1
|
Choudhury ST, Piper KR, Montoya-Giraldo M, Ikhimiukor OO, Dettman JR, Kassen R, Andam CP. Heterogeneity in recombination rates and accessory gene co-occurrence distinguish Pseudomonas aeruginosa phylogroups. mSystems 2025; 10:e0030125. [PMID: 40304385 PMCID: PMC12090758 DOI: 10.1128/msystems.00301-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
Pseudomonas aeruginosa (class Gammaproteobacteria) is a ubiquitous, ecologically widespread, and metabolically versatile species. It is also an opportunistic pathogen that causes a variety of chronic and acute infections in humans. Its ability to thrive in diverse environments and exhibit a wide range of phenotypes lies in part on its large gene pool, but the processes that govern inter-strain genomic variation remain unclear. Here, we aim to characterize the recombination features and accessory genome structure of P. aeruginosa using 840 globally distributed genome sequences. The species can be subdivided into five phylogenetic sequence clusters (corresponding to known phylogroups), two of which are most prominent. Notable epidemic clones are found in the two phylogroups: ST17, ST111, ST146, ST274, and ST395 in phylogroup 1, and ST235 and ST253 in phylogroup 2. The two phylogroups differ in the frequency and characteristics of homologous recombination in their core genomes, including the specific genes that most frequently recombine and the impact of recombination on sequence diversity. Each phylogroup's accessory genome is characterized by a unique gene pool, co-occurrence networks of shared genes, and anti-phage defense systems. Different pools of antimicrobial resistance and virulence genes exist in the two phylogroups and display dissimilar patterns of co-occurrence. Altogether, our results indicate that each phylogroup displays distinct histories and patterns of acquiring exogenous DNA, which may contribute in part to their predominance in the global population. Our study has important implications for understanding the genome dynamics, within-species heterogeneity, and clinically relevant traits of P. aeruginosa. IMPORTANCE The consummate opportunist Pseudomonas aeruginosa inhabits many nosocomial and non-clinical environments, posing a major health burden worldwide. Our study reveals phylogroup-specific differences in recombination features and co-occurrence networks of accessory genes within the species. This genomic variation partly explains its remarkable ability to exhibit diverse ecological and phenotypic traits, and thus contribute to circumventing clinical and public health intervention strategies to contain it. Our results may help inform efforts to control and prevent P. aeruginosa diseases, including managing transmission, therapeutic efforts, and pathogen circulation in non-clinical environmental reservoirs.
Collapse
Affiliation(s)
- Samara T. Choudhury
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kathryn R. Piper
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Manuela Montoya-Giraldo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Odion O. Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Jeremy R. Dettman
- Ottawa Research and Development Centre, Agriculture & Agri-Food Canada, Ottawa, Ontario, Canada
| | - Rees Kassen
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Cheryl P. Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
2
|
Wang K, Zhang C, Munang’andu HM, Xu C, Cai W, Yan X, Tao Z. Comparative Genomic Analysis of Two Vibrio harveyi Strains from Larimichthys crocea with Divergent Virulence Profiles. Microorganisms 2025; 13:1129. [PMID: 40431301 PMCID: PMC12114485 DOI: 10.3390/microorganisms13051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Vibrio harveyi is a significant pathogen in marine aquaculture, causing vibriosis in various marine species. This study presents a comparative genomic analysis of two V. harveyi strains, N8T11 and 45T2, which exhibit differing virulence profiles. Virulence assays revealed that N8T11 caused 92% mortality in infected fish, while 45T2 resulted in 0% mortality. Whole-genome sequencing revealed that strain N8T11 harbors five plasmids (pN8T11a, pN8T11b, pN8T11c, pN8T11d and pN8T11e) absent in 45T2, encoding genes potentially linked to virulence, such as siderophore-mediated iron acquisition and stress response mechanisms. Pan-genome analysis highlighted substantial genomic plasticity within V. harveyi, with mobile genetic elements, including plasmids and prophages, contributing to horizontal gene transfer. Conjugation experiments demonstrated that all five N8T11 plasmids can transfer to 45T2 with efficiencies up to 87%, with pN8T11b remaining stable across multiple subcultures, enabling the dissemination of virulence-associated genes. These findings suggest that plasmid-mediated gene transfer plays a role in the virulence variability observed between V. harveyi strains. This study contributes to understanding the genomic factors underlying pathogenicity in V. harveyi and provides insights for future research aimed at controlling vibriosis in aquaculture.
Collapse
Affiliation(s)
- Kequan Wang
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; (K.W.); (C.Z.); (X.Y.)
| | - Chaozheng Zhang
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; (K.W.); (C.Z.); (X.Y.)
| | | | - Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway;
| | - Wenlong Cai
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China;
| | - Xiaojun Yan
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; (K.W.); (C.Z.); (X.Y.)
| | - Zhen Tao
- School of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China; (K.W.); (C.Z.); (X.Y.)
| |
Collapse
|
3
|
Wu T, Zhao P, Pan P, Zhao Z, Zhu Y, Cheng J. Biofilm-disrupting DNA nanomedicines for targeted elimination of resistant wound microbiota. J Control Release 2025; 381:113618. [PMID: 40086759 DOI: 10.1016/j.jconrel.2025.113618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
Biofilms are complex bacterial communities that significantly hinder the treatment of chronic and recurrent infections by enhancing bacterial virulence and conferring resistance to antimicrobial therapies. To address this challenge, an intelligent DNA nanomedicine has been engineered to dismantle biofilms and target resistant bacteria, offering an innovative solution for chronic wound infections. These nanomedicines initiate biofilm degradation through in situ generation of potent oxidative radicals, enabling deep biofilm penetration and precise bacterial targeting. Utilizing aptamers for specific bacterial identification, the nanomedicines concentrate therapeutic agents directly at infection sites. The combined effect of severe oxidative stress and sustained silver ion release ensures a continuous, focused assault on pathogens, effectively eradicating resistant bacteria. This strategy demonstrated broad-spectrum efficacy against both Gram-positive and Gram-negative bacteria, significantly enhancing wound healing in a diabetic infection model. By integrating intelligent bacterial eradication with modulation of the wound microenvironment, this approach presents a promising solution for overcoming biofilm-associated resistance and advancing chronic wound infection treatment.
Collapse
Affiliation(s)
- Tiantian Wu
- School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China.
| | - Pengxian Zhao
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Pengcheng Pan
- School of Pharmacy, Hainan Medical University, Haikou, Hainan 571199, China
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Department of Neurosurgery, Binhai Branch of National Regional Medical Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Junjie Cheng
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
4
|
Reinoso-Pérez MT, Díaz Ávila LE, García Jacobo S, Rodríguez-García VM, Dhondt AA. Emerging genetic diversity of Mycoplasma gallisepticum in Mexican house finches: Evidence of possible independent spillover events. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 132:105761. [PMID: 40349939 DOI: 10.1016/j.meegid.2025.105761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
In a previous study, we reported for the first time the detection of Mycoplasma gallisepticum (MG) in Mexican house finches (Haemorhous mexicanus). Building on this finding, we explored the genetic diversity of MG, addressing the potential independent spillover events. Samples from 247 wild finches across Mexico revealed MG infection in 72 % of choanal swabs and 24 % of conjunctival swabs, with no clinical signs observed. Phylogenetic analysis identified two novel MG clades distinct from U.S. house finch-associated and poultry-associated MG strains, suggesting independent evolution within Mexico. Coinfections with diverse haplotypes were common, raising concerns about recombination and shifts in virulence. This research highlights the asymptomatic carrier state of Mexican house finches, their potential as reservoirs, and the ecological implications of pathogen spread and adaptation. These findings underscore the need for enhanced surveillance and further study on MG's dynamics in Mexican avifauna.
Collapse
Affiliation(s)
| | | | | | | | - André A Dhondt
- Laboratory of Ornithology, Cornell University. Ithaca, New York, USA; Department of Ecology and Evolutionary Biology, Cornell University. Ithaca, New York, USA.
| |
Collapse
|
5
|
Gohar D, Põldmaa K, Pent M, Rahimlou S, Cerk K, Ng DY, Hildebrand F, Bahram M. Genomic evidence of symbiotic adaptations in fungus-associated bacteria. iScience 2025; 28:112253. [PMID: 40290873 PMCID: PMC12023794 DOI: 10.1016/j.isci.2025.112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/18/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Fungi harbor diverse bacteria that engage in various relationships. While these relationships potentially influence fungal functioning, their underlying genetic mechanisms remain unexplored. Here, we aimed to elucidate the key genomic features of fungus-associated bacteria (FaB) by comparing 163 FaB genomes to 1,048 bacterial genomes from other hosts and habitats. Our analyses revealed several distinctive genomic features of FaB. We found that FaB are enriched in carbohydrate transport/metabolism- and motility-related genes, suggesting an adaptation for utilizing complex fungal carbon sources. They are also enriched in genes targeting fungal biomass, likely reflecting their role in recycling and rebuilding fungal structures. Additionally, FaB associated with plant-mutualistic fungi possess a wider array of carbon-acquisition enzymes specific to fungal and plant substrates compared to those residing with saprotrophic fungi. These unique genomic features highlight FaB' potential as key players in fungal nutrient acquisition and decomposition, ultimately influencing plant-fungal symbiosis and ecosystem functioning.
Collapse
Affiliation(s)
- Daniyal Gohar
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Kadri Põldmaa
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
- Natural History Museum and Botanical Garden, University of Tartu, Vanemuise 46, 51003 Tartu, Estonia
| | - Mari Pent
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi St. 2, 50409 Tartu, Estonia
| | - Saleh Rahimlou
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Klara Cerk
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Duncan Y.K. Ng
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
| | - Falk Hildebrand
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ Norfolk, UK
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ Norfolk, UK
| | - Mo Bahram
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 756 51 Uppsala, Sweden
| |
Collapse
|
6
|
Post V, Pascoe B, Hitchings MD, Erichsen C, Fischer J, Morgenstern M, Richards RG, Sheppard SK, Moriarty TF. Methicillin-sensitive Staphylococcus aureus lineages contribute towards poor patient outcomes in orthopaedic device-related infections. Microb Genom 2025; 11:001390. [PMID: 40238650 PMCID: PMC12068410 DOI: 10.1099/mgen.0.001390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/04/2025] [Indexed: 04/18/2025] Open
Abstract
Staphylococci are the most common cause of orthopaedic device-related infections (ODRIs), with Staphylococcus aureus responsible for a third or more of cases. This prospective clinical and laboratory study investigated the association of genomic and phenotypic variation with treatment outcomes in ODRI isolates. Eighty-six invasive S. aureus isolates were collected from patients with ODRI, and clinical outcome was assessed after a follow-up examination of 24 months. Each patient was then considered to have been 'cured' or 'not cured' based on predefined clinical criteria. Whole-genome sequencing and molecular characterization identified isolates belonging to globally circulating community- and hospital-acquired lineages. Most isolates were phenotypically susceptible to methicillin and lacked the staphylococcal cassette chromosome mec cassette [methicillin-susceptible S. aureus (MSSA); 94%] but contained several virulence genes, including toxins and biofilm genes. Whilst recognizing the role of the host immune response, we identified genetic variance, which could be associated with the infection severity or clinical outcome. Whilst this and several other studies reinforce the role antibiotic resistance [e.g. methicillin-resistant S. aureus (MRSA) infection] has on treatment failure, it is important not to overlook MSSA that can cause equally destructive infections and lead to poor patient outcomes.
