1
|
Zhang Y, Wang A, Zhao W, Qin J, Zhang Y, Liu B, Yao C, Long J, Yuan M, Yan D. Microbial succinate promotes the response to metformin by upregulating secretory immunoglobulin a in intestinal immunity. Gut Microbes 2025; 17:2450871. [PMID: 39812329 PMCID: PMC11740685 DOI: 10.1080/19490976.2025.2450871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin. The abundance of Bacteroides thetaiotaomicron, considered a representative differential bacterium of metformin responsiveness, and the level of secretory immunoglobulin A (SIgA) in intestinal immunity increased significantly in responder recipient mice following metformin treatment. In contrast, no significant alterations in B. thetaiotaomicron and SIgA were observed in non-responder recipient mice. The study of IgA-/- mice confirmed that downregulated expression or deficiency of SIgA resulted in non-response to metformin, meaning that metformin was unable to improve dysfunctional glucose metabolism and reduce intestinal and adipose tissue inflammation, ultimately leading to systemic insulin resistance. Furthermore, supplementation with succinate, a microbial product of B. thetaiotaomicron, potentially reversed the non-response to metformin by inducing the production of SIgA. In conclusion, we demonstrated that upregulated SIgA, which could be regulated by succinate, was functionally involved in metformin response through its influence on immune cell-mediated inflammation and insulin resistance. Conversely, an inability to regulate SIgA may result in a lack of response to metformin.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia’an Qin
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bing Liu
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengcheng Yao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingxia Yuan
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Mafi A, Mokhtari Z, Hosseini E, Alimohammadi M, Aarabi MH, Askari G. Effect of Saffron (Crocus sativus) Supplementation on Oxidative Stress, Inflammatory Indices, and Renal and Liver Function Parameters in Patients With Type 2 Diabetes Mellitus: A GRADE-Assessed Systematic Review and Meta-analysis of Randomized Clinical Trials. Nutr Rev 2025; 83:971-987. [PMID: 39657222 DOI: 10.1093/nutrit/nuae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
CONTEXT Clinical investigation has shown that the addition of saffron or crocin to standard antidiabetic medications improves a patient's metabolic profile, oxidative stress (OS), and inflammatory response. Despite a large number of studies examining the impact of saffron supplementation on OS, inflammation, and renal and liver function parameters, no systematic review or meta-analysis has been conducted to compile the outcomes in patients with type 2 diabetes mellitus (T2DM). OBJECTIVE The current systematic review and meta-analysis was performed to investigate the effect of saffron or crocin intake on OS, inflammation, and renal and liver function parameters in patients with T2DM. DATA SOURCES Online databases including PubMed, Scopus, ISI Web of Science, and Cochrane Library were searched up to December 2023. DATA EXTRACTION The mean differences and their respective SDs were extracted. Using a random-effects model, the pooled data were calculated as standardized mean difference (SMD) with 95% CI. DATA ANALYSIS 17 eligible randomized controlled trials were included in this meta-analysis. The pooled findings showed that saffron supplementation remarkably decreased the levels of tumor necrosis factor-α (SMD: -0.37; 95% CI: -0.69 to -0.05; I2 = 40.77%, P = .15), interleukin-6 (IL-6) (SMD: -0.38; 95% CI: -0.65 to -0.10; I2 = 0%, P = .68), and malondialdehyde (MDA) (SMD: -0.36; 95% CI: -0.65 to -0.07; I2= 20.51%, P = .02) compared with the control. In addition, based on subgroup analyses, taking ≥100 mg of saffron daily in individuals with T2DM reduced the serum levels of IL-6 (SMD: -0.50; 95% CI: -0.90 to -0.10; I2 = 0%, P = .50) and MDA (SMD: -0.36; 95% CI: -0.68 to -0.03; I2 = 0, P = .97). Furthermore, the level of alanine transaminase was decreased (SMD: -0.43; 95% CI: -0.73 to -0.12; I2 = 0, P = .66) with a treatment period of <60 days of saffron or crocin supplementation. CONCLUSION Larger studies with more follow-up and higher doses of both saffron and crocin are needed in order to understand the efficacy and safety of these herbs for long-term use as routine therapies. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42023458119.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Zeinab Mokhtari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Elham Hosseini
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81745-151, Iran
| |
Collapse
|
3
|
Li HL, Dong LP, Wei HL, Li H, Tian M, Dong JW. Elevated neutrophil-monocyte-to-lymphocyte ratio increases risk of adverse outcomes in patients with chronic kidney disease and type 2 diabetes. Eur J Med Res 2025; 30:436. [PMID: 40450343 DOI: 10.1186/s40001-025-02671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 05/08/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND The relationship between the neutrophil-monocyte-to-lymphocyte ratio (NMLR) and adverse outcomes in patients with chronic kidney disease (CKD) and type 2 diabetes remains unclear. This study explored the association between NMLR, adverse cardiovascular events, and CKD progression. METHODS This single-center retrospective study included patients with CKD and type 2 diabetes between November 2016 and December 2023. Patients were divided into tertiles according to NMLR values. The primary outcome was major adverse cardiovascular events (MACEs), while the secondary outcome was CKD progression. Restricted cubic splines (RCS) were used to describe the association between elevated NMLR and the risk of adverse outcomes. Cox proportional hazards regression models were used to identify risk factors contributing to poor prognosis. Nomograms were developed to predict event-free survival, with their performance validated using the area under the curve (AUC). RESULTS A total of 586 patients were included in this study. Over a median follow-up period of 23 months, at least one adverse event occurred in 225 patients (38.4%). The risk of MACEs, CKD progression, or both gradually increased across the NMLR tertiles (21.9% vs. 22.1% vs. 35.4%, p for trend = 0.001; 18.4% vs. 23.6% vs. 30.8%, p for trend = 0.004; and 31.6% vs. 35.9% vs. 47.7%, p for trend = 0.001, respectively). RCS showed an elevated risk of MACEs, CKD progression, or both with increasing NMLR (HR = 1.43, 95% CI [1.20, 1.70]; HR = 1.41, 95% CI [1.23, 1.61]; HR = 1.38, 95% CI [1.23, 1.55], respectively; all p < 0.001). CONCLUSIONS Increased NMLR was positively correlated with a higher risk of adverse cardiovascular events and CKD progression in patients with CKD and type 2 diabetes, and routine assessment of NMLR, particularly in those above 1.6, may aid in effective risk stratification and early intervention.
Collapse
Affiliation(s)
- Hong-Lian Li
- Department of Nephrology, Wuhan Fourth Hospital, Wuhan, 430030, Hubei, China
- Department of Nephrology, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- Wuhan Clinical Research Center for Metabolic Chronic Kidney Disease, Wuhan, 430030, Hubei, China
| | - Li-Ping Dong
- Department of Nephrology, Wuhan Fourth Hospital, Wuhan, 430030, Hubei, China
- Wuhan Clinical Research Center for Metabolic Chronic Kidney Disease, Wuhan, 430030, Hubei, China
- Department of Clinical Nutrition, Wuhan Fourth Hospital, Wuhan, 430030, Hubei, China
| | - Hong-Lan Wei
- Department of Nephrology, Wuhan Fourth Hospital, Wuhan, 430030, Hubei, China
- Wuhan Clinical Research Center for Metabolic Chronic Kidney Disease, Wuhan, 430030, Hubei, China
| | - Hua Li
- Department of Nephrology, Wuhan Fourth Hospital, Wuhan, 430030, Hubei, China
- Wuhan Clinical Research Center for Metabolic Chronic Kidney Disease, Wuhan, 430030, Hubei, China
| | - Ming Tian
- Department of Nephrology, Wuhan Fourth Hospital, Wuhan, 430030, Hubei, China.
- Wuhan Clinical Research Center for Metabolic Chronic Kidney Disease, Wuhan, 430030, Hubei, China.
| | - Jun-Wu Dong
- Department of Nephrology, Wuhan Fourth Hospital, Wuhan, 430030, Hubei, China.
- Wuhan Clinical Research Center for Metabolic Chronic Kidney Disease, Wuhan, 430030, Hubei, China.
| |
Collapse
|
4
|
Gong Y, Tian X, Ma X, Xing J, Ji Z, Gao X, Chen Z, Hu F, Yin D, Li F, Sheng C, Liu Y, Shi S. New insights into the pharmacological mechanisms of Jinqi Jiangtang Tablets in the treatment of type 2 diabetes mellitus: A multi-omics approach combined with experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2025:120020. [PMID: 40449695 DOI: 10.1016/j.jep.2025.120020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 05/20/2025] [Accepted: 05/21/2025] [Indexed: 06/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder characterized by impaired glucose homeostasis and insulin dysfunction. Despite ongoing efforts, the management of T2DM remains challenging due to its complex pathogenesis and the limited effectiveness of current treatments. Jinqi Jiangtang Tablets (JQJTT), a well-established Traditional Chinese Medicine (TCM) formula, have shown promising clinical benefits in regulating blood glucose levels and improving metabolic health in T2DM patients. However, the specific pharmacological mechanisms behind its efficacy are still not fully understood, prompting the need for deeper exploration into its therapeutic actions. AIM OF THE STUDY This study aims to elucidate the pharmacologically active ingredients and mechanisms of JQJTT in T2DM using multi-omics methods combined with experimental verification. MATERIALS AND METHODS Liquid chromatography-mass spectrometry (LC-MS) identified the chemical profile of JQJTT, and targets were screened via SwissTargetPrediction database. T2DM-related targets were acquired from GeneCards and Gene Expression Omnibus (GEO) databases. Therapeutic targets were ascertained by intersecting JQJTT and T2DM targets, followed by Protein-Protein Interaction (PPI) network analysis. GO and KEGG pathway enrichment was performed, and the compound-target-pathway network was built using Cytoscape. Mendelian randomization, single-sample Gene Set Enrichment Analysis (ssGSEA), and CIBERSORT analyses were executed to explore immune cell involvement. Single-cell RNA sequencing (scRNA-seq) identified affected cell types, while molecular docking and molecular dynamics (MD) simulation assessed compound-target affinities. Metabolomics and 16S rDNA sequencing analyzed JQJTT's effects on metabolites and gut microbiota. RESULTS LC-MS identified 161 compounds in JQJTT. Through network pharmacology, 6 core targets (AKT1, MMP9, HSP90AA1, CASP3, IL-6, PTGS2) were screened, and PI3K/AKT, NFκB, and lipid metabolism were pinpointed as key regulatory pathways. Mendelian randomization linked 39 immune cell types to T2DM, while ssGSEA and CIBERSORT suggested JQJTT potentially modulated the proportion of immune cells. scRNA-seq indicated JQJTT may affect macrophage polarization. Tangeritin, isorhamnetin, and kaempferol were determined as the main active compounds with glucose-lowering effects confirmed in vitro. In vivo experiments validated the molecular mechanisms of JQJTT against T2DM. Metabolomics unearthed 56 differentially abundant metabolites, primarily in linoleic acid, arachidonic acid, and pyruvaldehyde metabolisms. JQJTT also improved gut microbiota diversity in T2DM. CONCLUSION JQJTT treated T2DM through a multi-target, multi-pathway approach, including attenuating inflammation, reshaping macrophage polarization, enhancing insulin signaling, regulating metabolites, and restoring intestinal flora balance.
Collapse
Affiliation(s)
- Yining Gong
- Department of Clinical Medicine, Jining Medical University, Jining 272067, China.
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining 272000, China.
| | - Xiaoqing Ma
- Department of Endocrinology, Jining First People's Hospital, Jining 272000, China.
| | - Jin Xing
- Department of Clinical Medicine, Jining Medical University, Jining 272067, China.
| | - Zongwen Ji
- Department of Endocrinology, Jining First People's Hospital, Jining 272000, China.
| | - Xueying Gao
- Department of Endocrinology, Jining First People's Hospital, Jining 272000, China.
| | - Zhi Chen
- Department of Endocrinology, Jining First People's Hospital, Jining 272000, China.
| | - Fangzhi Hu
- Department of Endocrinology, Jining First People's Hospital, Jining 272000, China.
| | - Dandan Yin
- Department of Clinical Medicine, Jining Medical University, Jining 272067, China.
| | - Feng Li
- Department of Endocrinology, Jining First People's Hospital, Jining 272000, China.
| | - Can Sheng
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining 272000, China.
| | - Yaping Liu
- Department of Endocrinology, Jining First People's Hospital, Jining 272000, China.
| | - Shulong Shi
- Department of Endocrinology, Jining First People's Hospital, Jining 272000, China; Cisen Pharmaceutical Co., Ltd, Jining 272000, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Yu T, Shao DM, Lv T, Xiong YJ. Joint association of estimated glucose disposal rate and body mass index with new-onset stroke. Front Neurol 2025; 16:1529752. [PMID: 40417114 PMCID: PMC12098433 DOI: 10.3389/fneur.2025.1529752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/10/2025] [Indexed: 05/27/2025] Open
Abstract
Background Stroke is a major global health concern, and understanding its modifiable risk factors is critical for prevention. Body mass index (BMI) and estimated glucose disposal rate (eGDR), indicators of adiposity and insulin sensitivity, respectively, are independently associated with stroke risk. However, the combined effects of these factors remain underexplored. Methods This study utilized data from the China Health and Retirement Longitudinal Study (CHARLS), including 7,212 adults aged over 45 years. Cox proportional hazards models assessed the independent and joint associations of BMI and eGDR with new-onset stroke. Mediation analysis evaluated BMI's role in the eGDR-stroke relationship. Subgroup analyses by age, sex, and BMI categories were conducted. Results Over a 7-year follow-up, 587 participants (8.14%) experienced new-onset stroke. Higher BMI was positively associated with stroke incidence, while lower eGDR was linked to increased stroke risk. Participants with both obesity (BMI over 28 kg/m2) and lower eGDR faced the highest stroke risk (HR: 2.63; 95% CI: 1.78-3.89). Mediation analysis revealed that BMI significantly mediated 16.78% of the association between eGDR and new-onset stroke. Subgroup analyses showed consistent associations across age, sex, and BMI categories. Conclusion This study highlights the significant and interconnected roles of BMI and eGDR in new-onset stroke risk, with a compounding effect observed in individuals with obesity and low eGDR. Addressing both insulin resistance and adiposity through targeted interventions could effectively reduce stroke risk, particularly in high-risk populations.
