1
|
Dang M, Wu L, Zhang X. Structural insights and milestones in TDP-43 research: A comprehensive review of its pathological and therapeutic advances. Int J Biol Macromol 2025; 306:141677. [PMID: 40032118 DOI: 10.1016/j.ijbiomac.2025.141677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Transactive response (TAR) DNA-binding protein 43 (TDP-43) is a critical RNA/DNA-binding protein involved in various cellular processes, including RNA splicing, transcription regulation, and RNA stability. Mislocalization and aggregation of TDP-43 in the cytoplasm are key features of the pathogenesis of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). This review provides a comprehensive retrospective and prospective analysis of TDP-43 research, highlighting structural insights, significant milestones, and the evolving understanding of its physiological and pathological functions. We delineate five major stages in TDP-43 research, from its initial discovery as a pathological hallmark in neurodegeneration to the recent advances in understanding its liquid-liquid phase separation (LLPS) behavior and interactions with cellular processes. Furthermore, we assess therapeutic strategies targeting TDP-43 pathology, categorizing approaches into direct and indirect interventions, alongside modulating aberrant TDP-43 LLPS. We propose that future research will focus on three critical areas: targeting TDP-43 structural polymorphisms for disease-specific therapeutics, exploring dual temporal-spatial modulation of TDP-43, and advancing nano-therapy. More importantly, we emphasize the importance of understanding TDP-43's functional repertoire at the mesoscale, which bridges its molecular functions with broader cellular processes. This review offers a foundational framework for advancing TDP-43 research and therapeutic development.
Collapse
Affiliation(s)
- Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore
| | - Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong 723000, Shaanxi, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057 Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1 Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Guillaud L, Garanzini A, Zakhia S, De la Fuente S, Dimitrov D, Boerner S, Terenzio M. Loss of intracellular ATP affects axoplasmic viscosity and pathological protein aggregation in mammalian neurons. SCIENCE ADVANCES 2025; 11:eadq6077. [PMID: 40267187 PMCID: PMC12017319 DOI: 10.1126/sciadv.adq6077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Neurodegenerative diseases display synaptic deficits, mitochondrial defects, and protein aggregation. We show that intracellular adenosine triphosphate (ATP) regulates axoplasmic viscosity and protein aggregation in mammalian neurons. Decreased intracellular ATP upon mitochondrial inhibition leads to axoterminal cytosol, synaptic vesicles, and active zone component condensation, modulating the functional organization of mouse glutamatergic synapses. Proteins involved in the pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) condensed and underwent ATP-dependent liquid phase separation in vitro. Human inducible pluripotent stem cell-derived neurons from patients with PD and ALS displayed reduced axoplasmic fluidity and decreased intracellular ATP. Last, nicotinamide mononucleotide treatment successfully rescued intracellular ATP levels and axoplasmic viscosity in neurons from patients with PD and ALS and reduced TAR DNA-binding protein 43 (TDP-43) aggregation in human motor neurons derived from a patient with ALS. Thus, our data suggest that the hydrotropic activity of ATP contributes to the regulation of neuronal homeostasis under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Anna Garanzini
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Sarah Zakhia
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Sandra De la Fuente
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Dimitar Dimitrov
- Cellular and Molecular Synaptic Function Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Susan Boerner
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, Japan
| |
Collapse
|
3
|
Avecilla AC, Thomas J, Quiroz FG. Genetically-Encoded Phase Separation Sensors Enable High-Fidelity Live-Cell Probing of Biomolecular Condensates. ACS Sens 2025; 10:1857-1869. [PMID: 39987501 PMCID: PMC11959610 DOI: 10.1021/acssensors.4c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Biomolecular condensates are membraneless compartments with enigmatic roles across intracellular phenomena. Intrinsically disordered proteins (IDPs) often function as condensate scaffolds, fueled by liquid-liquid phase separation (LLPS) dynamics. Intracellular probing of condensates relies on live-cell imaging of IDP-scaffolds tagged with fluorescent proteins. Conformational heterogeneity in IDPs, however, renders them uniquely susceptible to artifacts from tagging. Probing epidermal condensates in skin, we recently introduced genetically-encoded LLPS-sensors that circumvent the need for molecular-level tagging of skin IDPs. Departing from subcellular tracking of IDP-scaffolds, LLPS-sensors report on the assembly and liquid-like dynamics of their condensates. Here, we demonstrate biomolecular approaches for the evolution and tunability of epidermal LLPS-sensors and assess their impact in the early and late stages of intracellular phase separation. Benchmarking against scaffold-bound fluorescent reporters, we discovered that tunable ultraweak scaffold-sensor interactions uniquely enable the sensitive and innocuous probing of nascent and established biomolecular condensates. Our LLPS-sensitive tools pave the way for the high-fidelity intracellular probing of IDP-governed biomolecular condensates across biological systems.
Collapse
Affiliation(s)
- Alexa
Regina Chua Avecilla
- Wallace H. Coulter Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Jeremy Thomas
- Wallace H. Coulter Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department
of Biomedical Engineering, Georgia Institute
of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Jurado O, José MV, Frixione E. Fragile X mental retardation protein modulates translation of proteins with predicted tendencies for liquid-liquid phase separation. Biosystems 2025; 248:105405. [PMID: 39892695 DOI: 10.1016/j.biosystems.2025.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/30/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
The Fragile X Mental Retardation Protein (FMRP) is an RNA-binding protein and a key regulator of translation in neurons, hence crucial for neural development and plasticity. FMRP loss, resulting from mutations in the Fmr1 gene, leads to Fragile X Syndrome (FXS) and Autism Spectrum Disorder (ASD), the most common inherited intellectual disabilities. Ribosome profiling in neurons consistently reveals that FMRP-knockout (FK) significantly down-regulates the translation of numerous lengthy genes, many of which are FMRP-binding targets and associated with ASD. Despite these findings, the functional explanation for FMRP's translation regulation of large neuronal proteins remains elusive. Our present study compiles data from published ribosome profiling studies, to identify genes with significantly decreased translation in FK neurons. Using bioinformatic analysis and machine-learning sequence-based tools, PSPredictor and FuzDrop, we found that the proteins encoded by these genes are predicted to be enriched in intrinsically disordered regions and are prone to liquid-liquid phase separation. These findings suggest that FMRP modulates the translation of proteins involved in the formation of biomolecular condensates. Our results can have significant implications for understanding the molecular mechanisms of FXS and ASD, adding complexity to FMRP's regulatory functions, thus offering avenues for further exploration and targeted therapeutic interventions in intellectual disability disorders.
Collapse
Affiliation(s)
- Omar Jurado
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.
| | - Eugenio Frixione
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, 07360, México.
| |
Collapse
|
5
|
Jiang Z, Shi F, Li J, Liu R, Zhou J, Zhong Z, Shi C, Ma M, Xiang S, Gao D. Crucial role of the cGAS N terminus in mediating flowable and functional cGAS-DNA condensate formation via DNA interactions. Proc Natl Acad Sci U S A 2025; 122:e2411659122. [PMID: 39819217 PMCID: PMC11761673 DOI: 10.1073/pnas.2411659122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/26/2024] [Indexed: 01/19/2025] Open
Abstract
The DNA-sensing protein cGAS plays a pivotal role in the innate immune response and pathogenesis of various diseases. DNA triggers liquid-liquid phase separation (LLPS) and enhances the enzymatic activity of cGAS. However, the regulatory mechanisms of the disordered N terminus remain unclear. Here, we showed that cGASNterm, the N-terminal intrinsic disordered region (IDR) of cGAS, modulates the material properties, specifically the flowability, of the condensed phase of cGAS and is required for full enzymatic activity. Full-length cGAS and cGASNterm form liquid droplets in the presence of DNA, while the cGAS catalytic domain forms gel-like solid aggregates with compromised enzymatic activity. Multiple key amino acids responsible for the cGASNterm-DNA interaction were identified by NMR spectroscopy as well as other biophysical methods and proven to be critical for the functional LLPS of cGAS both in vitro and in vivo. Interestingly, cGASNterm acts in trans to transform the solid aggregates of the cGAS catalytic domain into liquid droplets, subsequently restoring its enzymatic activity. Together, our findings highlight the importance of the IDR of cGAS in LLPS upon DNA stimulation and, more importantly, in modulating the fluidity and permeability of the droplets formed by full-length cGAS, which is crucial for its intact enzymatic activity.