Collapse
Affiliation(s)
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | | | | | - Julian Fischer
- Centrum of Orthopedic Isartal, Pullach im Isartal, Germany
| | - Mario Morgenstern
- Department of Orthopedic and Trauma Surgery, University Hospital, Basel, Switzerland
| | | | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - T. Fintan Moriarty
- AO Research Institute Davos, Davos, Switzerland
- Department of Orthopedic and Trauma Surgery, University Hospital, Basel, Switzerland
| |
Collapse
|
7
|
Wu HC, Chiu YT, Wu IC, Liou CH, Cheng HW, Kuo SC, Lauderdale TL, Sytwu HK, Liao YC, Chen FJ. Streamlining whole genome sequencing for clinical diagnostics with ONT technology. Sci Rep 2025; 15:6270. [PMID: 39979452 PMCID: PMC11842811 DOI: 10.1038/s41598-025-90127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
Recent advances in whole-genome sequencing (WGS) have increased the accessibility of this tool, offering substantial potential for pathogen surveillance, outbreak response, and diagnostics. However, the routine clinical adoption of WGS is hindered by factors such as high costs, technical complexity, and the requirement for bioinformatics expertise for data analysis. To address these challenges, we propose RapidONT, a workflow designed for cost-effective and accessible WGS-based pathogen analysis. RapidONT employs a mechanical shearing-based DNA extraction protocol, followed by library construction by using a multiplexing Oxford nanopore technologies (ONT) rapid barcoding kit. Flye software is used for de novo assembly without manual intervention, followed by basic assembly polishing using Medaka and Homopolish. The polished assemblies are then analyzed using the user-friendly web-based platform Pathogenwatch, which facilitates species identification, molecular typing, and antimicrobial resistance (AMR) prediction, all while requiring minimal bioinformatics expertise. The efficacy of RapidONT was evaluated using nine clinically relevant pathogens, encompassing a total of 90 gram-positive and gram-negative bacterial strains. The workflow demonstrated high accuracy in critical tasks such as multilocus sequence typing (MLST) and AMR identification, using only ONT R9.4.1 flowcell data. Notably, limitations were observed with Salmonella spp. and Neisseria gonorrhoeae. Furthermore, RapidONT enabled the generation of genomic information for 48 bacterial isolates by using a single flow cell, significantly reducing sequencing costs. This approach eliminates the need for extensive experimentation in obtaining crucial genomic information. This workflow facilitates broader WGS implementation in clinical pathogen analysis and diagnostics.
Collapse
Affiliation(s)
- Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - Yueh-Tzu Chiu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - I-Ching Wu
- Institute of Population of Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - Ci-Hong Liou
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - Hung-Wei Cheng
- Institute of Population of Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - Huey-Kang Sytwu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan
| | - Yu-Chieh Liao
- Institute of Population of Health Sciences, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan.
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County, 350401, Taiwan.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
8
|
Hurtado A, Ocejo M, Oporto B, Lavín JL, Rodríguez R, Marcos MÁ, Urrutikoetxea-Gutiérrez M, Alkorta M, Marimón JM. A One Health approach for the genomic characterization of antibiotic-resistant Campylobacter isolates using Nanopore whole-genome sequencing. Front Microbiol 2025; 16:1540210. [PMID: 39980694 PMCID: PMC11841381 DOI: 10.3389/fmicb.2025.1540210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/02/2025] [Indexed: 02/22/2025] Open
Abstract
In response to the growing threat posed by the spread of antimicrobial resistance in zoonotic Campylobacter, a One Health approach was used to examine the genomic diversity, phylogenomic relationships, and the distribution of genetic determinants of resistance (GDR) in C. jejuni and C. coli isolates from humans, animals (ruminants, swine, and chickens), and avian food products collected during a regionally (Basque Country, Spain) and temporally (mostly 2021-2022) restricted sampling. Eighty-three C. jejuni and seventy-one C. coli isolates, most exhibiting resistance to ciprofloxacin and/or erythromycin, were whole-genome sequenced using Oxford Nanopore Technologies long-fragment sequencing (ONT). Multilocus sequence typing (MLST) analysis identified a high genomic diversity among isolates. Phylogenomic analysis showed that clustering based on the core genome was aligned with MLST profiles, regardless of the sample source. In contrast, accessory genome content sometimes discriminated isolates within the same STs and occasionally differentiated isolates from different sources. The majority of the identified GDRs were present in isolates from different sources, and a good correlation was observed between GDR distribution and phenotypic susceptibility profiles (based on minimum inhibitory concentrations interpreted according to the EUCAST epidemiological cutoff values). Genotypic resistance profiles were independent of genotypes, indicating no apparent association between resistance and phylogenetic origin. This study demonstrates that ONT sequencing is a powerful tool for molecular surveillance of bacterial pathogens in the One Health framework.
Collapse
Affiliation(s)
- Ana Hurtado
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Medelin Ocejo
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - José Luis Lavín
- Applied Mathematics Department, NEIKER – Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, Derio, Bizkaia, Spain
| | - Ruth Rodríguez
- Laboratorio de Salud Pública en Gipuzkoa, Donostia-San Sebastián, Gipuzkoa, Spain
| | - María Ángeles Marcos
- Laboratorio de Salud Pública en Gipuzkoa, Donostia-San Sebastián, Gipuzkoa, Spain
| | - Mikel Urrutikoetxea-Gutiérrez
- Clinical Microbiology Service, Basurto University Hospital, Organización Sanitaria Integrada Bilbao-Basurto, Bilbao, Bizkaia, Spain
- Biobizkaia Health Research Institute, Microbiology and Infection Control, Barakaldo, Bizkaia, Spain
| | - Miriam Alkorta
- Infectious Diseases Area, Microbiology Department, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Donostialdea Integrated Health Organization, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
- Faculty of Medicine, University of the Basque Country, UPV/EHU, Donostia-San Sebastián, Gipuzkoa, Spain
| | - José María Marimón
- Infectious Diseases Area, Microbiology Department, Biogipuzkoa Health Research Institute, Donostia-San Sebastián, Gipuzkoa, Spain
- Donostialdea Integrated Health Organization, Donostia University Hospital, Donostia-San Sebastián, Gipuzkoa, Spain
| |
Collapse
|
9
|
Brangulis K, Sürth V, Marcinkiewicz AL, Akopjana I, Kazaks A, Bogans J, Huber A, Lin YP, Kraiczy P. CspZ variant-specific interaction with factor H incorporates a metal site to support Lyme borreliae complement evasion. J Biol Chem 2025; 301:108083. [PMID: 39675703 PMCID: PMC11773018 DOI: 10.1016/j.jbc.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
Polymorphic microbial immune evasion proteins dictate the pathogen species- or strain-specific virulence. Metals can impact how microbial proteins confer host-pathogen interactions, but whether this activity can be allelically variable is unclear. Here, we investigate the polymorphic CspZ protein of Lyme disease spirochete bacteria to assess the role of metals in protein-protein interaction. CspZ facilitates evasion of the complement system, the first line of immune defense through binding to the complement regulator factor H (FH). By obtaining a high-resolution cocrystal CspZ-FH structure, we identified a zinc coordinating the binding of FH SCR6-7 domains to a Glu65 on a loop from CspZ of Borrelia burgdorferi B31. However, zinc is dispensable for human FH binding for CspZ orthologs with a different loop orientation and/or lacking this glutamate. Phylogenetic analysis of all known human FH-binding CspZ variants further grouped the proteins into three unique lineages correlating with loop sequences. This suggests multiple FH-binding mechanisms evolved through Lyme disease spirochete-host interactions. Overall, this multidisciplinary work elucidates how the allelically specific immune evasion role of metals is impacted by microbial protein polymorphisms.
Collapse
Affiliation(s)
- Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia; Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia.
| | - Valerie Sürth
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Inara Akopjana
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Janis Bogans
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Alisa Huber
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York, USA; Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA; Department of Biomedical Sciences, SUNY Albany, Albany, New York, USA.
| | - Peter Kraiczy
- Goethe University Frankfurt, University Hospital of Frankfurt, Institute of Medical Microbiology and Infection Control, Frankfurt, Germany.
| |
Collapse
|
10
|
Zamunér CFC, Carhuaricra-Huaman D, Ragupathy R, Redfern J, Rodriguez-Cueva CL, Behlau F, Enright MC, Ferreira H, Setubal JC. Evolution and spread of Xanthomonas citri subsp. citri in the São Paulo, Brazil, citrus belt inferred from 758 novel genomes. Microb Genom 2025; 11:001338. [PMID: 39817540 PMCID: PMC11736806 DOI: 10.1099/mgen.0.001338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/25/2024] [Indexed: 01/18/2025] Open
Abstract
The São Paulo state citrus belt in Brazil is a major citrus production region. Since at least 1957, citrus plantations in this region have been affected by citrus canker, an economically damaging disease caused by Xanthomonas citri subsp. citri (Xcc). For about 50 years, until 2017, a citrus canker eradication programme was carried out in this region. In this work, our aim was to investigate the effects of the eradication programme on genetic variability and evolution of Xcc. To this end, we sequenced and analysed 758 Xcc genomes sampled in the São Paulo citrus belt, together with 730 publicly available Xcc genomes from around the world. Our phylogenomic analyses show that these genomes can be grouped into seven major lineages and that in São Paulo, lineage L7 is dominant. Our time estimate for its appearance closely matches the date when citrus production expanded. L7 can be subdivided into lineages L7.1 and L7.2. In our samples, L7.2, which we estimate to have emerged around 1964, is by far the most abundant, showing that the eradication programme had little impact on strain diversification. On the other hand, oscillations in the estimated effective population size of L7.2 strains over time closely match the shifts in the eradication programme. In sum, we present a detailed view of the genomic diversity of Xcc in the world and in São Paulo, the largest such effort in terms of a number of genomes for a crop pathogen undertaken so far. The methods employed here can form the basis for active genomic surveillance of Xcc in major citrus production areas.
Collapse
Affiliation(s)
- Caio Felipe Cavicchia Zamunér
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, Rio Claro, 13506-900, São Paulo, Brazil
| | | | - Roobinidevi Ragupathy
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - James Redfern
- Department of Natural Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | | | - Franklin Behlau
- Fundo de Defesa da Citricultura - Fundecitrus, Av. Dr. Adhemar Pereira de Barros, 201, Araraquara, 14.807-040, São Paulo, Brazil
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Henrique Ferreira
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, Rio Claro, 13506-900, São Paulo, Brazil
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Tsoumtsa Meda L, Lagarde J, Guillier L, Roussel S, Douarre PE. Using GWAS and Machine Learning to Identify and Predict Genetic Variants Associated with Foodborne Bacteria Phenotypic Traits. Methods Mol Biol 2025; 2852:223-253. [PMID: 39235748 DOI: 10.1007/978-1-0716-4100-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
One of the main challenges in food microbiology is to prevent the risk of outbreaks by avoiding the distribution of food contaminated by bacteria. This requires constant monitoring of the circulating strains throughout the food production chain. Bacterial genomes contain signatures of natural evolution and adaptive markers that can be exploited to better understand the behavior of pathogen in the food industry. The monitoring of foodborne strains can therefore be facilitated by the use of these genomic markers capable of rapidly providing essential information on isolated strains, such as the source of contamination, risk of illness, potential for biofilm formation, and tolerance or resistance to biocides. The increasing availability of large genome datasets is enhancing the understanding of the genetic basis of complex traits such as host adaptation, virulence, and persistence. Genome-wide association studies have shown very promising results in the discovery of genomic markers that can be integrated into rapid detection tools. In addition, machine learning has successfully predicted phenotypes and classified important traits. Genome-wide association and machine learning tools have therefore the potential to support decision-making circuits intending at reducing the burden of foodborne diseases. The aim of this chapter review is to provide knowledge on the use of these two methods in food microbiology and to recommend their use in the field.
Collapse
Affiliation(s)
- Landry Tsoumtsa Meda
- ACTALIA, La Roche-sur-Foron, France
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
| | - Jean Lagarde
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
- INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), Rennes, France
| | | | - Sophie Roussel
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France
| | - Pierre-Emmanuel Douarre
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, Maisons-Alfort, France.
| |
Collapse
|
12
|
Gao F, Luo J, Chen M. Characterization of erm(B) in a clinical Campylobacter jejuni isolate from China. J Antimicrob Chemother 2024; 79:3043-3045. [PMID: 39225001 PMCID: PMC11531814 DOI: 10.1093/jac/dkae294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Affiliation(s)
- Fen Gao
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| |
Collapse
|
13
|
Zhou H, Du W, Ouyang D, Li Y, Gong Y, Yao Z, Zhong M, Zhong X, Ye X. Simple and accurate genomic classification model for distinguishing between human and pig Staphylococcus aureus. Commun Biol 2024; 7:1171. [PMID: 39294434 PMCID: PMC11410946 DOI: 10.1038/s42003-024-06883-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Staphylococcus aureus (S. aureus) can cause various infections in humans and animals, contributing to high morbidity and mortality. To prevent and control cross-species transmission of S. aureus, it is necessary to understand the host-associated genetic variants. We performed a two-stage genome-wide association study (GWAS) including initial screening and further validation to compare genomic differences between human and pig S. aureus, aiming to identify host-associated determinants. Our multiple GWAS analyses found six consensus significant k-mers associated with host species, providing novel genetic evidence for distinguishing human from pig S. aureus. The best k-mer predictor achieved a high classification accuracy of 98.12% on its own and had extremely high resolution similar to the SNPs-based phylogeny, offering a very simple target for predicting the cross-species transmission risk of S. aureus. The final k-mer model revealed that 90% of S. aureus isolates from farm workers were predicted as livestock origin, suggesting a high risk of cross-species transmission. Bayesian inference revealed different cross-species transmission directions, with the human-to-pig transmission for ST5 and the pig-to-human transmission for ST398. Our findings provide a simple and accurate k-mer model for identifying and predicting the cross-species transmission risk of S. aureus.