Collapse
Affiliation(s)
- Ting Yu
- Department of Neurosurgery, Tiantai People's Hospital, Zhejiang, China
| | - Da-Ming Shao
- Department of Rheumatology, The University of Chicago Medical Center, Chicago, IL, United States
| | - Tian Lv
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Yu-Jun Xiong
- Department of Gastroenterology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Yu SX, Yu HD, Wang YF, Yao TF, Lv SZ, Wang YC, Li JQ, Liu WQ, Ding JY, Liu XZ, Zuo ZF, Liu WP. Th22 cells promote the transition from homeostatic to reactive microglia in diabetic encephalopathy. Acta Diabetol 2025; 62:633-650. [PMID: 39630234 PMCID: PMC12116999 DOI: 10.1007/s00592-024-02384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 09/28/2024] [Indexed: 05/28/2025]
Abstract
BACKGROUND Diabetic encephalopathy (DE) is one of the most serious complications of diabetes mellitus (DM), and its pathogenesis has not yet been clarified. Th22 cells are a newly discovered class of CD4+ T cells that play important roles in inflammatory, autoimmune and infectious diseases. However, it is unclear whether Th22 cells are involved in the pathogenesis of DE. METHODS We established a T2DM mouse model in vivo and cocultured Th22 cells with microglia under high glucose (HG) conditions in vitro. Cognitive dysfunction was evaluated using the Morris water maze (MWM) test; blood‒brain barrier (BBB) integrity was evaluated using the Evans blue (EB) extravasation assay; Th22 cells and IL-22 receptors were detected by immunofluorescence; and IL-1β, TNF-α, iNOS, CD86, Arg-1, and CD206 protein expression was measured by Western Blot (WB) analysis. RESULTS Th22 cells passed through the BBB into the hippocampus and secreted interleukin-22 (IL-22), and the mice subsequently exhibited decreased learning and memory abilities. In the DE model, IL-22 promoted the transformation of homeostatic microglia into reactive microglia as well as the inflammatory response. Additionally, coculture of Th22 cells with BV2 microglia cultured under HG conditions increased the production of proinflammatory cytokines, and the microglia showed reactive changes. Mechanistically, IL-22Rα1 acted as a ligand, and IL-22 bound to IL-22Rα1 on microglia to drive primary microglia-induced inflammatory responses. Interestingly, interleukin-22 binding protein (IL-22BP) directly binds to IL-22Rα1 on microglia to inhibit the proinflammatory effects of IL-22. CONCLUSION Th22 cells secrete IL-22 after passing through the BBB into the hippocampus and promote the transformation of homeostatic microglia into reactive microglia, which induces an inflammatory response, exacerbates learning and memory impairment and cognitive deficits, and contributes to and accelerates the development of DE.
Collapse
Affiliation(s)
- Sheng-Xue Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Hong Dan Yu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Yu-Fei Wang
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Tie-Feng Yao
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Song-Ze Lv
- Department of First Clinical College, Jinzhou Medical University, Jinzhou, China
| | - Yan-Chuan Wang
- Department of First Clinical College, Jinzhou Medical University, Jinzhou, China
| | - Jun-Qi Li
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
| | - Wen-Qiang Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Jia-Yuan Ding
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China
| | - Xue-Zheng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| | - Zhong-Fu Zuo
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, China.
| | - Wan-Peng Liu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
7
|
Biju KC, Torres Hernandez E, Stallings AM, Felix-Ortiz AC, Hebbale SK, Norton L, Mader MJ, Clark RA. Metabolic dysregulation and resistance to high-fat diet-induced weight gain in mice overexpressing human wild-type α-synuclein. NPJ Parkinsons Dis 2025; 11:90. [PMID: 40274795 PMCID: PMC12022322 DOI: 10.1038/s41531-025-00961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Unintentional weight loss is common among patients with Parkinson's disease (PD) and is associated with poor quality of life and accelerated disease progression. To explore how early α-synuclein pathology contributes to metabolic dysregulation leading to weight loss in PD, transgenic mice overexpressing human wild-type α-synuclein (α-Syn) and controls were fed a high-fat diet (HFD) chow for 4 months. Compared with controls on HFD, α-Syn mice on HFD exhibited a dramatically leaner phenotype, improved glucose tolerance, a major decrease in fat mass, an increase in energy expenditure, a decrease in insulin signaling in the olfactory bulb, aggravated olfactory and motor dysfunctions, and an increase in mortality. Our results show that high-fat diet in α-Syn mice provides a sensitive tool for assessing the underlying mechanism of metabolic dysfunction and its impact on weight loss and disease progression in PD. Moreover, a role is proposed for olfactory dysfunction in PD-related unintentional weight loss.
Collapse
Affiliation(s)
- K C Biju
- South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Enrique Torres Hernandez
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Alison Michelle Stallings
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ada C Felix-Ortiz
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Skanda K Hebbale
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Luke Norton
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michael J Mader
- South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Robert A Clark
- South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
8
|
Song M, Dai H, Zhou Q, Meng X. The immunology of diabetic cardiomyopathy. Front Endocrinol (Lausanne) 2025; 16:1542208. [PMID: 40260277 PMCID: PMC12009709 DOI: 10.3389/fendo.2025.1542208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Diabetic cardiomyopathy is a notable microvascular complication of diabetes, characterized primarily by myocardial fibrosis and functional abnormalities. Long-term hyperglycemia induces excessive activation and recruitment of immune cells and triggers the cascade of inflammatory responses, resulting in systemic and local cardiac inflammation. Emerging evidence highlights the significant roles of immunology in modulating the pathology of diabetic cardiomyopathy. As the primary effectors of inflammatory reactions, immune cells are consistently present in cardiac tissue and can be recruited under pathological hyperglycemia circumstances. A disproportionate favor to proinflammatory types of immune cells and the increased proinflammatory cytokine levels mediate fibroblast proliferation, phenotypic transformation, and collagen synthesis and ultimately rise to cardiac fibrosis and hypertrophy. Meanwhile, the severity of cardiac fibrosis is also strongly associated with the diverse phenotypes and phenotypic alterations of the immune cells, including macrophages, dendritic cells, mast cells, neutrophils, and natural killer cells in innate immunity and CD4+ T lymphocytes, CD8+ T lymphocytes, and B lymphocytes in adaptive immunity. In this review, we synthesized the current analysis of the critical role played by the immune system and its components in the progression of diabetic cardiomyopathy. Finally, we highlight preclinical and clinical immune targeting strategies and translational implications.
Collapse
Affiliation(s)
| | | | | | - Xiao Meng
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research of MOE, NHC, CAMS and Shandong Province, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Blüher M. An overview of obesity-related complications: The epidemiological evidence linking body weight and other markers of obesity to adverse health outcomes. Diabetes Obes Metab 2025; 27 Suppl 2:3-19. [PMID: 40069923 PMCID: PMC12000860 DOI: 10.1111/dom.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 04/17/2025]
Abstract
Obesity is a highly prevalent chronic multisystem disease associated with shortened life expectancy due to a number of adverse health outcomes. Epidemiological data link body weight and parameters of central fat distribution to an increasing risk for type 2 diabetes, hypertension, fatty liver diseases, cardiovascular diseases including myocardial infarction, heart failure, atrial fibrillation, stroke, obstructive sleep apnoea, osteoarthritis, mental disorders and some types of cancer. However, the individual risk to develop cardiometabolic and other obesity-related diseases cannot entirely be explained by increased fat mass. Rather than excess fat accumulation, dysfunction of adipose tissue may represent the mechanistic link between obesity and adverse health outcomes. There are people living with obesity who seem to be protected against the premature development of cardiometabolic diseases. On the other hand, people with normal weight may develop typical obesity diseases upon dysfunction of adipose tissue and predominantly visceral fat distribution. The mechanisms linking impaired function of adipose tissue in people with obesity include adipocyte hypertrophy, altered cellular composition, limited expandability of safe subcutaneous fat stores, ectopic fat deposition in visceral depots, the liver and other organs, hypoxia, a variety of stresses, inflammatory processes, and the release of pro-inflammatory, diabetogenic and atherogenic signals. Genetic and environmental factors might contribute either alone or via interaction with intrinsic biological factors to variation in adipose tissue function. There are still many open questions regarding the mechanisms of how increased body weight causes obesity-related disorders and whether these pathologies could be reversed. Evidence-based weight loss interventions using behaviour change, pharmacological or surgical approaches have clarified the beneficial effects of realistic and sustained weight loss on obesity-related complications as hard outcomes. This review focusses on recent advances in understanding epidemiological trends and mechanisms of obesity-related diseases. PLAIN LANGUAGE SUMMARY: Obesity is a chronic complex and progressive disease characterized by excessive fat deposition that may impair health and quality of life. Worldwide, the number of adults living with obesity has more than doubled since 1990. Obesity may lead to reduced life expectancy, because it increases the risk for type 2 diabetes, cardiovascular diseases (e.g., myocardial infarction, high blood pressure, stroke), fatty liver diseases, musculoskeletal diseases, chronic respiratory diseases, depression and certain types of cancer. However, not every person with obesity develops these diseases. For better prevention and treatment, it is important to understand the mechanisms linking high fat mass to obesity related diseases. It has become clear that fat mass alone cannot explain the higher risk of obesity complications. People with obesity can have either high or low risk of developing complications. Compared to people with a low risk for obesity complications those with a high risk to develop obesity related diseases are characterized by higher central fat deposition in the abdominal region, on average bigger fat cells, higher number of immune cells in adipose tissue and altered signals released from adipose tissue that may directly affect the brain, liver, vasculature and other organs. Both inherited and environment factors may cause these abnormalities of adipose tissue function. However, weight loss through behaviour changes (e.g., lower calorie intake, higher physical activity), medications or obesity surgery can improve health, quality of life and reduce the risk for obesity related diseases.
Collapse
Affiliation(s)
- Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI‐MAG) of the Helmholtz Zentrum MünchenUniversity of Leipzig and University Hospital LeipzigLeipzigGermany
- Medical Department III—Endocrinology, Nephrology, RheumatologyUniversity of Leipzig Medical CenterLeipzigGermany
| |
Collapse
|
10
|
Li Z, Song Y, Li Z, Liu S, Yi S, Zhang Z, Yu T, Li Y. Role of Protein Lysine Acetylation in the Pathogenesis and Treatment of Obesity and Metabolic Syndrome. Curr Obes Rep 2025; 14:24. [PMID: 40075037 PMCID: PMC11903573 DOI: 10.1007/s13679-025-00615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2025] [Indexed: 03/14/2025]
Abstract
PURPOSE OF REVIEW This review aimed to highlight the known role of histone deacetylases (HDACs) and lysine acetyltransferases (KATs) in individuals with obesity, better understand the role of HDACs and KATs enzymes in obesity and related metabolic disorders. RECENT FINDINGS Numerous cellular activities, including DNA replication, DNA repair, cell cycle regulation, RNA splicing, signal transmission, metabolic function, protein stability, transportation, and transcriptional regulation, are influenced by lysine acetylation. Protein lysine acetylation serves several purposes, which not only contribute to the development of metabolic disorders linked to obesity but also hold promise for therapeutic approaches. The current study demonstrates that HDACs and KATs control lysine acetylation. This review details the advancements made in the study of obesity, related metabolic diseases, and protein lysine acetylation. It contributes to our understanding of the function and mechanism of protein lysine acetylation in obesity and MS and offers a fresh method for treating these diseases.
Collapse
Affiliation(s)
- Zhaopeng Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Zhao Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Shuguang Liu
- Gastrointestinal Surgery Department, Dongda Hospital, Shanxian County, Shunshi East Road, Shanxian County, Heze City, Shandong Province, People's Republic of China
| | - Song Yi
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Zhuoli Zhang
- Radiology & BME University of California, Irvine Sprague Hall 222 839 Health Sciences Rd Irvine, Irvine, CA, 92617, USA
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
11
|
Radenkovic M, Arvastsson J, Sarmiento L, Cilio CM. Resident memory CD8(+) T cells dominate lymphoid immune cell population in human pancreatic islets in health and type 2 diabetes. BMJ Open Diabetes Res Care 2025; 13:e004559. [PMID: 40068923 PMCID: PMC11904352 DOI: 10.1136/bmjdrc-2024-004559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
INTRODUCTION In type 2 diabetes (T2D), beta cell failure is often associated with islet inflammation driven by the innate immune response, with macrophages playing a significant role. However, the composition and phenotype of lymphoid immune cells in the islets of individuals with T2D have not been extensively studied. This study aims to characterize and compare the presence, phenotype, and frequency of islet-associated lymphocytes-specifically T, B, and natural killer (NK) cells-in patients with T2D and non-diabetic organ donors. RESEARCH DESIGN AND METHODS Multicolor flow cytometry was employed to detect NK, B, and T cells in dissociated pancreatic islets from 13 T2D and 44 non-diabetic donors. The frequencies and phenotypes of T cell subsets were determined using markers for memory differentiation status and tissue-resident T cells. The frequencies of alpha and beta cells were assessed by flow cytometry, and the insulin secretion level was measured by ELISA. RESULTS In both T2D and non-diabetic islets, CD3(+) T cells were the predominant lymphocytes, mainly central and effector memory phenotypes, with a bias toward CD8(+) T cells expressing canonical residency markers (CD69 and CD103). The frequencies of CD19(+) B cells and CD3(-) CD16(+) CD56(+) NK cells were low in both groups. The proportions of these immune and beta cells were similar between T2D and non-diabetic donors. However, T2D donors had a higher proportion of glucagon-producing alpha cells and significantly reduced glucose-stimulated insulin secretion compared with non-diabetic individuals. CONCLUSIONS In T2D islets, resident CD8(+) T cells with a central memory phenotype dominate the lymphoid immune cell population, similar to non-diabetic donors. These findings provide the first insights into the memory T cell composition in human pancreatic islets in T2D, suggesting that the diabetic condition does not significantly alter the lymphoid landscape of pancreatic islets.