Collapse
Affiliation(s)
- Zhelin Jiang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science Interdisciplinary Science & Biomedicine of Institute of Health and Medicine, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui230027, China
| | - Fan Shi
- Ministry of Education Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Juan Li
- Ministry of Education Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Rui Liu
- Department of Medical Engineering and Instrumentation, School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui230032, China
- Three dimensional-Printing and Tissue Engineering Center, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, China
| | - Jinhua Zhou
- Department of Medical Engineering and Instrumentation, School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui230032, China
- Three dimensional-Printing and Tissue Engineering Center, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, China
| | - Zhensheng Zhong
- Department of Medical Engineering and Instrumentation, School of Biomedical Engineering, Anhui Medical University, Hefei, Anhui230032, China
- Three dimensional-Printing and Tissue Engineering Center, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei230032, China
| | - Chaowei Shi
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Mingming Ma
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei230026, Anhui, China
| | - ShengQi Xiang
- Ministry of Education Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Daxing Gao
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science Interdisciplinary Science & Biomedicine of Institute of Health and Medicine, Division of Life Sciences & Medicine, University of Science and Technology of China, Hefei230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, Anhui230027, China
| |
Collapse
|
6
|
Mariani D, Setti A, Castagnetti F, Vitiello E, Stufera Mecarelli L, Di Timoteo G, Giuliani A, D’Angelo A, Santini T, Perego E, Zappone S, Liessi N, Armirotti A, Vicidomini G, Bozzoni I. ALS-associated FUS mutation reshapes the RNA and protein composition of stress granules. Nucleic Acids Res 2024; 52:13269-13289. [PMID: 39494508 PMCID: PMC11602144 DOI: 10.1093/nar/gkae942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Stress granules (SG) are part of a cellular protection mechanism where untranslated messenger RNAs and RNA-binding proteins are stored upon conditions of cellular stress. Compositional variations due to qualitative or quantitative protein changes can disrupt their functionality and alter their structure. This is the case of different forms of amyotrophic lateral sclerosis (ALS) where a causative link has been proposed between the cytoplasmic de-localization of mutant proteins, such as FUS (Fused in Sarcoma), and the formation of cytotoxic inclusions. Here, we describe the SG transcriptome in neuroblastoma cells and define several features for RNA recruitment in these condensates. We demonstrate that SG dynamics and RNA content are strongly modified by the incorporation of mutant FUS, switching to a more unstructured, AU-rich SG transcriptome. Moreover, we show that mutant FUS, together with its protein interactors and their target RNAs, are responsible for the reshaping of the mutant SG transcriptome with alterations that can be linked to neurodegeneration. Our data describe the molecular differences between physiological and pathological SG in ALS-FUS conditions, showing how FUS mutations impact the RNA and protein composition of these condensates.
Collapse
Affiliation(s)
- Davide Mariani
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Castagnetti
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Erika Vitiello
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Lorenzo Stufera Mecarelli
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Gaia Di Timoteo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Giuliani
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Angelo D’Angelo
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Eleonora Perego
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Sabrina Zappone
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Giuseppe Vicidomini
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
| | - Irene Bozzoni
- Center for Human Technologies, Istituto Italiano di Tecnologia, Via Enrico Melen 83, 16153, Genoa, Italy
- Department of Biology and Biotechnologies “C. Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Center for Life Nano-& Neuro-Science, Fondazione Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| |
Collapse
|
7
|
Li Y, Liu Y, Yu XY, Xu Y, Pan X, Sun Y, Wang Y, Song YH, Shen Z. Membraneless organelles in health and disease: exploring the molecular basis, physiological roles and pathological implications. Signal Transduct Target Ther 2024; 9:305. [PMID: 39551864 PMCID: PMC11570651 DOI: 10.1038/s41392-024-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Once considered unconventional cellular structures, membraneless organelles (MLOs), cellular substructures involved in biological processes or pathways under physiological conditions, have emerged as central players in cellular dynamics and function. MLOs can be formed through liquid-liquid phase separation (LLPS), resulting in the creation of condensates. From neurodegenerative disorders, cardiovascular diseases, aging, and metabolism to cancer, the influence of MLOs on human health and disease extends widely. This review discusses the underlying mechanisms of LLPS, the biophysical properties that drive MLO formation, and their implications for cellular function. We highlight recent advances in understanding how the physicochemical environment, molecular interactions, and post-translational modifications regulate LLPS and MLO dynamics. This review offers an overview of the discovery and current understanding of MLOs and biomolecular condensate in physiological conditions and diseases. This article aims to deliver the latest insights on MLOs and LLPS by analyzing current research, highlighting their critical role in cellular organization. The discussion also covers the role of membrane-associated condensates in cell signaling, including those involving T-cell receptors, stress granules linked to lysosomes, and biomolecular condensates within the Golgi apparatus. Additionally, the potential of targeting LLPS in clinical settings is explored, highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, P. R. China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yan Xu
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State key laboratory of cardiovascular disease, Beijing, 100037, P. R. China
| | - Yi Sun
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, P. R. China
| | - Yanli Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P.R. China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
8
|
Wang F, Chen Z, Zhou Q, Sun Q, Zheng N, Chen Z, Lin J, Li B, Li L. Implications of liquid-liquid phase separation and ferroptosis in Alzheimer's disease. Neuropharmacology 2024; 259:110083. [PMID: 39043267 DOI: 10.1016/j.neuropharm.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
Neuronal cell demise represents a prevalent occurrence throughout the advancement of Alzheimer's disease (AD). However, the mechanism of triggering the death of neuronal cells remains unclear. Its potential mechanisms include aggregation of soluble amyloid-beta (Aβ) to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFTs), neuroinflammation, ferroptosis, oxidative stress, liquid-liquid phase separation (LLPS) and metal ion disorders. Among them, ferroptosis is an iron-dependent lipid peroxidation-driven cell death and emerging evidences have demonstrated the involvement of ferroptosis in the pathological process of AD. The sensitivity to ferroptosis is tightly linked to numerous biological processes. Moreover, emerging evidences indicate that LLPS has great impacts on regulating human health and diseases, especially AD. Soluble Aβ can undergo LLPS to form liquid-like droplets, which can lead to the formation of insoluble amyloid plaques. Meanwhile, tau has a high propensity to condensate via the mechanism of LLPS, which can lead to the formation of NFTs. In this review, we summarize the most recent advancements pertaining to LLPS and ferroptosis in AD. Our primary focus is on expounding the influence of Aβ, tau protein, iron ions, and lipid oxidation on the intricate mechanisms underlying ferroptosis and LLPS within the domain of AD pathology. Additionally, we delve into the intricate cross-interactions that occur between LLPS and ferroptosis in the context of AD. Our findings are expected to serve as a theoretical and experimental foundation for clinical research and targeted therapy for AD.
Collapse
Affiliation(s)
- Fuwei Wang
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zihao Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiong Zhou
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Qiang Sun
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Nan Zheng
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Ziwen Chen
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiantao Lin
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Baohong Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| | - Li Li
- Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, The Affiliated Dongguan Songshan Lake Central Hospital, School of Pharmacy, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
9
|
Kiebler MA, Bauer KE. RNA granules in flux: dynamics to balance physiology and pathology. Nat Rev Neurosci 2024; 25:711-725. [PMID: 39367081 DOI: 10.1038/s41583-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
The life cycle of an mRNA is a complex process that is tightly regulated by interactions between the mRNA and RNA-binding proteins, forming molecular machines known as RNA granules. Various types of these membrane-less organelles form inside cells, including neurons, and contribute critically to various physiological processes. RNA granules are constantly in flux, change dynamically and adapt to their local environment, depending on their intracellular localization. The discovery that RNA condensates can form by liquid-liquid phase separation expanded our understanding of how compartments may be generated in the cell. Since then, a plethora of new functions have been proposed for distinct condensates in cells that await their validation in vivo. The finding that dysregulation of RNA granules (for example, stress granules) is likely to affect neurodevelopmental and neurodegenerative diseases further boosted interest in this topic. RNA granules have various physiological functions in neurons and in the brain that we would like to focus on. We outline examples of state-of-the-art experiments including timelapse microscopy in neurons to unravel the precise functions of various types of RNA granule. Finally, we distinguish physiologically occurring RNA condensation from aberrant aggregation, induced by artificial RNA overexpression, and present visual examples to discriminate both forms in neurons.
Collapse
Affiliation(s)
- Michael A Kiebler
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Karl E Bauer
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
10
|
Abdelrasol H, Chopra A, Shvachiy L, Beutner D, Outeiro TF, Setz C. Stress granules formation in HEI-OC1 auditory cells and in H4 human neuroglioma cells secondary to cisplatin exposure. Cell Stress 2024; 8:83-98. [PMID: 39575153 PMCID: PMC11580520 DOI: 10.15698/cst2024.10.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 11/24/2024] Open
Abstract
Stress granules (SGs) are highly dynamic micromolecular membraneless condensates that generate in cells subjected to stress. Formed from pools of untranslating messenger ribonucleoproteins (RNP), SGs dynamics constitute vital processes essential for cell survival. Here, we investigate whether established cytotoxic agents, such as the platinum-based chemotherapeutic agent cisplatin and the aminoglycoside antibiotic gentamicin, elicit SG formation in the House Ear Institute-Organ of Corti-1 (HEI-OC1) auditory cell line, H4 human neuroglioma cells and HEK-293T human embryonic kidney cells. Cells were treated with cisplatin or gentamicin for specific durations at designated concentrations. SG formation was assessed using immunocytochemistry and live cell imaging. Levels of essential proteins involved in SG assembly were evaluated using immunoblotting. We observed cisplatin-associated SG assembly in HEI-OC1 and H4 cells via confocal microscopy through antibody colabeling of G3BP1 with PABP or Caprin1. While maintaining an unchanged pattern of expression of main constituent SG proteins, cisplatin-related SGs in H4 cells persisted for at least 12 h after drug removal. Cells subjected to gentamicin exposure did not exhibit SGs. Our findings offer insights into subcellular mechanisms related to cisplatin-associated cytotoxicity, highlighting the need for future studies to further investigate this stress-response mechanism.