Collapse
Affiliation(s)
- Huiliu Zhou
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenyin Du
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dejia Ouyang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuehe Li
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yajie Gong
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenjiang Yao
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Minghao Zhong
- Department of Prevention and Health Care, The Sixth People's Hospital of Dongguan, Dongguan, China
| | - Xinguang Zhong
- Department of Prevention and Health Care, The Sixth People's Hospital of Dongguan, Dongguan, China.
| | - Xiaohua Ye
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
14
|
Mourkas E, Valdebenito JO, Marsh H, Hitchings MD, Cooper KK, Parker CT, Székely T, Johansson H, Ellström P, Pascoe B, Waldenström J, Sheppard SK. Proximity to humans is associated with antimicrobial-resistant enteric pathogens in wild bird microbiomes. Curr Biol 2024; 34:3955-3965.e4. [PMID: 39142288 DOI: 10.1016/j.cub.2024.07.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
Humans are radically altering global ecology, and one of the most apparent human-induced effects is urbanization, where high-density human habitats disrupt long-established ecotones. Changes to these transitional areas between organisms, especially enhanced contact among humans and wild animals, provide new opportunities for the spread of zoonotic pathogens. This poses a serious threat to global public health, but little is known about how habitat disruption impacts cross-species pathogen spread. Here, we investigated variation in the zoonotic enteric pathogen Campylobacter jejuni. The ubiquity of C. jejuni in wild bird gut microbiomes makes it an ideal organism for understanding how host behavior and ecology influence pathogen transition and spread. We analyzed 700 C. jejuni isolate genomes from 30 bird species in eight countries using a scalable generalized linear model approach. Comparing multiple behavioral and ecological traits showed that proximity to human habitation promotes lineage diversity and is associated with antimicrobial-resistant (AMR) strains in natural populations. Specifically, wild birds from urban areas harbored up to three times more C. jejuni genotypes and AMR genes. This study provides novel methodology and much-needed quantitative evidence linking urbanization to gene pool spread and zoonoses.
Collapse
Affiliation(s)
- Evangelos Mourkas
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - José O Valdebenito
- Bird Ecology Lab, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Independencia 631, 5110566 Valdivia, Chile; Centro de Humedales Río Cruces (CEHUM), Universidad Austral de Chile, Camino Cabo Blanco Alto s/n, 5090000 Valdivia, Chile; HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Las Palmeras 3425, 8320000 Santiago, Chile
| | - Hannah Marsh
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Matthew D Hitchings
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, SA2 8PP Swansea, Wales
| | - Kerry K Cooper
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - Craig T Parker
- Produce Safety and Microbiology Unit, Western Region Research Center, USDA, Agricultural Research Service, Albany, CA 94710, USA
| | - Tamás Székely
- HUN-REN-DE Reproductive Strategies Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary; Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Håkan Johansson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Patrik Ellström
- Zoonosis Science Centre, Department of Medical Sciences, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Ben Pascoe
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Stuvaregatan 2, 392 31 Kalmar, Sweden
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| |
Collapse
|
15
|
Fu Y, Nawrocki EM, M’ikanatha NM, Dudley EG. Host species shapes genotype, antimicrobial resistance, and virulence profiles of enterotoxigenic Escherichia coli (ETEC) from livestock in the United States. Appl Environ Microbiol 2024; 90:e0074924. [PMID: 39082811 PMCID: PMC11337801 DOI: 10.1128/aem.00749-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/01/2024] [Indexed: 08/22/2024] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) are significant pathogen in both cattle and pigs, causing diarrhea in these animals and leading to economic losses in the livestock industry. Understanding the dissimilarity in genotype, antimicrobial resistance (AMR), and virulence between bovine and swine ETEC is crucial for development of targeted preventive and therapeutic approaches for livestock. However, a comprehensive study on this area remains lacking. Here, we performed whole-genome sequencing-based analyses of bovine (n = 554) and swine (n = 623) ETEC collected in the United States over a 53-year period. We identified distinct ETEC genotypes (fimH type, O antigen, H antigen, sequence type) in cattle and pigs. Furthermore, specific AMR and virulence profiles were associated with bovine and swine ETEC. Compared to swine ETEC, bovine ETEC were less diverse in genotypes and had a significantly (P < 0.001) lower number of AMR genes per isolate but higher co-occurrence of Shiga toxin and enterotoxin genes. Our results provide an overview of the key genomic differences between bovine and swine ETEC in the United States, which might be attributed to host adaptation and antibiotic usage practice. Ongoing surveillance and research are essential to monitor the genetic diversity and AMR patterns of ETEC in different host species. IMPORTANCE Enterotoxigenic Escherichia coli (ETEC)-associated diarrhea represent one of the most economically important diseases in the livestock industry. By analyzing over a thousand livestock-derived ETEC samples in the United States, our study unveiled a clear distinction in ETEC's genetic traits (i.e., genotypes, antimicrobial resistance [AMR], and virulence profiles) that might be tied to the different use of antibiotics in cattle and pigs, and the bacteria's adaptation to their specific animal hosts. This understanding is crucial for tailoring preventive and therapeutic strategies. It also highlights the significance of ongoing surveillance and research into the evolution of bacterial pathogens like ETEC in livestock by using advanced techniques such as whole-genome sequencing.
Collapse
Affiliation(s)
- Yezhi Fu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Erin M. Nawrocki
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
16
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
17
|
Andrews KR, Besser TE, Stalder T, Top EM, Baker KN, Fagnan MW, New DD, Schneider GM, Gal A, Andrews-Dickert R, Hunter SS, Beckmen KB, Christensen L, Justice-Allen A, Konetchy D, Lehman CP, Manlove K, Miyasaki H, Nordeen T, Roug A, Cassirer EF. Comparative genomic analysis identifies potential adaptive variation in Mycoplasma ovipneumoniae. Microb Genom 2024; 10:001279. [PMID: 39213169 PMCID: PMC11364169 DOI: 10.1099/mgen.0.001279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Mycoplasma ovipneumoniae is associated with respiratory disease in wild and domestic Caprinae globally, with wide variation in disease outcomes within and between host species. To gain insight into phylogenetic structure and mechanisms of pathogenicity for this bacterial species, we compared M. ovipneumoniae genomes for 99 samples from 6 countries (Australia, Bosnia and Herzegovina, Brazil, China, France and USA) and 4 host species (domestic sheep, domestic goats, bighorn sheep and caribou). Core genome sequences of M. ovipneumoniae assemblies from domestic sheep and goats fell into two well-supported phylogenetic clades that are divergent enough to be considered different bacterial species, consistent with each of these two clades having an evolutionary origin in separate host species. Genome assemblies from bighorn sheep and caribou also fell within these two clades, indicating multiple spillover events, most commonly from domestic sheep. Pangenome analysis indicated a high percentage (91.4 %) of accessory genes (i.e. genes found only in a subset of assemblies) compared to core genes (i.e. genes found in all assemblies), potentially indicating a propensity for this pathogen to adapt to within-host conditions. In addition, many genes related to carbon metabolism, which is a virulence factor for Mycoplasmas, showed evidence for homologous recombination, a potential signature of adaptation. The presence or absence of annotated genes was very similar between sheep and goat clades, with only two annotated genes significantly clade-associated. However, three M. ovipneumoniae genome assemblies from asymptomatic caribou in Alaska formed a highly divergent subclade within the sheep clade that lacked 23 annotated genes compared to other assemblies, and many of these genes had functions related to carbon metabolism. Overall, our results suggest that adaptation of M. ovipneumoniae has involved evolution of carbon metabolism pathways and virulence mechanisms related to those pathways. The genes involved in these pathways, along with other genes identified as potentially involved in virulence in this study, are potential targets for future investigation into a possible genomic basis for the high variation observed in disease outcomes within and between wild and domestic host species.
Collapse
Affiliation(s)
- Kimberly R. Andrews
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, Washington State University College of Veterinary Medicine, Pullman, WA, USA
| | - Thibault Stalder
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Eva M. Top
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Katherine N. Baker
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Matthew W. Fagnan
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Daniel D. New
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - G. Maria Schneider
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | - Alexandra Gal
- Department of Biological Sciences, University of Idaho, Moscow, ID, USA
| | - Rebecca Andrews-Dickert
- Department of Physiology and Pharmacology, College of Osteopathic Medicine, Sam Houston State University, Conroe, TX, USA
| | - Samuel S. Hunter
- Institute for Interdisciplinary Data Sciences, University of Idaho, Moscow, ID, USA
| | | | - Lauren Christensen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Denise Konetchy
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow ID, USA
| | | | - Kezia Manlove
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, UT, USA
| | | | - Todd Nordeen
- Nebraska Game and Parks Commission, Alliance, NE, USA
| | - Annette Roug
- Utah Division of Wildlife Resources, Salt Lake City, UT, USA
| | | |
Collapse
|
18
|
Crestani C, Forde TL, Bell J, Lycett SJ, Oliveira LMA, Pinto TCA, Cobo-Ángel CG, Ceballos-Márquez A, Phuoc NN, Sirimanapong W, Chen SL, Jamrozy D, Bentley SD, Fontaine M, Zadoks RN. Genomic and functional determinants of host spectrum in Group B Streptococcus. PLoS Pathog 2024; 20:e1012400. [PMID: 39133742 PMCID: PMC11341095 DOI: 10.1371/journal.ppat.1012400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 07/08/2024] [Indexed: 08/24/2024] Open
Abstract
Group B Streptococcus (GBS) is a major human and animal pathogen that threatens public health and food security. Spill-over and spill-back between host species is possible due to adaptation and amplification of GBS in new niches but the evolutionary and functional mechanisms underpinning those phenomena are poorly known. Based on analysis of 1,254 curated genomes from all major GBS host species and six continents, we found that the global GBS population comprises host-generalist, host-adapted and host-restricted sublineages, which are found across host groups, preferentially within one host group, or exclusively within one host group, respectively, and show distinct levels of recombination. Strikingly, the association of GBS genomes with the three major host groups (humans, cattle, fish) is driven by a single accessory gene cluster per host, regardless of sublineage or the breadth of host spectrum. Moreover, those gene clusters are shared with other streptococcal species occupying the same niche and are functionally relevant for host tropism. Our findings demonstrate (1) the heterogeneity of genome plasticity within a bacterial species of public health importance, enabling the identification of high-risk clones; (2) the contribution of inter-species gene transmission to the evolution of GBS; and (3) the importance of considering the role of animal hosts, and the accessory gene pool associated with their microbiota, in the evolution of multi-host bacterial pathogens. Collectively, these phenomena may explain the adaptation and clonal expansion of GBS in animal reservoirs and the risk of spill-over and spill-back between animals and humans.
Collapse
Affiliation(s)
- Chiara Crestani
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Taya L. Forde
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - John Bell
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
| | - Samantha J. Lycett
- The Roslin Institute, University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Laura M. A. Oliveira
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | - Tatiana C. A. Pinto
- Instituto de Microbiologia Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro, State of Rio de Janeiro, Brazil
| | | | | | - Nguyen N. Phuoc
- Faculty of Fisheries, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Wanna Sirimanapong
- Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Swaine L. Chen
- Infectious Diseases Translational Research Programme, Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Laboratory of Bacterial Genomics, Genome Institute of Singapore, Singapore
| | - Dorota Jamrozy
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | - Stephen D. Bentley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, England, United Kingdom
| | | | - Ruth N. Zadoks
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
- Moredun Research Institute, Penicuik, Scotland, United Kingdom
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, NSW, Australia
| |
Collapse
|
19
|
Barber MF, Fitzgerald JR. Mechanisms of host adaptation by bacterial pathogens. FEMS Microbiol Rev 2024; 48:fuae019. [PMID: 39003250 PMCID: PMC11308195 DOI: 10.1093/femsre/fuae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 07/15/2024] Open
Abstract
The emergence of new infectious diseases poses a major threat to humans, animals, and broader ecosystems. Defining factors that govern the ability of pathogens to adapt to new host species is therefore a crucial research imperative. Pathogenic bacteria are of particular concern, given dwindling treatment options amid the continued expansion of antimicrobial resistance. In this review, we summarize recent advancements in the understanding of bacterial host species adaptation, with an emphasis on pathogens of humans and related mammals. We focus particularly on molecular mechanisms underlying key steps of bacterial host adaptation including colonization, nutrient acquisition, and immune evasion, as well as suggest key areas for future investigation. By developing a greater understanding of the mechanisms of host adaptation in pathogenic bacteria, we may uncover new strategies to target these microbes for the treatment and prevention of infectious diseases in humans, animals, and the broader environment.
