1
|
Fang J, Zhu W, Yu D, Zhu L, Zha H, Tang J, Li Y, Zhu X, Zhao T, Zhang W. From Inflammasomes to Pyroptosis: Molecular Mechanisms in Chronic Intestinal Diseases - Opportunity or Challenge? J Inflamm Res 2025; 18:3349-3360. [PMID: 40070928 PMCID: PMC11895680 DOI: 10.2147/jir.s498703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Pyroptosis is a unique form of programmed cell death characterized by intense inflammation. It involves the activation of Gasdermin proteins, which form membrane pores, leading to rapid cell rupture and the release of inflammatory molecules. Unlike other types of cell death, pyroptosis has distinct activation mechanisms and plays a complex role in chronic intestinal diseases, including inflammatory bowel disease, intestinal fibrosis, chronic infectious enteritis, and colorectal cancer. This review comprehensively examines how pyroptosis influences disease development and progression while exploring the therapeutic potential of targeting pyroptosis-related pathways. Moreover, the complex interplay between gut microbiota and pyroptosis is summarized, highlighting its critical role in the pathogenesis of chronic intestinal disorders. A deeper understanding of pyroptosis-related mechanisms in these diseases may provide valuable insights for future research and contribute to the development of innovative therapeutic strategies in gastroenterology.
Collapse
Affiliation(s)
- Jintao Fang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Weihan Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Dian Yu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Lujian Zhu
- Department of Infectious Diseases, Jinhua Municipal Central Hospital, Jinhua, 321000, People’s Republic of China
| | - Haorui Zha
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Jingyi Tang
- Lanxi Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang, 321100, People’s Republic of China
| | - Yujia Li
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Xiaxin Zhu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Ting Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| | - Wei Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310000, People’s Republic of China
| |
Collapse
|
2
|
Wu Q, Wang Q, Hu K, Luo T, Liu J, Xue Y, Li L, Yang C, Lin R, Pan H, Wang J, Guo Z. Proline/serine-rich coiled-coil protein 1 alleviates pyroptosis in murine bone marrow-derived macrophages. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39935324 DOI: 10.3724/abbs.2025012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Pyroptosis is a regulated inflammatory cell death process that plays an essential role in various diseases. This study investigates the role of proline/serine-rich coiled-coil protein 1 (PSRC1) in pyroptosis and inflammation in macrophages. This study reports that PSRC1 expression is decreased in pyroptotic macrophages and that knockout of PSRC1 exacerbates pyroptosis and inflammation. PSRC1 overexpression alleviates pyroptosis and inflammation in macrophages. RNA-seq analysis reveals that PSRC1 regulates the expression of genes involved in the extracellular matrix (ECM). Specifically, PSRC1 downregulates the expression of periostin (POSTN), an ECM component. Knockdown of POSTN suppresses macrophage pyroptosis mediated by low expression of PSRC1. These findings suggest that PSRC1 can alleviate pyroptosis and inflammation in bone marrow-derived macrophages (BMDMs) by regulating the ECM and negatively regulating POSTN. This study provides insights into the role of PSRC1 in macrophage pyroptosis and identifies a potential target for the treatment of inflammatory diseases. Further research is needed to confirm these findings in vivo and in various disease models.
Collapse
Affiliation(s)
- Qiao Wu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Qianqian Wang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Kexin Hu
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Tiantian Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China; Chengdu 610014, China
| | - Jichen Liu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Yazhi Xue
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Ling Li
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Cuiqi Yang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Rongzhan Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Hangyu Pan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Jinhao Wang
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| | - Zhigang Guo
- Department of Cardiology, Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
3
|
Jena KK, Mambu J, Boehmer D, Sposito B, Millet V, de Sousa Casal J, Muendlein HI, Spreafico R, Fenouil R, Spinelli L, Wurbel S, Riquier C, Galland F, Naquet P, Chasson L, Elkins M, Mitsialis V, Ketelut-Carneiro N, Bugda Gwilt K, Thiagarajah JR, Ruan HB, Lin Z, Lien E, Shao F, Chou J, Poltorak A, Ordovas-Montanes J, Fitzgerald KA, Snapper SB, Broggi A, Zanoni I. Type III interferons induce pyroptosis in gut epithelial cells and impair mucosal repair. Cell 2024; 187:7533-7550.e23. [PMID: 39500322 DOI: 10.1016/j.cell.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Tissue damage and repair are hallmarks of inflammation. Despite a wealth of information on the mechanisms that govern tissue damage, mechanistic insight into how inflammation affects repair is lacking. Here, we investigated how interferons influence tissue repair after damage to the intestinal mucosa. We found that type III, not type I or type II, interferons delay epithelial cell regeneration by inducing the upregulation of Z-DNA-binding protein 1 (ZBP1). Z-nucleic acids formed following intestinal damage are sensed by ZBP1, leading to caspase-8 activation and the cleavage of gasdermin C (GSDMC). Cleaved GSDMC drives epithelial cell death by pyroptosis and delays repair of the large or small intestine after colitis or irradiation, respectively. The type III interferon/ZBP1/caspase-8/GSDMC axis is also active in patients with inflammatory bowel disease (IBD). Our findings highlight the capacity of type III interferons to delay gut repair, which has implications for IBD patients or individuals exposed to radiation therapies.
Collapse
Affiliation(s)
- Kautilya K Jena
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Julien Mambu
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Daniel Boehmer
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benedetta Sposito
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Virginie Millet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Joshua de Sousa Casal
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Romain Fenouil
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Lionel Spinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Sarah Wurbel
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Chloé Riquier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Franck Galland
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Philippe Naquet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Megan Elkins
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Vanessa Mitsialis
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Natália Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Egil Lien
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Center for Molecular inflammation Research, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Janet Chou
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Scott B Snapper
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Achille Broggi
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France.
