization of Steroids using Derivatization Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1761-1771. [PMID: 35914213 DOI: 10.1021/jasms.2c00164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard's Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard's Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.
Collapse
Affiliation(s)
- Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Andrew J Dunham
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Marcus E Rivera
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| |
Collapse
|
37
|
Deciphering the Metal Speciation in Low‐Molecular‐Weight Complexes by IMS‐MS: Application to the Detection of Manganese Superoxide Dismutase Mimics in Cell Lysates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Rothschild DA, Kopcha WP, Tran A, Zhang J, Lipke MC. Gram-scale synthesis of a covalent nanocage that preserves the redox properties of encapsulated fullerenes. Chem Sci 2022; 13:5325-5332. [PMID: 35655559 PMCID: PMC9093146 DOI: 10.1039/d2sc00445c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Discrete nanocages provide a way to solubilize, separate, and tune the properties of fullerenes, but these 3D receptors cannot usually be synthesized easily from inexpensive starting materials, limiting their utility. Herein, we describe the first fullerene-binding nanocage (Cage4+) that can be made efficiently on a gram scale. Cage4+ was prepared in up to 57% yield by the formation of pyridinium linkages between complemantary porphyrin components that are themselves readily accessible. Cage4+ binds C60 and C70 with large association constants (>108 M−1), thereby solubilizing these fullerenes in polar solvents. Fullerene association and redox-properties were subsequently investigated across multiple charge states of the host-guest complexes. Remarkably, neutral and singly reduced fullerenes bind with similar strengths, leaving their 0/1− redox couples minimally perturbed and fully reversible, whereas other hosts substantially alter the redox properties of fullerenes. Thus, C60@Cage4+ and C70@Cage4+ may be useful as solubilized fullerene derivatives that preserve the inherent electron-accepting and electron-transfer capabilities of the fullerenes. Fulleride dianions were also found to bind strongly in Cage4+, while further reduction is centered on the host, leading to lowered association of the fulleride guest in the case of C602−. This report describes the first gram-scale synthesis of a nanocage that can host fullerenes (C60 and C70). The redox properties of the fullerenes are preserved in this host, enabling characterization of complexes with fulleride anions and dianions.![]()
Collapse
Affiliation(s)
- Daniel A Rothschild
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - William P Kopcha
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Aaron Tran
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Jianyuan Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| | - Mark C Lipke
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey 123 Bevier Rd Piscataway NJ 08854 USA
| |
Collapse
|
39
|
Hasan MM, Islam T, Shah SS, Awal A, Aziz MA, Ahammad AJS. Recent Advances in Carbon and Metal Based Supramolecular Technology for Supercapacitor Applications. CHEM REC 2022; 22:e202200041. [DOI: 10.1002/tcr.202200041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Md. Mahedi Hasan
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
- Present Address: Environmental Science & Engineering Program University of Texas at El Paso El Paso Texas 79968 United States
| | - Tamanna Islam
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
- Present Address: Environmental Science & Engineering Program University of Texas at El Paso El Paso Texas 79968 United States
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
- Physics Department King Fahd University of Petroleum & Minerals, KFUPM Box 5047 Dhahran 31261 Saudi Arabia
| | - Abdul Awal
- Department of Chemistry Jagannath University Dhaka 1100 Bangladesh
| | - Md. Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
- K.A.CARE Energy Research & Innovation Center King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | | |
Collapse
|
40
|
McConnell AJ. Metallosupramolecular cages: from design principles and characterisation techniques to applications. Chem Soc Rev 2022; 51:2957-2971. [PMID: 35356956 DOI: 10.1039/d1cs01143j] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although metallosupramolecular cages are self-assembled from seemingly simple building blocks, metal ions and organic ligands, architectures of increasingly large size and complexity are accessible and exploited in applications from catalysis to the stabilisation of reactive species. This Tutorial Review gives an introduction to the principles for designing metallosupramolecular cages and highlights advances in the design of large and lower symmetry cages. The characterisation and identification of cages relies on a number of complementary techniques with NMR spectroscopy, mass spectrometry, X-ray crystallography and computational methods being the focus of this review. Finally, examples of cages are discussed where these design principles and characterisation techniques are put into practice for an application or function of the cage.