Collapse
Affiliation(s)
- Hebatallah Abdelrasol
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
| | - Avika Chopra
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
| | - Liana Shvachiy
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
| | - Dirk Beutner
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLabGöttingenGermany
| | - Tiago F Outeiro
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
- Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle UniversityNewcastle upon TyneUnited Kingdom
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) - German Center for Neurodegenerative Diseases, Göttingen, Germany.
| | - Cristian Setz
- University Medical Center Göttingen, Department of Experimental Neurodegeneration, Center for Biostructural Imaging of NeurodegenerationGöttingenGermany
- University Medical Center Göttingen, Department of Otolaryngology-Head and Neck Surgery, InnerEarLabGöttingenGermany
| |
Collapse
|
11
|
Yao Y, Zhao Q, Tao Y, Liu K, Cao T, Chen Z, Liu C, Le W, Zhao J, Li D, Kang W. Different charged biopolymers induce α-synuclein to form fibrils with distinct structures. J Biol Chem 2024; 300:107862. [PMID: 39374778 PMCID: PMC11570948 DOI: 10.1016/j.jbc.2024.107862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
The aggregation of α-synuclein (α-syn) into amyloid fibrils, a key process in the development of Parkinson's disease (PD) and other synucleinopathies, is influenced by a range of factors such as charged biopolymers, chaperones, and metabolites. However, the specific impacts of different biopolymers on α-syn fibril structure are not well understood. In our work, we found that different polyanions and polycations, such as polyphosphate (polyP), polyuridine (polyU), and polyamines (including putrescine, spermidine, and spermine), markedly altered the fibrillation kinetics of α-syn in vitro. Furthermore, the seeding assay revealed distinct cross-seeding capacities across different biopolymer-induced α-syn fibrils, suggesting the formation of structurally distinct strains under different conditions. Utilizing cryo-electron microscopy (cryo-EM), we further examined the detailed structural configuration of α-syn fibrils formed in the presence of these biopolymers. Notably, we found that while polyamines do not change the atomic structure of α-syn fibrils, polyU and polyP induce the formation of distinct amyloid fibrils, exhibiting a range of structural polymorphs. Our work offers valuable insights into how various charged biopolymers affect the aggregation process and the resultant structures of α-syn fibrils, thereby enhancing our understanding of the structural variations in α-syn fibrils across different pathological conditions.
Collapse
Affiliation(s)
- Yuxuan Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Qinyue Zhao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Kaien Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Tianyi Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zipeng Chen
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - WeiDong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Zhao
- Chemistry and Biomedicine Innovation Center (ChemBIC), State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China; Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenyan Kang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Ruijin Hainan Hospital, Shanghai Jiao Tong University, School of Medicine (Boao Research Hospital), Hainan, China.
| |
Collapse
|
12
|
Wu Y, Ma B, Liu C, Li D, Sui G. Pathological Involvement of Protein Phase Separation and Aggregation in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:10187. [PMID: 39337671 PMCID: PMC11432175 DOI: 10.3390/ijms251810187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases are the leading cause of human disability and immensely reduce patients' life span and quality. The diseases are characterized by the functional loss of neuronal cells and share several common pathogenic mechanisms involving the malfunction, structural distortion, or aggregation of multiple key regulatory proteins. Cellular phase separation is the formation of biomolecular condensates that regulate numerous biological processes, including neuronal development and synaptic signaling transduction. Aberrant phase separation may cause protein aggregation that is a general phenomenon in the neuronal cells of patients suffering neurodegenerative diseases. In this review, we summarize the pathological causes of common neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. We discuss the regulation of key amyloidogenic proteins with an emphasis of their aberrant phase separation and aggregation. We also introduce the approaches as potential therapeutic strategies to ameliorate neurodegenerative diseases through intervening protein aggregation. Overall, this review consolidates the research findings of phase separation and aggregation caused by misfolded proteins in a context of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yinuo Wu
- Aulin College, Northeast Forestry University, Harbin 150040, China;
| | - Biao Ma
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Chang Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Dangdang Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| | - Guangchao Sui
- College of Life Science, Northeast Forestry University, Harbin 150040, China; (B.M.); (C.L.)
| |
Collapse
|
13
|
Vedekhina T, Svetlova J, Pavlova I, Barinov N, Alieva S, Malakhova E, Rubtsov P, Shtork A, Klinov D, Varizhuk A. Cross-Effects in Folding and Phase Transitions of hnRNP A1 and C9Orf72 RNA G4 In Vitro. Molecules 2024; 29:4369. [PMID: 39339364 PMCID: PMC11434081 DOI: 10.3390/molecules29184369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Abnormal intracellular phase transitions in mutant hnRNP A1 may underlie the development of several neurodegenerative diseases. The risk of these diseases increases upon C9Orf72 repeat expansion and the accumulation of the corresponding G-quadruplex (G4)-forming RNA, but the link between this RNA and the disruption of hnRNP A1 homeostasis has not been fully explored so far. Our aim was to clarify the mutual effects of hnRNP A1 and C9Orf72 G4 in vitro. Using various optical methods and atomic force microscopy, we investigated the influence of the G4 on the formation of cross-beta fibrils by the mutant prion-like domain (PLD) of hnRNP A1 and on the co-separation of the non-mutant protein with a typical SR-rich fragment of a splicing factor (SRSF), which normally drives the assembly of nuclear speckles. The G4 was shown to act in a holdase-like manner, i.e., to restrict the fibrillation of the hnRNP A1 PLD, presumably through interactions with the PLD-flanking RGG motif. These interactions resulted in partial unwinding of the G4, suggesting a helicase-like activity of hnRNP A1 RGG. At the same time, the G4 was shown to disrupt hnRNP A1 co-separation with SRSF, suggesting its possible contribution to pathology through interference with splicing regulation.
Collapse
Affiliation(s)
- Tatiana Vedekhina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Avenue, 86, 119454 Moscow, Russia
| | - Julia Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Nikolay Barinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Sabina Alieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Elizaveta Malakhova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Pavel Rubtsov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenov University), Trubetskaya Str., 8-2, 119991 Moscow, Russia
| | - Alina Shtork
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Dmitry Klinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| |
Collapse
|
14
|
Zhang G, Chu X. Balancing thermodynamic stability, dynamics, and kinetics in phase separation of intrinsically disordered proteins. J Chem Phys 2024; 161:095102. [PMID: 39225535 DOI: 10.1063/5.0220861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Intrinsically disordered proteins (IDPs) are prevalent participants in liquid-liquid phase separation due to their inherent potential for promoting multivalent binding. Understanding the underlying mechanisms of phase separation is challenging, as phase separation is a complex process, involving numerous molecules and various types of interactions. Here, we used a simplified coarse-grained model of IDPs to investigate the thermodynamic stability of the dense phase, conformational properties of IDPs, chain dynamics, and kinetic rates of forming condensates. We focused on the IDP system, in which the oppositely charged IDPs are maximally segregated, inherently possessing a high propensity for phase separation. By varying interaction strengths, salt concentrations, and temperatures, we observed that IDPs in the dense phase exhibited highly conserved conformational characteristics, which are more extended than those in the dilute phase. Although the chain motions and global conformational dynamics of IDPs in the condensates are slow due to the high viscosity, local chain flexibility at the short timescales is largely preserved with respect to that at the free state. Strikingly, we observed a non-monotonic relationship between interaction strengths and kinetic rates for forming condensates. As strong interactions of IDPs result in high stable condensates, our results suggest that the thermodynamics and kinetics of phase separation are decoupled and optimized by the speed-stability balance through underlying molecular interactions. Our findings contribute to the molecular-level understanding of phase separation and offer valuable insights into the developments of engineering strategies for precise regulation of biomolecular condensates.
Collapse
Affiliation(s)
- Guoqing Zhang
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR 999077, China
| |
Collapse
|
15
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 PMCID: PMC11843573 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Regina Chua Avecilla A, Thomas J, Quiroz FG. Genetically-encoded phase separation sensors for intracellular probing of biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610365. [PMID: 39257779 PMCID: PMC11383673 DOI: 10.1101/2024.08.29.610365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biomolecular condensates are dynamic membraneless compartments with enigmatic roles across intracellular phenomena. Intrinsically-disordered proteins (IDPs) often function as condensate scaffolds, fueled by their liquid-liquid phase separation (LLPS) dynamics. Intracellular probing of these condensates relies on live-cell imaging of IDP-scaffolds tagged with fluorescent proteins. Conformational heterogeneity in IDPs, however, renders them uniquely sensitive to molecular-level fusions, risking distortion of the native biophysical properties of IDP-scaffolds and their assemblies. Probing epidermal condensates in mouse skin, we recently introduced genetically encoded LLPS-sensors that circumvent the need for molecular-level tagging of skin IDPs. The concept of LLPS-sensors involves a shift in focus from subcellular tracking of IDP-scaffolds to higher-level observations that report on the assembly and liquid-dynamics of their condensates. Towards advancing the repertoire of intracellular LLPS-sensors, here we demonstrate biomolecular approaches for the evolution and tunability of epidermal LLPS-sensors and assess their impact in early and late stages of intracellular LLPS dynamics. Benchmarking against scaffold-bound fluorescent reporters, we found that tunable ultraweak scaffold-sensor interactions are key to the sensitive and innocuous probing of nascent and established biomolecular condensates. Our LLPS-sensitive tools pave the way for the high-fidelity intracellular probing of IDP-governed biomolecular condensates across biological systems.
Collapse
Affiliation(s)
- Alexa Regina Chua Avecilla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Jeremy Thomas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Felipe Garcia Quiroz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Scott-Hewitt N, Mahoney M, Huang Y, Korte N, Yvanka de Soysa T, Wilton DK, Knorr E, Mastro K, Chang A, Zhang A, Melville D, Schenone M, Hartigan C, Stevens B. Microglial-derived C1q integrates into neuronal ribonucleoprotein complexes and impacts protein homeostasis in the aging brain. Cell 2024; 187:4193-4212.e24. [PMID: 38942014 DOI: 10.1016/j.cell.2024.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 01/08/2024] [Accepted: 05/31/2024] [Indexed: 06/30/2024]
Abstract
Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.