| | - Ivan Zanoni
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Gudowska-Sawczuk M, Pączek S, Olkowicz M, Kudelski J, Mroczko B. Gasdermin D (GSDM D) as a Potential Diagnostic Biomarker in Bladder Cancer: New Perspectives in Detection. Cancers (Basel) 2024; 16:4213. [PMID: 39766111 PMCID: PMC11674414 DOI: 10.3390/cancers16244213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Traditional methods of bladder cancer (BC) diagnosis include clinical examination, imaging, urine tests, cystoscopy, and biopsy. Due to the complexity of detection, diagnostic markers of bladder cancer measured in blood are still being sought. The pathogenesis of BC is complex and depends on many factors. However, the available literature data suggest that gasdermin D (GSDM D) has an influence in the pathogenesis of cancers. This study is the first that assesses the significance and diagnostic utility of serum GSDM D in bladder cancer. METHODS A total of 80 serum samples were obtained and analysed from healthy volunteers (C) and bladder cancer patients. The cancer patients were further classified into two groups, low-grade (LG) and high-grade (HG) bladder cancer, according to the TNM classification. The serum levels of GSDM D, CEA, and CA19-9 were assessed following the manufacturer's instructions using immunoassay techniques. RESULTS The concentrations of GSDM D were nearly twice as high in the serum of BC patients compared to controls. Additionally, the median of GSDM D concentration was notably elevated in LG and HG bladder cancer than in C. In the total study group, the GSDM D concentration correlated with CRP and CEA levels. The diagnostic sensitivity of GSDM D was higher than that of CEA, but slightly lower in comparison to CA19-9. Moreover, the negative predictive value of GSDM D was the highest among all tested markers. The highest positive predictive value and diagnostic accuracy were observed for CEA, while the accuracy of GSDM D was comparable. GSDM D had an AUC value of 0.741, which was similar to the AUC value of CEA. CONCLUSIONS GSDM D in serum appears to be a valuable diagnostic biomarker, especially when its measurement is used in conjunction with other markers such as CEA. Its high sensitivity makes it effective for the early detection of bladder cancer.
Collapse
Affiliation(s)
- Monika Gudowska-Sawczuk
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| | - Sara Pączek
- Department of Biochemical Diagnostics, University Hospital of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
| | - Michał Olkowicz
- Department of Urology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Białystok, Poland; (M.O.); (J.K.)
| | - Jacek Kudelski
- Department of Urology, Medical University of Bialystok, M. Skłodowskiej-Curie 24A St., 15-276 Białystok, Poland; (M.O.); (J.K.)
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland;
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, Waszyngtona 15A St., 15-269 Bialystok, Poland
| |
Collapse
|
5
|
Jiang K, He Q, Wang C, Yang W, Zhou C, Li J, Li J, Cui Y, Shi J, Wei Z, Jiao Y, Bai L, Wang S, Guo L. Metformin Inhibited GSDME to Suppress M2 Macrophage Pyroptosis and Maintain M2 Phenotype to Mitigate Cisplatin-Induced Intestinal Inflammation. Biomedicines 2024; 12:2526. [PMID: 39595093 PMCID: PMC11592070 DOI: 10.3390/biomedicines12112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/31/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The continuous clinical use of cisplatin is prevented by gastrointestinal toxicity. METHODS Cisplatin was used to treat THP-1-derived macrophages to see its differential effects on different subtypes of macrophages. Wild-type and Gsdme-/- mice models were used to examine the effect of cisplatin and metformin on intestinal inflammation in vivo. The effect of GSDME on macrophage polarization was further confirmed by GSDME knockdown. RESULTS We found that M2 macrophages, with more cell blebbing and GSDME cleavage, were more sensitive to cisplatin-induced pyroptosis than M1 macrophages. Cisplatin was capable of enhancing the M1 phenotype, which was reversed by GSDME knockdown. GSDME contributed to M1 polarization and GSDME knockdown promoted M2 phenotype via STAT6 activation. Reduced intestinal inflammation and increased M2 macrophage numbers was detected in cisplatin-treated GSDME-knockout mice. Furthermore, metformin alleviated cisplatin-induced intestinal inflammation by reducing M2 pyroptosis and enhancing M2 phenotype through GSDME inhibition. CONCLUSION This is the first study to reveal the non-pyroptotic role of GSDME in macrophage polarization, revealing that metformin could be used in combination with cisplatin to reduce intestinal toxicity.
Collapse
Affiliation(s)
- Ke Jiang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Qi He
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Chenhui Wang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Wen Yang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | | | - Jian Li
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Jiangbo Li
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Yuke Cui
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Jingqi Shi
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Zhenqiao Wei
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Yuanyuan Jiao
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Ligai Bai
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Shengqi Wang
- Bioinformatics Center of AMMS, Beijing 100850, China
| | - Liang Guo
- Bioinformatics Center of AMMS, Beijing 100850, China
| |
Collapse
|
6
|
Sun J, Leng J, Song L. The Evolution of NLR Inflammasome and Its Mediated Pyroptosis in Metazoa. Int J Mol Sci 2024; 25:11167. [PMID: 39456947 PMCID: PMC11508797 DOI: 10.3390/ijms252011167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) inflammasomes are multiprotein signaling platforms that control the inflammatory response and coordinate antimicrobial defense. In the present study, the distribution of NLR, Caspase-1, and gasdermin (GSDM) homologues and their structural characteristics and evolutionary relationships were systematically analyzed in metazoa according to the genomes of species. In invertebrates, there were only NLRC and/or NLRD presented from sponge to amphioxus, and according to the evolutionary tree, NLR from sponge located in the most primitive position. Caspase-1 existed in some metazoan phyla (Brachiopoda, Ectoprocta, Arthropoda, Mollusca, Annelia, Nematoda, Platyelminthes, Coelenterate, and Porifera) and its activation sites were relatively conserved. The amino acid sequences and three-dimensional structures of N-terminal CARD/Death domain of NLR and Caspase-1 were similar in species from sponge to human. NLR and Caspase-1 co-existed in species of Brachiopoda, Mollusca, Annelia, Coelenterate, and Porifera. There was only GSDME or PJVK found in some phyla of invertebrates and their cleavage sites were conserved (DxxD). And it was predicted that the NLR inflammasome in inducing pyroptosis could occur in species of Brachiopoda, Mollusca, Annelia, and Coelenterate. These studies indicated that NLR inflammasome emerged early in sponges of metazoa, and NLR inflammasome in inducing pyroptosis first appeared in Coelenterate, suggesting that inflammasome and its mediated pyroptosis had existed in the early stage of metazoa, but they had been lost in many species during evolution.
Collapse
Affiliation(s)
- Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Jinyuan Leng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China;
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
7
|
Wu J, Wang H, Gao P, Ouyang S. Pyroptosis: Induction and inhibition strategies for immunotherapy of diseases. Acta Pharm Sin B 2024; 14:4195-4227. [PMID: 39525577 PMCID: PMC11544194 DOI: 10.1016/j.apsb.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a central process for organismal health. Pyroptosis, namely pyroptotic cell death, is recognized as a critical type that disrupts membrane and triggers pro-inflammatory cytokine secretion via gasdermins, providing a robust form of cytolysis. Meanwhile, along with the thorough research, a great deal of evidence has demonstrated the dual effects of pyroptosis in host defense and inflammatory diseases. More importantly, the recent identification of abundant gasdermin-like proteins in bacteria and fungi suggests an ancient origin of pyroptosis-based regulated cell death in the life evolution. In this review, we bring a general overview of pyroptosis pathways focusing on gasdermin structural biology, regulatory mechanisms, and recent progress in induction and inhibition strategies for disease treatment. We look forward to providing an insightful perspective for readers to comprehend the frame and challenges of the pyroptosis field, and to accelerating its clinical application.
