1
|
Peng L, Xu X, Wang P, Yang F, Zhu X, Yang S, Xia H, Liu Z, Qin W. Receptor interacting protein kinase 1 activation and triggering mesangial cells necroptosis in MRL/lpr mice model of lupus nephritis. Autoimmunity 2025; 58:2515825. [PMID: 40492666 DOI: 10.1080/08916934.2025.2515825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 05/25/2025] [Accepted: 05/31/2025] [Indexed: 06/12/2025]
Abstract
Lupus nephritis (LN) is the most common complication of systemic lupus erythematosus (SLE) affecting the kidneys. Receptor-interacting protein kinase 1 (RIPK1) is involved in necroptosis and inflammatory signaling. Here, we investigate the role of RIPK1 kinase activity in the pathogenesis of LN. Immunofluorescent colocalization of necroptosis with podocyte, endothelial cells, and mesangial cells was detected in the kidney of MRL/lpr mice. In vivo studies used ZJU37 (a RIPK1 inhibitor) to treat MRL/lpr mice to evaluate LN pathological alterations. In vitro, mouse mesangial cells were stimulated with DMSO, serum from MRL/lpr mice, and serum + ZJU37 to detect cell viability, cell death status, expression of necroptosis-related molecular proteins, and significant pathway alterations accompanied by necroptosis. We also conducted functional assay to validate the biological significance of the pathway changed. Firstly, the involvement of RIPK1/RIPK3/MLKL-dependent necroptosis was shown in the mesangial cells of MRL/lpr mice. Secondly, we found that ZJU37 inhibited glomerulonephritis, tubulointerstitial lesions, and vasculitis by reducing the necroptosis of mesangial cells in MRL/lpr mice. Moreover, we discovered that mesangial cells are susceptible to necroptosis when stimulated with serum from MRL/lpr animals and identified the primary altered pathways, including cytokine-cytokine receptor interaction and the PI3K-Akt signaling pathway, which could be abolished by ZJU37. Functional assay showed ZJU37 could significantly increase the migration and cell proliferation ability of mesangial cells. RIPK1 activation triggered mesangial cell necroptosis was identified in the kidneys of MRL/lpr mice and Inhibition of RIPK1 could alleviate LN by reducing the necroptosis of mesangial cells.
Collapse
Affiliation(s)
- Lin Peng
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Xu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Pengcheng Wang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fan Yang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Zhu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuying Yang
- Department of Biochemistry and Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weisong Qin
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Hong YL, Wu ZX, Jiang JX, Sun YM, Ma JH, Ai JX, Wang Y, Ma D, Zhang J, Yang CQ, Li YX, Li C, Chen QL, Liu XH, Liu XS, Ma JT, Liu MM, Shi JB. Discovery of quinazoline derivatives as RIPK3 inhibitors that switch cell death from necroptosis to apoptosis for psoriasis treatment. Eur J Med Chem 2025; 294:117716. [PMID: 40398153 DOI: 10.1016/j.ejmech.2025.117716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/26/2025] [Accepted: 04/30/2025] [Indexed: 05/23/2025]
Abstract
In this study, we employed a structure-based approach and step-by-step structural optimization to identify a series of quinazoline derivatives as potent receptor interacting protein kinase 3 (RIPK3) inhibitors. Among these, compound 32 emerged as the most effective inhibitor, with strong inhibition of RIPK3 (IC50 = 27 nM) and necroptosis (EC50 = 0.45 μM). Biological evaluation showed that compound 32 binds directly to RIPK3, inhibiting the phosphorylation of both RIPK3 and its downstream substrate, MLKL, thus suppressing necroptosis. Additionally, compound 32 induces Caspase-8/3-mediated apoptosis, resulting in moderate anti-proliferative effects. By converting inflammatory necroptosis to non-inflammatory apoptosis, compound 32 not only exerts anti-inflammatory effects but also reduces inflammatory hyperplasia. More importantly, compared to the known RIPK3 inhibitor HS-1371, compound 32 significantly lower toxicity in vivo in mice. In an IMQ-induced mouse model of psoriasis, compound 32 significantly alleviates skin inflammation, scaling, and hyperkeratosis, without inducing notable toxicity. This study highlights a promising therapeutic strategy for inflammatory proliferative diseases, such as psoriasis, by inhibiting RIPK3 and shifting the mode of cell death from necroptosis to apoptosis.
Collapse
Affiliation(s)
- Ya-Ling Hong
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Zheng-Xing Wu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jia-Xing Jiang
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Yi-Meng Sun
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jia-Hai Ma
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jia-Xin Ai
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Yu Wang
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Duo Ma
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jing Zhang
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Chang-Qi Yang
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Yi-Xiang Li
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Chong Li
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Qing-Ling Chen
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Xin-Hua Liu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Xue-Song Liu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China
| | - Jun-Ting Ma
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Ming-Ming Liu
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| | - Jing-Bo Shi
- Anhui Province Key Laboratory of Inflammation and Immune Diseases, The Key Laboratory of Antiinflammatory and Immune Medicine, Ministry of Education, School of Pharmacy, Anhui Medical University, Hefei, 230032, Anhui Province, PR China.
| |
Collapse
|
3
|
Xing J, Jiang L, Fu C, Liu JQ, Zhou X, Zhang J, Zhang YL, He YC, Zhao WD. A novel predictive model and therapeutic potential of quercetin derivatives in chronic kidney disease progression. Biochem Pharmacol 2025; 239:117024. [PMID: 40494438 DOI: 10.1016/j.bcp.2025.117024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 06/03/2025] [Indexed: 06/16/2025]
Abstract
Chronic kidney disease (CKD) remains a pressing global health issue with limited therapeutic options. The loss of nephrons is a crucial pathological change driving CKD progression, influenced by diverse programmed cell death (PCD) pathways, yet the precise interplay among various PCD pathways in CKD progression are still incompletely understood. Four CKD-related datasets from the GEO were performed for differential gene expression and enrichment analyses, and we identified the significant involvement of multiple PCD pathways, including apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. Weighted gene co-expression network analysis combined with an ensemble of 101 machine learning algorithms facilitated the construction of a novel predictive model, PCD-related mRNA signature (PRMS). Notably, we observed significant upregulation of NRAS, BIRC5, and KIF20A, alongside downregulation of NDRG1, in CKD kidneys. These were validated through clinical correlation analysis using the Nephroseq database and further confirmed in a mouse unilateral ureteral obstruction model (p < 0.0001, p < 0.0001, p = 0.0007, p = 0.0230, respectively). Subsequent network pharmacology and molecular docking identified quercetin as a candidate with strong binding affinities to PRMS and favorable ADMET properties, further confirmed by molecular dynamics simulations. To improve the pharmacological profile of quercetin, structural modifications were performed, resulting in novel derivatives with enhanced LibDock score and reduced toxicity. In conclusion, our findings provide comprehensive insights into the complex interplay of multiple PCD pathways contributing to CKD progression and further presents a novel predictive model for CKD. We develop novel quercetin derivatives optimized for enhanced efficacy and safety, highlighting their therapeutic potential as promising candidates for targeting PRMS to mitigate CKD progression.
Collapse
Affiliation(s)
- Jia Xing
- Department of Histology and Embryology, China Medical University, Shenyang, Liaoning Province 110122, PR China
| | - Lai Jiang
- China Medical University, Shenyang, Liaoning Province 110122, PR China
| | - Chen Fu
- Pharmaceutical Sciences Laboratory Center, China Medical University, Shenyang, Liaoning Province 110122, PR China
| | - Jia-Qi Liu
- China Medical University, Shenyang, Liaoning Province 110122, PR China
| | - Xin Zhou
- China Medical University, Shenyang, Liaoning Province 110122, PR China
| | - Jie Zhang
- Department of Histology and Embryology, China Medical University, Shenyang, Liaoning Province 110122, PR China
| | - Yu-Lu Zhang
- Department of Histology and Embryology, China Medical University, Shenyang, Liaoning Province 110122, PR China
| | - Yu-Chen He
- Department of Vascular Surgery, the First Hospital of China Medical University, Shenyang, Liaoning Province 110001, PR China.
| | - Wei-Dong Zhao
- Department of Developmental Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
4
|
Chen Y, Liu F, Dai R, Cheng M, Wang W, Sang Y, Wei L, Wang Y, Zhang L. Mechanisms and therapeutic potential of multiple forms of programmed cell death in renal fibrosis. Cell Signal 2025; 134:111926. [PMID: 40490146 DOI: 10.1016/j.cellsig.2025.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2025] [Revised: 05/27/2025] [Accepted: 06/05/2025] [Indexed: 06/11/2025]
Abstract
Programmed cell death (PCD), particularly necroptosis, ferroptosis, and pyroptosis alongside classical apoptosis has attracted considerable attention in recent years in the context of renal fibrosis (RF). Accumulating evidence indicates that these regulated cell death pathways contribute substantially to renal tissue damage and fibrosis progression by promoting inflammation and extracellular matrix (ECM) accumulation. Renal fibrosis, a common pathological process to various chronic kidney diseases (CKD), is closely intertwined with diverse forms of cell death. Elucidating the underlying molecular mechanisms is critical for identifying effective therapeutic targets. This review systematically summarizes the signaling mechanisms of apoptosis, necroptosis, ferroptosis, and pyroptosis, detailing their roles in the pathogenesis of RF. We analyze recent advances in pharmacological treatment and emerging therapies targeting these pathways, and explore potential therapeutic targets for clinical implementation. Targeting multiple forms of regulated cell death pathways concurrently may offer a promising avenue for the precision treatment of RF.
Collapse
Affiliation(s)
- Yizhen Chen
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Fan Liu
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Rong Dai
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Meng Cheng
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Weili Wang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yonghao Sang
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Liuting Wei
- First Clinical Medical College, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yiping Wang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Lei Zhang
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
5
|
Dabravolski SA, Kalmykov VA, Maksaeva AO, Rozhkova UV, Lapshina KO, Orekhov AN. Necroptosis in myocardial ischaemia-reperfusion injury: current update on mechanisms, therapeutic targets, and translational potential. Apoptosis 2025; 30:1216-1234. [PMID: 40146485 DOI: 10.1007/s10495-025-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2025] [Indexed: 03/28/2025]
Abstract
Necroptosis is a programmed form of cell death that has gained significant attention in the field of cardiovascular research due to its involvement in myocardial infarction (MI) and myocardial ischaemia-reperfusion (I/R) injury. Unlike apoptosis, necroptosis elicits a pro-inflammatory response, contributing to myocardial injury, fibrosis, and adverse remodelling. This review aims to provide an overview of the molecular mechanisms underlying necroptosis, with a particular focus on its role in myocardial I/R injury. Key regulatory proteins such as Receptor-interacting protein kinase 3 (RIPK3) and Mixed lineage kinase domain-like protein (MLKL) are central to the necroptotic process, mediating cell death and inflammation. The review discusses the potential of targeting necroptosis as a therapeutic strategy for managing cardiovascular diseases, particularly post-MI. The RIPK3-CaMKII-mitochondrial permeability transition pore (mPTP) pathway is identified as a critical signalling axis in necroptosis and its inhibition may offer protective benefits in myocardial injury. The review also considers the role of natural and chemical inhibitors and other genes in necroptosis regulation. Overall, targeting necroptosis represents a promising avenue for therapeutic intervention to mitigate cardiac injury, promote recovery, and improve long-term patient outcomes in cardiovascular diseases.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, P.O. Box 78, 2161002, Karmiel, Israel.