Collapse
Affiliation(s)
- Miljana Radenkovic
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Jeanette Arvastsson
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Luis Sarmiento
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| | - Corrado M Cilio
- Department of Clinical Sciences, Lund University Faculty of Medicine, Lund, Sweden
| |
Collapse
|
12
|
Rivera-Alvarez I, Vázquez-Lizárraga R, Mendoza-Viveros L, Sotelo-Rivera I, Viveros-Ruiz TL, Morales-Maza J, Orozco L, Romano MC, Noriega LG, Tovar AR, Aguilar-Arnal L, Cruz-Bautista I, Aguilar-Salinas C, Orozco-Solis R. Transcriptional dynamics in type 2 diabetes progression is linked with circadian, thermogenic, and cellular stress in human adipose tissue. Commun Biol 2025; 8:398. [PMID: 40057615 PMCID: PMC11890630 DOI: 10.1038/s42003-025-07709-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/10/2025] [Indexed: 04/03/2025] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased significantly over the past three decades, with an estimated 30-40% of cases remaining undiagnosed. Brown and beige adipose tissues are known for their remarkable catabolic capacity, and their ability to diminish blood glucose plasma concentration. Beige adipose tissue can be differentiated from adipose-derived stem cells or through transdifferentiation from white adipocytes. However, the impact of T2D progression on beige adipocytes' functional capacity remains unclear. Transcriptomic profiling of subcutaneous adipose tissue biopsies from healthy normal-weight, obese, prediabetic obese, and obese subjects diagnosed with T2D, reveals a progressive alteration in cellular processes associated with catabolic metabolism, circadian rhythms, thermogenesis-related signaling pathways, cellular stress, and inflammation. MAX is a potential transcription factor that links inflammation with the circadian clock and thermogenesis during the progression of T2D. This study unveils an unrecognized transcriptional circuit that increasingly disrupts subcutaneous adipose tissue oxidative capacity during the progression of T2D. These findings could open new research venues for developing chrono-pharmaceutical strategies to treat and prevent T2D.
Collapse
Affiliation(s)
| | - Rosa Vázquez-Lizárraga
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| | - Lucía Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosi, S.L.P., México
| | | | - Tannia L Viveros-Ruiz
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Jesús Morales-Maza
- Departamento de Cirugía Endocrina, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Orozco
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
| | - Marta C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados (CINVESTAV), México City, México
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Lorena Aguilar-Arnal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), México City, México
| | - Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
| | - Carlos Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), México City, México
- Escuela de Medicina y Ciencias de la Salud, Tecnológico de Monterrey, México City, México
| | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México.
- Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), México City, México.
| |
Collapse
|
13
|
Ghazzawi H, Alenezi A, Souraya S, Alhaj O, Trabelsi K, Amawi A, Helmy M, Saif Z, Robinson BBE, Jahrami H. The arabic version of the fat phobia scale-short form: reliability and structural validity. Eat Weight Disord 2025; 30:18. [PMID: 39992541 PMCID: PMC11850402 DOI: 10.1007/s40519-025-01727-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/03/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Weight bias, often known as fat phobia or weight stigma, refers to unfavorable attitudes and stereotypes that are associated with, and applied to, larger bodies. Fat phobia can include an unreasonable and abnormal dread of being overweight or being associated with obese people. Currently, there is no validated tool available to measure fat phobia in Arabic. Measuring fat phobia in Arabic-speaking populations is crucial, because cultural attitudes toward body weight can be quite negative and discriminatory; these negative attitudes can negatively impact mental health. The current study aimed to adapt, translate, and assess the structural validity of the Fat Phobia Scale-Short Form (F-Scale 14) in Arabic. METHODS The gold standard approach to translation was used. Forward translation involved translation from the English language to the Arabic language by independent translators. Subsequently, a back-translation review was performed on the translated Arabic version for comparison with the original language. A cross-sectional study was conducted online that included 1246 participants from 22 Arabic countries, of whom 74% were female, 66% single, 83% university graduates, with a mean age of 35 ± 6 years. RESULTS The F-Scale 14 demonstrated good reliability in the Arabic language, with a Cronbach's α of 0.82 (95% CI 0.80-0.83), comparable to the original scale. The test-retest reliability of the scale was 0.92 (95% CI 0.90-0.94). According to the fit indices, the F-Scale 14 demonstrated a satisfactory level of structural validity in Arab cultures. Fit indices are statistical measures used in confirmatory factor analysis (CFA) to assess how well a proposed model fits the observed data. The scale showed a small improvement in factorial structure after the removal of some items. The two items removed were self-indulgent versus self-sacrificing and disliking food versus likes food. The correlation between F-Scale 14 and the figure rating scale was r = 0.76 (p < 0.001), suggesting adequate convergent validity. CONCLUSIONS The F-Scale 14 is a crucial indicator of attitudes and opinions concerning obese or overweight individuals. Based on increased internal consistency reliability and the problematic cultural relevance of two items, we recommend adopting a 12-item version of the scale for better cultural relevance in Arabic populations. It is anticipated that the Arabic F-Scale-12 will be highly useful for research and clinical purposes. Future research should test and adapt the Fat Phobia Scale for diverse Arabic populations to ensure its cultural relevance. Exploring its application in clinical settings will enhance our understanding of weight stigma and inform targeted interventions that promote body positivity. By addressing these areas, we can develop effective strategies to foster healthier attitudes toward body image in Arabic communities. LEVEL V Evidence obtained from a cross-sectional descriptive study.
Collapse
Affiliation(s)
- Hadeel Ghazzawi
- Department Nutrition and Food Technology, The University of Jordan, Amman, Jordan
| | - Ahmad Alenezi
- Ministry of Health, Kuwait City, Kuwait
- Department of Medicine, McGill University, Montreal, QC, Canada
| | - Sally Souraya
- Associate at Implemental Worldwide C.I.C., London, UK
| | - Omar Alhaj
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Khaled Trabelsi
- Research Laboratory: Education, Motricity, Sport and Health (EM2S), LR15JS01, High Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia
- Department of Movement Sciences and Sports Training, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Adam Amawi
- Department of Movement Sciences and Sports Training, School of Sport Science, The University of Jordan, Amman, Jordan
| | - Mai Helmy
- Psychology Department, Sultan Qaboos University, Muscat, Oman
| | | | - Beatrice Bean E Robinson
- Eli Coleman Institute of Sexual and Gender Health, Department of Family Medicine and Community Health, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Haitham Jahrami
- Government Hospitals, Manama, Bahrain.
- Department of Psychiatry, College of Medicine and Health Sciences, Arabian Gulf University, Manama, Bahrain.
| |
Collapse
|
14
|
Zhu Y, Liu J, Wang B. Integrated Approach for Biomarker Discovery and Mechanistic Insights into the Co-Pathogenesis of Type 2 Diabetes Mellitus and Non-Hodgkin Lymphoma. Diabetes Metab Syndr Obes 2025; 18:267-282. [PMID: 39906693 PMCID: PMC11793108 DOI: 10.2147/dmso.s503449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/18/2025] [Indexed: 02/06/2025] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is associated with an increased risk of non-Hodgkin lymphoma (NHL), but the underlying mechanisms remain unclear. This study aimed to identify potential biomarkers and elucidate the molecular mechanisms underlying the co-pathogenesis of T2DM and NHL. Methods Microarray datasets of T2DM and NHL were downloaded from the Gene Expression Omnibus database. Subsequently, a protein-protein interaction network was constructed based on the common differentially expressed genes (DEGs) between T2DM and NHL to explore regulatory interactions. Functional analyses were performed to explore underlying mechanisms. Topological analysis and machine learning algorithms were applied to refine hub gene selection. Finally, quantitative real-time polymerase chain reaction was performed to validate hub genes in clinical samples. Results Intersection analysis of DEGs from the T2DM and NHL datasets identified 81 shared genes. Functional analyses suggested that immune-related pathways played a significant role in the co-pathogenesis of T2DM and NHL. Topological analysis and machine learning identified three hub genes: GZMM, HSPG2, and SERPING1. Correlation analysis revealed significant correlations between these hub genes and immune cells, underscoring the importance of immune dysregulation in shared pathogenesis. The expression of these genes was successfully validated in clinical samples. Conclusion This study suggested the pivotal role of immune dysregulation in the co-pathogenesis of T2DM and NHL and identified and validated three hub genes as key contributors. These findings provide insight into the complex interplay between T2DM and NHL.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Jun Liu
- Department of Traditional Chinese Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Bo Wang
- Department of Endocrinology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, People’s Republic of China
| |
Collapse
|
15
|
Zhao J, Fang Z. Single-cell RNA sequencing reveals the dysfunctional characteristics of PBMCs in patients with type 2 diabetes mellitus. Front Immunol 2025; 15:1501660. [PMID: 39916961 PMCID: PMC11798774 DOI: 10.3389/fimmu.2024.1501660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 02/09/2025] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a disease that involves autoimmunity. However, how immune cells function in the peripheral blood remains unclear. Exploring T2DM biomarkers via single-cell RNA sequencing (scRNA-seq) could provide new insights into the underlying molecular mechanisms. Methods The clinical trial registration number is ChiCTR2100049613. In this study, we included three healthy participants and three T2DM patients. The observed clinical indicators included weight and fasting blood glucose (FBG), glycosylated haemoglobin A1c (HbA1c) and fasting insulin levels. Direct separation and purification of peripheral blood mononuclear cells (PBMCs) were performed via the Ficoll density gradient centrifugation method. Immune cell types were identified via scRNA-seq. The differentially expressed genes, biological functions, cell cycle dynamics, and correlations between blood glucose indicators and genes in different cell types were analysed. Results There were differences between the healthy and T2DM groups in terms of FBG and HbA1c (p<0.05 or p<0.01). We profiled 13,591 cells and 3188 marker genes from PBMCs. B cells, T cells, monocytes, and NK cells were grouped into 4 subclusters from PBMCs. CD4+ T cells are mainly in the memory activation stage, and CD8+ T cells are effectors. Monocytes include mainly CD14+ monocytes and FCGR3A+ monocytes. There were 119 differentially expressed genes in T cells and 175 differentially expressed genes in monocytes. Gene set enrichment analysis revealed that the marker genes were enriched in HALLMARK_ INTERFERON_GAMMA_RESPONSE and HALLMARK_TNFA_SIGNALING_VIA_ NFKB. Moreover, TNFRSF1A was identified as the core gene involved in network interactions in T cells. Discussion Our study provides a transcriptional map of immune cells from PBMCs and provides a framework for understanding the immune status and potential immune mechanisms of T2DM patients via scRNA-seq. Clinical trial registration http://www.chictr.org.cn, identifier ChiCTR2100049613.
Collapse
Affiliation(s)
- Jindong Zhao
- Department of Endocrinology Two, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Diabetes Institute, Anhui Academy Chinese Medicine, Hefei, China
| | - Zhaohui Fang
- Department of Endocrinology Two, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin’an Medicine and Modernization of Traditional Chinese Medicine of IHM, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Diabetes Institute, Anhui Academy Chinese Medicine, Hefei, China
| |
Collapse
|
16
|
Huo L, Zhang H, Hou S, Li W, Meng Q, Li C, Ma X, Huang L, He J, Zhao B. Low-dose IL-2 restores metabolic dysfunction and immune dysregulation in mice with type 2 diabetes induced by a high-fat, high-sugar diet and streptozotocin. Int J Biol Macromol 2025; 286:138468. [PMID: 39647763 DOI: 10.1016/j.ijbiomac.2024.138468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Interleukin-2 (IL-2) is pivotal in immune regulation, particularly in the promotion of regulatory T (Treg) cells and the maintenance of immune tolerance. While its efficacy in autoimmune diseases is well established, its role in type 2 diabetes (T2D) remains largely unexplored. This study investigates the effects of low-dose IL-2 in a KM mouse model of T2D induced by streptozotocin (STZ) and a high-fat, high-sugar (HFHS) diet. We found that low-dose IL-2 administration significantly improved fasting plasma glucose (FPG), glycosylated hemoglobin (HbA1c) levels, and glucose tolerance, indicating better glycemic control. Additionally, IL-2 treatment improved insulin sensitivity, enhanced insulin secretion, and ameliorated lipid metabolism, as evidenced by reduced cholesterol and triglyceride levels. These metabolic improvements were associated with a modulation of inflammation, including a reduction in pro-inflammatory cytokines (TNF-α, IL-1β) and an increase in anti-inflammatory cytokines (IL-10). Importantly, IL-2 also altered the gut microbiome, reducing intestinal inflammation and endotoxin levels, which suggests a broader impact on metabolic health beyond immune regulation. These findings support the potential of low-dose IL-2 as an immunotherapeutic approach for improving metabolic dysfunction and inflammation in T2D.
Collapse
Affiliation(s)
- Lijing Huo
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Hairui Zhang
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Shiyu Hou
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Wenting Li
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Qingwen Meng
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China
| | - Chenhui Li
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Xiaohan Ma
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Lijing Huang
- Hebei Fitness Biotechnology Co., Ltd., Shijiazhuang High-tech Industrial Park, Shijiazhuang City, Hebei Province, People's Republic of China; Hebei Key Laboratory of Autoimmune Disease Medicine Research, Shijiazhuang City, Hebei Province 050035, People's Republic of China
| | - Jintian He
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, No. 20 Road East of 2nd Ring South, Shijiazhuang City, Hebei Province 050024, People's Republic of China.
| |
Collapse
|
17
|
SantaCruz-Calvo S, Saraswat S, Kalantar GH, Zukowski E, Marszalkowski H, Javidan A, Gholamrezaeinejad F, Bharath LP, Kern PA, Zhang XD, Nikolajczyk BS. A unique inflammaging profile generated by T cells from people with obesity is metformin resistant. GeroScience 2024:10.1007/s11357-024-01441-4. [PMID: 39708215 DOI: 10.1007/s11357-024-01441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/07/2024] [Indexed: 12/23/2024] Open
Abstract
The alarmingly high prevalence of obesity in older adults coupled with the negative health effects of chronic inflammation in both obesity and aging highlight the importance of studies investigating the impacts of obesity on age-related inflammation. Since shifts in peripheral T-cell metabolism and function drive systemic inflammation in both obesity and aging, we hypothesize that obesity impacts the Th17-dominated inflammaging profile we identified in lean subjects and thus modifies the anti-inflammatory effects of geroprotective drugs like metformin. New cytokine profiling data showed that CD4+ T cells from older people with obesity generate a profile that specifically excludes Th17 cytokines. Metformin failed to change the age-associated T-cell profile in obesity, despite lowering both mitochondrial respiration and reactive oxygen species (ROS) production. Metformin did not improve macroautophagy in T cells from older people with obesity, in sharp contrast to the ability of metformin to promote autophagy in T cells from older lean subjects. These data indicate that body mass index modifies the mechanisms supporting inflammaging in T cells from older subjects, and that metformin-mediated restoration of redox balance is insufficient to stem obesity-associated inflammaging. We conclude that obesity fundamentally changes the mechanisms that promote inflammaging, and thus obesity becomes a critical consideration for clinical trials of geroprotective agents such as metformin.