Collapse
Affiliation(s)
- Nicole Scott-Hewitt
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Matthew Mahoney
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Youtong Huang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nils Korte
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - T Yvanka de Soysa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Daniel K Wilton
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emily Knorr
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Mastro
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Allison Chang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Allison Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - David Melville
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica Schenone
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Christina Hartigan
- The Broad Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Investigator, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
20
|
Roggeveen JV, Wang H, Shi Z, Stone HA. A calibration-free model of micropipette aspiration for measuring properties of protein condensates. Biophys J 2024; 123:1393-1403. [PMID: 37789618 PMCID: PMC11163300 DOI: 10.1016/j.bpj.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/13/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
There is growing evidence that biological condensates, which are also referred to as membraneless organelles, and liquid-liquid phase separation play critical roles regulating many important cellular processes. Understanding the roles these condensates play in biology is predicated on understanding the material properties of these complex substances. Recently, micropipette aspiration (MPA) has been proposed as a tool to assay the viscosity and surface tension of condensates. This tool allows the measurement of both material properties in one relatively simple experiment, in contrast to many other techniques that only provide one or a ratio of parameters. While this technique has been commonly used in the literature to determine the material properties of membrane-bound objects dating back decades, the model describing the dynamics of MPA for objects with an external membrane does not correctly capture the hydrodynamics of unbounded fluids, leading to a calibration parameter several orders of magnitude larger than predicted. In this work we derive a new model for MPA of biological condensates that does not require any calibration and is consistent with the hydrodynamics of the MPA geometry. We validate the predictions of this model by conducting MPA experiments on a standard silicone oil of known material properties and are able to predict the viscosity and surface tension using MPA. Finally, we reanalyze with this new model the MPA data presented in previous works for condensates formed from LAF-1 RGG domains.
Collapse
Affiliation(s)
- James V Roggeveen
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey
| | - Huan Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey
| | - Zheng Shi
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey.
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey.
| |
Collapse
|
21
|
Yan X, Kuster D, Mohanty P, Nijssen J, Pombo-García K, Rizuan A, Franzmann TM, Sergeeva A, Passos PM, George L, Wang SH, Shenoy J, Danielson HL, Honigmann A, Ayala YM, Fawzi NL, Mittal J, Alberti S, Hyman AA. Intra-condensate demixing of TDP-43 inside stress granules generates pathological aggregates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576837. [PMID: 38328053 PMCID: PMC10849624 DOI: 10.1101/2024.01.23.576837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Cytosolic aggregation of the nuclear protein TDP-43 is associated with many neurodegenerative diseases, but the triggers for TDP-43 aggregation are still debated. Here, we demonstrate that TDP-43 aggregation requires a double event. One is up-concentration in stress granules beyond a threshold, and the other is oxidative stress. These two events collectively induce intra-condensate demixing, giving rise to a dynamic TDP-43 enriched phase within stress granules, which subsequently transitions into pathological aggregates. Mechanistically, intra-condensate demixing is triggered by local unfolding of the RRM1 domain for intermolecular disulfide bond formation and by increased hydrophobic patch interactions in the C-terminal domain. By engineering TDP-43 variants resistant to intra-condensate demixing, we successfully eliminate pathological TDP-43 aggregates in cells. We conclude that up-concentration inside condensates and simultaneous exposure to environmental stress could be a general pathway for protein aggregation, with intra-condensate demixing constituting a key intermediate step.
Collapse
Affiliation(s)
- Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
| | - David Kuster
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
- These authors contributed equally
| | - Jik Nijssen
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Karina Pombo-García
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- These authors contributed equally
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
| | - Titus M. Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Aleksandra Sergeeva
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Patricia M. Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Leah George
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Szu-Huan Wang
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Jayakrishna Shenoy
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Helen L. Danielson
- Center for Biomedical Engineering, Brown University; Providence, RI 02912; USA
| | - Alf Honigmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Yuna M. Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University; St. Louis, MO 63104; USA
| | - Nicolas L. Fawzi
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University; Providence, RI 02912; USA
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University; College Station, TX 77843; USA
- Department of Chemistry, Texas A&M University; College Station, TX 77843; USA
- Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University; College Station, TX 77843; USA
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden; Dresden, Saxony, 01307; Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG); Dresden, Saxony, 01307; Germany
- Lead contact
| |
Collapse
|
22
|
Shelkovnikova TA, Hautbergue GM. RNP granules in ALS and neurodegeneration: From multifunctional membraneless organelles to therapeutic opportunities. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:455-479. [PMID: 38802180 DOI: 10.1016/bs.irn.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases are characterised by dysfunction of a host of RNA-binding proteins (RBPs) and a severely disrupted RNA metabolism. Recently, RBP-harbouring phase-separated complexes, ribonucleoprotein (RNP) granules, have come into the limelight as "crucibles" of neuronal pathology in ALS. RNP granules are indispensable for the multitude of regulatory processes underlying cellular RNA metabolism and serve as critical organisers of cellular biochemistry. Neurons, highly specialised cells, heavily rely on RNP granules for efficient trafficking, signalling and stress responses. Multiple RNP granule components, primarily RBPs such as TDP-43 and FUS, are affected by ALS mutations. However, even in the absence of mutations, RBP proteinopathies represent pathophysiological hallmarks of ALS. Given the high local concentrations of RBPs and RNAs, their weakened or enhanced interactions within RNP granules disrupt their homeostasis. Thus, the physiological process of phase separation and RNP granule formation, vital for maintaining the high-functioning state of neuronal cells, becomes their Achilles heel. Here, we will review the recent literature on the causes and consequences of abnormal RNP granule functioning in ALS and related disorders. In particular, we will summarise the evidence for the network-level dysfunction of RNP granules in these conditions and discuss considerations for therapeutic interventions to target RBPs, RNP granules and their network as a whole.
Collapse
Affiliation(s)
- Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom.
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom; Healthy Lifespan Institute (HELSI), University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
23
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
24
|
Liu J, Yu W, Dong C, Huang X, Ren J. Objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS) for studying the fusion dynamics of protein phase separation. Analyst 2024; 149:2719-2727. [PMID: 38525957 DOI: 10.1039/d4an00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Protein phase separation plays a very important role in many biological processes and is closely related to the occurrence and development of some serious diseases. So far, the fluorescence imaging method and fluorescence correlation spectroscopy (FCS) have been frequently used to study the phase separation behavior of proteins. Due to the wide size distribution of protein condensates in phase separation from nano-scale to micro-scale in solution and living cells, it is difficult for the fluorescence imaging method and conventional FCS to fully reflect the real state of protein phase separation in the solution due to the low spatio-temporal resolution of the conventional fluorescence imaging method and the limited detection area of FCS. Here, we proposed a novel method for studying the protein phase separation process by objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS). In this study, CRDBP proteins were used as a model and respectively fused with fluorescent proteins (EGFP and mCherry). We first compared conventional FCS and Scan-FCS methods for characterizing the CRDBP protein phase separation behaviors and found that the reproducibility of Scan-FCS is significantly improved by the scanning mode. We studied the self-fusion process of mCherry-CRDBP and EGFP-CRDBP and observed that the phase change concentration of CRDBP was 25 nM and the fusion of mCherry-CRDBP and EGFP-CRDBP at 500 nM was completed within 70 min. We studied the effects of salt concentration and molecular crowding agents on the phase separation of CRDBP and found that salt can prevent the self-fusion of CRDBP and molecular crowding agents can improve the self-fusion of CRDBP. Furthermore, we found the recruitment behavior of CRDBP to β-catenin proteins and studied their recruitment dynamics. Compared to conventional FCS, Scan-FCCS can significantly improve the reproducibility of measurements due to the dramatic increase of detection zone, and more importantly, this method can provide information about self-fusion and recruitment dynamics in protein phase separation.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenxin Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
25
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
26
|
Tang B, Wang X, He H, Chen R, Qiao G, Yang Y, Xu Z, Wang L, Dong Q, Yu J, Zhang MQ, Shi M, Wang J. Aging-disturbed FUS phase transition impairs hematopoietic stem cells by altering chromatin structure. Blood 2024; 143:124-138. [PMID: 37748139 DOI: 10.1182/blood.2023020539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/27/2023] Open
Abstract
ABSTRACT Aged hematopoietic stem cells (HSCs) exhibit compromised reconstitution capacity. The molecular mechanisms behind this phenomenon are not fully understood. Here, we observed that the expression of FUS is increased in aged HSCs, and enforced FUS recapitulates the phenotype of aged HSCs through arginine-glycine-glycine-mediated aberrant FUS phase transition. By using Fus-gfp mice, we observed that FUShigh HSCs exhibit compromised FUS mobility and resemble aged HSCs both functionally and transcriptionally. The percentage of FUShigh HSCs is increased upon physiological aging and replication stress, and FUSlow HSCs of aged mice exhibit youthful function. Mechanistically, FUShigh HSCs exhibit a different global chromatin organization compared with FUSlow HSCs, which is observed in aged HSCs. Many topologically associating domains (TADs) are merged in aged HSCs because of the compromised binding of CCCTC-binding factor with chromatin, which is invoked by aberrant FUS condensates. It is notable that the transcriptional alteration between FUShigh and FUSlow HSCs originates from the merged TADs and is enriched in HSC aging-related genes. Collectively, this study reveals for the first time that aberrant FUS mobility promotes HSC aging by altering chromatin structure.