Collapse
Affiliation(s)
- Matthew F Barber
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, United States
- Department of Biology, University of Oregon, Eugene, OR 97403, United States
| | - J Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, Midlothian, EH25 9RG, United Kingdom
| |
Collapse
|
20
|
Taylor AJ, Yahara K, Pascoe B, Ko S, Mageiros L, Mourkas E, Calland JK, Puranen S, Hitchings MD, Jolley KA, Kobras CM, Bayliss S, Williams NJ, van Vliet AHM, Parkhill J, Maiden MCJ, Corander J, Hurst LD, Falush D, Keim P, Didelot X, Kelly DJ, Sheppard SK. Epistasis, core-genome disharmony, and adaptation in recombining bacteria. mBio 2024; 15:e0058124. [PMID: 38683013 PMCID: PMC11237541 DOI: 10.1128/mbio.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024] Open
Abstract
Recombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis. Why then is homologous recombination common in the core of bacterial genomes? To understand this enigma, we take advantage of an exceptional model system, the common enteric pathogens Campylobacter jejuni and C. coli that are known for very high magnitude interspecies gene flow in the core genome. As expected, HGT does indeed disrupt co-adapted allele pairings, indirect evidence of negative epistasis. However, multiple HGT events enable recovery of the genome's co-adaption between introgressing alleles, even in core metabolism genes (e.g., formate dehydrogenase). These findings demonstrate that, even for complex traits, genetic coalitions can be decoupled, transferred, and independently reinstated in a new genetic background-facilitating transition between fitness peaks. In this example, the two-step recombinational process is associated with C. coli that are adapted to the agricultural niche.IMPORTANCEGenetic exchange among bacteria shapes the microbial world. From the acquisition of antimicrobial resistance genes to fundamental questions about the nature of bacterial species, this powerful evolutionary force has preoccupied scientists for decades. However, the mixing of genes between species rests on a paradox: 0n one hand, promoting adaptation by conferring novel functionality; on the other, potentially introducing disharmonious gene combinations (negative epistasis) that will be selected against. Taking an interdisciplinary approach to analyze natural populations of the enteric bacteria Campylobacter, an ideal example of long-range admixture, we demonstrate that genes can independently transfer across species boundaries and rejoin in functional networks in a recipient genome. The positive impact of two-gene interactions appears to be adaptive by expanding metabolic capacity and facilitating niche shifts through interspecific hybridization. This challenges conventional ideas and highlights the possibility of multiple-step evolution of multi-gene traits by interspecific introgression.
Collapse
Affiliation(s)
- Aidan J Taylor
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Seungwon Ko
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Leonardos Mageiros
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | - Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Santeri Puranen
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, United Kingdom
| | - Keith A Jolley
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Carolin M Kobras
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sion Bayliss
- Bristol Veterinary School, University of Bristol, Bristol, United Kingdom
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Leahurst Campus, Wirral, United Kingdom
| | | | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Jukka Corander
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Laurence D Hurst
- The Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Daniel Falush
- The Centre for Microbes, Development and Health, Institut Pasteur of Shanghai, Shanghai, China
| | - Paul Keim
- Department of Biology, University of Oxford, Oxford, United Kingdom
- The Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, Arizona, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Xavier Didelot
- Department of Statistics, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J Kelly
- School of Biosciences, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
21
|
Calland JK, Pesonen ME, Mehat J, Pascoe B, Haydon DJ, Lourenco J, Lukasiewicz B, Mourkas E, Hitchings MD, La Ragione RM, Hammond P, Wallis TS, Corander J, Sheppard SK. Genomic tailoring of autogenous poultry vaccines to reduce Campylobacter from farm to fork. NPJ Vaccines 2024; 9:105. [PMID: 38866805 PMCID: PMC11169640 DOI: 10.1038/s41541-024-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Campylobacter is a leading cause of food-borne gastroenteritis worldwide, linked to the consumption of contaminated poultry meat. Targeting this pathogen at source, vaccines for poultry can provide short-term caecal reductions in Campylobacter numbers in the chicken intestine. However, this approach is unlikely to reduce Campylobacter in the food chain or human incidence. This is likely as vaccines typically target only a subset of the high genomic strain diversity circulating among chicken flocks, and rapid evolution diminishes vaccine efficacy over time. To address this, we used a genomic approach to develop a whole-cell autogenous vaccine targeting isolates harbouring genes linked to survival outside of the host. We hyper-immunised a whole major UK breeder farm to passively target offspring colonisation using maternally-derived antibody. Monitoring progeny, broiler flocks revealed a near-complete shift in the post-vaccination Campylobacter population with an ~50% reduction in isolates harbouring extra-intestinal survival genes and a significant reduction of Campylobacter cells surviving on the surface of meat. Based on these findings, we developed a logistic regression model that predicted that vaccine efficacy could be extended to target 65% of a population of clinically relevant strains. Immuno-manipulation of poultry microbiomes towards less harmful commensal isolates by competitive exclusion, has major potential for reducing pathogens in the food production chain.
Collapse
Affiliation(s)
- Jessica K Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway.
| | - Maiju E Pesonen
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Jai Mehat
- School of Biosciences, University of Surrey, Surrey, UK
| | - Ben Pascoe
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - David J Haydon
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Berkshire, UK
| | - Jose Lourenco
- Faculty of Medicine, Biomedical Research Centre, Universidade Católica Portuguesa, Lisbon, Portugal
| | | | - Evangelos Mourkas
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK
| | | | - Roberto M La Ragione
- School of Biosciences, University of Surrey, Surrey, UK
- School of Veterinary Medicine, University of Surrey, Surrey, UK
| | | | - Timothy S Wallis
- Ridgeway Biologicals Ltd. a Ceva Santé Animale Company, Berkshire, UK
| | - Jukka Corander
- Oslo Centre for Biostatistics and Epidemiology, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Samuel K Sheppard
- Ineos Oxford Institute, Department of Biology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Carhuaricra-Huaman D, Gonzalez IHL, Ramos PL, da Silva AM, Setubal JC. Analysis of twelve genomes of the bacterium Kerstersia gyiorum from brown-throated sloths ( Bradypus variegatus), the first from a non-human host. PeerJ 2024; 12:e17206. [PMID: 38584940 PMCID: PMC10999152 DOI: 10.7717/peerj.17206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
Kerstersia gyiorum is a Gram-negative bacterium found in various animals, including humans, where it has been associated with various infections. Knowledge of the basic biology of K. gyiorum is essential to understand the evolutionary strategies of niche adaptation and how this organism contributes to infectious diseases; however, genomic data about K. gyiorum is very limited, especially from non-human hosts. In this work, we sequenced 12 K. gyiorum genomes isolated from healthy free-living brown-throated sloths (Bradypus variegatus) in the Parque Estadual das Fontes do Ipiranga (São Paulo, Brazil), and compared them with genomes from isolates of human origin, in order to gain insights into genomic diversity, phylogeny, and host specialization of this species. Phylogenetic analysis revealed that these K. gyiorum strains are structured according to host. Despite the fact that sloth isolates were sampled from a single geographic location, the intra-sloth K. gyiorum diversity was divided into three clusters, with differences of more than 1,000 single nucleotide polymorphisms between them, suggesting the circulation of various K. gyiorum lineages in sloths. Genes involved in mobilome and defense mechanisms against mobile genetic elements were the main source of gene content variation between isolates from different hosts. Sloth-specific K. gyiorum genome features include an IncN2 plasmid, a phage sequence, and a CRISPR-Cas system. The broad diversity of defense elements in K. gyiorum (14 systems) may prevent further mobile element flow and explain the low amount of mobile genetic elements in K. gyiorum genomes. Gene content variation may be important for the adaptation of K. gyiorum to different host niches. This study furthers our understanding of diversity, host adaptation, and evolution of K. gyiorum, by presenting and analyzing the first genomes of non-human isolates.
Collapse
Affiliation(s)
| | - Irys H L Gonzalez
- Coordenadoria de Fauna Silvestre, Secretaria do Meio Ambiente, São Paulo, SP, Brazil
| | - Patricia L Ramos
- Coordenadoria de Fauna Silvestre, Secretaria do Meio Ambiente, São Paulo, SP, Brazil
| | - Aline M da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Joao C Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Giovanelli Tacconi Gimenez E, Viana MVC, de Jesus Sousa T, Aburjaile F, Brenig B, Silva A, Azevedo V. Resequencing and characterization of the first Corynebacterium pseudotuberculosis genome isolated from camel. PeerJ 2024; 12:e16513. [PMID: 38313017 PMCID: PMC10836205 DOI: 10.7717/peerj.16513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/02/2023] [Indexed: 02/06/2024] Open
Abstract
Background Corynebacterium pseudotuberculosis is a zoonotic Gram-positive bacterial pathogen known to cause different diseases in many mammals, including lymph node abscesses in camels. Strains from biovars equi and ovis of C. pseudotuberculosis can infect camels. Comparative genomics could help to identify features related to host adaptation, and currently strain Cp162 from biovar equi is the only one from camel with a sequenced genome. Methods In this work, we compared the quality of three genome assemblies of strain Cp162 that used data from the DNA sequencing platforms SOLiD v3 Plus, IonTorrent PGM, and Illumina HiSeq 2500 with an optical map and investigate the unique features of this strain. For this purpose, we applied comparative genomic analysis on the different Cp162 genome assembly versions and included other 129 genomes from the same species. Results Since the first version of the genome, there was an increase of 88 Kbp and 121 protein-coding sequences, a decrease of pseudogenes from 139 to 53, and two inversions and one rearrangement corrected. We identified 30 virulence genes, none associated to the camel host, and the genes rpob2 and rbpA predicted to confer resistance to rifampin. In comparison to 129 genomes of the same species, strain Cp162 has four genes exclusively present, two of them code transposases and two truncated proteins, and the three exclusively absent genes lysG, NUDIX domain protein, and Hypothetical protein. All 130 genomes had the rifampin resistance genes rpob2 and rbpA. Our results found no unique gene that could be associated with tropism to camel host, and further studies should include more genomes and genome-wide association studies testing for genes and SNPs.
Collapse
Affiliation(s)
| | | | | | - Flávia Aburjaile
- Veterinary School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, Göttingen, Niedersachsen, Germany
| | - Artur Silva
- Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Vasco Azevedo
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
24
|
Nysten J, Sofras D, Van Dijck P. One species, many faces: The underappreciated importance of strain diversity. PLoS Pathog 2024; 20:e1011931. [PMID: 38271302 PMCID: PMC10810500 DOI: 10.1371/journal.ppat.1011931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Affiliation(s)
- Jana Nysten
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Dimitrios Sofras
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Department of Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Li L, Chen S, Xue X, Chen J, Tian J, Huo L, Zhang T, Zeng X, Su S. Purifying selection drives distinctive arsenic metabolism pathways in prokaryotic and eukaryotic microbes. ISME COMMUNICATIONS 2024; 4:ycae106. [PMID: 39229495 PMCID: PMC11370035 DOI: 10.1093/ismeco/ycae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024]
Abstract
Microbes play a crucial role in the arsenic biogeochemical cycle through specific metabolic pathways to adapt to arsenic toxicity. However, the different arsenic-detoxification strategies between prokaryotic and eukaryotic microbes are poorly understood. This hampers our comprehension of how microbe-arsenic interactions drive the arsenic cycle and the development of microbial methods for remediation. In this study, we utilized conserved protein domains from 16 arsenic biotransformation genes (ABGs) to search for homologous proteins in 670 microbial genomes. Prokaryotes exhibited a wider species distribution of arsenic reduction- and arsenic efflux-related genes than fungi, whereas arsenic oxidation-related genes were more prevalent in fungi than in prokaryotes. This was supported by significantly higher acr3 (arsenite efflux permease) expression in bacteria (upregulated 3.72-fold) than in fungi (upregulated 1.54-fold) and higher aoxA (arsenite oxidase) expression in fungi (upregulated 5.11-fold) than in bacteria (upregulated 2.05-fold) under arsenite stress. The average values of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site (dN/dS) of homologous ABGs were higher in archaea (0.098) and bacteria (0.124) than in fungi (0.051). Significant negative correlations between the dN/dS of ABGs and species distribution breadth and gene expression levels in archaea, bacteria, and fungi indicated that microbes establish the distinct strength of purifying selection for homologous ABGs. These differences contribute to the distinct arsenic metabolism pathways in prokaryotic and eukaryotic microbes. These observations facilitate a significant shift from studying individual or several ABGs to characterizing the comprehensive microbial strategies of arsenic detoxification.