Collapse
Affiliation(s)
- S SantaCruz-Calvo
- Department of Pharmacology & Nutritional Sciences, Diabetes and Obesity Research Priority Area, University of Kentucky, Lexington, KY, USA
| | - S Saraswat
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - G H Kalantar
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - E Zukowski
- Department of Nutrition & Public Health, Merrimack College, North Andover, MA, USA
| | - H Marszalkowski
- Department of Biology, Merrimack College, North Andover, MA, USA
| | - A Javidan
- Department of Pharmacology & Nutritional Sciences, Diabetes and Obesity Research Priority Area, University of Kentucky, Lexington, KY, USA
| | - F Gholamrezaeinejad
- Department of Pharmacology & Nutritional Sciences, Diabetes and Obesity Research Priority Area, University of Kentucky, Lexington, KY, USA
| | - L P Bharath
- Department of Nutrition & Public Health, Merrimack College, North Andover, MA, USA
| | - P A Kern
- Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, USA
| | - X D Zhang
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, USA
| | - B S Nikolajczyk
- Department of Pharmacology & Nutritional Sciences, Diabetes and Obesity Research Priority Area, University of Kentucky, Lexington, KY, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky, Lexington, KY, USA.
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
18
|
Dong Y, Dong J, Xiao H, Li Y, Wang B, Zhang S, Cui M. A gut microbial metabolite cocktail fights against obesity through modulating the gut microbiota and hepatic leptin signaling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9356-9367. [PMID: 39030978 DOI: 10.1002/jsfa.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND Excessive body weight and obesity elevate the risk of chronic non-communicable diseases. The judicious application of the gut microbiome, encompassing both microorganisms and their derived compounds, holds considerable promise in the treatment of obesity. RESULTS In this study, we showed that a cocktail of gut microbiota-derived metabolites, comprising indole 3-propionic acid (IPA), sodium butyrate (SB) and valeric acid (VA), alleviated various symptoms of obesity in both male and female mice subjected to a high-fat diet (HFD). The 16S ribosomal RNA (rRNA) sequencing revealed that administering the cocktail via oral gavage retained the gut microbiota composition in obese mice. Fecal microbiota transplantation using cocktail-treated mice as donors mitigated the obesity phenotype of HFD-fed mice. Transcriptomic sequencing analysis showed that the cocktail preserved the gene expression profile of hepatic tissues in obese mice, especially up-regulated the expression level of leptin receptor. Gene delivery via in vivo fluid dynamics further validated that the anti-obesity efficacy of the cocktail was dependent on leptin signaling at least partly. The cocktail also inhibited the expression of appetite stimulators in hypothalamus. Together, the metabolite cocktail combated adiposity by retaining the gut microbiota configuration and activating the hepatic leptin signaling pathway. CONCLUSIONS Our findings provide a sophisticated regulatory network between the gut microbiome and host, and highlight a cocktail of gut microbiota-derived metabolites, including IPA, SB, and VA, might be a prospective intervention for anti-obesity in a preclinical setting. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanxi Dong
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuan Li
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Bin Wang
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shuqin Zhang
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ming Cui
- Institute of Radiation Medicine, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
19
|
Lin P, Qian Z, Liu S, Ye X, Xue P, Shao Y, Zhao J, Guan Y, Liu Z, Chen Y, Wang Q, Yi Z, Zhu M, Yu M, Ling D, Li F. A Single-Cell RNA Sequencing Guided Multienzymatic Hydrogel Design for Self-Regenerative Repair in Diabetic Mandibular Defects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410962. [PMID: 39436107 DOI: 10.1002/adma.202410962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Indexed: 10/23/2024]
Abstract
Conventional bone tissue engineering materials struggle to reinstate physiological bone remodeling in a diabetic context, primarily due to the compromised repolarization of proinflammatory macrophages to anti-inflammatory macrophages. Here, leveraging single-cell RNA sequencing (scRNA-seq) technology, the pivotal role of nitric oxide (NO) and reactive oxygen species (ROS) is unveiled in impeding macrophage repolarization during physiological bone remodeling amidst diabetes. Guided by scRNA-seq analysis, we engineer a multienzymatic bone tissue engineering hydrogel scaffold (MEBTHS) composed is engineered of methylpropenylated gelatin hydrogel integrated with ruthenium nanozymes, possessing both Ru0 and Ru4+ components. This design facilitates efficient NO elimination via Ru0 while simultaneously exhibiting ROS scavenging properties through Ru4+. Consequently, MEBTHS orchestrates macrophage reprogramming by neutralizing ROS and reversing NO-mediated mitochondrial metabolism, thereby rejuvenating bone marrow-derived mesenchymal stem cells and endothelial cells within diabetic mandibular defects, producing newly formed bone with quality comparable to that of normal bone. The scRNA-seq guided multienzymatic hydrogel design fosters the restoration of self-regenerative repair, marking a significant advancement in bone tissue engineering.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
- Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| | - Zhouyang Qian
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanbiao Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangjie Shao
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Zhao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunan Guan
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhua Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhigao Yi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science (CAS), Suzhou, 215163, China
| | - Mingjian Zhu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders (LEAD), Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China
| |
Collapse
|
20
|
Zhao B, Zhao Y, Sun X. Mechanism and therapeutic targets of circulating immune cells in diabetic retinopathy. Pharmacol Res 2024; 210:107505. [PMID: 39547465 DOI: 10.1016/j.phrs.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic retinopathy (DR) continues to be the leading cause of preventable vision loss among working-aged adults, marked by immune dysregulation within the retinal microenvironment. Typically, the retina is considered as an immune-privileged organ, where circulating immune cells are restricted from entry under normal conditions. However, during the progression of DR, this immune privilege is compromised as circulating immune cells breach the barrier and infiltrate the retina. Increasing evidence suggests that vascular and neuronal degeneration in DR is largely driven by the infiltration of immune cells, particularly neutrophils, monocyte-derived macrophages, and lymphocytes. This review delves into the mechanisms and therapeutic targets associated with these immune cell populations in DR, offering a promising and innovative approach to managing the disease.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
21
|
Gholipourshahraki T, Bai Z, Shrestha M, Hjelholt A, Hu S, Kjolby M, Rohde PD, Sørensen P. Evaluation of Bayesian Linear Regression models for gene set prioritization in complex diseases. PLoS Genet 2024; 20:e1011463. [PMID: 39495786 PMCID: PMC11563439 DOI: 10.1371/journal.pgen.1011463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 11/14/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Genome-wide association studies (GWAS) provide valuable insights into the genetic architecture of complex traits, yet interpreting their results remains challenging due to the polygenic nature of most traits. Gene set analysis offers a solution by aggregating genetic variants into biologically relevant pathways, enhancing the detection of coordinated effects across multiple genes. In this study, we present and evaluate a gene set prioritization approach utilizing Bayesian Linear Regression (BLR) models to uncover shared genetic components among different phenotypes and facilitate biological interpretation. Through extensive simulations and analyses of real traits, we demonstrate the efficacy of the BLR model in prioritizing pathways for complex traits. Simulation studies reveal insights into the model's performance under various scenarios, highlighting the impact of factors such as the number of causal genes, proportions of causal variants, heritability, and disease prevalence. Comparative analyses with MAGMA (Multi-marker Analysis of GenoMic Annotation) demonstrate BLR's superior performance, especially in highly overlapped gene sets. Application of both single-trait and multi-trait BLR models to real data, specifically GWAS summary data for type 2 diabetes (T2D) and related phenotypes, identifies significant associations with T2D-related pathways. Furthermore, comparison between single- and multi-trait BLR analyses highlights the superior performance of the multi-trait approach in identifying associated pathways, showcasing increased statistical power when analyzing multiple traits jointly. Additionally, enrichment analysis with integrated data from various public resources supports our results, confirming significant enrichment of diabetes-related genes within the top T2D pathways resulting from the multi-trait analysis. The BLR model's ability to handle diverse genomic features, perform regularization, conduct variable selection, and integrate information from multiple traits, genders, and ancestries demonstrates its utility in understanding the genetic architecture of complex traits. Our study provides insights into the potential of the BLR model to prioritize gene sets, offering a flexible framework applicable to various datasets. This model presents opportunities for advancing personalized medicine by exploring the genetic underpinnings of multifactorial traits.
Collapse
Affiliation(s)
| | - Zhonghao Bai
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Merina Shrestha
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Astrid Hjelholt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Sile Hu
- Human Genetics Centre of Excellence, Novo Nordisk Research Centre Oxford, Oxford, United Kingdom
| | - Mads Kjolby
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Palle Duun Rohde
- Genomic Medicine, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Peter Sørensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
SantaCruz-Calvo S, Saraswat S, Hasturk H, Dawson DR, Zhang XD, Nikolajczyk BS. Periodontitis and Diabetes Differentially Affect Inflammation in Obesity. J Dent Res 2024; 103:1313-1322. [PMID: 39382110 DOI: 10.1177/00220345241280743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] Open
Abstract
Periodontitis (PD) potentiates systemic inflammatory diseases and fuels a feed-forward loop of pathogenic inflammation in obesity and type 2 diabetes (T2D). Published work in this area often conflates obesity with obesity-associated T2D; thus, it remains unclear whether PD similarly affects the inflammatory profiles of these 2 distinct systemic diseases. We collected peripheral blood mononuclear cells (PBMCs) from cross-sectionally recruited subjects to estimate the ability of PD to affect cytokine production in human obesity and/or T2D. We analyzed 2 major sources of systemic inflammation: T cells and myeloid cells. Bioplex quantitated cytokines secreted by PBMCs stimulated with T cell- or myeloid-targeting activators, and we combinatorially analyzed outcomes using partial least squares discriminant analysis. Our data show that PD significantly shifts peripheral T cell- and myeloid-generated inflammation in obesity. PD also changed myeloid- but not T cell-generated inflammation in T2D. T2D changed inflammation in samples from subjects with PD, and PD changed inflammation in samples from subjects with T2D, consistent with the bidirectional relationship of inflammation between these 2 conditions. PBMCs from T2D subjects with stage IV PD produced lower amounts of T cell and myeloid cytokines compared with PBMCs from T2D subjects with stage II to III PD. We conclude that PD and T2D affect systemic inflammation through overlapping but nonidentical mechanisms in obesity, indicating that characterizing both oral and metabolic status (beyond obesity) is critical for identifying mechanisms linking PD to systemic diseases such as obesity and T2D. The finding that stage IV PD cells generate fewer cytokines in T2D provides an explanation for the paradoxical findings that the immune system can appear activated or suppressed in PD, given that many studies do not report PD stage. Finally, our data indicate that a focus on multiple cellular sources of cytokines will be imperative to clinically address the systemic effects of PD in people with obesity.
Collapse
Affiliation(s)
- S SantaCruz-Calvo
- Department of Pharmacology & Nutritional Sciences, Lexington, KY, USA
- Biostatistics
| | | | - H Hasturk
- Forsyth Institute, Cambridge, MA, USA
| | - D R Dawson
- Oral Health Practice, University of Kentucky, Lexington, KY, USA
| | - X D Zhang
- Biostatistics
- Forsyth Institute, Cambridge, MA, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington KY, USA
| | - B S Nikolajczyk
- Department of Pharmacology & Nutritional Sciences, Lexington, KY, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington KY, USA
| |
Collapse
|
23
|
Danowska M, Stefanowicz M, Strączkowski M. The expression of NFAT family genes in subcutaneous adipose tissue before and after weight loss in obese individuals. Nutr Metab Cardiovasc Dis 2024; 34:2455-2463. [PMID: 39069466 DOI: 10.1016/j.numecd.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIMS Adipose tissue (AT) serves as a vital energy storage site and plays a pivotal role in metabolic regulation, exhibiting a high response to insulin. Impairment in this response may closely associate with obesity, and NFAT (nuclear factor of activated T cells) family genes may be involved in the process. However, human data linking NFAT and AT remains elusive. The aim of this study was to assess the expression of NFAT family genes and markers of adipogenesis in subcutaneous adipose tissue (SAT) among normal-weight and overweight/obese individuals before and after weight loss, in relation to insulin sensitivity. METHODS AND RESULTS The study included 45 participants, 15 normal-weight (control group) and 30 overweight or obese, who underwent a 12-week dietary intervention (DI) program. Before and after the program hyperinsulinemic-euglycemic clamp and SAT biopsy were conducted. Before DI, a positive correlations was observed in the expression of NFATc1, NFATc4, and NFAT5 with insulin sensitivity. The expression of NFAT family genes and markers of adipogenesis in SAT was lower in individuals with overweight or obesity compared to normal-weight. Additionally, a positive correlation was noted between NFAT family genes and adipogenesis markers both before and after weight loss. Following the DI program, there was an increase in the expression of NFATc3, NFATc4, and NFAT5 in SAT. CONCLUSION Decreased SAT expression of NFAT genes in obesity is partly reversed in response to weight loss. NFAT genes in SAT are associated with insulin sensitivity and adipogenesis. Registration number for clinical trial: NCT01393210.