| | - Vladislav A Kalmykov
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| | - Anastasia O Maksaeva
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
- Sechenov First Moscow State Medical University, 8, Trubetskaya Street, Building 2, Moscow, Russia, 119991
| | - Ulyana V Rozhkova
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Street, Moscow, Russia, 125315
| | - Ksenia O Lapshina
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 33, Profsoyuznaya Street, Building 4, Moscow, Russia, 117418
| | - Alexander N Orekhov
- Faculty of Biology and Biotechnology, National Research University Higher School of Economics, 33, Profsoyuznaya Street, Building 4, Moscow, Russia, 117418
| |
Collapse
|
6
|
Perez-Moreno E, de la Peña A, Toledo T, Saez J, Pérez-Molina F, Espinoza S, Metz C, Díaz-Valdivia N, Azócar L, Prado C, Pacheco R, Segovia-Miranda F, Godoy AS, Amador CA, Feuerhake T, González A, Soza A. Endogenous Galectin-8 protects against Th17 infiltration and fibrosis following acute kidney injury. Mol Med 2025; 31:192. [PMID: 40375122 DOI: 10.1186/s10020-025-01245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a serious clinical condition characterized by a rapid decline in renal function, often progressing to chronic kidney disease (CKD) and fibrosis. The endogenous mechanisms influencing kidney injury resolution or maladaptive repair remain poorly understood. Galectin-8 (Gal-8), a tandem-repeat β-galactoside-binding lectin, plays a role in epithelial cell proliferation, epithelial-mesenchymal transition, and immune regulation, all of which are critical in AKI outcomes. While exogenous Gal-8 administration has shown renoprotective effects, its endogenous role in kidney injury progression and resolution remains unclear. METHODS To investigate the endogenous role of Gal-8 in AKI, we compared the responses of Gal-8 knockout (Gal-8-KO; Lgals8-/- bearing a β-gal cassette under the Lgals8 gene promoter) and wild-type (Lgals8+/+) mice in a nephrotoxic folic acid (FA)-induced AKI model. Renal Gal-8 expression was assessed by β-galactosidase staining, lectin-marker colocalization, and RT-qPCR. Renal function, structure, and immune responses were evaluated at the acute (day 2) and fibrotic (day 14) phases of injury. Plasma creatinine levels were measured to assess renal function, while histological analyses evaluated tubular damage, renal inflammation, and extracellular matrix deposition. Flow cytometry was performed to characterize the immune response, focusing on pro-inflammatory T cells. RESULTS Galectin-8 was predominantly expressed in the renal cortex, localizing to tubules, glomeruli, and blood vessels, with its levels decreasing by half following AKI. Both Lgals8+/+ and Lgals8-/- mice exhibited similar renal function and structure impairments during the acute phase, though Lgals8+/+ mice showed slightly worse damage. By the fibrotic phase, Lgals8-/- mice exhibited more pronounced cortical damage and fibrosis, characterized by increased type I and III collagen deposition and enhanced Th17 cell infiltration, while myofibroblast activation remained comparable to that of Lgals8+/+ mice. CONCLUSIONS Endogenous Gal-8 does not significantly protect the kidney during the acute phase and is dispensable for cell proliferation and death in response to AKI. However, it is crucial in preventing maladaptive repair by regulating extracellular matrix homeostasis and mitigating fibrosis. Additionally, Gal-8 contributes to inflammation resolution by limiting persistent immune cell infiltration, particularly IL-17-secreting cells.
Collapse
Affiliation(s)
- Elisa Perez-Moreno
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
- Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile
- Facultad de Medicina, Universidad San Sebastián, Santiago, Chile
| | - Adely de la Peña
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
- Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile
| | - Tomás Toledo
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Javiera Saez
- Laboratorio de Fisiopatología Renal, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Francisca Pérez-Molina
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Sofía Espinoza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Claudia Metz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Nicole Díaz-Valdivia
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Lorena Azócar
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Carolina Prado
- Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile
- Laboratorio de Neuroinmunología, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Rodrigo Pacheco
- Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile
- Laboratorio de Neuroinmunología, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Fabian Segovia-Miranda
- Department of Cell Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Alejandro S Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Cristian A Amador
- Laboratorio de Fisiopatología Renal, Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile
| | - Teo Feuerhake
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile.
- Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile.
- Facultad de Medicina, Universidad San Sebastián, Santiago, Chile.
| | - Andrea Soza
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Ciencias, Universidad San Sebastián, Santiago, Chile.
- Centro Científico Tecnológico de Excelencia Ciencia y Vida, Fundación Ciencia y Vida, Santiago, Chile.
| |
Collapse
|
7
|
Peng Y, Xu J, Wei L, Luo M, Chen S, Wei X, Luo S, Su Z, Wang Z. Melatonin alleviates sepsis-induced acute lung injury by inhibiting necroptosis via reducing circulating mtDNA release. Mol Med 2025; 31:176. [PMID: 40335920 PMCID: PMC12057123 DOI: 10.1186/s10020-025-01228-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening condition that often leads to severe complications, including acute lung injury (ALI), which carries high morbidity and mortality in critically ill patients. Melatonin (Mel) has shown significant protective effects against sepsis-induced ALI, but its precise mechanism remains unclear. METHODS A cecal ligation and puncture (CLP) model was used to induce sepsis in male C57BL/6 mice, which were divided into four groups: Control, Sham, CLP, and CLP + Mel. ALI severity was evaluated via hematoxylin and eosin (H&E) staining, lung wet/dry ratio, and serum biomarkers (SP-D, sRAGE). Inflammatory cytokines (IL-1β, IL-6, TNF-α) were measured in serum and bronchoalveolar lavage fluid using ELISA. Circulating mitochondrial DNA (mtDNA) subtypes (D-loop, mt-CO1, mMito) were quantified by real-time PCR. TUNEL staining was performed to assess lung cell apoptosis. Necroptosis and STING pathway activation were analyzed via Western blot and immunofluorescence. RESULTS Sepsis led to increased circulating mtDNA levels and activation of necroptosis signaling pathways. Melatonin treatment alleviated sepsis-induced ALI, improving survival, reducing inflammatory cytokines and mtDNA release, and suppressing necroptosis. Intraperitoneal injection of mtDNA in mice activated necroptosis, while RIP1 inhibitor Nec-1 counteracted mtDNA-induced lung damage and necroptosis in sepsis-induced ALI. Additionally, melatonin significantly inhibited STING pathway activation. Further experiments revealed that STING modulation influenced necroptosis protein expression and mediated melatonin's protective effects in sepsis-induced ALI. CONCLUSION Melatonin mitigates sepsis-induced ALI by suppressing necroptosis through inhibition of STING activation and reduction of mtDNA release. These findings suggest melatonin as a potential therapeutic strategy for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yuce Peng
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Xu
- Department of emergency, The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Lingyu Wei
- Department of emergency, The first affiliated hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghao Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglong Chen
- Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, China
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, China
| | - Suxin Luo
- Department of Cardiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zedazhong Su
- Department of Geriatric Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Cardiovascular Institute, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Zhonghua Wang
- Department of Geriatrics, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Huang X, Ren X, Zhao L, Hao Y, Zhao Z, Chen F, Zhou J, Bai M, Chen S, Zhou X. Irisin Is a Potential Novel Biomarker and Therapeutic Target Against Kidney Diseases. Cell Biochem Funct 2025; 43:e70075. [PMID: 40318104 DOI: 10.1002/cbf.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 05/07/2025]
Abstract
Kidney diseases, characterized by renal dysfunction, are the leading causes of death worldwide. It is crucial to prevent and treat kidney diseases to reduce their associated morbidity and mortality. Moderate physical exercise has been recognized to be advantageous for kidney health. Irisin is an exercise-induced myokine that was identified in 2012. It plays an important role in energy and bone metabolism, oxidative stress reduction, anti-inflammatory processes, cell death inhibition, and cardiovascular protection. However, the relationship between irisin and kidney diseases have not been fully elucidated. This review explores the role of irisin as a biomarker for kidney disease diagnosis and its associated complications, as well as the mechanisms through which it participates in various cell death pathways, such as apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, irisin secretion levels were discussed to provide a basis for kidney disease prevention and treatment avenues, as well as therapeutic guidance for developing new and promising intervention strategies. Clinical Trial Registration: None.
Collapse
Affiliation(s)
- Xiu Huang
- The Nephrology Department of Shanxi Provincial People's Hospital, Taiyuan, China
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiya Ren
- The Nephrology Department of Shanxi Provincial People's Hospital, Taiyuan, China
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Limei Zhao
- The Nephrology Department of Shanxi Provincial People's Hospital, Taiyuan, China
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Yajie Hao
- The Nephrology Department of Shanxi Provincial People's Hospital, Taiyuan, China
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Zhibo Zhao
- The Nephrology Department of Shanxi Provincial People's Hospital, Taiyuan, China
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Fahui Chen
- Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Jinxiu Zhou
- The Nephrology Department of Shanxi Provincial People's Hospital, Taiyuan, China
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Mengqi Bai
- Shanxi University of Traditional Chinese Medicine, Taiyuan, China
| | - Si Chen
- The Nephrology Department of Shanxi Provincial People's Hospital, Taiyuan, China
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Xiaoshuang Zhou
- The Nephrology Department of Shanxi Provincial People's Hospital, Taiyuan, China
- The Nephrology Department of Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
9
|
Liu Y, Yi R, Zhang X, Sun X, Li J, Wang N, Yao X, Zhang C, Deng H, Wang S, Yang G. The mitochondrial dysfunction regulated by JAK2/STAT3 pathway leads to the necroptosis in the renal cells under patulin exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118202. [PMID: 40249973 DOI: 10.1016/j.ecoenv.2025.118202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Patulin (PAT) is a common mycotoxin widely found in various agricultural products and fruits, which has obvious toxic effects on animals and humans. Some studies have shown that PAT can cause nephrotoxicity, but the exact mechanism remains to be elucidated. In the present study, we investigated PAT-induced nephrotoxicity and the possible molecular mechanisms involved in its action. In vivo, the results showed that PAT affected the integrity of the glomerular basement membrane and peduncles, leading to necroptosis. We further demonstrated that PAT up-regulated the expression of JAK2, STAT3, RIPK1, RIPK3, and MLKL. This observation was also confirmed in MPC-5 cells. In vitro, pretreatment with Nec-1 (a specific inhibitor of necroptosis) or si-STAT3 resulted in a significant reduction in necroptosis and improved mitochondrial dysfunction. Notably, the pharmacological protection of mitochondrial function by SS-31 significantly attenuated the onset of PAT-induced necroptosis. Taken together, our study suggested that STAT3 activation, and mitochondrial dysfunction played critical roles in PAT-induced necroptosis in the kidney. These findings revealed the mechanisms by which PAT triggered necroptosis, potentially providing a new therapeutic strategy for PAT poisoning.
Collapse
Affiliation(s)
- Yun Liu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Ruhan Yi
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xu Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiance Sun
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Jing Li
- Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Xiaofeng Yao
- Department of Occupational & Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China
| | - Shaopeng Wang
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian 116044, China.
| |
Collapse
|
10
|
Zhen W, Zhao T, Chen X, Zhang J. Unlocking the Potential of Disulfidptosis: Nanotechnology-Driven Strategies for Advanced Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500880. [PMID: 40269657 DOI: 10.1002/smll.202500880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Tumor tissues exhibit elevated oxidative stress, with the cystine-glutamate transporter xCT solute carrier family 7 member 11 (xCT/SLC7A11) protecting cancer cells from oxidative damage by facilitating cystine uptake for glutathione synthesis. Disulfidptosis, a newly identified form of programmed cell death (PCD), occurs in cells with high xCT/SLC7A11 expression under glucose-deprived conditions. Distinct from other PCD pathways, disulfidptosis is characterized by aberrant disulfide bond formation and cellular dysfunction, ultimately resulting in cancer cell death. This novel mechanism offers remarkable therapeutic potential by targeting the inherent oxidative stress vulnerabilities of rapidly growing cancer cells. Advances in nanotechnology enable the development of nanomaterials capable of inducing reactive oxygen species (ROS) generation, disrupting disulfide bonds. In addition, they are capable to deliver therapeutic agents directly to tumors, thereby improving therapeutic precision and minimizing off-target effects. Moreover, combining disulfidptosis with ROS-induced immunogenic cell death can remodel the tumor microenvironment and enhance anti-tumor immunity. This review explores the mechanisms underlying disulfidptosis, its therapeutic potential in cancer treatment, and the synergistic role of nanotechnology in amplifying its effects. Selective induction of disulfidptosis using nanomaterials represents a promising strategy for achieving more effective, selective, and less toxic cancer therapies.