Collapse
Affiliation(s)
- Lijuan Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Songcan Chen
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna 1030, Austria
| | - Ximei Xue
- Institute of Urban Environment, Key Laboratory of Urban Environment and Health, Chinese Academy of Sciences, Xiamen 361021, P.R. China
| | - Jieyin Chen
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Jian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, P.R. China
| | - Tuo Zhang
- School of Environmental and Life Science, Nanning Normal University, Nanning 530100, P.R. China
| | - Xibai Zeng
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| | - Shiming Su
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agricultural Environment, MARA, Beijing 100081, P.R. China
| |
Collapse
|
26
|
Gurjar MS, Kumar TPJ, Shakouka MA, Saharan MS, Rawat L, Aggarwal R. Draft genome sequencing of Tilletia caries inciting common bunt of wheat provides pathogenicity-related genes. Front Microbiol 2023; 14:1283613. [PMID: 38033590 PMCID: PMC10684912 DOI: 10.3389/fmicb.2023.1283613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Common bunt of wheat caused by Tilletia caries is an important disease worldwide. The T. caries TC1_MSG genome was sequenced using the Illumina HiSeq 2500 and Nanopore ONT platforms. The Nanopore library was prepared using the ligation sequencing kit SQK-LSK110 to generate approximately 24 GB for sequencing. The assembly size of 38.18 Mb was generated with a GC content of 56.10%. The whole genome shotgun project was deposited at DDBJ/ENA/GenBank under the accession number JALUTQ000000000. Forty-six contigs were obtained with N50 of 1,798,756 bp. In total, 10,698 genes were predicted in the assembled genome. Out of 10,698 genes, 10,255 genes were predicted significantly in the genome. The repeat sequences made up approximately 1.57% of the genome. Molecular function, cellular components, and biological processes for predicted genes were mapped into the genome. In addition, repeat elements in the genome were assessed. In all, 0.89% of retroelements were observed, followed by long terminal repeat elements (0.86%) in the genome. In simple sequence repeat (SSR) analysis, 8,582 SSRs were found in the genome assembly. The trinucleotide SSR type (3,703) was the most abundant. Few putative secretory signal peptides and pathogenicity-related genes were predicted. The genomic information of T. caries will be valuable in understanding the pathogenesis mechanism as well as developing new methods for the management of the common bunt disease of wheat.
Collapse
Affiliation(s)
- Malkhan Singh Gurjar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Mohamad Ayham Shakouka
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahender Singh Saharan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Laxmi Rawat
- College of Hill Agriculture, VCSG Uttarakhand University of Horticulture and Forestry, Ranichauri, Uttarakhand, India
| | - Rashmi Aggarwal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
27
|
Shepherd MJ, Pierce AP, Taylor TB. Evolutionary innovation through transcription factor rewiring in microbes is shaped by levels of transcription factor activity, expression, and existing connectivity. PLoS Biol 2023; 21:e3002348. [PMID: 37871011 PMCID: PMC10621929 DOI: 10.1371/journal.pbio.3002348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/02/2023] [Accepted: 09/25/2023] [Indexed: 10/25/2023] Open
Abstract
The survival of a population during environmental shifts depends on whether the rate of phenotypic adaptation keeps up with the rate of changing conditions. A common way to achieve this is via change to gene regulatory network (GRN) connections-known as rewiring-that facilitate novel interactions and innovation of transcription factors. To understand the success of rapidly adapting organisms, we therefore need to determine the rules that create and constrain opportunities for GRN rewiring. Here, using an experimental microbial model system with the soil bacterium Pseudomonas fluorescens, we reveal a hierarchy among transcription factors that are rewired to rescue lost function, with alternative rewiring pathways only unmasked after the preferred pathway is eliminated. We identify 3 key properties-high activation, high expression, and preexisting low-level affinity for novel target genes-that facilitate transcription factor innovation. Ease of acquiring these properties is constrained by preexisting GRN architecture, which was overcome in our experimental system by both targeted and global network alterations. This work reveals the key properties that determine transcription factor evolvability, and as such, the evolution of GRNs.
Collapse
Affiliation(s)
- Matthew J. Shepherd
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aidan P. Pierce
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Tiffany B. Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| |
Collapse
|
28
|
Monteith W, Pascoe B, Mourkas E, Clark J, Hakim M, Hitchings MD, McCarthy N, Yahara K, Asakura H, Sheppard SK. Contrasting genes conferring short- and long-term biofilm adaptation in Listeria. Microb Genom 2023; 9:001114. [PMID: 37850975 PMCID: PMC10634452 DOI: 10.1099/mgen.0.001114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023] Open
Abstract
Listeria monocytogenes is an opportunistic food-borne bacterium that is capable of infecting humans with high rates of hospitalization and mortality. Natural populations are genotypically and phenotypically variable, with some lineages being responsible for most human infections. The success of L. monocytogenes is linked to its capacity to persist on food and in the environment. Biofilms are an important feature that allow these bacteria to persist and infect humans, so understanding the genetic basis of biofilm formation is key to understanding transmission. We sought to investigate the biofilm-forming ability of L. monocytogenes by identifying genetic variation that underlies biofilm formation in natural populations using genome-wide association studies (GWAS). Changes in gene expression of specific strains during biofilm formation were then investigated using RNA sequencing (RNA-seq). Genetic variation associated with enhanced biofilm formation was identified in 273 genes by GWAS and differential expression in 220 genes by RNA-seq. Statistical analyses show that the number of overlapping genes flagged by either type of experiment is less than expected by random sampling. This novel finding is consistent with an evolutionary scenario where rapid adaptation is driven by variation in gene expression of pioneer genes, and this is followed by slower adaptation driven by nucleotide changes within the core genome.
Collapse
Affiliation(s)
- William Monteith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biology, University of Bath, Claverton Down, Bath, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
- Big Data Institute, University of Oxford, Oxford, UK
| | | | - Jack Clark
- Department of Genetics, University of Leicester, University Road, Leicester, UK
| | - Maliha Hakim
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, UK
| | - Matthew D. Hitchings
- Swasnsea University Medical School, Swansea University, Singleton Campus, Swansea, UK
| | - Noel McCarthy
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | | |
Collapse
|
29
|
Zang X, Pascoe B, Mourkas E, Kong K, Jiao X, Sheppard SK, Huang J. Evidence of potential Campylobacter jejuni zooanthroponosis in captive macaque populations. Microb Genom 2023; 9:001121. [PMID: 37877958 PMCID: PMC10634442 DOI: 10.1099/mgen.0.001121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Non-human primates share recent common ancestry with humans and exhibit comparable disease symptoms. Here, we explored the transmission potential of enteric bacterial pathogens in monkeys exhibiting symptoms of recurrent diarrhoea in a biomedical research facility in China. The common zoonotic bacterium Campylobacter jejuni was isolated from macaques (Macaca mulatta and Macaca fascicularis) and compared to isolates from humans and agricultural animals in Asia. Among the monkeys sampled, 5 % (44/973) tested positive for C. jejuni, 11 % (5/44) of which displayed diarrhoeal symptoms. Genomic analysis of monkey isolates, and 1254 genomes from various sources in Asia, were used to identify the most likely source of human infection. Monkey and human isolates shared high average nucleotide identity, common MLST clonal complexes and clustered together on a phylogeny. Furthermore, the profiles of putative antimicrobial resistance genes were similar between monkeys and humans. Taken together these findings suggest that housed macaques became infected with C. jejuni either directly from humans or via a common contamination source.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ben Pascoe
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, UK
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Ke Kong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, UK
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
30
|
Martínez JL, Baquero F. What are the missing pieces needed to stop antibiotic resistance? Microb Biotechnol 2023; 16:1900-1923. [PMID: 37417823 PMCID: PMC10527211 DOI: 10.1111/1751-7915.14310] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
As recognized by several international agencies, antibiotic resistance is nowadays one of the most relevant problems for human health. While this problem was alleviated with the introduction of new antibiotics into the market in the golden age of antimicrobial discovery, nowadays few antibiotics are in the pipeline. Under these circumstances, a deep understanding on the mechanisms of emergence, evolution and transmission of antibiotic resistance, as well as on the consequences for the bacterial physiology of acquiring resistance is needed to implement novel strategies, beyond the development of new antibiotics or the restriction in the use of current ones, to more efficiently treat infections. There are still several aspects in the field of antibiotic resistance that are not fully understood. In the current article, we make a non-exhaustive critical review of some of them that we consider of special relevance, in the aim of presenting a snapshot of the studies that still need to be done to tackle antibiotic resistance.
Collapse
Affiliation(s)
| | - Fernando Baquero
- Ramón y Cajal Institute for Health Research (IRYCIS), Department of MicrobiologyRamón y Cajal University Hospital, CIBER en Epidemiología y Salud Pública (CIBERESP)MadridSpain
| |
Collapse
|
31
|
Souza SSR, Smith JT, Bruce SA, Gibson R, Martin IW, Andam CP. Multi-host infection and phylogenetically diverse lineages shape the recombination and gene pool dynamics of Staphylococcus aureus. BMC Microbiol 2023; 23:235. [PMID: 37626313 PMCID: PMC10463932 DOI: 10.1186/s12866-023-02985-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Staphylococcus aureus can infect and adapt to multiple host species. However, our understanding of the genetic and evolutionary drivers of its generalist lifestyle remains inadequate. This is particularly important when considering local populations of S. aureus, where close physical proximity between bacterial lineages and between host species may facilitate frequent and repeated interactions between them. Here, we aim to elucidate the genomic differences between human- and animal-derived S. aureus from 437 isolates sampled from disease cases in the northeast region of the United States. RESULTS Multi-locus sequence typing revealed the existence of 75 previously recognized sequence types (ST). Our population genomic analyses revealed heterogeneity in the accessory genome content of three dominant S. aureus lineages (ST5, ST8, ST30). Genes related to antimicrobial resistance, virulence, and plasmid types were differentially distributed among isolates according to host (human versus non-human) and among the three major STs. Across the entire population, we identified a total of 1,912 recombination events that occurred in 765 genes. The frequency and impact of homologous recombination were comparable between human- and animal-derived isolates. Low-frequency STs were major donors of recombined DNA, regardless of the identity of their host. The most frequently recombined genes (clfB, aroA, sraP) function in host infection and virulence, which were also frequently shared between the rare lineages. CONCLUSIONS Taken together, these results show that frequent but variable patterns of recombination among co-circulating S. aureus lineages, including the low-frequency lineages, that traverse host barriers shape the structure of local gene pool and the reservoir of host-associated genetic variants. Our study provides important insights to the genetic and evolutionary factors that contribute to the ability of S. aureus to colonize and cause disease in multiple host species. Our study highlights the importance of continuous surveillance of S. aureus circulating in different ecological host niches and the need to systematically sample from them. These findings will inform development of effective measures to control S. aureus colonization, infection, and transmission across the One Health continuum.
Collapse
Affiliation(s)
- Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| | - Joshua T Smith
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Spencer A Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Robert Gibson
- New Hampshire Veterinary Diagnostic Laboratory, Durham, NH, USA
| | - Isabella W Martin
- Dartmouth-Hitchcock Medical Center and Dartmouth College Geisel School of Medicine, Lebanon, NH, USA
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
32
|
Noh S, Larson ER, Covitz RM, Chen A, Mazumder PR, Peck RF, Hamilton MC, Dettmann RA. Facultative symbiont virulence determines horizontal transmission rate without host strain specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528903. [PMID: 36824889 PMCID: PMC9949114 DOI: 10.1101/2023.02.16.528903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In facultative symbioses, only a fraction of hosts are associated with a symbiont. Understanding why specific host and symbiont strains are associated can inform us of the evolutionary forces affecting facultative symbioses. Possibilities include ongoing host-symbiont coevolution driven by reciprocal selection, or priority effects that are neutral in respect to the host-symbiont interaction. We hypothesized that ongoing host-symbiont coevolution would lead to higher fitness estimates for naturally co-occurring (native) host and symbiont combinations compared to nonnative combinations. We used the Dictyostelium discoideum - Paraburkholderia bonniea system to test this hypothesis. P. bonniea features a reduced genome size relative to another Paraburkholderia symbiont of D. discoideum, indicating a significant history of coevolution with its host. Facultative symbionts may experience continued genome reduction if coevolution is ongoing, or their genome size may have reached a stable state if the symbiosis has also stabilized. Our work demonstrates that ongoing coevolution is unlikely for D. discoideum and P. bonniea. The system instead represents a stable facultative symbiosis. Specifically associated host and symbiont strains in this system are the result of priority effects, and presently unassociated hosts are simply uncolonized. We find evidence for a virulence-transmission trade-off without host strain specificity, and identify candidate virulence factors in the genomes of P. bonniea strains that may contribute to variation in benevolence.