Collapse
Affiliation(s)
- Junjun Wu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
8
|
Chagas ACS, Ribeiro DM, Osório H, Abreu AAP, Okino CH, Niciura SCM, Amarante AFT, Bello HJS, Melito GR, Esteves SN, Almeida AM. Molecular signatures of Haemonchus contortus infection in sheep: A comparative serum proteomic study on susceptible and resistant sheep breeds. Vet Parasitol 2024; 331:110280. [PMID: 39116550 DOI: 10.1016/j.vetpar.2024.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Due to the negative impact of Haemonchus contortus in the tropics and subtropics, the detection of serum protein profiles that occur in infected sheep is of high relevance for targeted selective treatment strategies (TST). Herein, we integrated proteomics with phenotypic traits to elucidate physiological mechanisms associated to H. contortus infection in susceptible (Dorper - D) and resistant (Santa Inês - S) sheep breeds. Naïve female lambs were infected with H. contortus third-stage larvae on day zero (D0), and samples were collected weekly, for 28 days. Feces were used for individual fecal egg counts (FEC) blood for packed cell volume (PCV) and serum for specific antibody quantification through ELISA. Sera was collected on D0 (-) and D21 (+), and analyzed using a LC-MS/MS based proteomics approach. FEC, PCV, and anti-H. contortus antibody levels confirmed the absence of infection on D0. On D28 there was a significant difference between the two breeds for logFEC means (D = 3774 and S = 3141, p=0.033) and PCV means (D = 16.3 % and S = 24.3 %, p=0.038). From a total of 754 proteins identified, 68 differentially abundant proteins (DAPs) were noted. Phosphopyruvate hydratase (ENO3) was a DAP in all comparisons, while S+ vs D+ and S- vs D- shared the highest number of DAPs (8). Each of the four experimental groups clustered separately in a principal component analysis (PCA) of protein profile. Among the DAPs, proteins associated with the innate and adaptive immune system were detected when comparing S- vs D- and S+ vs D+. In D-, some proteins were linked to stress response to handling, sampling and heat. Focusing on the consequences of infection in each breed, in the D+ vs D- comparison, upregulated proteins were associated with inflammation control and immune response, where downregulated proteins pointed to a negative impact of infection on tissue anabolism, compromising muscle growth and fat deposition. In the S+ vs S- comparison, upregulated proteins were related to immune response, while the downregulated proteins were possibly linked to muscular development and growth, impaired by infection. Collectively, it can be concluded that ENO3 regulation emerges as a potential factor underlying the differential immune response observed between Santa Inês and Dorper sheep infected with H. contortus. In turn, detected acute phase proteins (APPs) reinforce their relation with infection, inflammation and stress conditions, whereas THEMIS-like may contribute to the immune system in Dorper. GSDMD, Guanylate-binding protein and ACAN warrant further investigation as possible biomarkers for TST strategy development.
Collapse
Affiliation(s)
- Ana Carolina S Chagas
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil.
| | - David M Ribeiro
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Hugo Osório
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Ana A P Abreu
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Cintia H Okino
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Simone C M Niciura
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | | | - Hornblenda J S Bello
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - Gláucia R Melito
- Centro Universitário Central Paulista (UNICEP), São Carlos, SP, Brazil
| | - Sérgio N Esteves
- Embrapa Pecuária Sudeste, Rod. Washington Luiz, Km 234, São Carlos, SP 13560-970, Brazil
| | - André M Almeida
- Linking Landscape, Environment, Agriculture and Food Research Center (LEAF), Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
9
|
Yang B, Yang K, Chen J, Wu Y. Crocin Protects the 661W Murine Photoreceptor Cell Line against the Toxic Effects of All- Trans-Retinal. Int J Mol Sci 2024; 25:10124. [PMID: 39337609 PMCID: PMC11432120 DOI: 10.3390/ijms251810124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is a common disease contributing to vision loss in the elderly. All-trans-retinal (atRAL) is a retinoid in the retina, and its abnormal accumulation exhibits toxicity to the retina and promotes oxidative stress-induced photoreceptor degeneration, which plays a crucial role in AMD progression. Crocin is a natural product extracted from saffron, which displays significant antioxidant and anti-inflammatory effects. The present study elucidates the protective effects of crocin on photoreceptor cell damage by atRAL and its potential mechanisms. The results revealed that crocin significantly attenuated cytotoxicity by repressing oxidative stress, mitochondrial injury, and DNA damage in atRAL-loaded photoreceptor cells. Moreover, crocin visibly inhibited DNA damage-induced apoptosis and gasdermin E (GSDME)-mediated pyroptosis in photoreceptor cells after exposure to atRAL. It was also observed that crocin distinctly prevented an increase in Fe2+ levels and lipid peroxidation caused by atRAL via suppressing the Kelch-like ECH-associated protein 1 (KEAP1)/nuclear factor-erythroid 2-related factor 2 (NRF2)/heme oxygenase-1 (HO-1) signaling pathway, thereby ameliorating photoreceptor cell ferroptosis. In short, these findings provide new insights that crocin mitigates atRAL-induced toxicity to photoreceptor cells by inhibiting oxidative stress, apoptosis, pyroptosis, and ferroptosis.
Collapse
Affiliation(s)
- Bo Yang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Kunhuan Yang
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jingmeng Chen
- School of Medicine, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
10
|
Liang W, Zhu Z, Xu D, Wang P, Guo F, Xiao H, Hou C, Xue J, Zhi X, Ran R. The burgeoning spatial multi-omics in human gastrointestinal cancers. PeerJ 2024; 12:e17860. [PMID: 39285924 PMCID: PMC11404479 DOI: 10.7717/peerj.17860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/14/2024] [Indexed: 09/19/2024] Open
Abstract
The development and progression of diseases in multicellular organisms unfold within the intricate three-dimensional body environment. Thus, to comprehensively understand the molecular mechanisms governing individual development and disease progression, precise acquisition of biological data, including genome, transcriptome, proteome, metabolome, and epigenome, with single-cell resolution and spatial information within the body's three-dimensional context, is essential. This foundational information serves as the basis for deciphering cellular and molecular mechanisms. Although single-cell multi-omics technology can provide biological information such as genome, transcriptome, proteome, metabolome, and epigenome with single-cell resolution, the sample preparation process leads to the loss of spatial information. Spatial multi-omics technology, however, facilitates the characterization of biological data, such as genome, transcriptome, proteome, metabolome, and epigenome in tissue samples, while retaining their spatial context. Consequently, these techniques significantly enhance our understanding of individual development and disease pathology. Currently, spatial multi-omics technology has played a vital role in elucidating various processes in tumor biology, including tumor occurrence, development, and metastasis, particularly in the realms of tumor immunity and the heterogeneity of the tumor microenvironment. Therefore, this article provides a comprehensive overview of spatial transcriptomics, spatial proteomics, and spatial metabolomics-related technologies and their application in research concerning esophageal cancer, gastric cancer, and colorectal cancer. The objective is to foster the research and implementation of spatial multi-omics technology in digestive tumor diseases. This review will provide new technical insights for molecular biology researchers.