Collapse
Affiliation(s)
- Wenyao Zhen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Centre of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore
| |
Collapse
|
11
|
Guo J, Hu JP, Liu M, Chen Y, Zhang S, Guan S. Apigenin-Mediated ESCRT-III Activation and Mitophagy Alleviate LPS-Induced Necroptosis in Renal Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9906-9919. [PMID: 40211127 DOI: 10.1021/acs.jafc.5c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Apigenin (API) is a flavonoid widely distributed in vegetables and fruits that exhibits numerous biological functions. Lipopolysaccharide (LPS), a key component of the outer membrane of Gram-negative bacteria, can cause kidney injury when released into the bloodstream. Necroptosis is a form of programmed cell death characterized by the rupture of cell membranes. Excessive occurrence of necroptosis can lead to substantial damage to cells and tissues. In the study, we discovered that API could mitigate LPS-induced kidney injury in mice and alleviate LPS-induced necroptosis in Normal Rat Kidney-52E (NRK-52E) cells by targeting the mitochondrial reactive oxygen species (mtROS)-RIPK3-MLKL pathway. Further mechanistic studies revealed that API could potentially activate the endosomal sorting complexes required for transport-III (ESCRT-III), and activated ESCRT-III could repair cell membrane rupture caused by LPS-induced necroptosis. Simultaneously, we discovered that activated ESCRT-III could promote mitophagy, which facilitates the timely removal of damaged mitochondria and reduces intracellular mtROS levels. In conclusion, our results suggested that API alleviates LPS-induced renal cell necroptosis by activating ESCRT-III-dependent membrane repair and mitophagy. Our study provides new insights into the daily dietary intake of API to alleviate kidney injury caused by LPS.
Collapse
Affiliation(s)
- Jiakang Guo
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Jin-Ping Hu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Meitong Liu
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Yuelin Chen
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shengzhuo Zhang
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
| | - Shuang Guan
- College of Food science and Engineering, Jilin University, Changchun, Jilin 130062, China
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Wen X, Shen J, Lin H, Lin D, Chen M, Sechi LA, De Miglio MR, Zeng D. Disulfidptosis, a novel regulated cell death to predict survival and therapeutic response in kidney renal clear cell carcinoma. Discov Oncol 2025; 16:589. [PMID: 40263130 PMCID: PMC12014891 DOI: 10.1007/s12672-025-01994-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/18/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Metabolic regulation of cell death has become a potential therapeutic target for kidney renal clear cell carcinoma (KIRC), which is distinguished by notable heterogeneity and significant immune infiltration. Disulfidptosis, a recently identified form of cell death, has gained prominence in antitumor immunity. This research aims to investigate the correlation between disulfidptosis and prognosis of KIRC, while also exploring the possibility of predicting therapeutic response by disulfidptosis-associated genes (DAGs). METHODS We sourced clinical data and RNA sequence of KIRC from the Cancer Genome Atlas Database. Employing unsupervised clustering based on 23 DAGs, we further identified key differentially expressed genes (DEGs) between clusters to construct a DAG prognostic signature. A nomogram was developed and validated to predict clinical outcome of KIRC. Finally, we examined immune cell infiltration, tumor mutational burden, immunotherapy response, and sensitivity to drugs in high and low-risk groups. RESULTS Two distinct KIRC patient clusters were successfully stratified using the 23-DAG-related prognostic signature, comprising 11 key genes. This resulted in a robust risk model with strong predictive accuracy for overall survival. The nomogram, incorporating DAG-based risk scores, age, and pM stage, exhibited excellent predictive performance. The high-risk group displayed increased immune cell infiltration and tumor mutational burden, while the low-risk group showed heightened sensitivity to immunotherapies and targeted treatments. CONCLUSION This study established a robust DAG-based risk model for KIRC, highlighting its significant correlation with the immune landscape and therapeutic responses. Novel disulfidptosis-related biomarkers revealed distinct immune profiles, drug sensitivities, and immunotherapy potentials among KIRC patients.
Collapse
Affiliation(s)
- Xiaofen Wen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiaxin Shen
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Hui Lin
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Danxia Lin
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Minna Chen
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
- SC Microbiologia e Virologia, Azienda Ospedaliera Universitaria, 07100, Sassari, Italy
| | | | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
13
|
Gao G, Xia H, Shi J, Zheng P, Wu W, Wu S, Qi T, Song H, Gu Y, Li J, Lei P, Liu C, Wu K. Carbon Dot Nanozymes with Ferrous Ion-Chelating and Antioxidative Activity Inhibiting Ferroptosis to Alleviate Renal Ischemia-Reperfusion Injury. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407372. [PMID: 40051148 DOI: 10.1002/smll.202407372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 02/26/2025] [Indexed: 04/25/2025]
Abstract
Renal ischemia-reperfusion (I/R) significantly contributes to acute kidney injury (AKI), causing substantial oxidative stress and metabolic disruptions. Ferroptosis, a Fe2+-dependent form of regulated cell death characterized by lipid peroxide accumulation, is the predominant cause of renal I/R injury (RIRI). Here, carbon dot (C-dot) nanozymes that inhibit ferroptosis by regulating Fe2⁺ levels and scavenging reactive oxygen species, offering a potential treatment for RIRI are reported. C-dots chelate Fe2⁺ via surface carbonyl, hydroxyl, and carboxyl groups to reduce free Fe2⁺ levels, suppress the Fenton reaction, and limit hydroxyl radical generation. Additionally, C-dots scavenge superoxide anions and hydroxyl radicals to restore redox balance. By targeting the kidneys, C-dots effectively reduce renal iron overload and lipid peroxidation to prevent ferroptotic cell death in the renal I/R male mice model. RNA sequencing (RNA-seq) analysis further confirms the crucial roles of C-dots in mitigating oxidative stress, preserving iron homeostasis, and downregulating acyl-CoA synthetase long-chain family member 4 (ACSL4) after I/R. This work emphasizes the perfect alignment between the multifunctional roles of C-dots and the conditions required for inhibiting ferroptosis and offers an innovative strategy to treat RIRI effectively.
Collapse
Affiliation(s)
- Guoqiang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Huayu Xia
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jinyu Shi
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Pengyi Zheng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Department of Urology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, 471003, P. R. China
| | - Wentai Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Shiqi Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tianyu Qi
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Hao Song
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanan Gu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Assisted Reproduction Center, Northwest Women and Children's Hospital, Xi'an, 710061, P. R. China
| | - Jing Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Pu Lei
- Yulin Hospital of the First Affiliated Hospital of Xi'an Jiaotong University, Yulin, 719000, P. R. China
| | - Cui Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaijie Wu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Yulin Hospital of the First Affiliated Hospital of Xi'an Jiaotong University, Yulin, 719000, P. R. China
| |
Collapse
|
14
|
Hou Y, Feng Q, Wei C, Cao F, Liu D, Pan S, Shi Y, Liu Z, Liu F. Emerging role of PANoptosis in kidney diseases: molecular mechanisms and therapeutic opportunities. Apoptosis 2025; 30:579-596. [PMID: 39833634 DOI: 10.1007/s10495-024-02072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Kidney diseases represent a significant global public health challenge, characterized by complex pathogenesis, high incidence, low awareness, insufficient early screening, and substantial treatment disparities. Effective therapeutic options remain lacking. Programmed cell death (PCD), including apoptosis, pyroptosis, and necroptosis, play pivotal roles in the pathogenesis of various kidney diseases. In 2019, PANoptosis, a novel form of inflammatory cell death, was introduced, providing new insights into innate immunity and PCD research. Although research on PANoptosis in kidney diseases is still limited, identifying key molecules within PANoptosomes and understanding their regulatory roles is critical for disease prevention and management. This review summarizes the various forms of PCD implicated in kidney diseases, along with PANoptosomes activated by Z-DNA binding protein 1 (ZBP1), absent in melanoma 2 (AIM2), receptor-interacting protein kinase 1 (RIPK1), NOD-like receptor family CARD domain containing 12 (NLRP12), and NOD-like receptor family member C5 (NLRC5). It also reviews the advancements in PANoptosis research in the field of kidney diseases, particularly in renal tumors and acute kidney injuries (AKI). The goal is to establish a foundation for future research into the role of PANoptosis in kidney diseases.
Collapse
Affiliation(s)
- Yi Hou
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Cien Wei
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Fengyu Cao
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China
| | - Yan Shi
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| | - Fengxun Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, 450052, P. R. China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
15
|
Lu J, Wei H, Yao X, Chen Y, Liu M, Guan S. Glycidol induces necroptosis and inflammation through autophagy-necrosome pathway in renal cell and mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178852. [PMID: 39965374 DOI: 10.1016/j.scitotenv.2025.178852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025]
Abstract
Glycidol is a common food contaminant, and its main target organ is the kidney. However, the mechanism of nephrotoxicity of glycidol has not been fully elucidated. In this paper, we investigated the mechanism of glycidol toxicity in mice kidneys and NRK-52E cells. We found that glycidol exposure induced necroptosis in renal cells through the RIPK1/RIPK3/MLKL pathway. Mechanistically, it was further found that glycidol blocked renal cell autophagy and induced ectopic aggregation of p62. Accumulated p62 recruited RIPK1 and activated downstream RIPK1/RIPK3/MLKL necrosome production. At the same time, the accumulated p62 could also participate in the activation of intracellular NF-κB nuclear transcription factor by interacting with RIPK1 to form a signalling complex, which promoted the secretion of inflammatory factors TNF-α and IL-1β, and induced inflammation in the kidney. Our present study provided a new understanding of the complex mechanism of glycidol on renal injury.
Collapse
Affiliation(s)
- Jing Lu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, PR China
| | - Hongdi Wei
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, PR China
| | - Xinyu Yao
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, PR China
| | - Yuelin Chen
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, PR China
| | - Meitong Liu
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, PR China
| | - Shuang Guan
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun, Jilin 130062, PR China; Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, PR China.
| |
Collapse
|
16
|
Chen C, Xie J, Chen Z, Ye K, Wu C, Dai X, Yuan Y, Lin Y, Wang Y, Chen H, Wu J, Ma H, Xu Y. Role of Z-DNA Binding Protein 1 Sensing Mitochondrial Z-DNA and Triggering Necroptosis in Oxalate-Induced Acute Kidney Injury. J Am Soc Nephrol 2025; 36:361-377. [PMID: 39374087 PMCID: PMC11888962 DOI: 10.1681/asn.0000000516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
Key Points Gene deletions of Zbp1 , Ripk3 , and Mlkl reduced severity of oxalate-induced AKI. Mice with mutation or deletion in the Z-nucleic acid sensing domain (Zα ) of Z-DNA binding protein 1 were protected from AKI. Z-DNA binding protein 1 sensed mitochondrial Z-DNA through its Zα domain, recruited receptor-interacting protein kinase 3 through receptor-interacting protein homotypic interaction motif, and activated mixed lineage kinase domain-like to induce necroptosis. Background Calcium oxalate–induced acute kidney injury is a severe condition in which the kidneys suffer rapid damage due to the deposition of oxalate crystals. Known factors contributing to cell death induced by calcium oxalate include receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like (MLKL) protein–dependent necroptosis, as well as necrosis involving peptidylprolyl isomerase F–mediated mitochondrial permeability transition. However, the detailed molecular mechanisms linking mitochondrial dysfunction to RIPK3 activation are not fully understood. Methods Mice with gene knockout of Zbp1 , Ripk3 , or Mlkl and mice with mutations in the Z-nucleic acid sensing domain of Z-DNA binding protein 1 (ZBP1) or deletion of Zα 1 were used in an oxalate-induced AKI model. Proximal renal tubule cells were isolated and cultured for further investigation. Human oxalate nephropathy biopsy samples were analyzed. Results Specific gene deletions of Zbp1 , Ripk3 , or Mlkl in proximal renal tubules significantly reduced the severity of oxalate-induced AKI by preventing necroptosis and subsequent inflammation. Notably, mice with mutations in the Z-nucleic acid sensing domain of ZBP1 or deletion of Zα1 were protected from AKI. In cultured proximal tubular cells, calcium oxalate damaged mitochondria, accompanied by an increase in Bax and a decrease in BCL2 and transcription factor A, mitochondrial (TFAM), leading to the release of mitochondrial Z-DNA. ZBP1 sensed this mitochondrial Z-DNA and then recruited RIPK3 through the receptor-interacting protein homotypic interaction motifs, which in turn activated MLKL through RIPK3 phosphorylation, leading to necroptosis and contributing to AKI. Conclusions ZBP1 plays a critical role in sensing mitochondrial Z-DNA and initiating RIPK3/MLKL-mediated necroptosis, contributing to the development of oxalate-induced AKI.