Collapse
Affiliation(s)
- Magdalena Danowska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
24
|
Hu T, Liu CH, Lei M, Zeng Q, Li L, Tang H, Zhang N. Metabolic regulation of the immune system in health and diseases: mechanisms and interventions. Signal Transduct Target Ther 2024; 9:268. [PMID: 39379377 PMCID: PMC11461632 DOI: 10.1038/s41392-024-01954-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/18/2024] [Accepted: 08/11/2024] [Indexed: 10/10/2024] Open
Abstract
Metabolism, including glycolysis, oxidative phosphorylation, fatty acid oxidation, and other metabolic pathways, impacts the phenotypes and functions of immune cells. The metabolic regulation of the immune system is important in the pathogenesis and progression of numerous diseases, such as cancers, autoimmune diseases and metabolic diseases. The concept of immunometabolism was introduced over a decade ago to elucidate the intricate interplay between metabolism and immunity. The definition of immunometabolism has expanded from chronic low-grade inflammation in metabolic diseases to metabolic reprogramming of immune cells in various diseases. With immunometabolism being proposed and developed, the metabolic regulation of the immune system can be gradually summarized and becomes more and more clearer. In the context of many diseases including cancer, autoimmune diseases, metabolic diseases, and many other disease, metabolic reprogramming occurs in immune cells inducing proinflammatory or anti-inflammatory effects. The phenotypic and functional changes of immune cells caused by metabolic regulation further affect and development of diseases. Based on experimental results, targeting cellular metabolism of immune cells becomes a promising therapy. In this review, we focus on immune cells to introduce their metabolic pathways and metabolic reprogramming, and summarize how these metabolic pathways affect immune effects in the context of diseases. We thoroughly explore targets and treatments based on immunometabolism in existing studies. The challenges of translating experimental results into clinical applications in the field of immunometabolism are also summarized. We believe that a better understanding of immune regulation in health and diseases will improve the management of most diseases.
Collapse
Affiliation(s)
- Tengyue Hu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Hai Liu
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Min Lei
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qingmin Zeng
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Division of Renal and endocrinology, Qin Huang Hospital, Xi'an, China
| | - Hong Tang
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Infectious and Liver Diseases, Institution of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Nannan Zhang
- West China School of clinical medical, West China Second University Hospital, Sichuan University, Chengdu, China.
- National Center for Birth Defect Monitoring, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
25
|
Ke S, Hu Q, Zhu G, Li L, Sun X, Cheng H, Li L, Yao Y, Li H. Remodeling of white adipose tissue microenvironment against obesity by phytochemicals. Phytother Res 2024; 38:4904-4922. [PMID: 36786412 DOI: 10.1002/ptr.7758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Obesity is a kind of chronic disease due to a long-term imbalance between energy intake and expenditure. In recent years, the number of obese people around the world has soared, and obesity problem should not be underestimated. Obesity is characterized by changes in the adipose microenvironment, mainly manifested as hypertrophy, chronic inflammatory status, hypoxia, and fibrosis, thus contributing to the pathological changes of other tissues. A plethora of phytochemicals have been found to improve adipose microenvironment, thus prevent and resist obesity, providing a new research direction for the treatment of obesity and related diseases. This paper discusses remodeling of the adipose tissue microenvironment as a therapeutic avenue and reviews the progress of phytochemicals in fighting obesity by improving the adipose microenvironment.
Collapse
Affiliation(s)
- Shuwei Ke
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Qingyuan Hu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Guanyao Zhu
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Linghuan Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xuechao Sun
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Hongbin Cheng
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Lingqiao Li
- Research and Development Department, Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou, People's Republic of China
| | - Yuanfa Yao
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hanbing Li
- Institute of Pharmacology, Department of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
26
|
Durrani IA, John P, Bhatti A, Khan JS. Network medicine based approach for identifying the type 2 diabetes, osteoarthritis and triple negative breast cancer interactome: Finding the hub of hub genes. Heliyon 2024; 10:e36650. [PMID: 39281650 PMCID: PMC11401126 DOI: 10.1016/j.heliyon.2024.e36650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The increasing prevalence of multi-morbidities, particularly the incidence of breast cancer in diabetic/osteoarthritic patients emphasize on the need for exploring the underlying molecular mechanisms resulting in carcinogenesis. To address this, present study employed a systems biology approach to identify switch genes pivotal to the crosstalk between diseased states resulting in multi-morbid conditions. Hub genes previously reported for type 2 diabetes mellitus (T2DM), osteoarthritis (OA), and triple negative breast cancer (TNBC), were extracted from published literature and fed into an integrated bioinformatics analyses pipeline. Thirty-one hub genes common to all three diseases were identified. Functional enrichment analyses showed these were mainly enriched for immune and metabolism associated terms including advanced glycation end products (AGE) pathways, cancer pathways, particularly breast neoplasm, immune system signalling and adipose tissue. The T2DM-OA-TNBC interactome was subjected to protein-protein interaction network analyses to identify meta hub/clustered genes. These were prioritized and wired into a three disease signalling map presenting the enriched molecular crosstalk on T2DM-OA-TNBC axes to gain insight into the molecular mechanisms underlying disease-disease interactions. Deciphering the molecular bases for the intertwined metabolic and immune states may potentiate the discovery of biomarkers critical for identifying and targeting the immuno-metabolic origin of disease.
Collapse
Affiliation(s)
- Ilhaam Ayaz Durrani
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Peter John
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Attya Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | | |
Collapse
|
27
|
Biju K, Hernandez ET, Stallings AM, Felix-Ortiz AC, Hebbale SK, Norton L, Mader MJ, Clark RA. Resistance to high-fat diet-induced weight gain in transgenic mice overexpressing human wild-type α-synuclein: A model for metabolic dysfunction in Parkinson's disease. RESEARCH SQUARE 2024:rs.3.rs-4870881. [PMID: 39257980 PMCID: PMC11384802 DOI: 10.21203/rs.3.rs-4870881/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Unintentional weight loss, primarily due to the loss of fat mass rather than muscle mass, is common among patients with Parkinson's disease (PD) and is associated with poor quality of life and accelerated disease progression. Since transgenic mice overexpressing human wild-type α-synuclein (α-Syn mice) are modestly leaner than control mice, and since diabetes, a metabolic disorder, is a major risk factor for PD, we reasoned that high-fat diet-induced diabetes/metabolic dysregulation in α-Syn mice may serve as a robust tool for exploring how early α-synuclein pathology contributes to metabolic dysregulation, leading to weight loss in PD. Thus, α-Syn and age-matched controls were fed a high-fat diet (HFD) chow (60% fat calories) ad libitum for four months. Compared with controls on HFD (control-HFD), α-Syn mice on HFD (α-Syn-HFD) were dramatically leaner. The resistance to gaining weight in α-Syn-HFD mice was accompanied by improved glucose tolerance, a dramatic decrease in fat mass, and an increase in energy expenditure. Despite this leaner phenotype and better glucose tolerance, the mortality was much higher in male α-Syn-HFD mice than in all controls, but was unaffected in females, suggesting protective effects of female sex hormones, as well as lower α-synuclein levels. Immunoblot analysis of insulin signaling in the olfactory bulb, the proposed initial seeding site of α-synuclein pathology, revealed a decrease of IGF-IRβ, p GSK, and p mTOR in α-Syn-HFD mice. Since GSK-3β and mTOR regulate synaptic plasticity, we assessed levels of PSD-95 and synaptophysin in the olfactory bulb. As anticipated, we observed a significant decrease in the levels of PSD-95, along with a potentially compensatory increase in synaptophysin levels. Our results show that α-Syn mice, when challenged with diet-induced diabetes/metabolic dysregulation, clearly reveal a profile of robust metabolic dysfunction, thus providing a sensitive tool for assessing the underlying mechanism of metabolic dysfunction and its impact on weight loss and disease progression in PD. We propose a role for olfactory dysfunction in PD-related unintentional weight loss and suggest that strategies aimed at increasing body weight/BMI will improve the quality of life and prognosis for people living with PD.
Collapse
Affiliation(s)
- K.C. Biju
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, Texas 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Enrique Torres Hernandez
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Alison Michelle Stallings
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Ada C. Felix-Ortiz
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, Texas 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Skanda K. Hebbale
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Luke Norton
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| | - Michael J. Mader
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, Texas 78229
| | - Robert A. Clark
- South Texas Veterans Health Care System, 7400 Merton Minter Blvd, San Antonio, Texas 78229
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229
| |
Collapse
|
28
|
Hu X, Fang X, Wu M. Prevalence, awareness, treatment and control of type 2 diabetes in southeast China: A population-based study. J Diabetes Investig 2024; 15:1034-1041. [PMID: 38741389 PMCID: PMC11292384 DOI: 10.1111/jdi.14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
AIMS/INTRODUCTION To estimate the prevalence, awareness, treatment, control rate, and influence factors of type 2 diabetes in Fujian province and provide the scientific basic for prevention. MATERIALS AND METHODS A population-based study with the analysis of binary logistic regression was carried out to estimate the odds ratios of the influencing factor on type 2 diabetes. Data of the Patient-Centered Evaluative Assessment of Cardiac Events (PEACE) in southeast China were used. The study sample originated from 12 counties in Fujian province and included 135,352 permanent residents aged 35-75 years in 2021. RESULTS The prevalence of type 2 diabetes was 18.32% (24,801/135,352). Among them, 13,921 (56.13%) were aware of their condition, 11,894 (47.96%) were receiving treatment, and 4,537 (18.29%) had achieved control of blood glucose. Multivariate logistic regression analysis showed that older age, men, low-family income, low-education level, urban locality, no medical insurance, and histories of myocardial infarction, stroke, dyslipidemia, hypertension, alcohol consumption, and obesity were associated with a higher prevalence of type 2 diabetes. CONCLUSIONS The prevalence of type 2 diabetes among residents aged 35-75 years in southeast China is high, whereas the status of its low awareness, treatment and control is severe, warranting a broad-based global strategy, including greater efforts in earlier screening, and more effective and affordable treatment is essential.
Collapse
Affiliation(s)
- Xiangju Hu
- School of Public HealthFujian Medical UniversityFuzhouChina
- Department for Chronic and Noncommunicable Disease Control and PreventionFujian Provincial Center for Disease Control and PreventionFuzhouChina
| | - Xin Fang
- Department for Chronic and Noncommunicable Disease Control and PreventionFujian Provincial Center for Disease Control and PreventionFuzhouChina
| | - Minxia Wu
- Public Technology Service CenterFujian Medical UniversityFuzhouChina
| |
Collapse
|
29
|
Wang D, Kang X, Zhang L, Guo Y, Zhang Z, Ren H, Yuan G. TRIB2-Mediated Modulation of AMPK Promotes Hepatic Insulin Resistance. Diabetes 2024; 73:1199-1214. [PMID: 38394623 DOI: 10.2337/db23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Insulin resistance and its linked health complications are increasing in prevalence. Recent work has caused the role of Tribbles2 (TRIB2) in metabolism and cellular signaling to be increasingly appreciated, but its role in the progression of insulin resistance has not been elucidated. Here, we explore the functions of TRIB2 in modulating insulin resistance and the mechanism involved in insulin-resistant mice and palmitic acid-treated HepG2 cells. We demonstrate that whole-body knockout and hepatic-specific TRIB2 deficiency protect against diet-induced insulin resistance, inflammation, and endoplasmic reticulum stress. Accordingly, upregulation of TRIB2 in the liver aggravates these metabolic disturbances in high-fat diet-induced mice and ob/ob mice. Mechanistically, TRIB2 directly binds to the αγ-SBS domain of PRKAB through its pseudokinase domain, subsequently inhibiting the formation and activity of the AMPK complex. Moreover, the results of intervention against AMPK suggest that the effects of TRIB2 depend on AMPK. Our findings reveal that TRIB2 is a novel target for the treatment of insulin resistance and its associated metabolic complications and clarify the function of TRIB2 as a regulatory component of AMPK activity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Dan Wang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaonan Kang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lu Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yaoyao Guo
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Ziyin Zhang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Huihui Ren
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center for Metabolic Disease, Wuhan, Hubei, People's Republic of China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
- Clinical Research Center for Metabolic Disease, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
30
|
Brummer C, Singer K, Brand A, Bruss C, Renner K, Herr W, Pukrop T, Dorn C, Hellerbrand C, Matos C, Kreutz M. Sex-Dependent T Cell Dysregulation in Mice with Diet-Induced Obesity. Int J Mol Sci 2024; 25:8234. [PMID: 39125804 PMCID: PMC11311663 DOI: 10.3390/ijms25158234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is an emerging public health problem. Chronic low-grade inflammation is considered a major promotor of obesity-induced secondary diseases such as cardiovascular and fatty liver disease, type 2 diabetes mellitus, and several cancer entities. Most preliminary studies on obesity-induced immune responses have been conducted in male rodents. Sex-specific differences between men and women in obesity-induced immune dysregulation have not yet been fully outlined but are highly relevant to optimizing prevention strategies for overweight-associated complications. In this study, we fed C57BL/6 female vs. male mice with either standard chow or an obesity-inducing diet (OD). Blood and spleen immune cells were isolated and analyzed by flow cytometry. Lean control mice showed no sex bias in systemic and splenic immune cell composition, whereas the immune responses to obesity were significantly distinct between female and male mice. While immune cell alterations in male OD mice were characterized by a significant reduction in T cells and an increase in myeloid-derived suppressor cells (MDSC), female OD mice displayed preserved T cell numbers. The sex-dependent differences in obesity-induced T cell dysregulation were associated with varying susceptibility to body weight gain and fatty liver disease: Male mice showed significantly more hepatic inflammation and histopathological stigmata of fatty liver in comparison to female OD mice. Our findings indicate that sex impacts susceptibility to obesity-induced T cell dysregulation, which might explain sex-dependent different incidences in the development of obesity-associated secondary diseases. These results provide novel insights into the understanding of obesity-induced chronic inflammation from a sex-specific perspective. Given that most nutrition, exercise, and therapeutic recommendations for the prevention of obesity-associated comorbidities do not differentiate between men and women, the data of this study are clinically relevant and should be taken into consideration in future trials and treatment strategies.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Katrin Singer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Almut Brand
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Christina Bruss
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
- Department of Gynecology and Obstetrics, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Kathrin Renner
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
- Comprehensive Cancer Center Eastern Bavaria (CCCO), 93053 Regensburg, Germany
- Center of Translational Oncology (CTO), 93053 Regensburg, Germany
| | - Christoph Dorn
- Institute of Pharmacy, University of Regensburg, 93053 Regensburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, University of Erlangen, 91054 Erlangen, Germany
| | - Carina Matos
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053 Regensburg, Germany
- Bavarian Cancer Research Centre (BZKF), 93053 Regensburg, Germany
| |
Collapse
|
31
|
Xu H, Luo Y, Li Q, Zhu H. Acupuncture influences multiple diseases by regulating gut microbiota. Front Cell Infect Microbiol 2024; 14:1371543. [PMID: 39040602 PMCID: PMC11260648 DOI: 10.3389/fcimb.2024.1371543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/13/2024] [Indexed: 07/24/2024] Open
Abstract
Acupuncture, an important green and side effect-free therapy in traditional Chinese medicine, is widely use both domestically and internationally. Acupuncture can interact with the gut microbiota and influence various diseases, including metabolic diseases, gastrointestinal diseases, mental disorders, nervous system diseases, and other diseases. This review presents a thorough analysis of these interactions and their impacts and examines the alterations in the gut microbiota and the potential clinical outcomes following acupuncture intervention to establish a basis for the future utilization of acupuncture in clinical treatments.