Collapse
Affiliation(s)
- Suegene Noh
- Biology Department, Colby College, Waterville, Maine, USA
| | | | - Rachel M. Covitz
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Anna Chen
- Biology Department, Colby College, Waterville, Maine, USA
| | | | - Ron F. Peck
- Biology Department, Colby College, Waterville, Maine, USA
| | - Marisa C. Hamilton
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, USA
| | - Robert A. Dettmann
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Fu Y, M’ikanatha NM, Dudley EG. Whole-Genome Subtyping Reveals Population Structure and Host Adaptation of Salmonella Typhimurium from Wild Birds. J Clin Microbiol 2023; 61:e0184722. [PMID: 37249426 PMCID: PMC10281135 DOI: 10.1128/jcm.01847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Within-host evolution of bacterial pathogens can lead to host-associated variants of the same species or serovar. Identification and characterization of closely related variants from diverse host species are crucial to public health and host-pathogen adaptation research. However, the work remained largely underexplored at a strain level until the advent of whole-genome sequencing (WGS). Here, we performed WGS-based subtyping and analyses of Salmonella enterica serovar Typhimurium (n = 787) from different wild birds across 18 countries over a 75-year period. We revealed seven avian host-associated S. Typhimurium variants/lineages. These lineages emerged globally over short timescales and presented genetic features distinct from S. Typhimurium lineages circulating among humans and domestic animals. We further showed that, in terms of virulence, host adaptation of these variants was driven by genome degradation. Our results provide a snapshot of the population structure and genetic diversity of S. Typhimurium within avian hosts. We also demonstrate the value of WGS-based subtyping and analyses in unravelling closely related variants at the strain level.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
34
|
Papudeshi B, Rusch DB, VanInsberghe D, Lively CM, Edwards RA, Bashey F. Host Association and Spatial Proximity Shape but Do Not Constrain Population Structure in the Mutualistic Symbiont Xenorhabdus bovienii. mBio 2023:e0043423. [PMID: 37154562 DOI: 10.1128/mbio.00434-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
To what extent are generalist species cohesive evolutionary units rather than a compilation of recently diverged lineages? We examine this question in the context of host specificity and geographic structure in the insect pathogen and nematode mutualist Xenorhabdus bovienii. This bacterial species partners with multiple nematode species across two clades in the genus Steinernema. We sequenced the genomes of 42 X. bovienii strains isolated from four different nematode species and three field sites within a 240-km2 region and compared them to globally available reference genomes. We hypothesized that X. bovienii would comprise several host-specific lineages, such that bacterial and nematode phylogenies would be largely congruent. Alternatively, we hypothesized that spatial proximity might be a dominant signal, as increasing geographic distance might lower shared selective pressures and opportunities for gene flow. We found partial support for both hypotheses. Isolates clustered largely by nematode host species but did not strictly match the nematode phylogeny, indicating that shifts in symbiont associations across nematode species and clades have occurred. Furthermore, both genetic similarity and gene flow decreased with geographic distance across nematode species, suggesting differentiation and constraints on gene flow across both factors, although no absolute barriers to gene flow were observed across the regional isolates. Several genes associated with biotic interactions were found to be undergoing selective sweeps within this regional population. The interactions included several insect toxins and genes implicated in microbial competition. Thus, gene flow maintains cohesiveness across host associations in this symbiont and may facilitate adaptive responses to a multipartite selective environment. IMPORTANCE Microbial populations and species are notoriously hard to delineate. We used a population genomics approach to examine the population structure and the spatial scale of gene flow in Xenorhabdus bovienii, an intriguing species that is both a specialized mutualistic symbiont of nematodes and a broadly virulent insect pathogen. We found a strong signature of nematode host association, as well as evidence for gene flow connecting isolates associated with different nematode host species and collected from distinct study sites. Furthermore, we saw signatures of selective sweeps for genes involved with nematode host associations, insect pathogenicity, and microbial competition. Thus, X. bovienii exemplifies the growing consensus that recombination not only maintains cohesion but can also allow the spread of niche-beneficial alleles.
Collapse
Affiliation(s)
- Bhavya Papudeshi
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, Australia
- National Centre for Genome Analysis Support, Pervasive Institute of Technology, Indiana University, Bloomington, Indiana, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, Indiana, USA
| | | | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Robert A Edwards
- Flinders Accelerator for Microbiome Exploration, Flinders University, Adelaide, Australia
| | - Farrah Bashey
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
35
|
Henaut-Jacobs S, Passarelli-Araujo H, Venancio TM. Comparative genomics and phylogenomics of Campylobacter unveil potential novel species and provide insights into niche segregation. Mol Phylogenet Evol 2023; 184:107786. [PMID: 37105244 DOI: 10.1016/j.ympev.2023.107786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/17/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Campylobacter is a bacterial genus associated with community outbreaks and gastrointestinal symptoms. Studies on Campylobacter generally focus on specific pathogenic species such as C. coli and C. jejuni. Currently, there are thousands of publicly available Campylobacter genomes, allowing a more complete assessment of the genus diversity. In this work, we report a network-based analysis of all available Campylobacter genomes to explore the genus structure and diversity, revealing potentially new species and elucidating genus features. We also hypothesize that the previously established Clade III of C. coli is in fact a novel species (referred here as Campylobacter spp12). Finally, we found a negative correlation between pangenome fluidity and saturation coefficient, with potential implications to the lifestyles of distinct Campylobacter species. Since pangenome analysis depends on the number of available genomes, this correlation could help estimate pangenome metrics of Campylobacter species with less sequenced genomes, helping understand their lifestyle and niche adaptation. Together, our results indicate that the Campylobacter genus should be re-evaluated, with particular attention to the interplay between genome structure and niche segregation.
Collapse
Affiliation(s)
- Sarah Henaut-Jacobs
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Hemanoel Passarelli-Araujo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil; Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Thiago M Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
36
|
Hu X, Chen Y, Xu H, Qiao J, Ge H, Liu R, Zheng B. Genomic epidemiology and transmission characteristics of mcr1-positive colistin-resistant Escherichia coli strains circulating at natural environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163600. [PMID: 37086987 DOI: 10.1016/j.scitotenv.2023.163600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
MCR-positive Escherichia coli (MCRPEC) have been reported in humans worldwide. The high prevalence of mcr-1 poses clinical and environmental risks due to its diverse genetic mechanisms. Given the vital role of animals and the environment in the spread of antibiotic resistance, a "One Health" perspective should be taken when addressing antimicrobial resistance issues. This study conducted a prospective study in six farms (located in Jiaxing City, Zhejiang province, China) in 2019. MCRPEC strains were screened from samples of different sources. The molecular epidemiological surveys and transmission potential were investigated by whole-genome sequencing and phylogenetic analysis. MCRPEC were detected in different farms with various sources. Sequence type complex 10 was dominant and distributed widely in multiple sources. Core-genome multilocus sequence type (cgMLST) analysis indicated that clonal transmission could occur within and between farms. In addition, mcr-1 genes with different locations showed different transmission tendencies. The study indicated that interspecies and cross-regional transmission of MCRPEC could occur between different sectors in farms. Further surveillance and research of non-clinical MCRPEC strains are necessary to reduce the threat of MCRPEC.
Collapse
Affiliation(s)
- Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yingying Chen
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
37
|
Coque TM, Cantón R, Pérez-Cobas AE, Fernández-de-Bobadilla MD, Baquero F. Antimicrobial Resistance in the Global Health Network: Known Unknowns and Challenges for Efficient Responses in the 21st Century. Microorganisms 2023; 11:1050. [PMID: 37110473 PMCID: PMC10144039 DOI: 10.3390/microorganisms11041050] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the Global Health challenges of the 21st century. The inclusion of AMR on the global map parallels the scientific, technological, and organizational progress of the healthcare system and the socioeconomic changes of the last 100 years. Available knowledge about AMR has mostly come from large healthcare institutions in high-income countries and is scattered in studies across various fields, focused on patient safety (infectious diseases), transmission pathways and pathogen reservoirs (molecular epidemiology), the extent of the problem at a population level (public health), their management and cost (health economics), cultural issues (community psychology), and events associated with historical periods (history of science). However, there is little dialogue between the aspects that facilitate the development, spread, and evolution of AMR and various stakeholders (patients, clinicians, public health professionals, scientists, economic sectors, and funding agencies). This study consists of four complementary sections. The first reviews the socioeconomic factors that have contributed to building the current Global Healthcare system, the scientific framework in which AMR has traditionally been approached in such a system, and the novel scientific and organizational challenges of approaching AMR in the fourth globalization scenario. The second discusses the need to reframe AMR in the current public health and global health contexts. Given that the implementation of policies and guidelines are greatly influenced by AMR information from surveillance systems, in the third section, we review the unit of analysis ("the what" and "the who") and the indicators (the "operational units of surveillance") used in AMR and discuss the factors that affect the validity, reliability, and comparability of the information to be applied in various healthcare (primary, secondary, and tertiary), demographic, and economic contexts (local, regional, global, and inter-sectorial levels). Finally, we discuss the disparities and similarities between distinct stakeholders' objectives and the gaps and challenges of combatting AMR at various levels. In summary, this is a comprehensive but not exhaustive revision of the known unknowns about how to analyze the heterogeneities of hosts, microbes, and hospital patches, the role of surrounding ecosystems, and the challenges they represent for surveillance, antimicrobial stewardship, and infection control programs, which are the traditional cornerstones for controlling AMR in human health.
Collapse
Affiliation(s)
- Teresa M. Coque
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Elena Pérez-Cobas
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- CIBER en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Miguel D. Fernández-de-Bobadilla
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Fernando Baquero
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
38
|
Commichaux S, Rand H, Javkar K, Molloy EK, Pettengill JB, Pightling A, Hoffmann M, Pop M, Jayeola V, Foley S, Luo Y. Assessment of plasmids for relating the 2020 Salmonella enterica serovar Newport onion outbreak to farms implicated by the outbreak investigation. BMC Genomics 2023; 24:165. [PMID: 37016310 PMCID: PMC10074901 DOI: 10.1186/s12864-023-09245-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND The Salmonella enterica serovar Newport red onion outbreak of 2020 was the largest foodborne outbreak of Salmonella in over a decade. The epidemiological investigation suggested two farms as the likely source of contamination. However, single nucleotide polymorphism (SNP) analysis of the whole genome sequencing data showed that none of the Salmonella isolates collected from the farm regions were linked to the clinical isolates-preventing the use of phylogenetics in source identification. Here, we explored an alternative method for analyzing the whole genome sequencing data driven by the hypothesis that if the outbreak strain had come from the farm regions, then the clinical isolates would disproportionately contain plasmids found in isolates from the farm regions due to horizontal transfer. RESULTS SNP analysis confirmed that the clinical isolates formed a single, nearly-clonal clade with evidence for ancestry in California going back a decade. The clinical clade had a large core genome (4,399 genes) and a large and sparsely distributed accessory genome (2,577 genes, at least 64% on plasmids). At least 20 plasmid types occurred in the clinical clade, more than were found in the literature for Salmonella Newport. A small number of plasmids, 14 from 13 clinical isolates and 17 from 8 farm isolates, were found to be highly similar (> 95% identical)-indicating they might be related by horizontal transfer. Phylogenetic analysis was unable to determine the geographic origin, isolation source, or time of transfer of the plasmids, likely due to their promiscuous and transient nature. However, our resampling analysis suggested that observing a similar number and combination of highly similar plasmids in random samples of environmental Salmonella enterica within the NCBI Pathogen Detection database was unlikely, supporting a connection between the outbreak strain and the farms implicated by the epidemiological investigation. CONCLUSION Horizontally transferred plasmids provided evidence for a connection between clinical isolates and the farms implicated as the source of the outbreak. Our case study suggests that such analyses might add a new dimension to source tracking investigations, but highlights the need for detailed and accurate metadata, more extensive environmental sampling, and a better understanding of plasmid molecular evolution.