Collapse
Affiliation(s)
- Caiming Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingzhi Xie
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhimin Chen
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Keng Ye
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Xingchen Dai
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ying Yuan
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujiao Lin
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yujia Wang
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hong Chen
- Department of Pathology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, School of Life Sciences, Xiamen University, Xiamen, China
| | - Huabin Ma
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yanfang Xu
- Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Research Center for Metabolic Chronic Kidney Disease, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Nephrology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Zhang Y, Pan R, Shou Z, Zhao Y. Xanthohumol attenuates TXNIP-mediated renal tubular injury in vitro and in vivo diabetic models. J Nat Med 2025; 79:314-327. [PMID: 39752106 DOI: 10.1007/s11418-024-01863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/13/2024] [Indexed: 01/04/2025]
Abstract
Thioredoxin-interacting protein (TXNIP), as a pivotal protein in the cellular stress response, plays a significant role in the progression of diabetic nephropathy (DN). Consequently, therapeutic strategies aimed at targeting TXNIP may offer novel interventions for patients with DN. Our study is to explore the therapeutic potential of targeting TXNIP in mitigating renal tubular injury induced by hyperglycemia. Cell viability and apoptosis of renal tubular epithelial cells (RTECs) were evaluated using CCK-8, Annexin V/7-AAD, and TUNEL staining after exposure to normal glucose (NG; 5 mM), high glucose (HG; 30 mM), or treatment with TXNIP inhibitors (Xanthohumol, Xan). Furthermore, histochemical staining was utilized to assess the morphological changes in the kidney. Xan was determined to be a potential inhibitor of TXNIP due to its low binding energy value of - 7.433 kcal/mol. Both genetic inhibition of TXNIP using sh-RNA and pharmacological inhibition with Xan were found to reverse HG-induced RTEC apoptosis and inflammatory response. In diabetic mice, administration of Xan resulted in significant improvements in pathological features such as tubular atrophy, tubular injury score, and collagen deposition in the tubulointerstitium. Additionally, treatment with Xan effectively reduced the up-regulation of TXNIP protein expression caused by hyperglycemia. In conclusion, Xan, as a bioactive natural product, has been shown to attenuate hyperglycemia-induced renal tubular injury in both in vitro and in vivo models, potentially through the inhibition of TXNIP expression. Xan has the potential to serve as a therapeutic compound for the treatment of DN.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Runzhou Pan
- Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Zhang Shou
- Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China
| | - Yongcai Zhao
- Department of Endocrinology, Cangzhou Central Hospital, No. 16 West Xinhua Road, Cangzhou, 061000, Hebei, China.
| |
Collapse
|
18
|
Wang J, Tao X, Liu Z, Yan Y, Cheng P, Liu B, Du H, Niu B. Noncoding RNAs in sepsis-associated acute liver injury: Roles, mechanisms, and therapeutic applications. Pharmacol Res 2025; 212:107596. [PMID: 39800175 DOI: 10.1016/j.phrs.2025.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/11/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction caused by a dysregulated host response to infection. Sepsis-associated acute liver injury (SA-ALI) is a frequent and serious complication of sepsis that considerably impacts both short-term and long-term survival outcomes. In intensive care units (ICUs), the mortality rate of patients with SA-ALI remains high, mostly due to the absence of effective early diagnostic markers and suitable therapeutic strategies. Recent studies have demonstrated the importance of non-coding RNAs (ncRNAs) in the development and progression of SA-ALI. This review focuses on the critical roles of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in regulating "cytokine storms", oxidative stress, mitochondrial dysfunction, and programmed cell death in SA-ALI, and summarizes the current state and limitations of existing studies on lncRNAs and circRNAs in SA-ALI. By integrating advancements in high-throughput sequencing technologies, this review provides novel insights into the dual potential of ncRNAs as diagnostic biomarkers and therapeutic targets, offers new ideas for SA-ALI diagnosis and treatment research and highlights potential challenges in clinical translation.
Collapse
Affiliation(s)
- Jialian Wang
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Xingyu Tao
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Zhengyang Liu
- Department of Nephrology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400016, China
| | - Yuan Yan
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Peifeng Cheng
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Bin Liu
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Bailin Niu
- Department of Intensive Care Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing 400016, China.
| |
Collapse
|
19
|
Tian S, Zhou S, Wu W, lin Y, Wang T, Sun H, A‐Ni‐Wan A, Li Y, Wang C, Li X, Yu P, Zhao Y. GLP-1 Receptor Agonists Alleviate Diabetic Kidney Injury via β-Klotho-Mediated Ferroptosis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409781. [PMID: 39630101 PMCID: PMC11775532 DOI: 10.1002/advs.202409781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/17/2024] [Indexed: 01/30/2025]
Abstract
Semaglutide (Smg), a GLP-1 receptor agonist (GLP-1RA), shows renal protective effects in patients with diabetic kidney disease (DKD). However, the exact underlying mechanism remains elusive. This study employs transcriptome sequencing and identifies β-Klotho (KLB) as the critical target responsible for the role of Smg in kidney protection. Smg treatment alleviates diabetic kidney injury by inhibiting ferroptosis in patients, animal models, and HK-2 cells. Notably, Smg treatment significantly increases the mRNA expression of KLB through the activation of the cyclic adenosine monophosphate (cAMP) signaling pathway, specifically through the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Subsequently, the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway is activated, reprograming the key metabolic processes of ferroptosis such as iron metabolism, fatty acid synthesis, and the antioxidant response against lipid peroxidation. Suppression of ferroptosis by Smg further attenuates renal inflammation and fibrosis. This work highlights the potential of GLP-1RAs and KLB targeting as promising therapeutic approaches for DKD management.
Collapse
Affiliation(s)
- Shasha Tian
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Department of NephrologyThe Fifth Hospital of Shanxi Medical University (Shanxi Provincial People's Hospital)TaiyuanShanxi030000China
| | - Saijun Zhou
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Weixi Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yao lin
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Tongdan Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Haizhen Sun
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - A‐Shan‐Jiang A‐Ni‐Wan
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
| | - Yaru Li
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| | - Chongyang Wang
- School of Life SciencesPeking UniversityBeijing100871China
| | - Xiaogang Li
- Department of Internal MedicineMayo ClinicRochesterMN55901USA
| | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Chu Hsien‐I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Metabolic DiseasesTianjin Medical UniversityTianjin300134China
- Nephropathy & Blood Purification DepartmentThe Second Hospital of Tianjin Medical UniversityTianjin300134China
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Faculty of MedicineTianjin UniversityTianjin300072China
| |
Collapse
|
20
|
Ambujakshan A, Sahu BD. Unraveling the role of RIPKs in diabetic kidney disease and its therapeutic perspectives. Biochem Pharmacol 2025; 231:116642. [PMID: 39571918 DOI: 10.1016/j.bcp.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
Nephropathy is the microvascular complication of diabetes mellitus and is the leading cause of chronic kidney disease. This review discusses the implications of receptor-interacting protein kinase (RIPK) family members and their regulation of inflammation and cell death pathways in the initiation and progression of diabetic kidney disease. Hyperglycemia leads to reactive oxygen species (ROS) generation and RIPK1 overexpression, the first regulator of necroptosis. Further, RIPK1 can form complex I to promote nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathway activation or complex II to cause programmed cell death in the kidneys. The rise in RIPK1 level upon ROS generation declines the apoptosis regulators' level while the necroptosis regulators' level is boosted. Necroptosis is a programmed or controlled necrosis-type cell death pathway executed by RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL) proteins, and recent research suggests its importance in diabetic nephropathy. In necroptosis, RIPK1 and RIPK3 interrelate with their RIP homotypic interaction motif (RHIM) domains and cause the recruitment of MLKL. Next, MLKL gets oligomerized, migrate towards the plasma membrane, and causes its rupture. We emphasized different research studies on drugs highlighting the nephroprotective effects via regulating the RIPKs. We hope that the conclusions of this review may provide new strategies for diabetic kidney disease treatment and promising targets for drug development based on necroptosis.
Collapse
Affiliation(s)
- Anju Ambujakshan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari 781101, Assam, India.
| |
Collapse
|
21
|
Qian S, Long Y, Tan G, Li X, Xiang B, Tao Y, Xie Z, Zhang X. Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e70024. [PMID: 39619229 PMCID: PMC11604731 DOI: 10.1002/mco2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Programmed cell death represents a precisely regulated and active cellular demise, governed by a complex network of specific genes and proteins. The identification of multiple forms of programmed cell death has significantly advanced the understanding of its intricate mechanisms, as demonstrated in recent studies. A thorough grasp of these processes is essential across various biological disciplines and in the study of diseases. Nonetheless, despite notable progress, the exploration of the relationship between programmed cell death and disease, as well as its clinical application, are still in a nascent stage. Therefore, further exploration of programmed cell death and the development of corresponding therapeutic methods and strategies holds substantial potential. Our review provides a detailed examination of the primary mechanisms behind apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Following this, the discussion delves into biological functions and diseases associated dysregulated programmed cell death. Finally, we highlight existing and potential therapeutic targets and strategies focused on cancers and neurodegenerative diseases. This review aims to summarize the latest insights on programmed cell death from mechanisms to diseases and provides a more reliable approach for clinical transformation.
Collapse
Affiliation(s)
- Shen'er Qian
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yao Long
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Guolin Tan
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xiaoguang Li
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine, Shanghai Key LabShanghaiChina
| | - Bo Xiang
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Furong LaboratoryCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
22
|
Ihara K, Satake E, Wilson PC, Krolewski B, Kobayashi H, Md Dom ZI, Ricca J, Wilson J, Dreyfuss JM, Niewczas MA, Doria A, Nelson RG, Pezzolesi MG, Humphreys BD, Duffin K, Krolewski AS. Circulating proteins linked to apoptosis processes and fast development of end-stage kidney disease in diabetes. JCI Insight 2024; 9:e178373. [PMID: 39435665 PMCID: PMC11529980 DOI: 10.1172/jci.insight.178373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
Many circulating proteins are associated with risk of ESKD, but their source and the biological pathways/disease processes they represent are unclear. Using OLINK proteomics platform, concentrations of 455 proteins were measured in plasma specimens obtained at baseline from 399 individuals with diabetes. Elevated concentrations of 46 circulating proteins were associated (P < 1 × 10-5) with development of ESKD (n = 143) during 7-15 years of follow-up. Twenty of these proteins enriched apoptosis/TNF receptor signaling pathways. A subset of 20 proteins (5-7 proteins), summarized as an apoptosis score, together with clinical variables accurately predicted risk of ESKD. Expression of genes encoding the 46 proteins in peripheral WBCs showed no difference between cells from individuals who did or did not develop ESKD. In contrast, plasma concentration of many of the 46 proteins differed by this outcome. In single-nucleus RNA-Seq analysis of kidney biopsies, the majority of genes encoding for the 20 apoptosis/TNF receptor proteins were overexpressed in injured versus healthy proximal tubule cells. Expression of these 20 genes also correlated with the overall index of apoptosis in these cells. Elevated levels of circulating proteins flagging apoptotic processes/TNF receptor signaling pathways - and likely originating from kidney cells, including injured/apoptotic proximal tubular cells - preceded the development of ESKD.