Collapse
Affiliation(s)
- Weizheng Liang
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Zhenpeng Zhu
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Dandan Xu
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Peng Wang
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Fei Guo
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Haoshan Xiao
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Chenyang Hou
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
- Hebei North University, Zhangjiakou, Hebei Province, China
| | - Jun Xue
- Department of Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei Province, China
| | - Xuejun Zhi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
| | - Rensen Ran
- Central Laboratory, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei province, China
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
11
|
Cheng CK, Yi M, Wang L, Huang Y. Role of gasdermin D in inflammatory diseases: from mechanism to therapeutics. Front Immunol 2024; 15:1456244. [PMID: 39253076 PMCID: PMC11381298 DOI: 10.3389/fimmu.2024.1456244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Inflammatory diseases compromise a clinically common and diverse group of conditions, causing detrimental effects on body functions. Gasdermins (GSDM) are pore-forming proteins, playing pivotal roles in modulating inflammation. Belonging to the GSDM family, gasdermin D (GSDMD) actively mediates the pathogenesis of inflammatory diseases by mechanistically regulating different forms of cell death, particularly pyroptosis, and cytokine release, in an inflammasome-dependent manner. Aberrant activation of GSDMD in different types of cells, such as immune cells, cardiovascular cells, pancreatic cells and hepatocytes, critically contributes to the persistent inflammation in different tissues and organs. The contributory role of GSDMD has been implicated in diabetes mellitus, liver diseases, cardiovascular diseases, neurodegenerative diseases, and inflammatory bowel disease (IBD). Clinically, alterations in GSDMD levels are potentially indicative to the occurrence and severity of diseases. GSDMD inhibition might represent an attractive therapeutic direction to counteract the progression of inflammatory diseases, whereas a number of GSDMD inhibitors have been shown to restrain GSDMD-mediated pyroptosis through different mechanisms. This review discusses the current understanding and future perspectives on the role of GSDMD in the development of inflammatory diseases, as well as the clinical insights of GSDMD alterations, and therapeutic potential of GSDMD inhibitors against inflammatory diseases. Further investigation on the comprehensive role of GSDM shall deepen our understanding towards inflammation, opening up more diagnostic and therapeutic opportunities against inflammatory diseases.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Min Yi
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
12
|
Fu J, Li D, Zhang L, Maghsoudloo M, Cheng J, Fu J. Comprehensive analysis, diagnosis, prognosis, and cordycepin (CD) regulations for GSDME expressions in pan-cancers. Cancer Cell Int 2024; 24:279. [PMID: 39118110 PMCID: PMC11312966 DOI: 10.1186/s12935-024-03467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
The Gasdermin E gene (GSDME) plays roles in deafness and cancers. However, the roles and mechanisms in cancers are complex, and the same gene exhibits different mechanisms and actions in different types of cancers. Online databases, such as GEPIA2, cBioPortal, and DNMIVD, were used to comprehensively analyze GSDME profiles, DNA methylations, mutations, diagnosis, and prognosis in patients with tumor tissues and matched healthy tissues. Western blotting and RT-PCR were used to monitor the regulation of GSDME by Cordycepin (CD) in cancer cell lines. We revealed that GSDME expression is significantly upregulated in eight cancers (ACC, DLBC, GBM, HNSC, LGG, PAAD, SKCM, and THYM) and significantly downregulated in seven cancers (COAD, KICH, LAML, OV, READ, UCES, and UCS). The overall survival was longer only in ACC, but shorter in four cancers, including COAD, KIRC, LIHC, and STAD, when GSDME was highly expressed in cancers compared with the corresponding normal tissues. Moreover, the high expression of GSDME was negatively correlated with the poor prognosis of ACC, while the low expression of GSDME was negatively correlated with the poor prognosis of COAD, suggesting that GSDME might serve as a good prognostic factor in these two cancer types. Accordingly, results indicated that the DNA methylations of those 7 CpG sites constitute a potentially effective signature to distinguish different tumors from adjacent healthy tissues. Gene mutations for GSDME were frequently observed in a variety of tumors, with UCES having the highest frequency. Moreover, CD treatment inhibited GSDME expression in different cancer cell lines, while overexpression of GSDME promoted cell migration and invasion. Thus, we have systematically and successfully clarified the GSDME expression profiles, diagnostic values, and prognostic values in pan-cancers. Targeting GSDME with CD implies therapeutic significance and a mechanism for antitumor roles in some types of cancers via increasing the sensitivity of chemotherapy. Altogether, our study may provide a strategy and biomarker for clinical diagnosis, prognostics, and treatment of cancers by targeting GSDME.
Collapse
Affiliation(s)
- Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Dabing Li
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China
- Department of Pathology, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, 223300, Jiangsu Province, China
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan Province, P R China.
| |
Collapse
|
13
|
Long Y, Jia X, Chu L. Insight into the structure, function and the tumor suppression effect of gasdermin E. Biochem Pharmacol 2024; 226:116348. [PMID: 38852642 DOI: 10.1016/j.bcp.2024.116348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
Gasdermin E (GSDME), which is also known as DFNA5, was first identified as a deafness-related gene that is expressed in cochlear hair cells, and mutation of this gene causes autosomal dominant neurogenic hearing loss. Later studies revealed that GSDME is mostly expressed in the kidney, placenta, muscle and brain cells, but it is expressed at low levels in tumor cells. The GSDME gene encodes the GSDME protein, which is a member of the gasdermin (GSDM) family and has been shown to participate in the induction of apoptosis and pyroptosis. The current literature suggests that Caspase-3 and Granzyme B (Gzm B) can cleave GSDME to generate the active N-terminal fragment (GSDME-NT), which integrates with the cell membrane and forms pores in this membrane to induce pyroptosis. Furthermore, GSDME also forms pores in mitochondrial membranes to release apoptosis factors, such as cytochrome c (Cyt c) and high-temperature requirement protein A2 (HtrA2/Omi), and subsequently activates the intrinsic apoptosis pathway. In recent years, GSDME has been shown to exert tumor-suppressive effects, suggesting that it has potential therapeutic effects on tumors. In this review, we introduce the structure and function of GSDME and the mechanism by which it induces cell death, and we discuss its tumor suppressive effect.