Collapse
Affiliation(s)
- Huimin Xu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiaoqi Li
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zhu
- Department of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
32
|
Paz-Rodríguez VA, Herrera-Vargas DJ, Turiján-Espinoza E, Martínez-Leija ME, Rivera-López E, Hernández-González O, Zavala-Reyes D, García-Hernández MH, Vargas-Morales JM, Milán-Segovia RDC, Portales-Pérez DP. Function and expression of N-acetyltransferases 1 and 2 are altered in lymphocytes in type 2 diabetes and obesity. Biochem Biophys Rep 2024; 38:101716. [PMID: 38737726 PMCID: PMC11087921 DOI: 10.1016/j.bbrep.2024.101716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/14/2024] Open
Abstract
The cytosolic enzymes N-Acetyl Transferases 1 and 2 (NATs) transfer an acetyl group from acetyl-CoA to a xenobiotic substrate. NATs are regulated at the genetic and epigenetic levels by deacetylase enzymes such as sirtuins. The enzymatic expression of NAT1, NAT2, and SIRT1 was evaluated by flow cytometry, as well as the enzymatic activity of NATs by cell culture and HPLC analysis. Six SNPs were determined through genotyping. T2D patients (n = 29) and healthy subjects (n = 25) with a median age of 57 and 50, respectively, were recruited. An increased enzyme expression and a diminished NAT2 enzymatic activity were found in cells of T2D patients compared to the control group, while NAT1 was negatively correlated with body fat percentage and BMI. In contrast, Sirtuin inhibition increased NAT2 activity, while Sirtuin agonism decreased its activity in both groups. The analysis of NAT2 SNPs showed a higher frequency of rapid acetylation haplotypes in T2D patients compared to the control group, possibly associated as a risk factor for diabetes. The enzymatic expression of CD3+NAT2+ cells was higher in the rapid acetylators group compared to the slow acetylators group. The levels and activity of NAT1 were associated with total cholesterol and triglycerides. Meanwhile, CD3+NAT2+ cells and NAT2 activity levels were associated with HbA1c and glucose levels. The results indicate that NAT2 could be involved in metabolic processes related to the development of T2D, due to its association with glucose levels, HbA1c, and the altered SIRT-NAT axis. NAT1 may be involved with dyslipidaemias in people who are overweight or obese.
Collapse
Affiliation(s)
| | - Diana Judith Herrera-Vargas
- Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi (UASLP), Mexico
| | - Eneida Turiján-Espinoza
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Mexico
| | - Miguel Ernesto Martínez-Leija
- Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi (UASLP), Mexico
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Mexico
| | | | - Oswaldo Hernández-González
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Mexico
| | - Daniel Zavala-Reyes
- Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi (UASLP), Mexico
| | | | - Juan Manuel Vargas-Morales
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Mexico
| | | | - Diana Patricia Portales-Pérez
- Research Center for Health Sciences and Biomedicine, Autonomous University of San Luis Potosi (UASLP), Mexico
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, Autonomous University of San Luis Potosi, Mexico
| |
Collapse
|
33
|
Hu F, Xiong L, Li Z, Li L, Wang L, Wang X, Zhou X, Zheng Y. Deciphering the shared mechanisms of Gegen Qinlian Decoction in treating type 2 diabetes and ulcerative colitis via bioinformatics and machine learning. Front Med (Lausanne) 2024; 11:1406149. [PMID: 38962743 PMCID: PMC11220276 DOI: 10.3389/fmed.2024.1406149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Background Although previous clinical studies and animal experiments have demonstrated the efficacy of Gegen Qinlian Decoction (GQD) in treating Type 2 Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC), the underlying mechanisms of its therapeutic effects remain elusive. Purpose This study aims to investigate the shared pathogenic mechanisms between T2DM and UC and elucidate the mechanisms through which GQD modulates these diseases using bioinformatics approaches. Methods Data for this study were sourced from the Gene Expression Omnibus (GEO) database. Targets of GQD were identified using PharmMapper and SwissTargetPrediction, while targets associated with T2DM and UC were compiled from the DrugBank, GeneCards, Therapeutic Target Database (TTD), DisGeNET databases, and differentially expressed genes (DEGs). Our analysis encompassed six approaches: weighted gene co-expression network analysis (WGCNA), immune infiltration analysis, single-cell sequencing analysis, machine learning, DEG analysis, and network pharmacology. Results Through GO and KEGG analysis of weighted gene co-expression network analysis (WGCNA) modular genes and DEGs intersection, we found that the co-morbidity between T2DM and UC is primarily associated with immune-inflammatory pathways, including IL-17, TNF, chemokine, and toll-like receptor signaling pathways. Immune infiltration analysis supported these findings. Three distinct machine learning studies identified IGFBP3 as a biomarker for GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for GQD in UC treatment. Network pharmacology revealed that GQD treatment for T2DM and UC mainly targets immune-inflammatory pathways like Toll-like receptor, IL-17, TNF, MAPK, and PI3K-Akt signaling pathways. Conclusion This study provides insights into the shared pathogenesis of T2DM and UC and clarifies the regulatory mechanisms of GQD on these conditions. It also proposes novel targets and therapeutic strategies for individuals suffering from T2DM and UC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuemei Zhou
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yujiao Zheng
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
34
|
Luo Y, Yang L, Wu H, Xu H, Peng J, Wang Y, Zhou F. Exploring the Molecular Mechanism of Comorbidity of Type 2 Diabetes Mellitus and Colorectal Cancer: Insights from Bulk Omics and Single-Cell Sequencing Validation. Biomolecules 2024; 14:693. [PMID: 38927096 PMCID: PMC11201668 DOI: 10.3390/biom14060693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
The relationship between type 2 diabetes mellitus (T2DM) and colorectal cancer (CRC) has long been extensively recognized, but their crosstalk mechanisms based on gene regulation remain elusive. In our study, for the first time, bulk RNA-seq and single-cell RNA-seq data were used to explore the shared molecular mechanisms between T2DM and CRC. Moreover, Connectivity Map and molecular docking were employed to determine potential drugs targeting the candidate targets. Eight genes (EVPL, TACSTD2, SOX4, ETV4, LY6E, MLXIPL, ENTPD3, UGP2) were identified as characteristic comorbidity genes for T2DM and CRC, with EVPL and ENTPD3 further identified as core comorbidity genes. Our results demonstrated that upregulation of EVPL and downregulation of ENTPD3 were intrinsic molecular features throughout T2DM and CRC and were significantly associated with immune responses, immune processes, and abnormal immune landscapes in both diseases. Single-cell analysis highlighted a cancer-associated fibroblast (CAF) subset that specifically expressed ENTPD3 in CRC, which exhibited high heterogeneity and unique tumor-suppressive features that were completely different from classical cancer-promoting CAFs. Furthermore, ENTPD3+ CAFs could notably predict immunotherapy response in CRC, holding promise to be an immunotherapy biomarker at the single-cell level. Finally, we identified that droperidol may be a novel drug simultaneously targeting EVPL and ENTPD3. In conclusion, previous studies have often focused solely on metabolic alterations common to T2DM and CRC. Our study establishes EVPL and ENTPD3 as characteristic molecules and immune biomarkers of comorbidity in T2DM and CRC patients, and emphasizes the importance of considering immunological mechanisms in the co-development of T2DM and CRC.
Collapse
Affiliation(s)
- Yongge Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
| | - Lei Yang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Han Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Hui Xu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Jin Peng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan 430071, China
- Hubei Provincial Clinical Research Center for Cancer, Wuhan 430071, China
| |
Collapse
|
35
|
Lékó AH, Gregory-Flores A, Marchette RCN, Gomez JL, Vendruscolo JCM, Repunte-Canonigo V, Choung V, Deschaine SL, Whiting KE, Jackson SN, Cornejo MP, Perello M, You ZB, Eckhaus M, Rasineni K, Janda KD, Zorman B, Sumazin P, Koob GF, Michaelides M, Sanna PP, Vendruscolo LF, Leggio L. Genetic or pharmacological GHSR blockade has sexually dimorphic effects in rodents on a high-fat diet. Commun Biol 2024; 7:632. [PMID: 38796563 PMCID: PMC11127961 DOI: 10.1038/s42003-024-06303-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions; therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here, we investigate the effects of a long-term (12-month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild-type (WT) Wistar male and female rats. Our main findings are that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increases thermogenesis and brain glucose uptake in male rats and modifies the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. We use RNA-sequencing to show that GHSR-KO rats have upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuates ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating is reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.
Collapse
Affiliation(s)
- András H Lékó
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Gregory-Flores
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Renata C N Marchette
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Juan L Gomez
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Janaina C M Vendruscolo
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Vez Repunte-Canonigo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Vicky Choung
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Sara L Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
| | - Kimberly E Whiting
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Shelley N Jackson
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Maria Paula Cornejo
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Mario Perello
- Grupo de Neurofisiología, Instituto Multidisciplinario de Biología Celular (IMBICE), Universidad Nacional La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Zhi-Bing You
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Eckhaus
- Pathology Service, Division of Veterinary Resources, Office of Research Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kim D Janda
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Barry Zorman
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Pavel Sumazin
- Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - George F Koob
- Neurobiology of Addiction Section, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging and Molecular Neuropsychopharmacology Unit, Neuroimaging Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Pietro P Sanna
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Leandro F Vendruscolo
- Stress and Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, USA.
- Translational Analytical Core, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, RI, USA.
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA.
| |
Collapse
|
36
|
Yang C, Yang Q, Xie Z, Peng X, Liu H, Xie C. Association of systemic immune-inflammation-index with all-cause and cause-specific mortality among type 2 diabetes: a cohort study base on population. Endocrine 2024; 84:399-411. [PMID: 38048013 PMCID: PMC11076376 DOI: 10.1007/s12020-023-03587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/28/2023] [Indexed: 12/05/2023]
Abstract
PURPOSE There have been limited studies examining the prospective association between the Systemic Immune-Inflammation Index (SII), a novel inflammatory marker, and mortality among individuals with diabetes in the United States. METHODS We utilized data from the National Health and Nutrition Examination Survey (NHANES), a representative sample of US adults, linked with information from the National Death Index. RESULTS Our study included 8697 individuals from NHANES spanning the years 1999 to 2018. SII was calculated by dividing the platelet count by the neutrophil count and then dividing that result by the lymphocyte count. We employed multivariable Cox proportional hazards regression analysis to investigate the associations between SII levels and all-cause as well as cause-specific mortality, while adjusting for potential confounding factors. SII levels were categorized into quartiles based on the study population distribution. Over a median follow-up period of 94.8 months (with a maximum of 249 months), we observed a total of 2465 all-cause deaths, 853 deaths from cardiovascular causes, 424 deaths from cancer, and 88 deaths related to chronic kidney disease. After adjusting for multiple variables, higher SII levels were significantly and non-linearly associated with an increased risk of all-cause mortality in Quartile 4 (HR 1.74, 95% CI 1.15-2.63, P for trend = 0.043) when Quartile 1 was used as the reference group. Additionally, we identified a linear association between SII and cardiovascular mortality, with a 70% higher risk of cardiovascular mortality in Quartile 4 (HR 1.70, 95% CI 1.18-3.30, P for trend = 0.041) compared to Quartile 1. CONCLUSION Our findings indicate that SII is significantly associated with an elevated risk of all-cause and cardiovascular mortality in US adults with diabetes.
Collapse
Affiliation(s)
- Chan Yang
- State Key Laboratory of Biotherapy, West China Hospital, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China.
| | - Qiangfei Yang
- Jianyang City People's Hospital, Chengdu, 610040, Sichuan, China
| | - Ziyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610037, Sichuan, China
| | - Xi Peng
- State Key Laboratory of Biotherapy, West China Hospital, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610041, Sichuan, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610037, Sichuan, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, 610037, Sichuan, China.
| |
Collapse
|
37
|
Bai X, Qu H, Zhang J, Li L, Zhang C, Li S, Li G. Effect of steviol glycosides as natural sweeteners on glucose metabolism in adult participants. Food Funct 2024; 15:3908-3919. [PMID: 38512280 DOI: 10.1039/d3fo04695h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Steviol glycosides (SGs) are recognized as safe natural sweeteners; however, evidence from randomized controlled trials (RCTs) showed an inconclusive effect of SGs on glucose metabolism in adult participants. We aimed to conduct a systematic review and meta-analysis of RCTs to assess the effect of SGs on glucose metabolism. We systematically searched PubMed, Web of Science and EMBASE to include eligible RCTs. Our primary outcomes were differences between SGs and the control group with respect to changes in blood glucose from the baseline to the end of intervention (including fasting blood glucose [FBG], and HbA1c measurements). A random-effects meta-analysis was conducted for data synthesis to calculate the pooled mean difference (MD). There were twelve RCTs included for analyses with a total of 871 participants (48% females). A significant effect of SGs on FBG (MD = -4.10 mg dl-1, 95% CI -6.55 to -1.65) was found, while no significant difference in HbA1c (MD = 0.01%, 95% CI -0.12% to 0.13%) was observed between SGs and controls. The whole quality of evidence was rated as low. Subgroup analyses demonstrated favorable effects of SGs on FBG in participants aged ≤50 years, those without diabetes mellitus (DM) or hypertension at the baseline, and overweight and obese adults. Sensitivity analyses yielded results largely similar to the main findings. To conclude, SGs are found to produce significant improvement in glucose metabolism in adult participants when compared with the control. More evidence is required to further clarify and support the benefit of SGs as a sugar substitute for glucose metabolism.