Collapse
Affiliation(s)
- Katsuhito Ihara
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Nephrology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Parker C. Wilson
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
- Division of Diagnostic Innovation, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Nephrology, Hypertension, and Endocrinology, Nihon University School of Medicine, Tokyo, Japan
| | - Zaipul I. Md Dom
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Ricca
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Jonathan Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Monika A. Niewczas
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert G. Nelson
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Marcus G. Pezzolesi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kevin Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Andrzej S. Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Yang Y, Du J, Gan J, Song X, Shu J, An C, Lu L, Wei H, Che J, Zhao X. Neutrophil-Mediated Nanozyme Delivery System for Acute Kidney Injury Therapy. Adv Healthc Mater 2024; 13:e2401198. [PMID: 38899383 DOI: 10.1002/adhm.202401198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Reactive oxygen species (ROS) scavenging of nanozymes toward acute kidney injury (AKI) is a current promising strategy, however, the glomerular filtration barrier (GFB) limits their application for treating kidney related diseases. Here, a neutrophil-mediated delivery system able to hijack neutrophil to transport nanozyme-loaded cRGD-liposomes to inflamed kidney for AKI treatment by cRGD targeting integrin αvβ1 is reported. The neutrophil-mediated nanozyme delivery system demonstrated great antioxidant and anti-apoptosis ability in HK-2 and NRK-52E cell lines. Moreover, in ischemia-reperfusion (I/R) induced AKI mice, a single dose of LM@cRGD-LPs 12 h post-ischemia significantly reduces renal function indicators, alleviates renal pathological changes, and inhibits apoptosis of renal tubular cells and the expression of renal tubular injured marker, thus remarkably reducing the damage of AKI. Mechanistically, the treatment of LM@cRGD-LPs markedly inhibits the process of Nrf2 to the nucleus and reduces the expression of the downstream HO-1, achieves a 99.51% increase in renal tissue Nrf2 levels, and an 86.31% decrease in HO-1 levels after LM@cRGD-LPs treatment. In short, the strategy of neutrophil-mediated nanozyme delivery system hold great promise as a potential therapy for AKI or other inflammatory diseases.
Collapse
Affiliation(s)
- Yu Yang
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Jiang Du
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jingjing Gan
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xiang Song
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Jiaxin Shu
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Urology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
| | - Chaoli An
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Li Lu
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Hui Wei
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu, 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Junyi Che
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| | - Xiaozhi Zhao
- Department of Andrology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210008, China
- Department of Andrology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China
| |
Collapse
|
24
|
Zeng F, Qin Y, Nijiati S, Liu Y, Ye J, Shen H, Cai J, Xiong H, Shi C, Tang L, Yu C, Zhou Z. Ultrasmall Nanodots with Dual Anti-Ferropototic Effect for Acute Kidney Injury Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403305. [PMID: 39159052 PMCID: PMC11497046 DOI: 10.1002/advs.202403305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/28/2024] [Indexed: 08/21/2024]
Abstract
Ferroptosis is known to mediate the pathogenesis of chemotherapeutic drug-induced acute kidney injury (AKI); however, leveraging the benefits of ferroptosis-based treatments for nephroprotection remains challenging. Here, ultrasmall nanodots, denoted as FerroD, comprising the amphiphilic conjugate (tetraphenylethylene-L-serine-deferoxamine, TPE-lys-Ser-DFO (TSD)) and entrapped ferrostatin-1 are designed. After being internalized through kidney injury molecule-1-mediated endocytosis, FerroD can simultaneously remove the overloaded iron ions and eliminate the overproduction of lipid peroxides by the coordination-disassembly mechanisms, which collectively confer prominent inhibition efficiency of ferroptosis. In cisplatin (CDDP)-induced AKI mice, FerroD equipped with dual anti-ferroptotic ability can provide long-term nephroprotective effects. This study may shed new light on the design and clinical translation of therapeutics targeting ferroptosis for various ferroptosis-related kidney diseases.
Collapse
Affiliation(s)
- Fantian Zeng
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Yatong Qin
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Sureya Nijiati
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Yangtengyu Liu
- Department of Rheumatology and ImmunologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Jinmin Ye
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Huaxiang Shen
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Jiayuan Cai
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Hehe Xiong
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| | - Changrong Shi
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
- Departments of Diagnostic Radiology, SurgeryChemical and Biomolecular Engineeringand Biomedical EngineeringYong Loo Lin School of Medicine and College of Design and EngineeringNational University of SingaporeSingapore119074Singapore
| | | | - Chunyang Yu
- School of Chemistry and Chemical EngineeringState Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious DiseasesXiang An Biomedicine LaboratorySchool of Public HealthShenzhen Research Institute of Xiamen UniversityXiamen UniversityXiamen361102China
| |
Collapse
|
25
|
Ran R, Zhang SB, Shi YQ, Dong H, Song W, Dong YB, Zhou KS, Zhang HH. Spotlight on necroptosis: Role in pathogenesis and therapeutic potential of intervertebral disc degeneration. Int Immunopharmacol 2024; 138:112616. [PMID: 38959544 DOI: 10.1016/j.intimp.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Intervertebral disc degeneration (IDD) is the leading cause of low back pain, which is one of the major factors leading to disability and severe economic burden. Necroptosis is an important form of programmed cell death (PCD), a highly regulated caspase-independent type of cell death that is regulated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed lineage kinase domain-like protein (MLKL)-mediated, play a key role in the pathophysiology of various inflammatory, infectious and degenerative diseases. Recent studies have shown that necroptosis plays an important role in the occurrence and development of IDD. In this review, we provide an overview of the initiation and execution of necroptosis and explore in depth its potential mechanisms of action in IDD. The analysis focuses on the connection between NP cell necroptosis and mitochondrial dysfunction-oxidative stress pathway, inflammation, endoplasmic reticulum stress, apoptosis, and autophagy. Finally, we evaluated the possibility of treating IDD by inhibiting necroptosis, and believed that targeting necroptosis may be a new strategy to alleviate the symptoms of IDD.
Collapse
Affiliation(s)
- Rui Ran
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Shun-Bai Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Yong-Qiang Shi
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hao Dong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Wei Song
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Yan-Bo Dong
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Kai-Sheng Zhou
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- Lanzhou University Second Hospital, 82 Cuiying Men, Lanzhou 730000, PR China; Orthopedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
26
|
Garnish SE, Horne CR, Meng Y, Young SN, Jacobsen AV, Hildebrand JM, Murphy JM. Inhibitors identify an auxiliary role for mTOR signalling in necroptosis execution downstream of MLKL activation. Biochem J 2024; 481:1125-1142. [PMID: 39136677 PMCID: PMC11555701 DOI: 10.1042/bcj20240255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Necroptosis is a lytic and pro-inflammatory form of programmed cell death executed by the terminal effector, the MLKL (mixed lineage kinase domain-like) pseudokinase. Downstream of death and Toll-like receptor stimulation, MLKL is trafficked to the plasma membrane via the Golgi-, actin- and microtubule-machinery, where activated MLKL accumulates until a critical lytic threshold is exceeded and cell death ensues. Mechanistically, MLKL's lytic function relies on disengagement of the N-terminal membrane-permeabilising four-helix bundle domain from the central autoinhibitory brace helix: a process that can be experimentally mimicked by introducing the R30E MLKL mutation to induce stimulus-independent cell death. Here, we screened a library of 429 kinase inhibitors for their capacity to block R30E MLKL-mediated cell death, to identify co-effectors in the terminal steps of necroptotic signalling. We identified 13 compounds - ABT-578, AR-A014418, AZD1480, AZD5363, Idelalisib, Ipatasertib, LJI308, PHA-793887, Rapamycin, Ridaforolimus, SMI-4a, Temsirolimus and Tideglusib - each of which inhibits mammalian target of rapamycin (mTOR) signalling or regulators thereof, and blocked constitutive cell death executed by R30E MLKL. Our study implicates mTOR signalling as an auxiliary factor in promoting the transport of activated MLKL oligomers to the plasma membrane, where they accumulate into hotspots that permeabilise the lipid bilayer to cause cell death.
Collapse
Affiliation(s)
- Sarah E. Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Christopher R. Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Samuel N. Young
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Annette V. Jacobsen
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Joanne M. Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
27
|
Wang Y, Liu T, Liu W, Zhao H, Li P. Research hotspots and future trends in lipid metabolism in chronic kidney disease: a bibliometric and visualization analysis from 2004 to 2023. Front Pharmacol 2024; 15:1401939. [PMID: 39290864 PMCID: PMC11405329 DOI: 10.3389/fphar.2024.1401939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Background Disorders of lipid metabolism play a key role in the initiation and progression of chronic kidney disease (CKD). Recently, research on lipid metabolism in CKD has rapidly increased worldwide. However, comprehensive bibliometric analyses in this field are lacking. Therefore, this study aimed to evaluate publications in the field of lipid metabolism in CKD over the past 20 years based on bibliometric analysis methods to understand the important achievements, popular research topics, and emerging thematic trends. Methods Literature on lipid metabolism in CKD, published between 2004 and 2023, was retrieved from the Web of Science Core Collection. The VOSviewer (v.1.6.19), CiteSpace (v.6.3 R1), R language (v.4.3.2), and Bibliometrix (v.4.1.4) packages (https://www.bibliometrix.org) were used for the bibliometric analysis and visualization. Annual output, author, country, institution, journal, cited literature, co-cited literature, and keywords were also included. The citation frequency and H-index were used to evaluate quality and influence. Results In total, 1,285 publications in the field of lipid metabolism in CKD were identified in this study. A total of 7,615 authors from 1,885 institutions in 69 countries and regions published articles in 466 journals. Among them, China was the most productive (368 articles), and the United States had the most citations (17,880 times) and the highest H-index (75). Vaziri Nosratola D, Levi Moshe, Fornoni Alessia, Zhao Yingyong, and Merscher Sandra emerged as core authors. Levi Moshe (2,247 times) and Vaziri Nosratola D (1,969 times) were also authors of the top two most cited publications. The International Journal of Molecular Sciences and Kidney International are the most published and cited journals in this field, respectively. Cardiovascular disease (CVD) and diabetic kidney disease (DKD) have attracted significant attention in the field of lipid metabolism. Oxidative stress, inflammation, insulin resistance, autophagy, and cell death are the key research topics in this field. Conclusion Through bibliometric analysis, the current status and global trends in lipid metabolism in CKD were demonstrated. CVD and DKD are closely associated with the lipid metabolism of patients with CKD. Future studies should focus on effective CKD treatments using lipid-lowering targets.
Collapse
Affiliation(s)
- Ying Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hailing Zhao
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China
| |
Collapse
|
28
|
Wang S, Guo S, Guo J, Du Q, Wu C, Wu Y, Zhang Y. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm (Beijing) 2024; 5:e693. [PMID: 39239068 PMCID: PMC11374700 DOI: 10.1002/mco2.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy's future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing Guo
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cen Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yeke Wu
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
29
|
Yang H, Sun J, Sun A, Wei Y, Xie W, Xie P, Zhang L, Zhao L, Huang Y. Podocyte programmed cell death in diabetic kidney disease: Molecular mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 177:117140. [PMID: 39018872 DOI: 10.1016/j.biopha.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney and end-stage renal disease. Glomerular podocyte loss and death are pathological hallmarks of DKD, and programmed cell death (PCD) in podocytes is crucial in DKD progression. PCD involves apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. During DKD, PCD in podocytes is severely impacted and primarily characterized by accelerated podocyte apoptosis and suppressed autophagy. These changes lead to a gradual decrease in podocyte numbers, impairing the glomerular filtration barrier function and accelerating DKD progression. However, research on the interactions between the different types of PCD in podocytes is lacking. This review focuses on the novel roles and mechanisms of PCD in the podocytes of patients with DKD. Additionally, we summarize clinical drugs capable of regulating podocyte PCD, present challenges and prospects faced in developing drugs related to podocyte PCD and suggest that future research should further explore the detailed mechanisms of podocyte PCD and interactions among different types of PCD.