Collapse
Affiliation(s)
- Seth Commichaux
- Center for Food Safety and Nutrition, Food and Drug Administration, Laurel, MD, USA.
- Center for Food Safety and Nutrition, Food and Drug Administration, College Park, MD, USA.
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA.
- Biological Science Graduate Program, University of Maryland, College Park, MD, USA.
| | - Hugh Rand
- Center for Food Safety and Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Kiran Javkar
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
- Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD, USA
| | - Erin K Molloy
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, USA
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - James B Pettengill
- Center for Food Safety and Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Arthur Pightling
- Center for Food Safety and Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Maria Hoffmann
- Center for Food Safety and Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Mihai Pop
- Department of Computer Science, University of Maryland, College Park, MD, USA
| | - Victor Jayeola
- Center for Food Safety and Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Steven Foley
- Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, USA
| | - Yan Luo
- Center for Food Safety and Nutrition, Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
39
|
Li F, Li X, Cheng CC, Bujdoš D, Tollenaar S, Simpson DJ, Tasseva G, Perez-Muñoz ME, Frese S, Gänzle MG, Walter J, Zheng J. A phylogenomic analysis of Limosilactobacillus reuteri reveals ancient and stable evolutionary relationships with rodents and birds and zoonotic transmission to humans. BMC Biol 2023; 21:53. [PMID: 36907868 PMCID: PMC10010030 DOI: 10.1186/s12915-023-01541-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/09/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Gut microbes play crucial roles in the development and health of their animal hosts. However, the evolutionary relationships of gut microbes with vertebrate hosts, and the consequences that arise for the ecology and lifestyle of the microbes are still insufficiently understood. Specifically, the mechanisms by which strain-level diversity evolved, the degree by which lineages remain stably associated with hosts, and how their evolutionary history influences their ecological performance remain a critical gap in our understanding of vertebrate-microbe symbiosis. RESULTS This study presents the characterization of an extended collection of strains of Limosilactobacillus reuteri and closely related species from a wide variety of hosts by phylogenomic and comparative genomic analyses combined with colonization experiments in mice to gain insight into the long-term evolutionary relationship of a bacterial symbiont with vertebrates. The phylogenetic analysis of L. reuteri revealed early-branching lineages that primarily consist of isolates from rodents (four lineages) and birds (one lineage), while lineages dominated by strains from herbivores, humans, pigs, and primates arose more recently and were less host specific. Strains from rodent lineages, despite their phylogenetic divergence, showed tight clustering in gene-content-based analyses. These L. reuteri strains but not those ones from non-rodent lineages efficiently colonize the forestomach epithelium of germ-free mice. The findings support a long-term evolutionary relationships of L. reuteri lineages with rodents and a stable host switch to birds. Associations of L. reuteri with other host species are likely more dynamic and transient. Interestingly, human isolates of L. reuteri cluster phylogenetically closely with strains from domesticated animals, such as chickens and herbivores, suggesting zoonotic transmissions. CONCLUSIONS Overall, this study demonstrates that the evolutionary relationship of a vertebrate gut symbiont can be stable in particular hosts over time scales that allow major adaptations and specialization, but also emphasizes the diversity of symbiont lifestyles even within a single bacterial species. For L. reuteri, symbiont lifestyles ranged from autochthonous, likely based on vertical transmission and stably aligned to rodents and birds over evolutionary time, to allochthonous possibly reliant on zoonotic transmission in humans. Such information contributes to our ability to use these microbes in microbial-based therapeutics.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xudong Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Christopher C Cheng
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Dalimil Bujdoš
- School of Microbiology, and Department of Medicine, APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - David J Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Guergana Tasseva
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Maria Elisa Perez-Muñoz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Steven Frese
- Department of Nutrition, University of Nevada, Reno, NV, 89557, USA
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | - Jens Walter
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E1, Canada. .,School of Microbiology, and Department of Medicine, APC Microbiome Ireland, University College Cork, Cork, T12 YT20, Ireland.
| | - Jinshui Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
40
|
Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380-395. [PMID: 36707725 PMCID: PMC9882747 DOI: 10.1038/s41579-023-00852-y] [Citation(s) in RCA: 286] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.
Collapse
Affiliation(s)
- Benjamin P. Howden
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.410678.c0000 0000 9374 3516Department of Infectious Diseases, Austin Health, Heidelberg, Victoria Australia ,grid.416153.40000 0004 0624 1200Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria Australia
| | - Stefano G. Giulieri
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Tania Wong Fok Lung
- grid.21729.3f0000000419368729Department of Paediatrics, Columbia University, New York, NY USA
| | - Sarah L. Baines
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Liam K. Sharkey
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Jean Y. H. Lee
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.419789.a0000 0000 9295 3933Department of Infectious Diseases, Monash Health, Clayton, Victoria Australia
| | - Abderrahman Hachani
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| |
Collapse
|
41
|
Huang P, Hameed R, Abbas M, Balooch S, Alharthi B, Du Y, Abbas A, Younas A, Du D. Integrated omic techniques and their genomic features for invasive weeds. Funct Integr Genomics 2023; 23:44. [PMID: 36680630 DOI: 10.1007/s10142-023-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/01/2023] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Many emerging invasive weeds display rapid adaptation against different stressful environments compared to their natives. Rapid adaptation and dispersal habits helped invasive populations have strong diversity within the population compared to their natives. Advances in molecular marker techniques may lead to an in-depth understanding of the genetic diversity of invasive weeds. The use of molecular techniques is rapidly growing, and their implications in invasive weed studies are considered powerful tools for genome purposes. Here, we review different approach used multi-omics by invasive weed studies to understand the functional structural and genomic changes in these species under different environmental fluctuations, particularly, to check the accessibility of advance-sequencing techniques used by researchers in genome sequence projects. In this review-based study, we also examine the importance and efficiency of different molecular techniques in identifying and characterizing different genes, associated markers, proteins, metabolites, and key metabolic pathways in invasive and native weeds. Use of these techniques could help weed scientists to further reduce the knowledge gaps in understanding invasive weeds traits. Although these techniques can provide robust insights about the molecular functioning, employing a single omics platform can rarely elucidate the gene-level regulation and the associated real-time expression of weedy traits due to the complex and overlapping nature of biological interactions. We conclude that different multi-omic techniques will provide long-term benefits in launching new genome projects to enhance the understanding of invasive weeds' invasion process.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manzer Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, Sichuan Province, People's Republic of China
| | - Sidra Balooch
- Institute of Botany, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, PO. Box 11099, Taif, 21944, Saudi Arabia
| | - Yizhou Du
- Faculty of Engineering, School of Computer Science, University of Sydney, Sydney, New South Wales, Australia
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| | - Afifa Younas
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Daolin Du
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
42
|
Javkar K, Rand H, Strain E, Pop M. PRAWNS: compact pan-genomic features for whole-genome population genomics. Bioinformatics 2022; 39:6965020. [PMID: 36579850 PMCID: PMC9825322 DOI: 10.1093/bioinformatics/btac844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
MOTIVATION Scientists seeking to understand the genomic basis of bacterial phenotypes, such as antibiotic resistance, today have access to an unprecedented number of complete and nearly complete genomes. Making sense of these data requires computational tools able to perform multiple-genome comparisons efficiently, yet currently available tools cannot scale beyond several tens of genomes. RESULTS We describe PRAWNS, an efficient and scalable tool for multiple-genome analysis. PRAWNS defines a concise set of genomic features (metablocks), as well as pairwise relationships between them, which can be used as a basis for large-scale genotype-phenotype association studies. We demonstrate the effectiveness of PRAWNS by identifying genomic regions associated with antibiotic resistance in Acinetobacter baumannii. AVAILABILITY AND IMPLEMENTATION PRAWNS is implemented in C++ and Python3, licensed under the GPLv3 license, and freely downloadable from GitHub (https://github.com/KiranJavkar/PRAWNS.git). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Kiran Javkar
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA,Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20740, USA
| | - Hugh Rand
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, MD 20740, USA
| | - Errol Strain
- Center for Veterinary Medicine, United States Food and Drug Administration, Laurel, MD 20708, USA
| | - Mihai Pop
- To whom correspondence should be addressed.
| |
Collapse
|
43
|
Saati-Santamaría Z, Baroncelli R, Rivas R, García-Fraile P. Comparative Genomics of the Genus Pseudomonas Reveals Host- and Environment-Specific Evolution. Microbiol Spectr 2022; 10:e0237022. [PMID: 36354324 PMCID: PMC9769992 DOI: 10.1128/spectrum.02370-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/24/2022] [Indexed: 11/12/2022] Open
Abstract
Each Earth ecosystem has unique microbial communities. Pseudomonas bacteria have evolved to occupy a plethora of different ecological niches, including living hosts, such as animals and plants. Many genes necessary for the Pseudomonas-niche interaction and their encoded functions remain unknown. Here, we describe a comparative genomic study of 3,274 genomes with 19,056,667 protein-coding sequences from Pseudomonas strains isolated from diverse environments. We detected functional divergence of Pseudomonas that depends on the niche. Each group of strains from a certain environment harbored a distinctive set of metabolic pathways or functions. The horizontal transfer of genes, which mainly proceeded between closely related taxa, was dependent on the isolation source. Finally, we detected thousands of undescribed proteins and functions associated with each Pseudomonas lifestyle. This research represents an effort to reveal the mechanisms underlying the ecology, pathogenicity, and evolution of Pseudomonas, and it will enable clinical, ecological, and biotechnological advances. IMPORTANCE Microbes play important roles in the health of living beings and in the environment. The knowledge of these functions may be useful for the development of new clinical and biotechnological applications and the restoration and preservation of natural ecosystems. However, most mechanisms implicated in the interaction of microbes with the environment remain poorly understood; thus, this field of research is very important. Here, we try to understand the mechanisms that facilitate the differential adaptation of Pseudomonas-a large and ubiquitous bacterial genus-to the environment. We analyzed more than 3,000 Pseudomonas genomes and searched for genetic patterns that can be related with their coevolution with different hosts (animals, plants, or fungi) and environments. Our results revealed that thousands of genes and genetic features are associated with each niche. Our data may be useful to develop new technical and theoretical advances in the fields of ecology, health, and industry.
Collapse
Affiliation(s)
- Zaki Saati-Santamaría
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Raúl Rivas
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), Salamanca, Spain
| | - Paula García-Fraile
- Departamento de Microbiología y Genética, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Associated Research Unit of Plant-Microorganism Interaction, USAL-CSIC (IRNASA), Salamanca, Spain
| |
Collapse
|
44
|
Huber C, Wolf SA, Ziebuhr W, Holmes MA, Assmann J, Lübke-Becker A, Thürmer A, Semmler T, Brombach J, Bethe A, Bischoff M, Wieler LH, Epping L, Walther B. How to survive pig farming: Mechanism of SCC mec element deletion and metabolic stress adaptation in livestock-associated MRSA. Front Microbiol 2022; 13:969961. [PMID: 36504815 PMCID: PMC9728531 DOI: 10.3389/fmicb.2022.969961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Previous research on methicillin susceptible Staphylococcus aureus (MSSA) belonging to livestock-associated (LA-) sequence type (ST) 398, isolated from pigs and their local surroundings, indicated that differences between these MSSA and their methicillin resistant predecessors (MRSA) are often limited to the absence of the staphylococcal cassette chromosome mec (SCCmec) and few single nucleotide polymorphisms. So far, our understanding on how LA-MRSA endure the environmental conditions associated with pig-farming as well as the putative impact of this particular environment on the mobilisation of SCCmec elements is limited. Thus, we performed in-depth genomic and transcriptomic analyses using the LA-MRSA ST398 strain IMT38951 and its methicillin susceptible descendant. We identified a mosaic-structured SCCmec region including a putative replicative SCCmecVc which is absent from the MSSA chromosome through homologous recombination. Based on our data, such events occur between short repetitive sequences identified within and adjacent to two distinct alleles of the large cassette recombinase genes C (ccrC). We further evaluated the global transcriptomic response of MRSA ST398 to particular pig-farm associated conditions, i.e., contact with host proteins (porcine serum) and a high ammonia concentration. Differential expression of global regulators involved in stress response control were identified, i.e., ammonia-induced alternative sigma factor B-depending activation of genes for the alkaline shock protein 23, the heat shock response and the accessory gene regulator (agr)-controlled transcription of virulence factors. Exposure to serum transiently induced the transcription of distinct virulence factor encoding genes. Transcription of genes reported for mediating the loss of methicillin resistance, especially ccrC, was not significantly different compared to the unchallenged controls. We concluded that, from an evolutionary perspective, bacteria may save energy by incidentally dismissing a fully replicative SCCmec element in contrast to the induction of ccr genes on a population scale. Since the genomic SCCmec integration site is a hot-spot of recombination, occasional losses of elements of 16 kb size may restore capacities for the uptake of foreign genetic material. Subsequent spread of resistance, on the other hand, might depend on the autonomous replication machinery of the deleted SCCmec elements that probably enhance chances for reintegration of SCCmec into susceptible genomes by mere multiplication.