Collapse
Affiliation(s)
- Yuge Long
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
14
|
Nie JJ, Zhang B, Luo P, Luo M, Luo Y, Cao J, Wang H, Mao J, Xing Y, Liu W, Cheng Y, Wang R, Liu Y, Wu X, Jiang X, Cheng X, Zhang C, Chen DF. Enhanced pyroptosis induction with pore-forming gene delivery for osteosarcoma microenvironment reshaping. Bioact Mater 2024; 38:455-471. [PMID: 38770426 PMCID: PMC11103790 DOI: 10.1016/j.bioactmat.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/22/2024] Open
Abstract
Osteosarcoma is the most common malignant bone tumor without efficient management for improving 5-year event-free survival. Immunotherapy is also limited due to its highly immunosuppressive tumor microenvironment (TME). Pore-forming gasdermins (GSDMs)-mediated pyroptosis has gained increasing concern in reshaping TME, however, the expressions and relationships of GSDMs with osteosarcoma remain unclear. Herein, gasdermin E (GSDME) expression is found to be positively correlated with the prognosis and immune infiltration of osteosarcoma patients, and low GSDME expression was observed. A vector termed as LPAD contains abundant hydroxyl groups for hydrating layer formation was then prepared to deliver the GSDME gene to upregulate protein expression in osteosarcoma for efficient TME reshaping via enhanced pyroptosis induction. Atomistic molecular dynamics simulations analysis proved that the hydroxyl groups increased LPAD hydration abilities by enhancing coulombic interaction. The upregulated GSDME expression together with cleaved caspase-3 provided impressive pyroptosis induction. The pyroptosis further initiated proinflammatory cytokines release, increased immune cell infiltration, activated adaptive immune responses and create a favorable immunogenic hot TME. The study not only confirms the role of GSDME in the immune infiltration and prognosis of osteosarcoma, but also provides a promising strategy for the inhibition of osteosarcoma by pore-forming GSDME gene delivery induced enhanced pyroptosis to reshape the TME of osteosarcoma.
Collapse
Affiliation(s)
- Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Bowen Zhang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, National Center for Orthopaedics, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Maoguo Luo
- Biological & Medical Engineering Core Facilities, School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuwen Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Cao
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Honggang Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jianping Mao
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Xing
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Weifeng Liu
- Department of Orthopaedic Oncology Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yuning Cheng
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yajun Liu
- Department of Spine Surgery, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xinbao Wu
- Department of Orthopedic Trauma, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xieyuan Jiang
- Department of Orthopedic Trauma, National Center for Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Cheng
- Department of Radiology, National Center for Orthopaedics, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Chi Zhang
- Department of Orthopedics, Peking University International Hospital, Beijing, China
| | - Da-Fu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Blijlevens NMA, Reijnders B, Molendijk E. Gastrointestinal mucositis: a sign of a (systemic) inflammatory response. Curr Opin Support Palliat Care 2024; 18:78-85. [PMID: 38652460 DOI: 10.1097/spc.0000000000000701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW Gastrointestinal mucositis (GIM) is a significant complication of cancer therapy. Whilst inflammation is a central feature of GIM, studies attempting to mitigate mucosal damage via this mechanism are scarce. This review describes the relation between GIM, local and systemic inflammation, and the microbiome and its metabolites, and explores recent research on therapeutics that target this relationship. RECENT FINDINGS Recent literature underscores the pivotal role of inflammation in GIM, elucidating its bidirectional relation with disturbance of the gut microbiota composition and intestinal permeability. These events cause a heightened risk of bloodstream infections and lead to systemic inflammation. While studies investigating risk prediction models or therapeutics targeting GIM-related inflammation remain scarce, results have shown promise in finding biomarkers and alleviating GIM and its accompanying clinical symptoms. SUMMARY The findings underscore the important role of inflammation and the microbiome in GIM. Understanding the inflammatory pathways driving GIM is crucial for developing effective treatments. Further research is needed using genomics, epigenomics, and microbiomics to explore better risk prediction models or therapeutic strategies aimed at mitigating GIM-related inflammation.
Collapse
|
16
|
Wang L, Li M, Lian G, Yang S, Wu Y, Cui J. USP18 Antagonizes Pyroptosis by Facilitating Selective Autophagic Degradation of Gasdermin D. RESEARCH (WASHINGTON, D.C.) 2024; 7:0380. [PMID: 38779488 PMCID: PMC11109516 DOI: 10.34133/research.0380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
As a key executioner of pyroptosis, Gasdermin D (GSDMD) plays a crucial role in host defense and emerges as an essential therapeutic target in the treatment of inflammatory diseases. So far, the understanding of the mechanisms that regulate the protein level of GSDMD to prevent detrimental effects and maintain homeostasis is currently limited. Here, we unveil that ubiquitin-specific peptidase 18 (USP18) works as a negative regulator of pyroptosis by targeting GSDMD for degradation and preventing excessive innate immune responses. Mechanically, USP18 recruits E3 ubiquitin ligase mind bomb homolog 2 (MIB2) to catalyze ubiquitination on GSDMD at lysine (K) 168, which acts as a recognition signal for the selective autophagic degradation of GSDMD. We further confirm the alleviating effect of USP18 on LPS-triggered inflammation in vivo. Collectively, our study demonstrates the role of USP18 in regulating GSDMD-mediated pyroptosis and reveals a previously unknown mechanism by which GSDMD protein level is rigorously controlled by selective autophagy.
Collapse
Affiliation(s)
- Liqiu Wang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guangyu Lian
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shuai Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Cui
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol,
School of Life Sciences of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Zaini A, Harris NL. A new superhero, the intraepithelial mast cell, joins the "Guardians of the Gut". Immunity 2024; 57:935-937. [PMID: 38749395 DOI: 10.1016/j.immuni.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 01/23/2025]
Abstract
The intestinal epithelium interacts with immune cells to support tissue homeostasis and coordinate responses against pathogens. In this issue of Immunity, Yang et al. unveil a central role for mast cell-epithelial cell interactions in orchestrating protective type 2 immune responses following intestinal helminth infection.
Collapse
Affiliation(s)
- Aidil Zaini
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Nicola L Harris
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Yang L, He H, Guo XK, Wang J, Wang W, Li D, Liang S, Shao F, Liu W, Hu X. Intraepithelial mast cells drive gasdermin C-mediated type 2 immunity. Immunity 2024; 57:1056-1070.e5. [PMID: 38614091 DOI: 10.1016/j.immuni.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/15/2024]
Abstract
A specialized population of mast cells residing within epithelial layers, currently known as intraepithelial mast cells (IEMCs), was originally observed over a century ago, yet their physiological functions have remained enigmatic. In this study, we unveil an unexpected and crucial role of IEMCs in driving gasdermin C-mediated type 2 immunity. During helminth infection, αEβ7 integrin-positive IEMCs engaged in extensive intercellular crosstalk with neighboring intestinal epithelial cells (IECs). Through the action of IEMC-derived proteases, gasdermin C proteins intrinsic to the epithelial cells underwent cleavage, leading to the release of a critical type 2 cytokine, interleukin-33 (IL-33). Notably, mast cell deficiency abolished the gasdermin C-mediated immune cascade initiated by epithelium. These findings shed light on the functions of IEMCs, uncover a previously unrecognized phase of type 2 immunity involving mast cell-epithelial cell crosstalk, and advance our understanding of the cellular mechanisms underlying gasdermin C activation.