Collapse
Affiliation(s)
- Haoyu Yang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jun Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Aru Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Pengfei Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yishan Huang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
30
|
Noh MR, Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of accidental and programmed cell death. Am J Physiol Renal Physiol 2024; 327:F4-F20. [PMID: 38660714 PMCID: PMC11390133 DOI: 10.1152/ajprenal.00275.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
The involvement of cell death in acute kidney injury (AKI) is linked to multiple factors including energy depletion, electrolyte imbalance, reactive oxygen species, inflammation, mitochondrial dysfunction, and activation of several cell death pathway components. Since our review in 2003, discussing the relative contributions of apoptosis and necrosis, several other forms of cell death have been identified and are shown to contribute to AKI. Currently, these various forms of cell death can be fundamentally divided into accidental cell death and regulated or programmed cell death based on functional aspects. Several death initiator and effector molecules switch molecules that may act as signaling components triggering either death or protective mechanisms or alternate cell death pathways have been identified as part of the machinery. Intriguingly, several of these cell death pathways share components and signaling pathways suggesting complementary or compensatory functions. Thus, defining the cross talk between distinct cell death pathways and identifying the unique molecular effectors for each type of cell death may be required to develop novel strategies to prevent cell death. Furthermore, depending on the multiple forms of cell death simultaneously induced in different AKI settings, strategies for combination therapies that block multiple cell death pathways need to be developed to completely prevent injury, cell death, and renal function. This review highlights the various cell death pathways, cross talk, and interactions between different cell death modalities in AKI.
Collapse
Affiliation(s)
- Mi Ra Noh
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| | - Babu J Padanilam
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, New York, United States
| |
Collapse
|
31
|
Lin Y, Ke S, Ye W, Xie B, Huang Z. Non-Apoptotic Programmed Cell Death as Targets for Diabetic Retinal Neurodegeneration. Pharmaceuticals (Basel) 2024; 17:837. [PMID: 39065688 PMCID: PMC11279440 DOI: 10.3390/ph17070837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetic retinopathy (DR) remains the leading cause of blindness among the global working-age population. Emerging evidence underscores the significance of diabetic retinal neurodegeneration (DRN) as a pivotal biomarker in the progression of vasculopathy. Inflammation, oxidative stress, neural cell death, and the reduction in neurotrophic factors are the key determinants in the pathophysiology of DRN. Non-apoptotic programmed cell death (PCD) plays a crucial role in regulating stress response, inflammation, and disease management. Therapeutic modalities targeting PCD have shown promising potential for mitigating DRN. In this review, we highlight recent advances in identifying the role of various PCD types in DRN, with specific emphasis on necroptosis, pyroptosis, ferroptosis, parthanatos, and the more recently characterized PANoptosis. In addition, the therapeutic agents aimed at the regulation of PCD for addressing DRN are discussed.
Collapse
Affiliation(s)
- Yingjia Lin
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Shuping Ke
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Weiqing Ye
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Biyao Xie
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
- Fifth Clinical Institute of Shantou University Medical College, Shantou 515041, China
| | - Zijing Huang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China; (Y.L.); (S.K.); (W.Y.); (B.X.)
| |
Collapse
|
32
|
Shi Y, Wu C, Shi J, Gao T, Ma H, Li L, Zhao Y. Protein phosphorylation and kinases: Potential therapeutic targets in necroptosis. Eur J Pharmacol 2024; 970:176508. [PMID: 38493913 DOI: 10.1016/j.ejphar.2024.176508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Necroptosis is a pivotal contributor to the pathogenesis of various human diseases, including those affecting the nervous system, cardiovascular system, pulmonary system, and kidneys. Extensive investigations have elucidated the mechanisms and physiological ramifications of necroptosis. Among these, protein phosphorylation emerges as a paramount regulatory process, facilitating the activation or inhibition of specific proteins through the addition of phosphate groups to their corresponding amino acid residues. Currently, the targeting of kinases has gained recognition as a firmly established and efficacious therapeutic approach for diverse diseases, notably cancer. In this comprehensive review, we elucidate the intricate role of phosphorylation in governing key molecular players in the necroptotic pathway. Moreover, we provide an in-depth analysis of recent advancements in the development of kinase inhibitors aimed at modulating necroptosis. Lastly, we deliberate on the prospects and challenges associated with the utilization of kinase inhibitors to modulate necroptotic processes.
Collapse
Affiliation(s)
- Yihui Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chengkun Wu
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiayi Shi
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Taotao Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Huabin Ma
- Central Laboratory, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
33
|
Li C, Yu Y, Zhu S, Hu Y, Ling X, Xu L, Zhang H, Guo K. The emerging role of regulated cell death in ischemia and reperfusion-induced acute kidney injury: current evidence and future perspectives. Cell Death Discov 2024; 10:216. [PMID: 38704372 PMCID: PMC11069531 DOI: 10.1038/s41420-024-01979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
Renal ischemia‒reperfusion injury (IRI) is one of the main causes of acute kidney injury (AKI), which is a potentially life-threatening condition with a high mortality rate. IRI is a complex process involving multiple underlying mechanisms and pathways of cell injury and dysfunction. Additionally, various types of cell death have been linked to IRI, including necroptosis, apoptosis, pyroptosis, and ferroptosis. These processes operate differently and to varying degrees in different patients, but each plays a role in the various pathological conditions of AKI. Advances in understanding the underlying pathophysiology will lead to the development of new therapeutic approaches that hold promise for improving outcomes for patients with AKI. This review provides an overview of the recent research on the molecular mechanisms and pathways underlying IRI-AKI, with a focus on regulated cell death (RCD) forms such as necroptosis, pyroptosis, and ferroptosis. Overall, targeting RCD shows promise as a potential approach to treating IRI-AKI.
Collapse
Affiliation(s)
- Chenning Li
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Shuainan Zhu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yan Hu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Xiaomin Ling
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Liying Xu
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| | - Kefang Guo
- Department of Anesthesiology, Zhongshan Hospital, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
| |
Collapse
|
34
|
Sun HJ, Jiao B, Wang Y, Zhang YH, Chen G, Wang ZX, Zhao H, Xie Q, Song XH. Necroptosis contributes to non-alcoholic fatty liver disease pathoetiology with promising diagnostic and therapeutic functions. World J Gastroenterol 2024; 30:1968-1981. [PMID: 38681120 PMCID: PMC11045491 DOI: 10.3748/wjg.v30.i14.1968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/15/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease. However, the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies. Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoetiology and suggest functional therapeutic and diagnostic options. Pyroptosis, ferroptosis, and necroptosis are the main subtypes of non-apoptotic regulated cell deaths (RCDs), each of which represents particular characteristics. Considering the complexity of the findings, the present study aimed to review these types of RCDs and their contribution to NAFLD progression, and subsequently discuss in detail the role of necroptosis in the pathoetiology, diagnosis, and treatment of the disease. The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer, hence it has potential in diagnostic and therapeutic approaches. Nevertheless, further studies are necessary.
Collapse
Affiliation(s)
- Hong-Ju Sun
- Department of General Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Bo Jiao
- Department of General Medicine, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Yan Wang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Yue-Hua Zhang
- Department of Medical Administration, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Ge Chen
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
- Qingdao Medical College, Qingdao University, Qingdao 266042, Shandong Province, China
| | - Zi-Xuan Wang
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
- Qingdao Medical College, Qingdao University, Qingdao 266042, Shandong Province, China
| | - Hong Zhao
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Hua Song
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Medical Group), Qingdao 266042, Shandong Province, China
| |
Collapse
|
35
|
Li ZL, Huang MM, Yu MY, Nie DF, Fu SL, Di JJ, Lan T, Liu BC, Wu QL. Mitochondrial fumarate promotes ischemia/reperfusion-induced tubular injury. Acta Physiol (Oxf) 2024; 240:e14121. [PMID: 38409944 DOI: 10.1111/apha.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
AIM Mitochondrial dysfunction, a characteristic pathological feature of renal Ischemic/reperfusion injury (I/RI), predisposes tubular epithelial cells to maintain an inflammatory microenvironment, however, the exact mechanisms through which mitochondrial dysfunction modulates the induction of tubular injury remains incompletely understood. METHODS ESI-QTRAP-MS/MS approach was used to characterize the targeted metabolic profiling of kidney with I/RI. Tubule injury, mitochondrial dysfunction, and fumarate level were evaluated using qPCR, transmission electron microscopy, ELISA, and immunohistochemistry. RESULTS We demonstrated that tubule injury occurred at the phase of reperfusion in murine model of I/RI. Meanwhile, enhanced glycolysis and mitochondrial dysfunction were found to be associated with tubule injury. Further, we found that tubular fumarate, which resulted from fumarate hydratase deficiency and released from dysfunctional mitochondria, promoted tubular injury. Mechanistically, fumarate induced tubular injury by causing disturbance of glutathione (GSH) hemostasis. Suppression of GSH with buthionine sulphoximine administration could deteriorate the fumarate inhibition-mediated tubule injury recovery. Reactive oxygen species/NF-κB signaling activation played a vital role in fumarate-mediated tubule injury. CONCLUSION Our studies demonstrated that the mitochondrial-derived fumarate promotes tubular epithelial cell injury in renal I/RI. Blockade of fumarate-mediated ROS/NF-κB signaling activation may serve as a novel therapeutic approach to ameliorate hypoxic tubule injury.
Collapse
Affiliation(s)
- Zuo-Lin Li
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Ming-Min Huang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Meng-Yao Yu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Di-Fei Nie
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Sha-Li Fu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Jing-Jing Di
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Ting Lan
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Qiu-Li Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
36
|
Wu X, Nagy LE, Gautheron J. Mediators of necroptosis: from cell death to metabolic regulation. EMBO Mol Med 2024; 16:219-237. [PMID: 38195700 PMCID: PMC10897313 DOI: 10.1038/s44321-023-00011-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024] Open
Abstract
Necroptosis, a programmed cell death mechanism distinct from apoptosis, has garnered attention for its role in various pathological conditions. While initially recognized for its involvement in cell death, recent research has revealed that key necroptotic mediators, including receptor-interacting protein kinases (RIPKs) and mixed lineage kinase domain-like protein (MLKL), possess additional functions that go beyond inducing cell demise. These functions encompass influencing critical aspects of metabolic regulation, such as energy metabolism, glucose homeostasis, and lipid metabolism. Dysregulated necroptosis has been implicated in metabolic diseases, including obesity, diabetes, metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD), contributing to chronic inflammation and tissue damage. This review provides insight into the multifaceted role of necroptosis, encompassing both cell death and these extra-necroptotic functions, in the context of metabolic diseases. Understanding this intricate interplay is crucial for developing targeted therapeutic strategies in diseases that currently lack effective treatments.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, USA
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jérémie Gautheron
- Sorbonne Université, Inserm UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, 75012, France.