Collapse
Affiliation(s)
- Xuerui Bai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Hongying Qu
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jingyi Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Likang Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), Guangdong Second Provincial General Hospital, Guangzhou, China
- Father Sean O'Sullivan Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
- Department of Health Research Methods, Evidence, and Impact (HEI), McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
38
|
Xie Y, Shao X, Zhang P, Zhang H, Yu J, Yao X, Fu Y, Wei J, Wu C. High Starch Induces Hematological Variations, Metabolic Changes, Oxidative Stress, Inflammatory Responses, and Histopathological Lesions in Largemouth Bass ( Micropterus salmoides). Metabolites 2024; 14:236. [PMID: 38668364 PMCID: PMC11051861 DOI: 10.3390/metabo14040236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05). There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes of D3-D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase amounts of inflammatory factors (IL-1β, TNF-α, etc.) by activating NLRP3 inflammasome key molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in largemouth bass.
Collapse
Affiliation(s)
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| | | | | | | | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| |
Collapse
|
39
|
Ma W, Long J, Dong L, Zhang J, Wang A, Zhang Y, Yan D. Uncovering the key pharmacodynamic material basis and possible molecular mechanism of Xiaoke formulation improve insulin resistant through a comprehensive investigation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117752. [PMID: 38216099 DOI: 10.1016/j.jep.2024.117752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoke formulation (XKF) has been utilized in clinical practice for decades in China as a treatment option for mild to moderate type 2 diabetes. However, there is still a need for systematic research to uncover the key pharmacodynamic material basis and mechanism of XKF. AIM OF THE STUDY Aim of to investigate the distribution and metabolism of XKF in normal and insulin resistant (IR) mice were different, and elucidate its key pharmacodynamic material basis and mechanism of action. MATERIALS AND METHODS Ultra performance liquid chromatography/time of flight mass spectrometry technology was employed to investigate the differences in XKF absorption, distribution, and metabolism between normal and IR mice across blood, liver, feces, and urine samples. Further, network pharmacology was used to predict target proteins and their associated signaling pathways. Then, molecular docking was utilized to validate the activity of key pharmacodynamic components and targets. Finally, IR HepG2 cells were used to detect the glucose consumption under the action of key pharmacodynamic material basis. In addition, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT) and phospho-protein kinase B (p-AKT) was determined using western blotting. RESULTS The study demonstrates significant distinctions in plasma and liver number and abundance of alkaloids, organic acids, flavonoids, iridoids and saponins between normal and IR mice when XKF was administered. Further analysis has shown that the representative components of XKF, including berberine, chlorogenic acid, calycosin, swertiamarin and astragaloside IV have significantly different metabolic pathways in plasma and liver. Prototypes and metabolites of these components were rarely detected in the urine and feces of mice. According to the network pharmacological analysis, these differential components are predicted to improve IR by targeting key factors such as SRC, JUN, HRAS, NOS3, FGF2, etc. Additionally, the signaling pathways involved in this process include PI3K-AKT pathway, GnRH signaling pathway, and T cell receptor signaling pathway. In addition, in vitro experiments indicate that berberine and its metabolites (berberine and demethyleneberine), chlorogenic acid and its metabolites (3-O-ferulic quinic acid and 5-O-ferulic quinic acid), calycosin and swertiamarin could improve IR in IR-HepG2 cells by elevating the expression of PI3K and AKT, leading to an increase in glucose consumption. CONCLUSION The key pharmacodynamic material basis of XKF, such as berberine and its metabolites (berberrubine and demethyleneberberine), chlorogenic acid and its metabolites (3-O-feruloylquinic acid and 5-O-feruloylquinic acid), calycosin and swertiamarin influence the glucose metabolism disorder of IR-HepG2 cells by regulating the PI3K/AKT signalling pathway, leading to an improvement in IR.
Collapse
Affiliation(s)
- Wenjuan Ma
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Linjie Dong
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Benxi, Liaoning, 110016, China
| | - Jian Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
40
|
Li Q, Byun J, Choi J, Park J, Lee J, Oh YK. Nanomodulator-Mediated Restructuring of Adipose Tissue Immune Microenvironments for Antiobesity Treatment. ACS NANO 2024; 18:9311-9330. [PMID: 38498418 DOI: 10.1021/acsnano.3c06001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In obesity, the interactions between proinflammatory macrophages and adipocytes in white adipose tissues are known to play a crucial role in disease progression by providing inflammatory microenvironments. Here, we report that the functional nanoparticle-mediated modulation of crosstalk between adipocytes and macrophages can remodel adipocyte immune microenvironments. As a functional nanomodulator, we designed antivascular cell adhesion molecule (VCAM)-1 antibody-conjugated and amlexanox-loaded polydopamine nanoparticles (VAPN). Amlexanox was used as a model drug to increase energy expenditure. Compared to nanoparticles lacking antibody modification or amlexanox, VAPN showed significantly greater binding to VCAM-1-expressing adipocytes and lowered the interaction of adipocytes with macrophages. In high fat diet-fed mice, repeated subcutaneous administration of VAPN increased the populations of beige adipocytes and ameliorated inflammation in white adipose tissues. Moreover, the localized application of VAPN in vivo exerted a systemic metabolic effect and reduced metabolic disorders, including insulin tolerance and liver steatosis. These findings suggested that VAPN had potential to modulate the immune microenvironments of adipose tissues for the immunologic treatment of obesity. Although we used amlexanox as a model drug and anti-VCAM-1 antibody in VAPN, the concept of immune nanomodulators can be widely applied to the immunological treatment of obesity.
Collapse
Affiliation(s)
- Qiaoyun Li
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junho Byun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaehyun Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinwon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
41
|
Shaikh SR, Beck MA, Alwarawrah Y, MacIver NJ. Emerging mechanisms of obesity-associated immune dysfunction. Nat Rev Endocrinol 2024; 20:136-148. [PMID: 38129700 DOI: 10.1038/s41574-023-00932-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Obesity is associated with a wide range of complications, including type 2 diabetes mellitus, cardiovascular disease, hypertension and nonalcoholic fatty liver disease. Obesity also increases the incidence and progression of cancers, autoimmunity and infections, as well as lowering vaccine responsiveness. A unifying concept across these differing diseases is dysregulated immunity, particularly inflammation, in response to metabolic overload. Herein, we review emerging mechanisms by which obesity drives inflammation and autoimmunity, as well as impairing tumour immunosurveillance and the response to infections. Among these mechanisms are obesity-associated changes in the hormones that regulate immune cell metabolism and function and drive inflammation. The cargo of extracellular vesicles derived from adipose tissue, which controls cytokine secretion from immune cells, is also dysregulated in obesity, in addition to impairments in fatty acid metabolism related to inflammation. Furthermore, an imbalance exists in obesity in the biosynthesis and levels of polyunsaturated fatty acid-derived oxylipins, which control a range of outcomes related to inflammation, such as immune cell chemotaxis and cytokine production. Finally, there is a need to investigate how obesity influences immunity using innovative model systems that account for the heterogeneous nature of obesity in the human population.
Collapse
Affiliation(s)
- Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Melinda A Beck
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Yazan Alwarawrah
- Department of Paediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nancie J MacIver
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Paediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Tang J, Tam E, Song E, Xu A, Sweeney G. Crosstalk between myocardial autophagy and sterile inflammation in the development of heart failure. AUTOPHAGY REPORTS 2024; 3:2320605. [PMID: 40395524 PMCID: PMC11864620 DOI: 10.1080/27694127.2024.2320605] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 05/22/2025]
Abstract
Heart failure, a leading driver of global mortality, remains a topic of intense contemporary research interest due to the prevailing unmet need in cardiometabolic therapeutics. Numerous mechanisms with the potential to influence the onset and development of heart failure remain incompletely understood. Firstly, myocardial autophagy, which involves lysosomal degradation of damaged cellular components, confers context-dependent beneficial and detrimental effects. Secondly, sterile inflammation may arise following cardiac stress and exacerbate the progression of heart failure. Inflammation changes in a temporal manner and its onset must be adequately resolved to limit progression of heart failure. Mitochondria are an important factor in contributing to sterile inflammation by releasing damage associated molecular patterns (DAMPs) including mitochondrial DNA (mtDNA). Accordingly, this is one reason why the selective autophagy of mitochondria to maintain optimal function is important in determining cardiac function. In this review, we examine the increasing evidence suggesting crosstalk between autophagy and sterile inflammation together with their role in the development of heart failure. In particular, this is exemplified in the preclinical models of ischaemia/reperfusion injury and pressure overload induced heart failure. We also highlight potential therapeutic approaches focusing on autophagy and addressing sterile inflammation, aiming to enhance outcomes in heart failure.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Biology, York University, Toronto, ON, Canada
| | - Eddie Tam
- Department of Biology, York University, Toronto, ON, Canada
| | - Erfei Song
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Metabolic and Bariatric Surgery, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Aimin Xu
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
43
|
Dai C, Wang D, Tao Q, Li Z, Zhai P, Wang Y, Hou M, Cheng S, Qi W, Zheng L, Yao H. CD8 + T and NK cells characterized by upregulation of NPEPPS and ABHD17A are associated with the co-occurrence of type 2 diabetes and coronary artery disease. Front Immunol 2024; 15:1267963. [PMID: 38464509 PMCID: PMC10921359 DOI: 10.3389/fimmu.2024.1267963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
Background Coronary artery disease (CAD) and type 2 diabetes mellitus (T2DM) are closely related. The function of immunocytes in the pathogenesis of CAD and T2DM has not been extensively studied. The quantitative bioinformatics analysis of the public RNA sequencing database was applied to study the key genes that mediate both CAD and T2DM. The biological characteristics of associated key genes and mechanism of CD8+ T and NK cells in CAD and T2DM are our research focus. Methods With expression profiles of GSE66360 and GSE78721 from the Gene Expression Omnibus (GEO) database, we identified core modules associated with gene co-expression relationships and up-regulated genes in CAD and T2DM using Weighted Gene Co-expression Network Analysis (WGCNA) and the 'limma' software package. The enriched pathways of the candidate hub genes were then explored using GO, KEGG and GSEA in conjunction with the immune gene set (from the MSigDB database). A diagnostic model was constructed using logistic regression analysis composed of candidate hub genes in CAD and T2DM. Univariate Cox regression analysis revealed hazard ratios (HRs), 95% confidence intervals (CIs), and p-values for candidate hub genes in diagnostic model, while CIBERSORT and immune infiltration were used to assess the immune microenvironment. Finally, monocytes from peripheral blood samples and their immune cell ratios were analyzed by flow cytometry to validate our findings. Results Sixteen candidate hub genes were identified as being correlated with immune infiltration. Univariate Cox regression analysis revealed that NPEPPS and ABHD17A were highly correlated with the diagnosis of CAD and T2DM. The results indicate that CD8+ T cells (p = 0.04) and NKbright cells (p = 3.7e-3) are significantly higher in healthy controls than in individuals with CAD or CAD combined with T2DM. The bioinformatics results on immune infiltration were well validated by flow cytometry. Conclusions A series of bioinformatics studies have shown ABHD17A and NPEPPS as key genes for the co-occurrence of CAD and T2DM. Our study highlights the important effect of CD8+ T and NK cells in the pathogenesis of both diseases, indicating that they may serve as viable targets for diagnosis and therapeutic intervention.
Collapse
Affiliation(s)
- Chenyu Dai
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Damu Wang
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Qianqian Tao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Ziyi Li
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Peng Zhai
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Yingying Wang
- Anhui Provincial Children’s Hospital, Children’s Hospital of Fudan University, Hefei, Anhui, China
| | - Mei Hou
- Cancer Research Center, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Simin Cheng
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Wei Qi
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, China
| | - Longyi Zheng
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Huaifang Yao
- Department of Cadre Cardiology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
44
|
Barbosa P, Pinho A, Lázaro A, Paula D, Tralhão JG, Paiva A, Pereira MJ, Carvalho E, Laranjeira P. Bariatric Surgery Induces Alterations in the Immune Profile of Peripheral Blood T Cells. Biomolecules 2024; 14:219. [PMID: 38397455 PMCID: PMC10886753 DOI: 10.3390/biom14020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Low-grade inflammation is closely linked to obesity and obesity-related comorbidities; therefore, immune cells have become an important topic in obesity research. Here, we performed a deep phenotypic characterization of circulating T cells in people with obesity, using flow cytometry. Forty-one individuals with obesity (OB) and clinical criteria for bariatric surgery were enrolled in this study. We identified and quantified 44 different circulating T cell subsets and assessed their activation status and the expression of immune-checkpoint molecules, immediately before (T1) and 7-18 months after (T2) the bariatric surgery. Twelve age- and sex-matched healthy individuals (nOB) were also recruited. The OB participants showed higher leukocyte counts and a higher percentage of neutrophils. The percentage of circulating Th1 cells were negatively correlated to HbA1c and insulin levels. OB Th1 cells displayed a higher activation status and lower PD-1 expression. The percentage of Th17 and Th1/17 cells were increased in OB, whereas the CD4+ Tregs' percentage was decreased. Interestingly, a higher proportion of OB CD4+ Tregs were polarized toward Th1- and Th1/17-like cells and expressed higher levels of CCR5. Bariatric surgery induced the recovery of CD4+ Treg cell levels and the expansion and activation of Tfh and B cells. Our results show alterations in the distribution and phenotype of circulating T cells from OB people, including activation markers and immune-checkpoint proteins, demonstrating that different metabolic profiles are associated to distinct immune profiles, and both are modulated by bariatric surgery.