Collapse
Affiliation(s)
- Liu Yang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Huabin He
- National Institute of Biological Sciences, Beijing, China
| | - Xue-Kun Guo
- Chinese Institutes for Medical Research, Beijing, China
| | - Jiali Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Wenwen Wang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Da Li
- National Institute of Biological Sciences, Beijing, China
| | - Shaonan Liang
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wanli Liu
- Institute for Immunology, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; School of Life Sciences, Tsinghua University, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing, China; School of Basic Medical Sciences, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Beijing, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China; The State Key Laboratory of Membrane Biology, Beijing, China.
| |
Collapse
|
19
|
Zhu C, Xu S, Jiang R, Yu Y, Bian J, Zou Z. The gasdermin family: emerging therapeutic targets in diseases. Signal Transduct Target Ther 2024; 9:87. [PMID: 38584157 PMCID: PMC10999458 DOI: 10.1038/s41392-024-01801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
The gasdermin (GSDM) family has garnered significant attention for its pivotal role in immunity and disease as a key player in pyroptosis. This recently characterized class of pore-forming effector proteins is pivotal in orchestrating processes such as membrane permeabilization, pyroptosis, and the follow-up inflammatory response, which are crucial self-defense mechanisms against irritants and infections. GSDMs have been implicated in a range of diseases including, but not limited to, sepsis, viral infections, and cancer, either through involvement in pyroptosis or independently of this process. The regulation of GSDM-mediated pyroptosis is gaining recognition as a promising therapeutic strategy for the treatment of various diseases. Current strategies for inhibiting GSDMD primarily involve binding to GSDMD, blocking GSDMD cleavage or inhibiting GSDMD-N-terminal (NT) oligomerization, albeit with some off-target effects. In this review, we delve into the cutting-edge understanding of the interplay between GSDMs and pyroptosis, elucidate the activation mechanisms of GSDMs, explore their associations with a range of diseases, and discuss recent advancements and potential strategies for developing GSDMD inhibitors.
Collapse
Affiliation(s)
- Chenglong Zhu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Sheng Xu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China
| | - Ruoyu Jiang
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, 200433, China
| | - Yizhi Yu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, 200433, China.
| | - Jinjun Bian
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zui Zou
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
20
|
Bhatti R, Sato PY. Exploring the role of pyroptosis in the pathogenicity of heart disease. Front Physiol 2024; 15:1357285. [PMID: 38645692 PMCID: PMC11026861 DOI: 10.3389/fphys.2024.1357285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Cell death is an essential cellular mechanism that ensures quality control and whole-body homeostasis. Various modes of cell death have been studied and detailed. Unbalanced cell death can lead to uncontrolled cell proliferation (i.e., tumors) or excessive loss of cells (i.e., ischemia injury tissue loss). Thus, it is imperative for modes of cell death to be balanced and controlled. Here, we will focus on a recent mode of cell death called pyroptosis. While extensive studies have shown the role of this route of cell death in macrophages and monocytes, evidence for pyroptosis have expanded to encompass other pathologies, including cancer and cardiac diseases. Herein, we provide a brief review on pyroptosis and discuss current gaps in knowledge and scientific advances in cardiac pyroptosis in recent years. Lastly, we provide conclusions and prospective on the relevance to various cardiac diseases.
Collapse
Affiliation(s)
| | - Priscila Y. Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Epstein AA, Janos SN, Menozzi L, Pegram K, Jain V, Bisset LC, Davis JT, Morrison S, Shailaja A, Guo Y, Chao AS, Abdi K, Rikard B, Yao J, Gregory SG, Fisher K, Pittman R, Erkanli A, Gustafson KE, Carrico CWT, Malcolm WF, Inder TE, Cotten CM, Burt TD, Shinohara ML, Maxfield CM, Benner EJ. Subventricular zone stem cell niche injury is associated with intestinal perforation in preterm infants and predicts future motor impairment. Cell Stem Cell 2024; 31:467-483.e6. [PMID: 38537631 PMCID: PMC11129818 DOI: 10.1016/j.stem.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/11/2024] [Accepted: 03/01/2024] [Indexed: 04/07/2024]
Abstract
Brain injury is highly associated with preterm birth. Complications of prematurity, including spontaneous or necrotizing enterocolitis (NEC)-associated intestinal perforations, are linked to lifelong neurologic impairment, yet the mechanisms are poorly understood. Early diagnosis of preterm brain injuries remains a significant challenge. Here, we identified subventricular zone echogenicity (SVE) on cranial ultrasound in preterm infants following intestinal perforations. The development of SVE was significantly associated with motor impairment at 2 years. SVE was replicated in a neonatal mouse model of intestinal perforation. Examination of the murine echogenic subventricular zone (SVZ) revealed NLRP3-inflammasome assembly in multiciliated FoxJ1+ ependymal cells and a loss of the ependymal border in this postnatal stem cell niche. These data suggest a mechanism of preterm brain injury localized to the SVZ that has not been adequately considered. Ultrasound detection of SVE may serve as an early biomarker for neurodevelopmental impairment after inflammatory disease in preterm infants.
Collapse
Affiliation(s)
- Adrian A Epstein
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Sara N Janos
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Luca Menozzi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Kelly Pegram
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Logan C Bisset
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Joseph T Davis
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha Morrison
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Aswathy Shailaja
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Yingqiu Guo
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Agnes S Chao
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Khadar Abdi
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Blaire Rikard
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Kimberley Fisher
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Rick Pittman
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Al Erkanli
- Department of Biostatistics & Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Kathryn E Gustafson
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | | | - William F Malcolm
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Terrie E Inder
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - C Michael Cotten
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA
| | - Trevor D Burt
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA; Children's Health and Discovery Initiative, Duke University School of Medicine, Durham, NC, USA
| | - Mari L Shinohara
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charles M Maxfield
- Department of Radiology, Duke University School of Medicine, Durham, NC, USA.
| | - Eric J Benner
- Department of Pediatrics, Division of Neonatology, Duke University School of Medicine, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
22
|
Wang S, Ma T, Xia X, Zhang L. Evolutionary insights and functional diversity of gasdermin family proteins and homologs in microorganisms. Front Immunol 2024; 15:1371611. [PMID: 38571940 PMCID: PMC10989679 DOI: 10.3389/fimmu.2024.1371611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024] Open
Abstract
The gasdermin protein family and its homologs in microorganisms have gained significant attention due to their roles in programmed cell death, immune defense, and microbial infection. This review summarizes the current research status of gasdermin proteins, their structural features, and functional roles in fungi, bacteria, and viruses. The review presents evolutionary parallels between mammalian and microbial defense systems, highlighting the conserved role of gasdermin proteins in regulating cell death processes and immunity. Additionally, the structural and functional characteristics of gasdermin homologs in microorganisms are summarized, shedding light on their potential as targets for therapeutic interventions. Future research directions in this field are also discussed to provide a roadmap for further investigation.