| |
Collapse
|
37
|
Li J, Huang Q, Ma W, Yi J, Zhong X, Hu R, Sun J, Ma M, Lv M, Han Z, Zhang W, Feng W, Sun X, Zhou X. Hepatoprotective efficacy and interventional mechanism of JianPi LiShi YangGan formula in acute-on-chronic liver failure. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116880. [PMID: 37422102 DOI: 10.1016/j.jep.2023.116880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute-on-chronic liver failure (ACLF) progresses rapidly with a high short-term death rate. Although JianPi LiShi YangGan formula (YGF) has been used to treat ACLF by managing inflammatory responses and reducing endotoxemia, hepatocyte injury, and mortality, the underlying mechanisms remain unclear. AIM OF THE STUDY This study aims to investigate the potential mechanisms underlying the efficacy and protective benefits of YGF in mice with ACLF. MATERIALS AND METHODS YGF composition was determined using high-performance liquid chromatography coupled with mass spectrometry. We constructed a mouse model of ACLF using carbon tetrachloride, lipopolysaccharide (LPS), and D-galactosamine (D-Gal), as well as an in vitro model of D-Gal/LPS-induced hepatocyte injury. The therapeutic effects of YGF in ACLF mice were verified using hematoxylin-eosin, Sirius red, and Masson staining, and by measuring serum alanine transaminase (ALT), aspartate transaminase (AST), and inflammatory cytokine levels. Mitochondrial damage in hepatocytes was evaluated using electron microscopy, while superoxide anion levels in liver tissue were investigated using dihydroethidium. Transcriptome analysis, immunohistochemistry, western blotting, and immunofluorescence assays were performed to explore the mechanisms underlying the ameliorative effects of YGF against ACLF. RESULTS In mice with ACLF, YGF therapy partially decreased serum inflammatory cytokine levels, as well as hepatocyte injury and liver fibrosis. The livers of ACLF mice treated with YGF exhibited decreased mitochondrial damage and reactive oxygen species generation, as well as a decreased number of M1 macrophages and increased number of M2 macrophages. Transcriptome analysis revealed that YGF may regulate biological processes such as autophagy, mitophagy, and PI3K/AKT signaling. In ACLF mice, YGF promoted mitophagy and inhibited PI3K/AKT/mTOR pathway activation in hepatocytes. Meanwhile, the autophagy inhibitor 3M-A reduced the capacity of YGF to induce autophagy and protect against hepatocyte injury in vitro. In contrast, the PI3K agonist 740 Y-P suppressed the ability of YGF to control PI3K/AKT/mTOR pathway activation and induce autophagy. CONCLUSIONS Together, our findings suggest that YGF mediates autophagy, tight junctions, cytokine generation, and other biological processes. In addition, YGF inhibits hepatic inflammatory responses and ameliorates hepatocyte injury in mice with ACLF. Mechanistically, YGF can promote mitophagy to ameliorate acute-on-chronic liver failure by inhibiting the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jing Li
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macau; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Qi Huang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Wenfeng Ma
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - JinYu Yi
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macau; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Xin Zhong
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Rui Hu
- Macau University of Science and Technology, Faculty of Chinese Medicine, Taipa, Macau; Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Jialing Sun
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - MengQing Ma
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Minling Lv
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Zhiyi Han
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Wei Zhang
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Wenxing Feng
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Xinfeng Sun
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China
| | - Xiaozhou Zhou
- Shenzhen Traditional Chinese Medicine Hospital, Department of Liver Disease, Shenzhen, 518033, China; The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Department of Liver Disease, Shenzhen, 518033, China.
| |
Collapse
|
38
|
Wu X, Arya RK, Huang E, McMullen MR, Nagy LE. Receptor-interacting protein 1 and 3 kinase activity are required for high-fat diet induced liver injury in mice. Front Endocrinol (Lausanne) 2023; 14:1267996. [PMID: 38161978 PMCID: PMC10757356 DOI: 10.3389/fendo.2023.1267996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background The RIP1-RIP3-MLKL-mediated cell death pathway is associated with progression of non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Previous work identified a critical role for MLKL, the key effector regulating necroptosis, but not RIP3, in mediating high fat diet-induced liver injury in mice. RIP1 and RIP3 have active N-terminus kinase domains essential for activation of MLKL and subsequent necroptosis. However, little is known regarding domain-specific roles of RIP1/RIP3 kinase in liver diseases. Here, we hypothesized that RIP1/RIP3 kinase activity are required for the development of high fat diet-induced liver injury. Methods Rip1K45A/K45A and Rip3K51A/K51A kinase-dead mice on a C57BL/6J background and their littermate controls (WT) were allowed free access to a diet high in fat, fructose and cholesterol (FFC diet) or chow diet. Results Both Rip1K45A/K45A and Rip3K51A/K51A mice were protected against FFC diet-induced steatosis, hepatocyte injury and expression of hepatic inflammatory cytokines and chemokines. FFC diet increased phosphorylation and oligomerization of MLKL and hepatocyte death in livers of WT, but not in Rip3K51A/K51A, mice. Consistent with in vivo data, RIP3 kinase deficiency in primary hepatocytes prevented palmitic acid-induced translocation of MLKL to the cell surface and cytotoxicity. Additionally, loss of Rip1 or Rip3 kinase suppressed FFC diet-mediated formation of crown-like structures (indicators of dead adipocytes) and expression of mRNA for inflammatory response genes in epididymal adipose tissue. Moreover, FFC diet increased expression of multiple adipokines, including leptin and plasminogen activator inhibitor 1, in WT mice, which was abrogated by Rip3 kinase deficiency. Discussion The current data indicate that both RIP1 and RIP3 kinase activity contribute to FFC diet-induced liver injury. This effect of RIP1 and RIP3 kinase deficiency on injury is consistent with the protection of Mlkl-/- mice from high fat diet-induced liver injury, but not the reported lack of protection in Rip3-/- mice. Taken together with previous reports, our data suggest that other domains of RIP3 likely counteract the effect of RIP3 kinase in response to high fat diets.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Rakesh K. Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Megan R. McMullen
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
| | - Laura E. Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH, United States
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
39
|
Guerrero-Mauvecin J, Villar-Gómez N, Rayego-Mateos S, Ramos AM, Ruiz-Ortega M, Ortiz A, Sanz AB. Regulated necrosis role in inflammation and repair in acute kidney injury. Front Immunol 2023; 14:1324996. [PMID: 38077379 PMCID: PMC10704359 DOI: 10.3389/fimmu.2023.1324996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023] Open
Abstract
Acute kidney injury (AKI) frequently occurs in patients with chronic kidney disease (CKD) and in turn, may cause or accelerate CKD. Therapeutic options in AKI are limited and mostly relate to replacement of kidney function until the kidneys recover spontaneously. Furthermore, there is no treatment that prevents the AKI-to-CKD transition. Regulated necrosis has recently emerged as key player in kidney injury. Specifically, there is functional evidence for a role of necroptosis, ferroptosis or pyroptosis in AKI and the AKI-to-CKD progression. Regulated necrosis may be proinflammatory and immunogenic, triggering subsequent waves of regulated necrosis. In a paradigmatic murine nephrotoxic AKI model, a first wave of ferroptosis was followed by recruitment of inflammatory cytokines such as TWEAK that, in turn, triggered a secondary wave of necroptosis which led to persistent kidney injury and decreased kidney function. A correct understanding of the specific forms of regulated necrosis, their timing and intracellular molecular pathways may help design novel therapeutic strategies to prevent or treat AKI at different stages of the condition, thus improving patient survival and the AKI-to-CKD transition. We now review key regulated necrosis pathways and their role in AKI and the AKI-to-CKD transition both at the time of the initial insult and during the repair phase following AKI.
Collapse
Affiliation(s)
- Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
| | - Natalia Villar-Gómez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| | - Sandra Rayego-Mateos
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-FJD-Universidad Autónoma, Madrid, Spain
| | - Adrian M. Ramos
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| | - Marta Ruiz-Ortega
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Cellular Biology in Renal Diseases Laboratory, IIS-FJD-Universidad Autónoma, Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
- Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
- Instituto Reina Sofia en Investigación en Nefrología (IRSIN), Madrid, Spain
| | - Ana B. Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundación Jimenez Diaz (IIS-FJD), Universidad Autonoma de Madrid, Madrid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS2040), Madrid, Spain
| |
Collapse
|
40
|
Wang Y, Zhang L, Peng Z. Investigating EGF and PAG1 as necroptosis-related biomarkers for diabetic nephropathy: an in silico and in vitro validation study. Aging (Albany NY) 2023; 15:13176-13193. [PMID: 37988198 DOI: 10.18632/aging.205233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The current study aims to understand the mechanisms behind regulated cell death (RCD) in diabetic nephropathy and identify related biomarkers through bioinformatics and experimental validation. Datasets of bulk and single-cell RNA sequencing were obtained from public databases and analyzed using gene set variation analysis (GSVA) with gene sets related to RCD, including autophagy, necroptosis, pyroptosis, apoptosis, and ferroptosis. RCD-related gene biomarkers were identified using weighted gene correlation network analysis (WGCNA). The results were verified through experiments with an independent cohort and in vitro experiments. The GSVA revealed higher necroptosis scores in diabetic nephropathy. Three necroptosis-related biomarkers, EGF, PAG1, and ZFP36, were identified and showed strong diagnostic ability for diabetic kidney disease. In vitro experiments showed high levels of necroptotic markers in HK-2 cells treated with high glucose. Bioinformatics and experimental validation have thus identified EGF and PAG1 as necroptosis-related biomarkers for diabetic nephropathy.
Collapse
Affiliation(s)
- Yuejun Wang
- Department of Geriatrics, Zhejiang Aged Care Hospital, Hangzhou Normal University, Hangzhou 310000, Zhejiang, China
| | - Linlin Zhang
- Zhejiang Institute for Food and Drug Control, Hangzhou 310012, Zhejiang, China
| | - Zhiping Peng
- Department of Gerontology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, Zhejiang, China
| |
Collapse
|
41
|
Pefanis A, Bongoni AK, McRae JL, Salvaris EJ, Fisicaro N, Murphy JM, Ierino FL, Cowan PJ. Dynamics of necroptosis in kidney ischemia-reperfusion injury. Front Immunol 2023; 14:1251452. [PMID: 38022500 PMCID: PMC10652410 DOI: 10.3389/fimmu.2023.1251452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Necroptosis, a pathway of regulated necrosis, involves recruitment and activation of RIPK1, RIPK3 and MLKL, leading to cell membrane rupture, cell death and release of intracellular contents causing further injury and inflammation. Necroptosis is believed to play an important role in the pathogenesis of kidney ischemia-reperfusion injury (IRI). However, the dynamics of necroptosis in kidney IRI is poorly understood, in part due to difficulties in detecting phosphorylated MLKL (pMLKL), the executioner of the necroptosis pathway. Here, we investigated the temporal and spatial activation of necroptosis in a mouse model of unilateral warm kidney IRI, using a robust method to stain pMLKL. We identified the period 3-12 hrs after reperfusion as a critical phase for the activation of necroptosis in proximal tubular cells. After 12 hrs, the predominant pattern of pMLKL staining shifted from cytoplasmic to membrane, indicating progression to the terminal phase of necroptotic cell death. Mlkl-ko mice exhibited reduced kidney inflammation at 12 hrs and lower serum creatinine and tubular injury at 24 hrs compared to wild-type littermates. Interestingly, we observed increased apoptosis in the injured kidneys of Mlkl-ko mice, suggesting a relationship between necroptosis and apoptosis in kidney IRI. Together, our findings confirm the role of necroptosis and necroinflammation in kidney IRI, and identify the first 3 hrs following reperfusion as a potential window for targeted treatments.
Collapse
Affiliation(s)
- Aspasia Pefanis
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nephrology, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Anjan K. Bongoni
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Jennifer L. McRae
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Evelyn J. Salvaris
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Nella Fisicaro
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - James M. Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Francesco L. Ierino
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Department of Nephrology, St Vincent’s Hospital, Melbourne, VIC, Australia
| | - Peter J. Cowan
- Immunology Research Centre, St Vincent’s Hospital, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
42
|
Meng Y, Garnish SE, Davies KA, Black KA, Leis AP, Horne CR, Hildebrand JM, Hoblos H, Fitzgibbon C, Young SN, Dite T, Dagley LF, Venkat A, Kannan N, Koide A, Koide S, Glukhova A, Czabotar PE, Murphy JM. Phosphorylation-dependent pseudokinase domain dimerization drives full-length MLKL oligomerization. Nat Commun 2023; 14:6804. [PMID: 37884510 PMCID: PMC10603135 DOI: 10.1038/s41467-023-42255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
The necroptosis pathway is a lytic, pro-inflammatory mode of cell death that is widely implicated in human disease, including renal, pulmonary, gut and skin inflammatory pathologies. The precise mechanism of the terminal steps in the pathway, where the RIPK3 kinase phosphorylates and triggers a conformation change and oligomerization of the terminal pathway effector, MLKL, are only emerging. Here, we structurally identify RIPK3-mediated phosphorylation of the human MLKL activation loop as a cue for MLKL pseudokinase domain dimerization. MLKL pseudokinase domain dimerization subsequently drives formation of elongated homotetramers. Negative stain electron microscopy and modelling support nucleation of the MLKL tetramer assembly by a central coiled coil formed by the extended, ~80 Å brace helix that connects the pseudokinase and executioner four-helix bundle domains. Mutational data assert MLKL tetramerization as an essential prerequisite step to enable the release and reorganization of four-helix bundle domains for membrane permeabilization and cell death.