Collapse
Affiliation(s)
- Baixue Tang
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xinming Wang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hanqing He
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ruiqing Chen
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Guofeng Qiao
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yang Yang
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Zihan Xu
- School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, Peking University, Beijing, China
| | - Longteng Wang
- School of Life Sciences, Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Sciences, Peking University, Beijing, China
| | - Qiongye Dong
- Institute of Precision of Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Haihe Laboratory of Cell Ecosystem, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Michael Q Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing, China
- Department of Biological Sciences, Center for Systems Biology, The University of Texas, Richardson, TX
| | - Minglei Shi
- Ministry of Education Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic and Systems Biology, Beijing National Research Center for Information Science and Technology, School of Medicine, Tsinghua University, Beijing, China
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
| | - Jianwei Wang
- Department of Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
27
|
Zhong H, Liu H, Liu H. Molecular Mechanism of Tau Misfolding and Aggregation: Insights from Molecular Dynamics Simulation. Curr Med Chem 2024; 31:2855-2871. [PMID: 37031392 DOI: 10.2174/0929867330666230409145247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/01/2023] [Accepted: 02/27/2023] [Indexed: 04/10/2023]
Abstract
Tau dysfunction has a close association with many neurodegenerative diseases, which are collectively referred to as tauopathies. Neurofibrillary tangles (NFTs) formed by misfolding and aggregation of tau are the main pathological process of tauopathy. Therefore, uncovering the misfolding and aggregation mechanism of tau protein will help to reveal the pathogenic mechanism of tauopathies. Molecular dynamics (MD) simulation is well suited for studying the dynamic process of protein structure changes. It provides detailed information on protein structure changes over time at the atomic resolution. At the same time, MD simulation can also simulate various conditions conveniently. Based on these advantages, MD simulations are widely used to study conformational transition problems such as protein misfolding and aggregation. Here, we summarized the structural features of tau, the factors affecting its misfolding and aggregation, and the applications of MD simulations in the study of tau misfolding and aggregation.
Collapse
Affiliation(s)
- Haiyang Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Huanxiang Liu
- Faculty of Applied Science, Macao Polytechnic University, Macao, SAR, 999078, China
| |
Collapse
|
28
|
Liu J, Yu S, Yu W, Dong C, Huang X, Ren J. CRDBP Protein Phase Separation and Its Recruitment to β-Catenin Protein in a Single Living Cell. J Phys Chem B 2023; 127:10498-10507. [PMID: 38051203 DOI: 10.1021/acs.jpcb.3c06346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The Coding Region Determinant-Binding Protein (CRDBP) is a carcinoembryonic protein, and it is overexpressed in various cancer cells in the form of granules. We speculated the formation of CRDBP granules possibly through liquid-liquid phase separation (LLPS) processes due to the existence of intrinsically disordered regions (IDRs) in CRDBP. So far, we did not know whether or how phase separation processes of CRDBP occur in single living cells due to the lack of in vivo methods for studying intracellular protein phase separation. Therefore, to develop an in situ method for studying protein phase separation in living cells is a very urgent task. In this work, we proposed an efficient method for studying phase separation behavior of CRDBP in a single living cell by combining in situ fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) with a fluorescence protein fusion technique. We first predicted and confirmed that CRDBP has phase separation in solution by conventional fluorescence imaging and FCS methods. And then, we in situ studied the phase separation behaviors of CRDBP in living cells and observed three states of CRDBP phase separation such as monomer state, cluster state, and granule state. We studied the effects of CRDBP truncated forms and its inhibitor on the CRDBP phase separation. Furthermore, we discovered the recruitment of CRDBP to β-catenin protein in living cells and investigated the effects of CRDBP structures and inhibitor on CRDBP recruitment behavior. This finding may help us to further understand the mechanism of CRDBP protein for regulating Wnt signaling pathway. Additionally, our results documented that FCS/FCCS is an efficient and alternative method for studying protein phase separation in situ in living cells.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shengrong Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wenxin Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
29
|
Shimizu M, Shiraishi N, Tada S, Sasaki T, Beck G, Nagano S, Kinoshita M, Sumi H, Sugimoto T, Ishida Y, Koda T, Ishikura T, Sugiyama Y, Kihara K, Kanakura M, Nakajima T, Takeda S, Takahashi MP, Yamashita T, Okuno T, Mochizuki H. RGMa collapses the neuronal actin barrier against disease-implicated protein and exacerbates ALS. SCIENCE ADVANCES 2023; 9:eadg3193. [PMID: 37992159 PMCID: PMC10665002 DOI: 10.1126/sciadv.adg3193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Repulsive guidance molecule A (RGMa) was originally identified as a neuronal growth cone-collapsing factor. Previous reports have demonstrated the multifunctional roles of RGMa mediated by neogenin1. However, the pathogenic involvement of RGMa in amyotrophic lateral sclerosis (ALS) remains unclear. Here, we demonstrated that RGMa concentration was elevated in the cerebrospinal fluid of both patients with ALS and transgenic mice overexpressing the mutant human superoxide dismutase1 (mSOD1 mice). Treatment with humanized anti-RGMa monoclonal antibody ameliorated the clinical symptoms in mSOD1 mice. Histochemical analysis revealed that the anti-RGMa antibody significantly decreased mutant SOD1 protein accumulation in the motor neurons of mSOD1 mice via inhibition of actin depolymerization. In vitro analysis revealed that the anti-RGMa antibody inhibited the cellular uptake of the mutant SOD1 protein, presumably by reinforcing the neuronal actin barrier. Collectively, these data suggest that RGMa leads to the collapse of the neuronal actin barrier and promotes aberrant protein deposition, resulting in exacerbation of the ALS pathology.
Collapse
Affiliation(s)
- Mikito Shimizu
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Naoyuki Shiraishi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoru Tada
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Clinical Research, National Hospital Organization Osaka-Minami Medical Center, Kawachinagano, Osaka, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Goichi Beck
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Seiichi Nagano
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurotherapeutics, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Kinoshita
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hisae Sumi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Tomoyuki Sugimoto
- Graduate School of Data Science, Shiga University, Hikone, Shiga, Japan
| | - Yoko Ishida
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toru Koda
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Teruyuki Ishikura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Higashiosaka City Medical Center, Higashiosaka, Osaka, Japan
| | - Yasuko Sugiyama
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Keigo Kihara
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Minami Kanakura
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Hirakata, Osaka, Japan
| | - Masanori P. Takahashi
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Health Sciences, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tatsusada Okuno
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hideki Mochizuki
- Department of Neurology, Neuroscience, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
30
|
Li A, Bouhss A, Clément MJ, Bauvais C, Taylor JP, Bollot G, Pastré D. Using the structural diversity of RNA: protein interfaces to selectively target RNA with small molecules in cells: methods and perspectives. Front Mol Biosci 2023; 10:1298441. [PMID: 38033386 PMCID: PMC10687564 DOI: 10.3389/fmolb.2023.1298441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
In recent years, RNA has gained traction both as a therapeutic molecule and as a therapeutic target in several human pathologies. In this review, we consider the approach of targeting RNA using small molecules for both research and therapeutic purposes. Given the primary challenge presented by the low structural diversity of RNA, we discuss the potential for targeting RNA: protein interactions to enhance the structural and sequence specificity of drug candidates. We review available tools and inherent challenges in this approach, ranging from adapted bioinformatics tools to in vitro and cellular high-throughput screening and functional analysis. We further consider two critical steps in targeting RNA/protein interactions: first, the integration of in silico and structural analyses to improve the efficacy of molecules by identifying scaffolds with high affinity, and second, increasing the likelihood of identifying on-target compounds in cells through a combination of high-throughput approaches and functional assays. We anticipate that the development of a new class of molecules targeting RNA: protein interactions to prevent physio-pathological mechanisms could significantly expand the arsenal of effective therapeutic compounds.
Collapse
Affiliation(s)
- Aixiao Li
- Synsight, Genopole Entreprises, Evry, France
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | - Marie-Jeanne Clément
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| | | | - J. Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Université d’Évry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP), Evry, France
| |
Collapse
|
31
|
Foressi NN, Rodríguez LC, Celej MS. Heterotypic liquid-liquid phase separation of tau and α-synuclein: Implications for overlapping neuropathologies. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140950. [PMID: 37574035 DOI: 10.1016/j.bbapap.2023.140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Tauopathies and synucleinopathies are characterized by the aggregation of Tau and α-synuclein (AS) into amyloid structures, respectively. Individuals with these neuropathies have an elevated risk of developing subsequent neurodegenerative or comorbid disorders. Intriguingly, post-mortem brain examinations have revealed co-localization of Tau and AS aggregates, suggesting a synergistic pathological relationship with an adverse prognosis. The role of liquid-liquid phase separation (LLPS) in the development of neurodegenerative diseases is currently receiving significant attention, as it can contribute to the aggregation and co-deposition of amyloidogenic proteins. In this study, we investigated the phase separation behavior of Tau and AS under various insults, some of which are implicated in disease progression. Our findings demonstrate the formation of heterotypic droplets composed of Tau and AS at physiologically relevant mole ratios that mimic neurons' soma and terminal buttons. Importantly, these heterotypic droplets exhibit increased resistance to electrostatic screening compared to homotypic condensates. Moreover, we observed that biologically relevant biomolecules, known to be dysregulated in disease, exert different effects on these droplets. Additionally, we provide evidence that phase separation itself influences the amyloid aggregation of Tau and AS, underscoring the significance of this process in the development of aggregopathies.