Collapse
Affiliation(s)
- Pedro Barbosa
- University of Coimbra, Institute for Interdisciplinary Research, Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), 3030-789 Coimbra, Portugal;
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
| | - Aryane Pinho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Department of Life Science, University of Coimbra, 3000-456 Coimbra, Portugal
| | - André Lázaro
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diogo Paula
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
| | - José G. Tralhão
- General Surgery Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal; (A.L.); (D.P.); (J.G.T.)
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Biophysics, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Artur Paiva
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-076 Coimbra, Portugal
- Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, 3046-854 Coimbra, Portugal
| | - Maria J. Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, SE-75185 Uppsala, Sweden;
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
| | - Paula Laranjeira
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-061 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Group of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Flow Cytometry Unit, Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3000-076 Coimbra, Portugal
| |
Collapse
|
45
|
Hui Y, Kuang L, Zhong Y, Tang Y, Xu Z, Zheng T. High glucose impairs cognitive function through inducing mitochondrial calcium overload in Treg cells. iScience 2024; 27:108689. [PMID: 38226157 PMCID: PMC10788441 DOI: 10.1016/j.isci.2023.108689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
High glucose has been proved to impair cognitive function in type 2 diabetes, but the underlying mechanisms remain elusive. Here, we found that high glucose increased transcription factors' SP1 O-GlcNAcylation in regulatory T (Treg) cells. Glycosylated SP1 further enhanced HDAC2 recruitment and histone deacetylation on Na+/Ca2+/Li+ exchanger (NCLX) promoter, which downregulated NCLX expression and led to mitochondrial calcium overload and oxidative damage, thereby promoting Treg cell dysfunction, M1 microglia polarization, and diabetes-associated cognitive impairment. Importantly, GLP-1 receptor agonist alleviated these deleterious effects via GLP-1-receptor-mediated upregulation of OGA and inhibition of SP1 O-GlcNAcylation in Treg cells. Our study highlighted a link between high-glucose-mediated SP1 O-GlcNAcylation and HDAC2/NCLX signaling in control of mitochondrial calcium concentrations in Treg cells. It also revealed a mechanism for linking Treg cell dysfunction and cognitive impairment in type 2 diabetes and provides an insight into the mechanism underlying the neuroprotective effects of GLP-1 receptor agonist.
Collapse
Affiliation(s)
- Ya Hui
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Liuyu Kuang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Yuanmei Zhong
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Yunyun Tang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Zhiqiang Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| | - Tianpeng Zheng
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Clinical Research Center for Diabetes and Metabolic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Key Laboratory of Metabolic Reprogramming and Intelligent Medical Engineering for Chronic Diseases, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
- Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541199, P.R. China
| |
Collapse
|
46
|
Yang X, Xue C, Chen K, Gao D, Wang H, Tang C. Characteristics of elderly diabetes patients: focus on clinical manifestation, pathogenic mechanism, and the role of traditional Chinese medicine. Front Pharmacol 2024; 14:1339744. [PMID: 38273819 PMCID: PMC10808572 DOI: 10.3389/fphar.2023.1339744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024] Open
Abstract
Diabetes mellitus has become a major public health issue globally, putting an enormous burden on global health systems and people. Among all diseased groups, a considerable part of patients are elderly, while their clinical features, pathogenic processes, and medication regimens are different from patients of other ages. Despite the availability of multiple therapies and techniques, there are still numerous elderly diabetes patients suffering from poor blood glucose control, severe complications, and drug adverse effects, which negatively affect the quality of life in their golden years. Traditional Chinese Medicine (TCM) has been widely used in the treatment of diabetes for several decades, and its relevant clinical practice has confirmed that it has a satisfactory effect on alleviating clinical symptoms and mitigating the progression of complications. Chinese herbal medicine and its active components were used widely with obvious clinical advantages by multiple targets and signaling pathways. However, due to the particular features of elderly diabetes, few studies were conducted to explore Traditional Chinese Medicine intervention on elderly diabetic patients. This study reviews the research on clinical features, pathogenic processes, treatment principles, and TCM treatments, hoping to provide fresh perspectives on the prevention and management strategies for elderly diabetes.
Collapse
Affiliation(s)
- Xiaofei Yang
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chongxiang Xue
- Beijing University of Chinese Medicine, Beijing, China
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongyang Gao
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Han Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Tang
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Pal A, Lin CT, Boykov I, Benson E, Kidd G, Fisher-Wellman KH, Neufer PD, Shaikh SR. High Fat Diet-Induced Obesity Dysregulates Splenic B Cell Mitochondrial Activity. Nutrients 2023; 15:4807. [PMID: 38004202 PMCID: PMC10675399 DOI: 10.3390/nu15224807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Diet-induced obesity impairs mitochondrial respiratory responses in tissues that are highly metabolically active, such as the heart. However, less is known about the impact of obesity on the respiratory activity of specific cell types, such as splenic B cells. B cells are of relevance, as they play functional roles in obesity-induced insulin resistance, inflammation, and responses to infection. Here, we tested the hypothesis that high-fat-diet (HFD)-induced obesity could impair the mitochondrial respiration of intact and permeabilized splenic CD19+ B cells isolated from C57BL/6J mice and activated ex vivo with lipopolysaccharide (LPS). High-resolution respirometry was used with intact and permeabilized cells. To reveal potential mechanistic targets by which HFD-induced obesity dysregulates B cell mitochondria, we conducted proteomic analyses and 3D serial block face scanning electron microscopy (SBFEM). High-resolution respirometry revealed that intact LPS-stimulated B cells of obese mice, relative to controls, displayed lower ATP-linked, as well as maximal uncoupled, respiration. To directly investigate mitochondrial function, we used permeabilized LPS-stimulated B cells, which displayed increased H2O2 emission and production with obesity. We also examined oxidative phosphorylation efficiency simultaneously, which revealed that oxygen consumption and ATP production were decreased in LPS-stimulated B cells with obesity relative to controls. Despite minimal changes in total respiratory complex abundance, in LPS-stimulated B cells of obese mice, three of the top ten most downregulated proteins were all accessory subunits of respiratory complex I. SBFEM showed that B cells of obese mice, compared to controls, underwent no change in mitochondrial cristae integrity but displayed increased mitochondrial volume that was linked to bioenergetic function. Collectively, these results establish a proof of concept that HFD-induced obesity dysregulates the mitochondrial bioenergetic metabolism of activated splenic B cells.
Collapse
Affiliation(s)
- Anandita Pal
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Chien-Te Lin
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.-T.L.); (I.B.); (K.H.F.-W.)
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Ilya Boykov
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.-T.L.); (I.B.); (K.H.F.-W.)
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Emily Benson
- 3D-EM Ultrastructural Imaging and Computation Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (E.B.); (G.K.)
| | - Grahame Kidd
- 3D-EM Ultrastructural Imaging and Computation Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA; (E.B.); (G.K.)
| | - Kelsey H. Fisher-Wellman
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.-T.L.); (I.B.); (K.H.F.-W.)
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - P. Darrell Neufer
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; (C.-T.L.); (I.B.); (K.H.F.-W.)
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| |
Collapse
|
48
|
Leggio L, Leko A, Gregory-Flores A, Marchette R, Gomez J, Vendruscolo J, Repunte-Canonigo V, Chuong V, Deschaine S, Whiting K, Jackson S, Cornejo M, Perello M, You ZB, Eckhaus M, Janda K, Zorman B, Sumazin P, Koob G, Michaelides M, Sanna PP, Vendruscolo L. Genetic or pharmacological GHSR blockade has sexually dimorphic effects in rodents on a high-fat diet. RESEARCH SQUARE 2023:rs.3.rs-3236045. [PMID: 37886546 PMCID: PMC10602167 DOI: 10.21203/rs.3.rs-3236045/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The stomach-derived hormone ghrelin regulates essential physiological functions. The ghrelin receptor (GHSR) has ligand-independent actions, therefore, GHSR gene deletion may be a reasonable approach to investigate the role of this system in feeding behaviors and diet-induced obesity (DIO). Here we investigated the effects of a long-term (12 month) high-fat (HFD) versus regular diet on obesity-related measures in global GHSR-KO and wild type (WT) Wistar male and female rats. Our main findings were that the GHSR gene deletion protects against DIO and decreases food intake during HFD in male but not in female rats. GHSR gene deletion increased thermogenesis and brain glucose uptake in male rats and modified the effects of HFD on brain glucose metabolism in a sex-specific manner, as assessed with small animal positron emission tomography. RNA-sequencing was also used to show that GHSR-KO rats had upregulated expression of genes responsible for fat oxidation in brown adipose tissue. Central administration of a novel GHSR inverse agonist, PF-5190457, attenuated ghrelin-induced food intake, but only in male, not in female mice. HFD-induced binge-like eating was reduced by inverse agonism in both sexes. Our results support GHSR as a promising target for new pharmacotherapies for obesity.
Collapse
|
49
|
Bachstetter AD, Lutshumba J, Winford E, Abner EL, Martin BJ, Harp JP, Van Eldik LJ, Schmitt FA, Wilcock DM, Stowe AM, Jicha GA, Nikolajczyk BS. A blunted T H17 cytokine signature in women with mild cognitive impairment: insights from inflammatory profiling of a community-based cohort of older adults. Brain Commun 2023; 5:fcad259. [PMID: 37901041 PMCID: PMC10612408 DOI: 10.1093/braincomms/fcad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/23/2023] [Accepted: 10/06/2023] [Indexed: 10/31/2023] Open
Abstract
People with dementia have an increase in brain inflammation, caused in part by innate and adaptive immune cells. However, it remains unknown whether dementia-associated diseases alter neuro-immune reflex arcs to impact the systemic immune system. We examined peripheral immune cells from a community-based cohort of older adults to test if systemic inflammatory cytokine signatures associated with early stages of cognitive impairment. Human peripheral blood mononuclear cells were cultured with monocyte or T-cell-targeted stimuli, and multiplex assays quantitated cytokines in the conditioned media. Following T-cell-targeted stimulation, cells from women with cognitive impairment produced lower amounts of TH17 cytokines compared with cells from cognitively healthy women, while myeloid-targeted stimuli elicited similar amounts of cytokines from cells of both groups. This TH17 signature correlated with the proportion of circulating CD4+ and CD8+ T cells and plasma glial fibrillary acidic protein and neurofilament light concentrations. These results suggest that decreases in TH17 cytokines could be an early systemic change in women at risk for developing dementia. Amelioration of TH17s cytokines in early cognitive impairment could, in part, explain the compromised ability of older adults to respond to vaccines or defend against infection.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jenny Lutshumba
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Edric Winford
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY 40536, USA
| | - Barbra J Martin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Jordan P Harp
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Linda J Van Eldik
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Frederick A Schmitt
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
- Department of Behavioral Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Donna M Wilcock
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Ann M Stowe
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Neurology, University of Kentucky, Lexington, KY 40536, USA
| | - Barbara S Nikolajczyk
- Department of Pharmacology and Nutritional Science, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
50
|
Yang T, Yan C, Yang L, Tan J, Jiang S, Hu J, Gao W, Wang Q, Li Y. Identification and validation of core genes for type 2 diabetes mellitus by integrated analysis of single-cell and bulk RNA-sequencing. Eur J Med Res 2023; 28:340. [PMID: 37700362 PMCID: PMC10498638 DOI: 10.1186/s40001-023-01321-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The exact mechanisms of type 2 diabetes mellitus (T2DM) remain largely unknown. We intended to authenticate critical genes linked to T2DM progression by tandem single-cell sequencing and general transcriptome sequencing data. METHODS T2DM single-cell RNA-sequencing data were submitted by the Gene Expression Omnibus (GEO) database and ArrayExpress (EBI), from which gene expression matrices were retrieved. The common cell clusters and representative marker genes were ascertained by principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), CellMarker, and FindMarkers in two datasets (GSE86469 and GSE81608). T2DM-related differentially expressed marker genes were defined by intersection analysis of marker genes and GSE86468-differentially expressed genes. Receiver operating characteristic (ROC) curves were utilized to assign representative marker genes with diagnostic values by GSE86468, GSE29226 and external validation GSE29221, and their prospective target compounds were forecasted by PubChem. Besides, the R package clusterProfiler-based functional annotation was designed to unveil the intrinsic mechanisms of the target genes. At last, western blot was used to validate the alternation of CDKN1C and DLK1 expression in primary pancreatic islet cells cultured with or without 30mM glucose. RESULTS Three common cell clusters were authenticated in two independent T2DM single-cell sequencing data, covering neurons, epithelial cells, and smooth muscle cells. Functional ensemble analysis disclosed an intimate association of these cell clusters with peptide/insulin secretion and pancreatic development. Pseudo-temporal trajectory analysis indicated that almost all epithelial and smooth muscle cells were of neuron origin. We characterized CDKN1C and DLK1, which were notably upregulated in T2DM samples, with satisfactory availability in recognizing three representative marker genes in non-diabetic and T2DM samples, and they were also robustly interlinked with the clinical characteristics of patients. Western blot also demonstrated that, compared with control group, the expression of CDKN1C and DLK1 were increased in primary pancreatic islet cells cultured with 30 mM glucose for 48 h. Additionally, PubChem projected 11 and 21 potential compounds for CDKN1C and DLK1, respectively. CONCLUSION It is desirable that the emergence of the 2 critical genes indicated (CDKN1C and DLK1) could be catalysts for the investigation of the mechanisms of T2DM progression and the exploitation of innovative therapies.
Collapse
Affiliation(s)
- Tingting Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chaoying Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lan Yang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jialu Tan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Shiqiu Jiang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Juan Hu
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Yansong Li
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|