Collapse
Affiliation(s)
- Charlotte Huber
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany
| | - Silver A. Wolf
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Wilma Ziebuhr
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Julia Assmann
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Andrea Thürmer
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Julian Brombach
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Lothar H. Wieler
- Methodology and Research Infrastructure, Robert Koch Institute, Berlin, Germany
| | - Lennard Epping
- Genome Sequencing and Genomic Epidemiology (MF2), Robert Koch Institute, Berlin, Germany
| | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS4), Robert Koch Institute, Berlin, Germany,*Correspondence: Birgit Walther,
| |
Collapse
|
45
|
Kittiwan N, Calland JK, Mourkas E, Hitchings MD, Murray S, Tadee P, Tadee P, Duangsonk K, Meric G, Sheppard SK, Patchanee P, Pascoe B. Genetic diversity and variation in antimicrobial-resistance determinants of non-serotype 2 Streptococcus suis isolates from healthy pigs. Microb Genom 2022; 8:mgen000882. [PMID: 36326658 PMCID: PMC9836093 DOI: 10.1099/mgen.0.000882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Streptococcus suis is a leading cause of bacterial meningitis in South-East Asia, with frequent zoonotic transfer to humans associated with close contact with pigs. A small number of invasive lineages are responsible for endemic infection in the swine industry, causing considerable global economic losses. A lack of surveillance and a rising trend in clinical treatment failure has raised concerns of growing antimicrobial resistance (AMR) among invasive S. suis. Gene flow between healthy and disease isolates is poorly understood and, in this study, we sample and sequence a collection of isolates predominantly from healthy pigs in Chiang Mai province, Northern Thailand. Pangenome characterization identified extensive genetic diversity and frequent AMR carriage in isolates from healthy pigs. Multiple AMR genes were identified, conferring resistance to aminoglycosides, lincosamides, tetracycline and macrolides. All isolates were non-susceptible to three or more different antimicrobial classes, and 75 % of non-serotype 2 isolates were non-susceptible to six or more classes (compared to 37.5 % of serotype 2 isolates). AMR genes were found on integrative and conjugative elements previously observed in other species, suggesting a mobile gene pool that can be accessed by invasive disease isolates. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Nattinee Kittiwan
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Veterinary Research and Development Center (Upper Northern Region), Hang Chat, Lampang 52190, Thailand
| | - Jessica K. Calland
- Oslo Centre for Biostatistics and Epidemiology, Oslo University Hospital, Oslo, Norway
| | - Evangelos Mourkas
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK
| | - Matthew D. Hitchings
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Susan Murray
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK,Present address: Pathogen Genomics Unit, Public Health Wales, Cardiff, Wales, UK
| | - Pakpoom Tadee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Phacharaporn Tadee
- Faculty of Animal Science and Technology, Maejo University, Chiang Mai 50290, Thailand
| | - Kwanjit Duangsonk
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Guillaume Meric
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK,Present address: Cambridge Baker Systems Genomics Initiative, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Samuel K. Sheppard
- Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK,Faculty of Allied Medical Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Prapas Patchanee
- Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,*Correspondence: Prapas Patchanee,
| | - Ben Pascoe
- Integrative Research Centre for Veterinary Preventive Medicine, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand,Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, South Parks Road, Oxford, UK,Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK,Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Old Road Campus, Oxford, UK,*Correspondence: Ben Pascoe,
| |
Collapse
|
46
|
Morales-Laverde L, Trobos M, Echeverz M, Solano C, Lasa I. Functional analysis of intergenic regulatory regions of genes encoding surface adhesins in Staphylococcus aureus isolates from periprosthetic joint infections. Biofilm 2022; 4:100093. [PMID: 36408060 PMCID: PMC9667196 DOI: 10.1016/j.bioflm.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus is a leading cause of prosthetic joint infections (PJI). Surface adhesins play an important role in the primary attachment to plasma proteins that coat the surface of prosthetic devices after implantation. Previous efforts to identify a genetic component of the bacterium that confers an enhanced capacity to cause PJI have focused on gene content, kmers, or single-nucleotide polymorphisms (SNPs) in coding sequences. Here, using a collection of S. aureus strains isolated from PJI and wounds, we investigated whether genetic variations in the regulatory region of genes encoding surface adhesins lead to differences in their expression levels and modulate the capacity of S. aureus to colonize implanted prosthetic devices. The data revealed that S. aureus isolates from the same clonal complex (CC) contain a specific pattern of SNPs in the regulatory region of genes encoding surface adhesins. As a consequence, each clonal lineage shows a specific profile of surface proteins expression. Co-infection experiments with representative isolates of the most prevalent CCs demonstrated that some lineages have a higher capacity to colonize implanted catheters in a murine infection model, which correlated with a greater ability to form a biofilm on coated surfaces with plasma proteins. Together, results indicate that differences in the expression level of surface adhesins may modulate the propensity of S. aureus strains to cause PJI. Given the high conservation of surface proteins among staphylococci, our work lays the framework for investigating how diversification at intergenic regulatory regions affects the capacity of S. aureus to colonize the surface of medical implants.
Collapse
|
47
|
Cummins EA, Hall RJ, Connor C, McInerney JO, McNally A. Distinct evolutionary trajectories in the Escherichia coli pangenome occur within sequence types. Microb Genom 2022; 8:mgen000903. [PMID: 36748558 PMCID: PMC9836092 DOI: 10.1099/mgen.0.000903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/02/2022] [Indexed: 11/24/2022] Open
Abstract
The Escherichia coli species contains a diverse set of sequence types and there remain important questions regarding differences in genetic content within this population that need to be addressed. Pangenomes are useful vehicles for studying gene content within sequence types. Here, we analyse 21 E. coli sequence type pangenomes using comparative pangenomics to identify variance in both pangenome structure and content. We present functional breakdowns of sequence type core genomes and identify sequence types that are enriched in metabolism, transcription and cell membrane biogenesis genes. We also uncover metabolism genes that have variable core classification, depending on which allele is present. Our comparative pangenomics approach allows for detailed exploration of sequence type pangenomes within the context of the species. We show that ongoing gene gain and loss in the E. coli pangenome is sequence type-specific, which may be a consequence of distinct sequence type-specific evolutionary drivers.
Collapse
Affiliation(s)
- Elizabeth A. Cummins
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rebecca J. Hall
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Chris Connor
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne 3000, Australia
| | - James O. McInerney
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
48
|
Gerlach D, Sieber RN, Larsen J, Krusche J, De Castro C, Baumann J, Molinaro A, Peschel A. Horizontal transfer and phylogenetic distribution of the immune evasion factor tarP. Front Microbiol 2022; 13:951333. [PMID: 36386695 PMCID: PMC9650247 DOI: 10.3389/fmicb.2022.951333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a major human pathogen, uses the prophage-encoded tarP gene as an important immune evasion factor. TarP glycosylates wall teichoic acid (WTA) polymers, major S. aureus surface antigens, to impair WTA immunogenicity and impede host defence. However, tarP phages appear to be restricted to only a few MRSA clonal lineages, including clonal complexes (CC) 5 and 398, for unknown reasons. We demonstrate here that tarP-encoding prophages can be mobilized to lysogenize other S. aureus strains. However, transfer is largely restricted to closely related clones. Most of the non-transducible clones encode tarM, which generates a WTA glycosylation pattern distinct from that mediated by TarP. However, tarM does not interfere with infection by tarP phages. Clonal complex-specific Type I restriction-modification systems were the major reasons for resistance to tarP phage infection. Nevertheless, tarP phages were found also in unrelated S. aureus clones indicating that tarP has the potential to spread to distant clonal lineages and contribute to the evolution of new MRSA clones.
Collapse
Affiliation(s)
- David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Section, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | | | | | - Janes Krusche
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Section, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | | | - Juliane Baumann
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Section, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples, Naples, Italy
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine, Infection Biology Section, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence EXC2124 Controlling Microbes to Fight Infection, University of Tübingen, Tübingen, Germany
| |
Collapse
|
49
|
Fang Y, Stanford K, Yang X. Lactic Acid Resistance and Population Structure of Escherichia coli from Meat Processing Environment. Microbiol Spectr 2022; 10:e0135222. [PMID: 36194136 PMCID: PMC9602453 DOI: 10.1128/spectrum.01352-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022] Open
Abstract
To explore the effect of beef processing on Escherichia coli populations in relation to lactic acid resistance, this study investigated the links among acid response, phylogenetic structure, genome diversity, and genotypes associated with acid resistance of meat plant E. coli. Generic E. coli isolates (n = 700) were from carcasses, fabrication equipment, and beef products. Acid treatment was carried out in Luria-Bertani broth containing 5.5% lactic acid (pH 2.9). Log reductions of E. coli ranged from <0.5 to >5 log CFU/mL (median: 1.37 log). No difference in lactic acid resistance was observed between E. coli populations recovered before and after a processing step or antimicrobial interventions. E. coli from the preintervention carcasses were slightly more resistant than E. coli isolated from equipment, differing by <0.5 log unit. Acid-resistant E. coli (log reduction <1, n = 45) had a higher prevalence of genes related to energy metabolism (ydj, xap, ato) and oxidative stress (fec, ymjC) than the less resistant E. coli (log reduction >1, n = 133). The ydj and ato operons were abundant in E. coli from preintervention carcasses. In contrast, fec genes were abundant in E. coli from equipment surfaces. The preintervention E. coli contained phylogroups A and B1 in relatively equal proportions. Phylogroup B1 predominated (95%) in the population from equipment. Of note, E. coli collected after sanitation shared either the antigens of O8 or H21. Additionally, genome diversity decreased after chilling and equipment sanitation. Overall, beef processing did not select for E. coli resistant to lactic acid but shaped the population structure. IMPORTANCE Antimicrobial interventions have significantly reduced the microbial loads on carcasses/meat products; however, the wide use of chemical and physical biocides has raised concerns over their potential for selecting resistant populations in the beef processing environment. Phenotyping of acid resistance and whole-genome analysis described in this study demonstrated beef processing practices led to differences in acid resistance, genotype, and population structure between carcass- and equipment-associated E. coli but did not select for the acid-resistant population. Results indicate that genes coding for the metabolism of long-chain sugar acids (ydj) and short-chain fatty acids (ato) were more prevalent in carcass-associated than equipment-associated E. coli. These results suggest E. coli from carcasses and equipment surfaces have been exposed to different selective pressures. The findings improve our understanding of the microbial ecology of E. coli in food processing environments and in general.
Collapse
Affiliation(s)
- Yuan Fang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| | - Kim Stanford
- University of Lethbridge, Lethbridge, Alberta, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, Lacombe, Alberta, Canada
| |
Collapse
|
50
|
Lieberman TD. Detecting bacterial adaptation within individual microbiomes. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210243. [PMID: 35989602 PMCID: PMC9393564 DOI: 10.1098/rstb.2021.0243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 04/17/2022] [Indexed: 12/11/2022] Open
Abstract
The human microbiome harbours a large capacity for within-person adaptive mutations. Commensal bacterial strains can stably colonize a person for decades, and billions of mutations are generated daily within each person's microbiome. Adaptive mutations emerging during health might be driven by selective forces that vary across individuals, vary within an individual, or are completely novel to the human population. Mutations emerging within individual microbiomes might impact the immune system, the metabolism of nutrients or drugs, and the stability of the community to perturbations. Despite this potential, relatively little attention has been paid to the possibility of adaptive evolution within complex human-associated microbiomes. This review discusses the promise of studying within-microbiome adaptation, the conceptual and technical limitations that may have contributed to an underappreciation of adaptive de novo mutations occurring within microbiomes to date, and methods for detecting recent adaptive evolution. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.
Collapse
Affiliation(s)
- Tami D. Lieberman
- Department of Civil and Environmental Engineering, Institute for Medical Engineering and Science,Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute, Cambridge, MA, USA
- Ragon Institute, Cambridge, MA, USA
| |
Collapse
|