Collapse
Affiliation(s)
- Nahuel N Foressi
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Leandro Cruz Rodríguez
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - M Soledad Celej
- Departamento de Química Biológica Ranwel Caputto, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.
| |
Collapse
|
32
|
Theme 05 - Human Cell Biology and Pathology. Amyotroph Lateral Scler Frontotemporal Degener 2023; 24:140-160. [PMID: 37966320 DOI: 10.1080/21678421.2023.2260195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
|
33
|
Otis JP, Mowry KL. Hitting the mark: Localization of mRNA and biomolecular condensates in health and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1807. [PMID: 37393916 PMCID: PMC10758526 DOI: 10.1002/wrna.1807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023]
Abstract
Subcellular mRNA localization is critical to a multitude of biological processes such as development of cellular polarity, embryogenesis, tissue differentiation, protein complex formation, cell migration, and rapid responses to environmental stimuli and synaptic depolarization. Our understanding of the mechanisms of mRNA localization must now be revised to include formation and trafficking of biomolecular condensates, as several biomolecular condensates that transport and localize mRNA have recently been discovered. Disruptions in mRNA localization can have catastrophic effects on developmental processes and biomolecular condensate biology and have been shown to contribute to diverse diseases. A fundamental understanding of mRNA localization is essential to understanding how aberrations in this biology contribute the etiology of numerous cancers though support of cancer cell migration and biomolecular condensate dysregulation, as well as many neurodegenerative diseases, through misregulation of mRNA localization and biomolecular condensate biology. This article is categorized under: RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| | - Kimberly L. Mowry
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, United States, 02912
| |
Collapse
|
34
|
Kang WB, Bao L, Zhang K, Guo J, Zhu BC, Tang QY, Ren WT, Zhu G. Multi-scale molecular simulation of random peptide phase separation and its extended-to-compact structure transition driven by hydrophobic interactions. SOFT MATTER 2023; 19:7944-7954. [PMID: 37815389 DOI: 10.1039/d3sm00633f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Intrinsically disordered proteins (IDPs) often undergo liquid-liquid phase separation (LLPS) and form membraneless organelles or protein condensates. One of the core problems is how do electrostatic repulsion and hydrophobic interactions in peptides regulate the phase separation process? To answer this question, this study uses random peptides composed of positively charged arginine (Arg, R) and hydrophobic isoleucine (Ile, I) as the model systems, and conduct large-scale simulations using all atom and coarse-grained model multi-scale simulation methods. In this article, we investigate the phase separation of different sequences using a coarse-grained model. It is found that the stronger the electrostatic repulsion in the system, the more extended the single-chain structure, and the more likely the system forms a low-density homogeneous phase. In contrast, the stronger the hydrophobic effect of the system, the more compact the single-chain structure, the easier phase separation, and the higher the critical temperature of phase separation. Overall, by taking the random polypeptides composed of two types of amino acid residues as model systems, this study discusses the relationship between the protein sequence and phase behaviour, and provides theoretical insights into the interactions within or between proteins. It is expected to provide essential physical information for the sequence design of functional IDPs, as well as data to support the diagnosis and treatment of the LLPS-associated diseases.
Collapse
Affiliation(s)
- Wen Bin Kang
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Lei Bao
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Kai Zhang
- School of Physics, Nanjing University, Nanjing 210093, China
| | - Jia Guo
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Ben Chao Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| | - Qian-Yuan Tang
- Department of Physics, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Wei Tong Ren
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Gen Zhu
- School of Public Health, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
35
|
Lan C, Kim J, Ulferts S, Aprile-Garcia F, Weyrauch S, Anandamurugan A, Grosse R, Sawarkar R, Reinhardt A, Hugel T. Quantitative real-time in-cell imaging reveals heterogeneous clusters of proteins prior to condensation. Nat Commun 2023; 14:4831. [PMID: 37582808 PMCID: PMC10427612 DOI: 10.1038/s41467-023-40540-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023] Open
Abstract
Our current understanding of biomolecular condensate formation is largely based on observing the final near-equilibrium condensate state. Despite expectations from classical nucleation theory, pre-critical protein clusters were recently shown to form under subsaturation conditions in vitro; if similar long-lived clusters comprising more than a few molecules are also present in cells, our understanding of the physical basis of biological phase separation may fundamentally change. Here, we combine fluorescence microscopy with photobleaching analysis to quantify the formation of clusters of NELF proteins in living, stressed cells. We categorise small and large clusters based on their dynamics and their response to p38 kinase inhibition. We find a broad distribution of pre-condensate cluster sizes and show that NELF protein cluster formation can be explained as non-classical nucleation with a surprisingly flat free-energy landscape for a wide range of sizes and an inhibition of condensation in unstressed cells.
Collapse
Affiliation(s)
- Chenyang Lan
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Freiburg, Germany
- PicoQuant GmbH, Rudower Chaussee 29, 12489, Berlin, Germany
| | - Juhyeong Kim
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | | | - Sophie Weyrauch
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Chemistry and Pharmacology, University of Freiburg, Freiburg, Germany
| | | | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
| | - Ritwick Sawarkar
- Medical Research Council (MRC), University of Cambridge, Cambridge, CB2 1QR, United Kingdom
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, United Kingdom.
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Freiburg, Germany.
- BIOSS and CIBSS Signalling Research Centres, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Liu X, Zhao X, He J, Wang S, Shen X, Liu Q, Wang S. Advances in the Structure of GGGGCC Repeat RNA Sequence and Its Interaction with Small Molecules and Protein Partners. Molecules 2023; 28:5801. [PMID: 37570771 PMCID: PMC10420822 DOI: 10.3390/molecules28155801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The aberrant expansion of GGGGCC hexanucleotide repeats within the first intron of the C9orf72 gene represent the predominant genetic etiology underlying amyotrophic lateral sclerosis (ALS) and frontal temporal dementia (FTD). The transcribed r(GGGGCC)n RNA repeats form RNA foci, which recruit RNA binding proteins and impede their normal cellular functions, ultimately resulting in fatal neurodegenerative disorders. Furthermore, the non-canonical translation of the r(GGGGCC)n sequence can generate dipeptide repeats, which have been postulated as pathological causes. Comprehensive structural analyses of r(GGGGCC)n have unveiled its polymorphic nature, exhibiting the propensity to adopt dimeric, hairpin, or G-quadruplex conformations, all of which possess the capacity to interact with RNA binding proteins. Small molecules capable of binding to r(GGGGCC)n have been discovered and proposed as potential lead compounds for the treatment of ALS and FTD. Some of these molecules function in preventing RNA-protein interactions or impeding the phase transition of r(GGGGCC)n. In this review, we present a comprehensive summary of the recent advancements in the structural characterization of r(GGGGCC)n, its propensity to form RNA foci, and its interactions with small molecules and proteins. Specifically, we emphasize the structural diversity of r(GGGGCC)n and its influence on partner binding. Given the crucial role of r(GGGGCC)n in the pathogenesis of ALS and FTD, the primary objective of this review is to facilitate the development of therapeutic interventions targeting r(GGGGCC)n RNA.
Collapse
Affiliation(s)
- Xiaole Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Xinyue Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Jinhan He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Sishi Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Xinfei Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Qingfeng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
| | - Shenlin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; (X.L.); (X.Z.); (J.H.); (S.W.); (X.S.); (Q.L.)
- Beijing NMR Center, Peking University, Beijing 100087, China
| |
Collapse
|
37
|
Malhotra I, Potoyan DA. Re-entrant transitions of locally stiff RNA chains in the presence of polycations leads to gelated architectures. SOFT MATTER 2023. [PMID: 37449795 PMCID: PMC10369498 DOI: 10.1039/d3sm00320e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The liquid-liquid phase separation of protein and nucleic acid mixtures drives the formation of numerous membraneless compartments in cells. Temperature variation is commonly used for mapping condensate phase diagrams, which often display unique upper critical temperatures. Recent report on peptide-RNA mixtures has shown the existence of lower and upper critical solution temperatures, highlighting the importance of temperature-dependent solvent and ion-mediated forces. In the present work, we employ residue-level coarse-grained models of RNA and polycation peptide chains for simulating temperature-induced re-entrant transitions and shedding light on the role played by mobile ions, temperature-dependent dielectric permittivity, and local chain stiffness. We show that differences in bending rigidity can significantly modulate condensate topology leading to the formation of gelated or fibril like architectures. The study also finds that temperature dependence of water permittivity is generally sufficient for recapitulating experimentally observed closed loop and LCST phase diagrams of highly charged protein-RNA mixtures. However, we find that similar-looking closed-loop phase diagrams can correspond to vastly different condensate topologies.
Collapse
Affiliation(s)
- Isha Malhotra
- Department of Chemistry, Iowa State University, Ames, Iowa 50014, USA.