Collapse
Affiliation(s)
- Shule Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Tingbo Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaoyi Xia
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
23
|
Kandouz M. Cell Death, by Any Other Name…. Cells 2024; 13:325. [PMID: 38391938 PMCID: PMC10886887 DOI: 10.3390/cells13040325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Studies trying to understand cell death, this ultimate biological process, can be traced back to a century ago. Yet, unlike many other fashionable research interests, research on cell death is more alive than ever. New modes of cell death are discovered in specific contexts, as are new molecular pathways. But what is "cell death", really? This question has not found a definitive answer yet. Nevertheless, part of the answer is irreversibility, whereby cells can no longer recover from stress or injury. Here, we identify the most distinctive features of different modes of cell death, focusing on the executive final stages. In addition to the final stages, these modes can differ in their triggering stimulus, thus referring to the initial stages. Within this framework, we use a few illustrative examples to examine how intercellular communication factors in the demise of cells. First, we discuss the interplay between cell-cell communication and cell death during a few steps in the early development of multicellular organisms. Next, we will discuss this interplay in a fully developed and functional tissue, the gut, which is among the most rapidly renewing tissues in the body and, therefore, makes extensive use of cell death. Furthermore, we will discuss how the balance between cell death and communication is modified during a pathological condition, i.e., colon tumorigenesis, and how it could shed light on resistance to cancer therapy. Finally, we briefly review data on the role of cell-cell communication modes in the propagation of cell death signals and how this has been considered as a potential therapeutic approach. Far from vainly trying to provide a comprehensive review, we launch an invitation to ponder over the significance of cell death diversity and how it provides multiple opportunities for the contribution of various modes of intercellular communication.
Collapse
Affiliation(s)
- Mustapha Kandouz
- Department of Pathology, School of Medicine, Wayne State University, 540 East Canfield Avenue, Detroit, MI 48201, USA;
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
24
|
Lin Z, Chen Q, Ruan HB. To die or not to die: Gasdermins in intestinal health and disease. Semin Immunol 2024; 71:101865. [PMID: 38232665 PMCID: PMC10872225 DOI: 10.1016/j.smim.2024.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Intestinal homeostasis is achieved by the balance among intestinal epithelium, immune cells, and gut microbiota. Gasdermins (GSDMs), a family of membrane pore forming proteins, can trigger rapid inflammatory cell death in the gut, mainly pyroptosis and NETosis. Importantly, there is increasing literature on the non-cell lytic roles of GSDMs in intestinal homeostasis and disease. While GSDMA is low and PJVK is not expressed in the gut, high GSDMB and GSDMC expression is found almost restrictively in intestinal epithelial cells. Conversely, GSDMD and GSDME show more ubiquitous expression among various cell types in the gut. The N-terminal region of GSDMs can be liberated for pore formation by an array of proteases in response to pathogen- and danger-associated signals, but it is not fully understood what cell type-specific mechanisms activate intestinal GSDMs. The host relies on GSDMs for pathogen defense, tissue tolerance, and cancerous cell death; however, pro-inflammatory milieu caused by pyroptosis and excessive cytokine release may favor the development and progression of inflammatory bowel disease and cancer. Therefore, a thorough understanding of spatiotemporal mechanisms that control gasdermin expression, activation, and function is essential for the development of future therapeutics for intestinal disorders.
Collapse
Affiliation(s)
- Zhaoyu Lin
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Qianyue Chen
- MOE Key Laboratory of Model Animals for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
25
|
Yang J, Jiang J. Gasdermins: a dual role in pyroptosis and tumor immunity. Front Immunol 2024; 15:1322468. [PMID: 38304430 PMCID: PMC10830654 DOI: 10.3389/fimmu.2024.1322468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gasdermin (GSDM) protein family plays a pivotal role in pyroptosis, a process critical to the body's immune response, particularly in combatting bacterial infections, impeding tumor invasion, and contributing to the pathogenesis of various inflammatory diseases. These proteins are adept at activating inflammasome signaling pathways, recruiting immune effector cells, creating an inflammatory immune microenvironment, and initiating pyroptosis. This article serves as an introduction to the GSDM protein-mediated pyroptosis signaling pathways, providing an overview of GSDMs' involvement in tumor immunity. Additionally, we explore the potential applications of GSDMs in both innovative and established antitumor strategies.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Jiangsu Engineering Research Center for Tumor Immunotherapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
- Institute of Cell Therapy, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
26
|
Zhou L, Li Y, You J, Wu C, Zuo L, Chen Y, Kang L, Zhou Z, Huang R, Wu S. Salmonella spvC gene suppresses macrophage/neutrophil antibacterial defense mediated by gasdermin D. Inflamm Res 2024; 73:19-33. [PMID: 38135851 DOI: 10.1007/s00011-023-01818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE Salmonella enterica serovar Typhimurium (S. Typhimurium) is a representative model organism for investigating host-pathogen interactions. It was reported that S. Typhimurium spvC gene alleviated intestinal inflammation to aggravate systemic infection, while the precise mechanisms remain unclear. In this study, the influence of spvC on the antibacterial defense of macrophage/neutrophil mediated by gasdermin D (GSDMD) was investigated. METHODS Mouse macrophage-like cell lines J774A.1 and RAW264.7, neutrophil-like cells derived from HL-60 cells (human promyletic leukemia cell lines) were infected with S. Typhimurium wild type, spvC deletion and complemented strains. Cell death was evaluated by LDH release and Annexin V-FITC/PI staining. Macrophage pyroptosis and neutrophil NETosis were detected by western blotting, live cell imaging and ELISA. Flow cytometry was used to assess the impact of spvC on macrophage-neutrophil cooperation in macrophage (dTHP-1)-neutrophil (dHL-60) co-culture model pretreated with GSDMD inhibitor disulfiram. Wild-type and Gsdmd-/- C57BL/6J mice were utilized for in vivo assay. The degree of phagocytes infiltration and inflammation were analyzed by immunofluorescence and transmission electron microscopy. RESULTS Here we find that spvC inhibits pyroptosis in macrophages via Caspase-1/Caspase-11 dependent canonical and non-canonical pathways, and restrains neutrophil extracellular traps extrusion in GSDMD-dependent manner. Moreover, spvC could ameliorate macrophages/neutrophils infiltration and cooperation in the inflammatory response mediated by GSDMD to combat Salmonella infection. CONCLUSIONS Our findings highlight the antibacterial activity of GSDMD in phagocytes and reveal a novel pathogenic mechanism employed by spvC to counteract this host defense, which may shed new light on designing effective therapeutics to control S. Typhimurium infection.