Collapse
Affiliation(s)
- Anna J McConnell
- Otto Diels Institute of Organic Chemistry, Christian-Albrechts-Universität zu Kiel, Kiel 24098, Germany.
| |
Collapse
|
41
|
Kim S, Kim D, Jung MJ, Kim S. Analysis of environmental organic matters by Ultrahigh-Resolution mass spectrometry-A review on the development of analytical methods. MASS SPECTROMETRY REVIEWS 2022; 41:352-369. [PMID: 33491249 DOI: 10.1002/mas.21684] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 06/12/2023]
Abstract
Owing to the increasing environmental and climate changes globally, there is an increasing interest in the molecular-level understanding of environmental organic compound mixtures, that is, the pursuit of complete and detailed knowledge of the chemical compositions and related chemical reactions. Environmental organic molecule mixtures, including those in air, soil, rivers, and oceans, have extremely complex and heterogeneous chemical compositions. For their analyses, ultrahigh-resolution and sub-ppb level mass accuracy, achievable using Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS), are important. FT-ICR MS has been successfully used to analyze complex environmental organic molecule mixtures such as natural, soil, particulate, and dissolved organic matter. Despite its success, many limitations still need to be overcome. Sample preparation, ionization, structural identification, chromatographic separation, and data interpretation are some key areas that have been the focus of numerous studies. This review describes key developments in analytical techniques in these areas to aid researchers seeking to start or continue investigations for the molecular-level understanding of environmental organic compound mixtures.
Collapse
Affiliation(s)
- Sungjune Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Donghwi Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje, Korea
| | - Maeng-Joon Jung
- Department of Chemistry, Kyungpook National University, Daegu, Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu, Korea
- Mass Spectrometry Convergence Research Center and Green-Nano Materials Research Center, Daegu, Korea
| |
Collapse
|
42
|
|
43
|
Rancan M, Rando M, Bosi L, Carlotto A, Seraglia R, Tessarolo J, Carlotto S, Clever GH, Armelao L. Dynamic lanthanides exchange between quadruple-stranded cages: effect of ionic radius differences on kinetics and thermodynamics . Inorg Chem Front 2022. [DOI: 10.1039/d2qi00641c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven different [Ln2L4]2− (Ln = La, Nd, Eu, Tb, Er, Tm and Lu) lanthanide-based quadruple-stranded helicates are here reported and transmetalation among pre-assembled cages was studied. Combining two homonuclear helicates...
Collapse
|
44
|
Taipale E, Ward JS, Fiorini G, Stares DL, Schalley CA, Rissanen K. Dimeric iodine( i) and silver( i) cages from tripodal N-donor ligands via the [N–Ag–N] + to [N–I–N] + cation exchange reaction. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01532j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complexation of tripodal ligands with silver(I) salts generated M3L2 cage complexes that encapsulated anions within their cavities. Subsequent [N–Ag–N]+ to [N–I–N]+ cation exchange with I2 resulted in the corresponding halogen-bonded iodine(I) cages.
Collapse
Affiliation(s)
- Essi Taipale
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland
| | - Jas S. Ward
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland
| | - Giorgia Fiorini
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland
| | - Daniel L. Stares
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Christoph A. Schalley
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Arnimallee 20, 14195 Berlin, Germany
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, P.O. Box 35, Survontie 9B, 40014 Jyväskylä, Finland
| |
Collapse
|
45
|
|
46
|
Geue N, Winpenny REP, Barran PE. Structural characterisation methods for supramolecular chemistry that go beyond crystallography. Chem Soc Rev 2021; 51:8-27. [PMID: 34817479 DOI: 10.1039/d0cs01550d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Supramolecular chemistry has grown rapidly over the past three decades, yet synthetic supramolecular chemists still face several challenges when it comes to characterising their compounds. In this review, we present an introduction to structural characterisation techniques commonly used for non-crystalline supramolecular molecules, e.g. nuclear magnetic and electron paramagnetic resonance spectroscopy (NMR and EPR), mass spectrometry (MS), ion mobility mass spectrometry (IM-MS), small-angle neutron and X-ray scattering (SANS and SAXS) as well as cryogenic transmission electron microscopy (cryo-TEM). We provide an overview of their fundamental concepts based on case studies from different fields of supramolecular chemistry, e.g. interlocked structures, molecular self-assembly and host-guest chemistry, while focussing on particular strengths and weaknesses of the discussed methods. Additionally, three multi-technique case studies are examined in detail to illustrate the benefits of using complementary techniques simultaneously.
Collapse
Affiliation(s)
- Niklas Geue
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Richard E P Winpenny
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
47
|
Inomata Y, Sawada T, Fujita M. Metal-Peptide Nonafoil Knots and Decafoil Supercoils. J Am Chem Soc 2021; 143:16734-16739. [PMID: 34601872 DOI: 10.1021/jacs.1c08094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite the frequent occurrence of knotted frameworks in protein structures, the latent potential of peptide strands to form entangled structures is rarely discussed in peptide chemistry. Here we report the construction of highly entangled molecular topologies from Ag(I) ions and tripeptide ligands. The efficient entanglement of metal-peptide strands and the wide scope for design of the amino acid side chains in these ligands enabled the construction of metal-peptide 91 torus knots and 1012 torus links. Moreover, steric control of the peptide side chain induced ring opening and twisting of the torus framework, which resulted in an infinite toroidal supercoil nanostructure.