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50014, USA.
| |
Collapse
|
38
|
Riemenschneider H, Simonetti F, Sheth U, Katona E, Roth S, Hutten S, Farny D, Michaelsen M, Nuscher B, Schmidt MK, Flatley A, Schepers A, Gruijs da Silva LA, Zhou Q, Klopstock T, Liesz A, Arzberger T, Herms J, Feederle R, Gendron TF, Dormann D, Edbauer D. Targeting the glycine-rich domain of TDP-43 with antibodies prevents its aggregation in vitro and reduces neurofilament levels in vivo. Acta Neuropathol Commun 2023; 11:112. [PMID: 37434215 DOI: 10.1186/s40478-023-01592-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
Cytoplasmic aggregation and concomitant nuclear clearance of the RNA-binding protein TDP-43 are found in ~ 90% of cases of amyotrophic lateral sclerosis and ~ 45% of patients living with frontotemporal lobar degeneration, but no disease-modifying therapy is available. Antibody therapy targeting other aggregating proteins associated with neurodegenerative disorders has shown beneficial effects in animal models and clinical trials. The most effective epitopes for safe antibody therapy targeting TDP-43 are unknown. Here, we identified safe and effective epitopes in TDP-43 for active and potential future passive immunotherapy. We prescreened 15 peptide antigens covering all regions of TDP-43 to identify the most immunogenic epitopes and to raise novel monoclonal antibodies in wild-type mice. Most peptides induced a considerable antibody response and no antigen triggered obvious side effects. Thus, we immunized mice with rapidly progressing TDP-43 proteinopathy ("rNLS8" model) with the nine most immunogenic peptides in five pools prior to TDP-43ΔNLS transgene induction. Strikingly, combined administration of two N-terminal peptides induced genetic background-specific sudden lethality in several mice and was therefore discontinued. Despite a strong antibody response, no TDP-43 peptide prevented the rapid body weight loss or reduced phospho-TDP-43 levels as well as the profound astrogliosis and microgliosis in rNLS8 mice. However, immunization with a C-terminal peptide containing the disease-associated phospho-serines 409/410 significantly lowered serum neurofilament light chain levels, indicative of reduced neuroaxonal damage. Transcriptomic profiling showed a pronounced neuroinflammatory signature (IL-1β, TNF-α, NfκB) in rNLS8 mice and suggested modest benefits of immunization targeting the glycine-rich region. Several novel monoclonal antibodies targeting the glycine-rich domain potently reduced phase separation and aggregation of TDP-43 in vitro and prevented cellular uptake of preformed aggregates. Our unbiased screen suggests that targeting the RRM2 domain and the C-terminal region of TDP-43 by active or passive immunization may be beneficial in TDP-43 proteinopathies by inhibiting cardinal processes of disease progression.
Collapse
Affiliation(s)
- Henrick Riemenschneider
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Francesca Simonetti
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), 81377, Munich, Germany
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-Universität (JGU), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Udit Sheth
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Eszter Katona
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), 81377, Munich, Germany
| | - Stefan Roth
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Saskia Hutten
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-Universität (JGU), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Meike Michaelsen
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Brigitte Nuscher
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Michael K Schmidt
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Lara A Gruijs da Silva
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), 81377, Munich, Germany
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-Universität (JGU), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Qihui Zhou
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Thomas Klopstock
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Friedrich Baur Institute at the Department of Neurology, University Hospital, LMU Munich, Ziemssenstr. 1a, 80336, Munich, Germany
| | - Arthur Liesz
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
| | - Thomas Arzberger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Feodor-Lynen-Str. 23, 81377, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstr. 7, 80336, Munich, Germany
| | - Jochen Herms
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Center for Neuropathology and Prion Research, University Hospital, LMU Munich, Feodor-Lynen-Str. 23, 81377, Munich, Germany
| | - Regina Feederle
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Tania F Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Dorothee Dormann
- Institute of Molecular Physiology, Faculty of Biology, Johannes Gutenberg-Universität (JGU), Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), Munich, Feodor-Lynen-Str. 17, 81377, Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377, Munich, Germany.
- Ludwig-Maximilians-Universität (LMU) Munich, Graduate School of Systemic Neurosciences (GSN), 81377, Munich, Germany.
| |
Collapse
|
39
|
Hurtle BT, Xie L, Donnelly CJ. Disrupting pathologic phase transitions in neurodegeneration. J Clin Invest 2023; 133:e168549. [PMID: 37395272 DOI: 10.1172/jci168549] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Solid-like protein deposits found in aged and diseased human brains have revealed a relationship between insoluble protein accumulations and the resulting deficits in neurologic function. Clinically diverse neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis, exhibit unique and disease-specific biochemical protein signatures and abnormal protein depositions that often correlate with disease pathogenesis. Recent evidence indicates that many pathologic proteins assemble into liquid-like protein phases through the highly coordinated process of liquid-liquid phase separation. Over the last decade, biomolecular phase transitions have emerged as a fundamental mechanism of cellular organization. Liquid-like condensates organize functionally related biomolecules within the cell, and many neuropathology-associated proteins reside within these dynamic structures. Thus, examining biomolecular phase transitions enhances our understanding of the molecular mechanisms mediating toxicity across diverse neurodegenerative diseases. This Review explores the known mechanisms contributing to aberrant protein phase transitions in neurodegenerative diseases, focusing on tau and TDP-43 proteinopathies and outlining potential therapeutic strategies to regulate these pathologic events.
Collapse
Affiliation(s)
- Bryan T Hurtle
- Center for Neuroscience at the University of Pittsburgh Graduate Program
- Medical Scientist Training Program, University of Pittsburgh; and
- LiveLikeLou Center for ALS Research at the University of Pittsburgh Brain Institute; Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Longxin Xie
- LiveLikeLou Center for ALS Research at the University of Pittsburgh Brain Institute; Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Christopher J Donnelly
- Center for Neuroscience at the University of Pittsburgh Graduate Program
- Medical Scientist Training Program, University of Pittsburgh; and
- LiveLikeLou Center for ALS Research at the University of Pittsburgh Brain Institute; Pittsburgh, Pennsylvania, USA
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Choi HJ, Lee JY, Kim K. Glutathionylation on RNA-binding proteins: a regulator of liquid‒liquid phase separation in the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med 2023; 55:735-744. [PMID: 37009800 PMCID: PMC10167235 DOI: 10.1038/s12276-023-00978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 04/04/2023] Open
Abstract
RNA-binding proteins (RBPs) containing low-sequence complexity domains mediate the formation of cellular condensates and membrane-less organelles with biological functions via liquid‒liquid phase separation (LLPS). However, the abnormal phase transition of these proteins induces the formation of insoluble aggregates. Aggregates are pathological hallmarks of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). The molecular mechanisms underlying aggregate formation by ALS-associated RPBs remain largely unknown. This review highlights emerging studies on various posttranslational modifications (PTMs) related to protein aggregation. We begin with the introduction of several ALS-associated RBPs that form aggregates induced by phase separation. In addition, we highlight our recent discovery of a new PTM involved in the phase transition during the pathogenesis of fused-in-sarcoma (FUS)-associated ALS. We suggest a molecular mechanism through which LLPS mediates glutathionylation in FUS-linked ALS. This review aims to provide a detailed overview of the key molecular mechanisms of LLPS-mediated aggregate formation by PTMs, which will help further the understanding of the pathogenesis and development of ALS therapeutics.
Collapse
Affiliation(s)
- Hyun-Jun Choi
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Korea
- Department of Integrated Biomedical Sciences, Soonchunhyang University, Cheonan, 31151, Korea
| | - Ji Young Lee
- Department of Medical Biotechnology, Soonchunhyang University, Asan, 31538, Korea
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea
| | - Kiyoung Kim
- Department of Medical Science, Soonchunhyang University, Asan, 31538, Korea.
| |
Collapse
|
41
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
42
|
Nam J, Gwon Y. Neuronal biomolecular condensates and their implications in neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145420. [PMID: 37065458 PMCID: PMC10102667 DOI: 10.3389/fnagi.2023.1145420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Biomolecular condensates are subcellular organizations where functionally related proteins and nucleic acids are assembled through liquid-liquid phase separation, allowing them to develop on a larger scale without a membrane. However, biomolecular condensates are highly vulnerable to disruptions from genetic risks and various factors inside and outside the cell and are strongly implicated in the pathogenesis of many neurodegenerative diseases. In addition to the classical view of the nucleation-polymerization process that triggers the protein aggregation from the misfolded seed, the pathologic transition of biomolecular condensates can also promote the aggregation of proteins found in the deposits of neurodegenerative diseases. Furthermore, it has been suggested that several protein or protein-RNA complexes located in the synapse and along the neuronal process are neuron-specific condensates displaying liquid-like properties. As their compositional and functional modifications play a crucial role in the context of neurodegeneration, further research is needed to fully understand the role of neuronal biomolecular condensates. In this article, we will discuss recent findings that explore the pivotal role of biomolecular condensates in the development of neuronal defects and neurodegeneration.
Collapse
Affiliation(s)
| | - Youngdae Gwon
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
43
|
Suzuki N, Nishiyama A, Warita H, Aoki M. Genetics of amyotrophic lateral sclerosis: seeking therapeutic targets in the era of gene therapy. J Hum Genet 2023; 68:131-152. [PMID: 35691950 PMCID: PMC9968660 DOI: 10.1038/s10038-022-01055-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an intractable disease that causes respiratory failure leading to mortality. The main locus of ALS is motor neurons. The success of antisense oligonucleotide (ASO) therapy in spinal muscular atrophy (SMA), a motor neuron disease, has triggered a paradigm shift in developing ALS therapies. The causative genes of ALS and disease-modifying genes, including those of sporadic ALS, have been identified one after another. Thus, the freedom of target choice for gene therapy has expanded by ASO strategy, leading to new avenues for therapeutic development. Tofersen for superoxide dismutase 1 (SOD1) was a pioneer in developing ASO for ALS. Improving protocols and devising early interventions for the disease are vital. In this review, we updated the knowledge of causative genes in ALS. We summarized the genetic mutations identified in familial ALS and their clinical features, focusing on SOD1, fused in sarcoma (FUS), and transacting response DNA-binding protein. The frequency of the C9ORF72 mutation is low in Japan, unlike in Europe and the United States, while SOD1 and FUS are more common, indicating that the target mutations for gene therapy vary by ethnicity. A genome-wide association study has revealed disease-modifying genes, which could be the novel target of gene therapy. The current status and prospects of gene therapy development were discussed, including ethical issues. Furthermore, we discussed the potential of axonal pathology as new therapeutic targets of ALS from the perspective of early intervention, including intra-axonal transcription factors, neuromuscular junction disconnection, dysregulated local translation, abnormal protein degradation, mitochondrial pathology, impaired axonal transport, aberrant cytoskeleton, and axon branching. We simultaneously discuss important pathological states of cell bodies: persistent stress granules, disrupted nucleocytoplasmic transport, and cryptic splicing. The development of gene therapy based on the elucidation of disease-modifying genes and early intervention in molecular pathology is expected to become an important therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Hitoshi Warita
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Japan.