Collapse
Affiliation(s)
- Liting Zhou
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
- Center of Clinical Laboratory, Dushu Lake Hospital, Affiliated to Soochow University, Suzhou, China
| | - Yuanyuan Li
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China
- Department of Medical Microbiology, Experimental Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiayi You
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Chaoyi Wu
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Lingli Zuo
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
- Medical Research Center, The People's Hospital of Suzhou New District, Suzhou, China
| | - Yilin Chen
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Li Kang
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhengyu Zhou
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou, China
| | - Rui Huang
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology & Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-Infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
27
|
Wang W, Gao W, Gong P, Song W, Bu X, Hou J, Zhang L, Zhao B. Neuronal-specific TNFAIP1 ablation attenuates postoperative cognitive dysfunction via targeting SNAP25 for K48-linked ubiquitination. Cell Commun Signal 2023; 21:356. [PMID: 38102610 PMCID: PMC10722859 DOI: 10.1186/s12964-023-01390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Synaptosomal-associated protein 25 (SNAP25) exerts protective effects against postoperative cognitive dysfunction (POCD) by promoting PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy and repressing caspase-3/gasdermin E (GSDME)-mediated pyroptosis. However, the regulatory mechanisms of SNAP25 protein remain unclear. METHODS We employed recombinant adeno-associated virus 9 (AAV9)-hSyn to knockdown tumor necrosis factor α-induced protein 1 (TNFAIP1) or SNAP25 and investigate the role of TNFAIP1 in POCD. Cognitive performance, hippocampal injury, mitophagy, and pyroptosis were assessed. Co-immunoprecipitation (co-IP) and ubiquitination assays were conducted to elucidate the mechanisms by which TNFAIP1 stabilizes SNAP25. RESULTS Our results demonstrated that the ubiquitin ligase TNFAIP1 was upregulated in the hippocampus of mice following isoflurane (Iso) anesthesia and laparotomy. The N-terminal region (residues 1-96) of TNFAIP1 formed a conjugate with SNAP25, leading to lysine (K) 48-linked polyubiquitination of SNAP25 at K69. Silencing TNFAIP1 enhanced SH-SY5Y cell viability and conferred antioxidant, pro-mitophagy, and anti-pyroptosis properties in response to Iso and lipopolysaccharide (LPS) challenges. Conversely, TNFAIP1 overexpression reduced HT22 cell viability, increased reactive oxygen species (ROS) accumulation, impaired PINK1/Parkin-dependent mitophagy, and induced caspase-3/GSDME-dependent pyroptosis by suppressing SNAP25 expression. Neuron-specific knockdown of TNFAIP1 ameliorated POCD, restored mitophagy, and reduced pyroptosis, which was reversed by SNAP25 depletion. CONCLUSIONS In summary, our findings demonstrated that inhibiting TNFAIP1-mediated degradation of SNAP25 might be a promising therapeutic approach for mitigating postoperative cognitive decline. Video Abstract.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Wenwei Gao
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ping Gong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, Department of Anesthesiology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Wenqin Song
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Xueshan Bu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China
| | - Lei Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No.238 Jiefang Road, Wuhan, 430060, China.
| |
Collapse
|
28
|
Lyu T, Yin Q. Research Progress on Pyroptosis in Hematological Malignancies. Curr Treat Options Oncol 2023; 24:1439-1450. [PMID: 37635159 PMCID: PMC10547621 DOI: 10.1007/s11864-023-01119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2023] [Indexed: 08/29/2023]
Abstract
OPINION STATEMENT Pyroptosis is a kind of programmed cell death dependent on the caspase pathway that is different from apoptosis and necrosis. Recent studies have shown that pyroptosis can be involved in the pathological processes of many diseases, such as cancers, atherosclerosis, diabetic nephropathy, and blood diseases. However, the specific mechanisms by which pyroptosis participates in the occurrence and development of hematological malignant tumors still need further exploration. This article reviews the characteristics of pyroptosis and the regulatory mechanisms promoting or inhibiting pyroptosis and discusses the role of pyroptosis in hematological malignant tumors, which could provide ideas for the clinical treatment of such tumors in the future.
Collapse
Affiliation(s)
- Tianxin Lyu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
29
|
Andersen V, Bennike TB, Bang C, Rioux JD, Hébert-Milette I, Sato T, Hansen AK, Nielsen OH. Investigating the Crime Scene-Molecular Signatures in Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:11217. [PMID: 37446397 PMCID: PMC10342864 DOI: 10.3390/ijms241311217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are without cure and troublesome to manage because of the considerable diversity between patients and the lack of reliable biomarkers. Several studies have demonstrated that diet, gut microbiota, genetics and other patient factors are essential for disease occurrence and progression. Understanding the link between these factors is crucial for identifying molecular signatures that identify biomarkers to advance the management of IBD. Recent technological breakthroughs and data integration have fuelled the intensity of this research. This research demonstrates that the effect of diet depends on patient factors and gut microbial activity. It also identifies a range of potential biomarkers for IBD management, including mucosa-derived cytokines, gasdermins and neutrophil extracellular traps, all of which need further evaluation before clinical translation. This review provides an update on cutting-edge research in IBD that aims to improve disease management and patient quality of life.
Collapse
Affiliation(s)
- Vibeke Andersen
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark;
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Tue B. Bennike
- Molecular Diagnostic and Clinical Research Unit, University Hospital of Southern Denmark, Institute of Regional Research, University of Southern Denmark, 5000 Odense, Denmark;
- Medical Microbiology and Immunology, Department of Health Science and Technology, Aalborg University, 9000 Aalborg, Denmark
| | - Corinna Bang
- Institute for Clinical Molecular Biology, Christian-Albrecht’s University, 24105 Kiel, Germany;
| | - John D. Rioux
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; (J.D.R.); (I.H.-M.)
- Montreal Heart Institute Research Institute, Montreal, QC H1T 1C8, Canada
| | - Isabelle Hébert-Milette
- Department of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada; (J.D.R.); (I.H.-M.)
- Montreal Heart Institute Research Institute, Montreal, QC H1T 1C8, Canada
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Axel K. Hansen
- Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark;
| | - Ole H. Nielsen
- Department of Gastroenterology, Herlev Hospital, University of Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
30
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|