Collapse
Affiliation(s)
- Yuuki Inomata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,JST PRESTO, https://www.jst.go.jp/kisoken/presto/en/index.html
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Division of Advanced Molecular Science, Institute for Molecular Science (IMS), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
48
|
Hartner NT, Wink K, Raddatz CR, Thoben C, Schirmer M, Zimmermann S, Belder D. Coupling Droplet Microfluidics with Ion Mobility Spectrometry for Monitoring Chemical Conversions at Nanoliter Scale. Anal Chem 2021; 93:13615-13623. [PMID: 34592821 DOI: 10.1021/acs.analchem.1c02883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce the coupling of droplet microfluidics and ion mobility spectrometry (IMS) to address the challenges of label-free and chemical-specific detection of compounds in individual droplets. In analogy to the established use of mass spectrometry, droplet-IMS coupling can be also achieved via electrospray ionization but with significantly less instrumental effort. Because IMS instruments do not require high-vacuum systems, they are very compact, cost-effective, and robust, making them an ideal candidate as a chemical-specific end-of-line detector for segmented flow experiments. Herein, we demonstrate the successful coupling of droplet microfluidics with a custom-built high-resolution drift tube IMS system for monitoring chemical reactions in nL-sized droplets in an oil phase. The analytes contained in each droplet were assigned according to their characteristic ion mobility with limit of detections down to 200 nM to 1 μM and droplet frequencies ranging from 0.1 to 0.5 Hz. Using a custom sheath flow electrospray interface, we have further achieved the chemical-specific monitoring of a biochemical transformation catalyzed by a few hundred yeast cells, at single droplet level.
Collapse
Affiliation(s)
- Nora T Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Konstantin Wink
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Christian Thoben
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Martin Schirmer
- Helmholtz Centre for Environmental Research - UFZ Leipzig, Leipzig 04318, Germany
| | - Stefan Zimmermann
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
49
|
Vicent C, Valls A, Escorihuela J, Altava B, Luis S. Unveiling anion-induced folding in tripodal imidazolium receptors by ion-mobility mass spectrometry. Chem Commun (Camb) 2021; 57:8616-8619. [PMID: 34369516 DOI: 10.1039/d1cc02818a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The anion-induced folding of tripodal imidazolium receptors has been investigated by NMR spectroscopy, electrospray ionization ion mobility mass spectrometry and DFT calculations. Such folding can be switched by anion release upon collision induced dissociation.
Collapse
Affiliation(s)
- Cristian Vicent
- Servei Central d'Instrumentació Científica (SCIC), Universitat Jaume I, Avda. Sos Baynat s/n, 12006 Castellón, Spain.
| | | | | | | | | |
Collapse
|
50
|
Britton E, Ansell RJ, Howard MJ, Hardie MJ. Self-Assembly and Host-Guest Interactions of Pd 3L 2 Metallo-cryptophanes with Photoisomerizable Ligands. Inorg Chem 2021; 60:12912-12923. [PMID: 34370947 DOI: 10.1021/acs.inorgchem.1c01297] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
New photoswitchable pyridyl-azo-phenyl-decorated tripodal host ligands (Laz) that belong to the cyclotriveratrylene family have been synthesized, and their photoswitching behavior and crystal structures determined. The latter includes a remarkable 7-fold Borromean-weave entanglement of π-π stacked layers. Trigonal bipyramidal {[Pd(en)]3(Laz)2}6+ metallo-cryptophanes (en = ethylenediamine) were formed from these and a previously known pyridyl-azo-phenyl-decorated tripodal host ligand. These coordination cages dissociate at low concentrations and are less robust to photoswitching of the Laz ligands than were previously reported Ir(III)-linked metallo-cryptophanes with similar ligands, reflecting the greater lability of the Pd-N bonds. The {[Pd(en)]3(Laz)2}6+ cages all act as hosts, binding octyl sulfate anions, or N-[2-(dimethylamino)ethyl]-1,8-naphthalimide in a dimethyl sulfoxide solution.
Collapse
Affiliation(s)
- Edward Britton
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Richard J Ansell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Mark J Howard
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Michaele J Hardie
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| |
Collapse
|