| |
Collapse
|
44
|
Chew PY, Joseph JA, Collepardo-Guevara R, Reinhardt A. Thermodynamic origins of two-component multiphase condensates of proteins. Chem Sci 2023; 14:1820-1836. [PMID: 36819870 PMCID: PMC9931050 DOI: 10.1039/d2sc05873a] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Intracellular condensates are highly multi-component systems in which complex phase behaviour can ensue, including the formation of architectures comprising multiple immiscible condensed phases. Relying solely on physical intuition to manipulate such condensates is difficult because of the complexity of their composition, and systematically learning the underlying rules experimentally would be extremely costly. We address this challenge by developing a computational approach to design pairs of protein sequences that result in well-separated multilayered condensates and elucidate the molecular origins of these compartments. Our method couples a genetic algorithm to a residue-resolution coarse-grained protein model. We demonstrate that we can design protein partners to form multiphase condensates containing naturally occurring proteins, such as the low-complexity domain of hnRNPA1 and its mutants, and show how homo- and heterotypic interactions must differ between proteins to result in multiphasicity. We also show that in some cases the specific pattern of amino-acid residues plays an important role. Our findings have wide-ranging implications for understanding and controlling the organisation, functions and material properties of biomolecular condensates.
Collapse
Affiliation(s)
- Pin Yu Chew
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Jerelle A Joseph
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
- Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Department of Genetics, University of Cambridge Cambridge CB2 3EH UK
| | - Aleks Reinhardt
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
45
|
Duan G, Li Y, Ye M, Liu H, Wang N, Luo S. The Regulatory Mechanism of Transthyretin Irreversible Aggregation through Liquid-to-Solid Phase Transition. Int J Mol Sci 2023; 24:ijms24043729. [PMID: 36835140 PMCID: PMC9960511 DOI: 10.3390/ijms24043729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/17/2023] Open
Abstract
Transthyretin (TTR) aggregation and amyloid formation are associated with several ATTR diseases, such as senile systemic amyloidosis (SSA) and familial amyloid polyneuropathy (FAP). However, the mechanism that triggers the initial pathologic aggregation process of TTR remains largely elusive. Lately, increasing evidence has suggested that many proteins associated with neurodegenerative diseases undergo liquid-liquid phase separation (LLPS) and subsequent liquid-to-solid phase transition before the formation of amyloid fibrils. Here, we demonstrate that electrostatic interactions mediate LLPS of TTR, followed by a liquid-solid phase transition, and eventually the formation of amyloid fibrils under a mildly acidic pH in vitro. Furthermore, pathogenic mutations (V30M, R34T, and K35T) of TTR and heparin promote the process of phase transition and facilitate the formation of fibrillar aggregates. In addition, S-cysteinylation, which is a kind of post-translational modification of TTR, reduces the kinetic stability of TTR and increases the propensity for aggregation, while another modification, S-sulfonation, stabilizes the TTR tetramer and reduces the aggregation rate. Once TTR was S-cysteinylated or S-sulfonated, they dramatically underwent the process of phase transition, providing a foundation for post-translational modifications that could modulate TTR LLPS in the context of pathological interactions. These novel findings reveal molecular insights into the mechanism of TTR from initial LLPS and subsequent liquid-to-solid phase transition to amyloid fibrils, providing a new dimension for ATTR therapy.
Collapse
|
46
|
Shillcock JC, Thomas DB, Ipsen JH, Brown AD. Macromolecular Crowding Is Surprisingly Unable to Deform the Structure of a Model Biomolecular Condensate. BIOLOGY 2023; 12:181. [PMID: 36829460 PMCID: PMC9952705 DOI: 10.3390/biology12020181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The crowded interior of a living cell makes performing experiments on simpler in vitro systems attractive. Although these reveal interesting phenomena, their biological relevance can be questionable. A topical example is the phase separation of intrinsically disordered proteins into biomolecular condensates, which is proposed to underlie the membrane-less compartmentalization of many cellular functions. How a cell reliably controls biochemical reactions in compartments open to the compositionally-varying cytoplasm is an important question for understanding cellular homeostasis. Computer simulations are often used to study the phase behavior of model biomolecular condensates, but the number of relevant parameters increases as the number of protein components increases. It is unfeasible to exhaustively simulate such models for all parameter combinations, although interesting phenomena are almost certainly hidden in their high-dimensional parameter space. Here, we have studied the phase behavior of a model biomolecular condensate in the presence of a polymeric crowding agent. We used a novel compute framework to execute dozens of simultaneous simulations spanning the protein/crowder concentration space. We then combined the results into a graphical representation for human interpretation, which provided an efficient way to search the model's high-dimensional parameter space. We found that steric repulsion from the crowder drives a near-critical system across the phase boundary, but the molecular arrangement within the resulting biomolecular condensate is rather insensitive to the crowder concentration and molecular weight. We propose that a cell may use the local cytoplasmic concentration to assist the formation of biomolecular condensates, while relying on the dense phase to reliably provide a stable, structured, fluid milieu for cellular biochemistry despite being open to its changing environment.
Collapse
Affiliation(s)
- Julian C. Shillcock
- Blue Brain Project and Laboratory of Molecular and Chemical Biology of Neurodegeneration, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - David B. Thomas
- Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - John H. Ipsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Andrew D. Brown
- Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
47
|
do Amaral MJ, Passos YM, Almeida MS, Pinheiro AS, Cordeiro Y. In Vitro Characterization of Protein:Nucleic Acid Liquid-Liquid Phase Separation by Microscopy Methods and Nanoparticle Tracking Analysis. Methods Mol Biol 2023; 2551:605-631. [PMID: 36310228 DOI: 10.1007/978-1-0716-2597-2_37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Uncontrolled assembly/disassembly of physiologically formed liquid condensates is linked to irreversible aggregation. Hence, the quest for understanding protein-misfolding disease mechanism might lie in the studies of protein:nucleic acid coacervation. Several proteins with intrinsically disordered regions as well as nucleic acids undergo phase separation in the cellular context, and this process is key to physiological signaling and is related to pathologies. Phase separation is reproducible in vitro by mixing the target recombinant protein with specific nucleic acids at various stoichiometric ratios and then examined by microscopy and nanotracking methods presented herein. We describe protocols to qualitatively assess hallmarks of protein-rich condensates, characterize their structure using intrinsic and extrinsic dyes, quantify them, and analyze their morphology over time. Analysis by nanoparticle tracking provides information on the concentration and diameter of high-order protein oligomers formed in the presence of nucleic acid. Using the model protein (globular domain of recombinant murine PrP) and DNA aptamers (high-affinity oligonucleotides with 25 nucleotides in length), we provide examples of a systematic screening of liquid-liquid phase separation in vitro.
Collapse
Affiliation(s)
- Mariana J do Amaral
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Yulli M Passos
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcius S Almeida
- Protein Advanced Biochemistry, Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Gruijs da Silva LA, Dormann D. Sedimentation Assays to Assess the Impact of Posttranslational Modifications on Phase Separation of RNA-Binding Proteins In Vitro and In Cells. Methods Mol Biol 2023; 2563:325-339. [PMID: 36227481 DOI: 10.1007/978-1-0716-2663-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the last years, RNA-binding proteins (RBPs) have been highlighted for their capacity to undergo liquid-liquid phase separation (LLPS). Aberrant phase transitions of RBPs from a liquid to a solid state are believed to underlie the formation of pathological RBP aggregates in several neurodegenerative diseases. Both in the physiological and the disease state, RBPs are often decorated with diverse posttranslational modifications (PTMs) that can influence the phase separation behavior, the physiological function, and the pathological behavior of the RBP. Here we describe two simple methods, sedimentation assays in vitro and in cells, that allow the analysis of RBP solubility as a measure of RBP phase separation in the absence or presence of a certain PTM.
Collapse
Affiliation(s)
- Lara A Gruijs da Silva
- Johannes Gutenberg-Universität (JGU), Biocenter, Institute of Molecular Physiology, Mainz, Germany
- Graduate School of Systemic Neurosciences (GSN), Planegg-Martinsried, Germany
| | - Dorothee Dormann
- Johannes Gutenberg-Universität (JGU), Biocenter, Institute of Molecular Physiology, Mainz, Germany.
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
49
|
Phase separation of the microtubule-associated protein tau. Essays Biochem 2022; 66:1013-1021. [PMID: 36251053 DOI: 10.1042/ebc20220066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 08/30/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022]
Abstract
The aggregation and misfolding of the neuronal microtubule-associated protein tau is closely linked to the pathology of Alzheimer's disease and several other neurodegenerative diseases. Recent evidence suggest that tau undergoes liquid-liquid phase separation in vitro and forms or associates with membrane-less organelles in cells. Biomolecular condensation driven by phase separation can influence the biological activities of tau including its ability to polymerize tubulin into microtubules. In addition, the high concentrations that tau can reach in biomolecular condensates provide a mechanism to promote its aggregation and the formation of amyloid fibrils potentially contributing to the pathology of different tauopathies. Here, the authors discuss the role of tau phase separation in physiology and disease.
Collapse
|
50
|
Karmakar S, Ghosh T, Sankhla A, Bhattacharjee S, Katiyar V. Insulin biomolecular condensate formed in ionic microenvironment modulates the structural properties of pristine and magnetic cellulosic nanomaterials. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|