Collapse
Affiliation(s)
- Yanxiang Meng
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sarah E Garnish
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katherine A Davies
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katrina A Black
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew P Leis
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christopher R Horne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Joanne M Hildebrand
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Cheree Fitzgibbon
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Samuel N Young
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
| | - Toby Dite
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Laura F Dagley
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Aarya Venkat
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
- Department of Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY, 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alisa Glukhova
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Peter E Czabotar
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
43
|
Cai Z, Wu X, Song Z, Sun S, Su Y, Wang T, Cheng X, Yu Y, Yu C, Chen E, Chen W, Yu Y, Linkermann A, Min J, Wang F. Metformin potentiates nephrotoxicity by promoting NETosis in response to renal ferroptosis. Cell Discov 2023; 9:104. [PMID: 37848438 PMCID: PMC10582023 DOI: 10.1038/s41421-023-00595-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/16/2023] [Indexed: 10/19/2023] Open
Abstract
Given the rapidly aging population, aging-related diseases are becoming an excessive burden on the global healthcare system. Metformin has been shown to be beneficial to many age-related disorders, as well as increase lifespan in preclinical animal models. During the aging process, kidney function progressively declines. Currently, whether and how metformin protects the kidney remains unclear. In this study, among longevity drugs, including metformin, nicotinamide, resveratrol, rapamycin, and senolytics, we unexpectedly found that metformin, even at low doses, exacerbated experimentally-induced acute kidney injury (AKI) and increased mortality in mice. By single-cell transcriptomics analysis, we found that death of renal parenchymal cells together with an expansion of neutrophils occurs upon metformin treatment after AKI. We identified programmed cell death by ferroptosis in renal parenchymal cells and blocking ferroptosis, or depleting neutrophils protects against metformin-induced nephrotoxicity. Mechanistically, upon induction of AKI, ferroptosis in renal parenchymal cells initiates the migration of neutrophils to the site of injury via the surface receptor CXCR4-bound to metformin-iron-NGAL complex, which results in NETosis aggravated AKI. Finally, we demonstrated that reducing iron showed protective effects on kidney injury, which supports the notion that iron plays an important role in metformin-triggered AKI. Taken together, these findings delineate a novel mechanism underlying metformin-aggravated nephropathy and highlight the mechanistic relationship between iron, ferroptosis, and NETosis in the resulting AKI.
Collapse
Affiliation(s)
- Zhaoxian Cai
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiaotian Wu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zijun Song
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shumin Sun
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunxing Su
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyi Wang
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xihao Cheng
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yingying Yu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chao Yu
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - En Chen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenteng Chen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongping Yu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- The First Affiliated Hospital, Basic Medical Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
44
|
Zhu X, Li S. Ferroptosis, Necroptosis, and Pyroptosis in Gastrointestinal Cancers: The Chief Culprits of Tumor Progression and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300824. [PMID: 37436087 PMCID: PMC10502844 DOI: 10.1002/advs.202300824] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/29/2023] [Indexed: 07/13/2023]
Abstract
In recent years, the incidence of gastrointestinal cancers is increasing, particularly in the younger population. Effective treatment is crucial for improving patients' survival outcomes. Programmed cell death, regulated by various genes, plays a fundamental role in the growth and development of organisms. It is also critical for maintaining tissue and organ homeostasis and takes part in multiple pathological processes. In addition to apoptosis, there are other types of programmed cell death, such as ferroptosis, necroptosis, and pyroptosis, which can induce severe inflammatory responses. Notably, besides apoptosis, ferroptosis, necroptosis, and pyroptosis also contribute to the occurrence and development of gastrointestinal cancers. This review aims to provide a comprehensive summary on the biological roles and molecular mechanisms of ferroptosis, necroptosis, and pyroptosis, as well as their regulators in gastrointestinal cancers and hope to open up new paths for tumor targeted therapy in the near future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangLiaoning Province110042China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor SurgeryCancer Hospital of Dalian University of TechnologyCancer Hospital of China Medical UniversityLiaoning Cancer Hospital and InstituteShenyangLiaoning Province110042China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with EngineeringShenyangLiaoning Province110042China
| |
Collapse
|
45
|
Rayego-Mateos S, Marquez-Exposito L, Basantes P, Tejedor-Santamaria L, Sanz AB, Nguyen TQ, Goldschmeding R, Ortiz A, Ruiz-Ortega M. CCN2 Activates RIPK3, NLRP3 Inflammasome, and NRF2/Oxidative Pathways Linked to Kidney Inflammation. Antioxidants (Basel) 2023; 12:1541. [PMID: 37627536 PMCID: PMC10451214 DOI: 10.3390/antiox12081541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation is a key characteristic of both acute and chronic kidney diseases. Preclinical data suggest the involvement of the NLRP3/Inflammasome, receptor-interacting protein kinase-3 (RIPK3), and NRF2/oxidative pathways in the regulation of kidney inflammation. Cellular communication network factor 2 (CCN2, also called CTGF in the past) is an established fibrotic biomarker and a well-known mediator of kidney damage. CCN2 was shown to be involved in kidney damage through the regulation of proinflammatory and profibrotic responses. However, to date, the potential role of the NLRP3/RIPK3/NRF2 pathways in CCN2 actions has not been evaluated. In experimental acute kidney injury induced with folic acid in mice, CCN2 deficiency diminished renal inflammatory cell infiltration (monocytes/macrophages and T lymphocytes) as well as the upregulation of proinflammatory genes and the activation of NLRP3/Inflammasome-related components and specific cytokine products, such as IL-1β. Moreover, the NRF2/oxidative pathway was deregulated. Systemic administration of CCN2 to C57BL/6 mice induced kidney immune cell infiltration and activated the NLRP3 pathway. RIPK3 deficiency diminished the CCN2-induced renal upregulation of proinflammatory mediators and prevented NLRP3 modulation. These data suggest that CCN2 plays a fundamental role in sterile inflammation and acute kidney injury by modulating the RIKP3/NLRP3/NRF2 inflammatory pathways.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Laura Marquez-Exposito
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Pamela Basantes
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Lucia Tejedor-Santamaria
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| | - Ana B. Sanz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.B.S.); (A.O.)
| | - Tri Q. Nguyen
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 Utrecht, The Netherlands; (T.Q.N.); (R.G.)
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 100, 3584 Utrecht, The Netherlands; (T.Q.N.); (R.G.)
| | - Alberto Ortiz
- Division of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.B.S.); (A.O.)
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain; (S.R.-M.); (L.M.-E.); (P.B.); (L.T.-S.)
- Ricor2040, 28029 Madrid, Spain
| |
Collapse
|
46
|
Xie X, Lou H, Shi Y, Gan G, Deng H, Ma X, Meng M, Gao X. A network pharmacological-based study of the mechanism of Liuwei Dihuang pill in the treatment of chronic kidney disease. Medicine (Baltimore) 2023; 102:e33727. [PMID: 37171332 PMCID: PMC10174353 DOI: 10.1097/md.0000000000033727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive disease that poses a huge economic burden to society. Liuwei Dihuanng pill is an effective treatment for chronic kidney disease, but its treatment mechanism is unclear. The rapid development of network pharmacology has provided new strategies for studying Chinese medicine. METHOD The traditional Chinese medicine systems pharmacology database and analysis platform was used to obtain the bioactive components and targets of Liuwei Dihuanng pill. The sources for the CKD-related targets were then obtained from the Genecards, OMIM, TTD, and DisGeNET databases. R was used to identify the intersecting genes for Liuwei Dihuang pill and CKD-related targets. Analysis of protein-protein interactions (PPI) was performed using STRING, and PPI networks and drug-component-target networks were constructed using Cytoscape software. Kyoto encyclopedia of genes and genomes pathway and gene ontology enrichment analyses were performed using R. Finally, molecular docking was performed to determine the binding activity between bioactive components and the targets. RESULT After screening and data de-duplication of 74 active components, 209 drug targets, and 14,794 disease targets, a total of 204 drug-disease targets were acquired. Subsequently, a drug-component-target network and PPI network were established. The primary components of Liuwei Dihuang pill included quercetin, stigmasterol, kaempferol, beta-sitosterol, tetrahydroalstonine, kadsurenone, hederagenin, hancinone C, diosgenin, and sitosterol. In addition, JUN, AKT1, TP53, RELA, MAPK1, FOS, TNF, IL6, ESR1, and RXRA were identified as the main targets. Gene ontology function enrichment analysis revealed that these targets were involved in reactive oxygen species metabolic processes, responses to metal ions and to chemical stimuli, G protein-coupled amine receptor activity, and nuclear factor receptor activity. Kyoto encyclopedia of genes and genomes enrichment analysis showed that these targets were involved in the AGE-RAGE signaling pathway, IL-17 signaling pathway, TNF signaling pathway, and so on. Molecular docking results indicated good binding activity between the core targets and core components. CONCLUSION The potential mechanism of Liuwei Dihuanng pill in the treatment of CKD was preliminarily discussed in this study, providing a theoretical basis and evidence for further experimental research.
Collapse
Affiliation(s)
- Xi Xie
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Hongjun Lou
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Ye Shi
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Guang Gan
- College of Integrated Chinese and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Hanqing Deng
- The First Clinical Medical College of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Xinwei Ma
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Mingfang Meng
- The First Clinical Medical College of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xi Gao
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
47
|
Yan R, Cui W, Ma W, Li J, Liu Z, Lin Y. Typhaneoside-Tetrahedral Framework Nucleic Acids System: Mitochondrial Recovery and Antioxidation for Acute Kidney Injury treatment. ACS NANO 2023; 17:8767-8781. [PMID: 37057738 DOI: 10.1021/acsnano.3c02102] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Acute kidney injury (AKI) is not only a worldwide problem with a cruel hospital mortality rate but also an independent risk factor for chronic kidney disease and a promoting factor for its progression. Despite supportive therapeutic measures, there is no effective treatment for AKI. This study employs tetrahedral framework nucleic acid (tFNA) as a vehicle and combines typhaneoside (Typ) to develop the tFNA-Typ complex (TTC) for treating AKI. With the precise targeting ability on mitochondria and renal tubule, increased antiapoptotic and antioxidative effect, and promoted mitochondria and kidney function restoration, the TTC represents a promising nanomedicine for AKI treatment. Overall, this study has developed a dual-targeted nanoparticle with enhanced therapeutic effects on AKI and could have critical clinical applications in the future.
Collapse
Affiliation(s)
- Ran Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Jiajie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Zhiqiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
48
|
Abstract
Disorders of cell number that result from an imbalance between the death of parenchymal cells and the proliferation or recruitment of maladaptive cells contributes to the pathogenesis of kidney disease. Acute kidney injury can result from an acute loss of kidney epithelial cells. In chronic kidney disease, loss of kidney epithelial cells leads to glomerulosclerosis and tubular atrophy, whereas interstitial inflammation and fibrosis result from an excess of leukocytes and myofibroblasts. Other conditions, such as acquired cystic disease and kidney cancer, are characterized by excess numbers of cyst wall and malignant cells, respectively. Cell death modalities act to clear unwanted cells, but disproportionate responses can contribute to the detrimental loss of kidney cells. Indeed, pathways of regulated cell death - including apoptosis and necrosis - have emerged as central events in the pathogenesis of various kidney diseases that may be amenable to therapeutic intervention. Modes of regulated necrosis, such as ferroptosis, necroptosis and pyroptosis may cause kidney injury directly or through the recruitment of immune cells and stimulation of inflammatory responses. Importantly, multiple layers of interconnections exist between different modalities of regulated cell death, including shared triggers, molecular components and protective mechanisms.
Collapse
Affiliation(s)
- Ana B Sanz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian M Ramos
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain.
- RICORS2040, Madrid, Spain.
- Departamento de Farmacología, Universidad Autonoma de Madrid, Madrid, Spain.
| |
Collapse
|