1
|
Ahmed MC, Kakunuri T, Peris L, Meffre D, Yilmaz EN, Grewing L, Guerrero González R, Manfroi B, Gout E, Vivès RR, Fitzgerald U, Schneider P, Jafarian-Tehrani M, Kuhlmann T, Huard B. The inflammatory APRIL (a proliferation-inducing ligand) antagonizes chondroitin sulphate proteoglycans to promote axonal growth and myelination. Brain Commun 2025; 7:fcae473. [PMID: 39926615 PMCID: PMC11803424 DOI: 10.1093/braincomms/fcae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/19/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Lesions in the CNS are frequently associated to a detrimental inflammatory reaction. In autoimmune neurodegenerative diseases, a proliferation-inducing ligand (APRIL) produced by CNS-infiltrating inflammatory cells binds to chondroitin sulphate proteoglycans (CSPGs). The latter are well-established obstacles to neural regeneration and remyelination in the CNS by interacting with receptor protein tyrosine phosphatase (RPTP) and Nogo receptor (NgR) families. Here, we are showing that APRIL blocks the interactions of RPTP and NgR with all types of chondroitin sulphate (CS). Functionally, APRIL neutralized the inhibitory effects of CS on mouse and human neuronal process growth. APRIL also blocked the inhibition of CS on mouse and human oligodendrocyte differentiation. Finally, APRIL increased myelination in an ex vivo organotypic model of demyelination in the presence of endogenous CSPG upregulation. Our data demonstrate the potential value for a recombinant form of soluble APRIL to achieve repair in the CNS.
Collapse
Affiliation(s)
- Mashal Claude Ahmed
- Institute for Advanced Biosciences, University Grenoble-Alpes/INSERM U1209/CNRS UMR5209, La Tronche 38700, France
| | - Tejaswini Kakunuri
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche 38700, France
| | - Leticia Peris
- Institut des Neurosciences, Université Grenoble Alpes, La Tronche 38700, France
| | - Delphine Meffre
- UMR-S 1124, University Paris-Cité and INSERM, Paris 75006, France
| | - Elif Nur Yilmaz
- Institute of Neuropathology, University Hospital Muenster, Muenster 8149, Germany
| | - Laureen Grewing
- Institute of Neuropathology, University Hospital Muenster, Muenster 8149, Germany
| | | | - Benoit Manfroi
- Institute for Advanced Biosciences, University Grenoble-Alpes/INSERM U1209/CNRS UMR5209, La Tronche 38700, France
| | - Evelyne Gout
- CNRS, CEA, IBS, University of Grenoble Alpes, Grenoble 38000, France
| | - Romain R Vivès
- CNRS, CEA, IBS, University of Grenoble Alpes, Grenoble 38000, France
| | - Una Fitzgerald
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway H91 W2TY, Ireland
| | - Pascal Schneider
- Department of Immunobiology, University of Lausanne, Epalinges 1066, Switzerland
| | | | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, Muenster 8149, Germany
| | - Bertrand Huard
- T-RAIG, TIMC, University Grenoble-Alpes/CNRS UMR5525, La Tronche 38700, France
| |
Collapse
|
2
|
Filippi M, Amato MP, Avolio C, Gallo P, Gasperini C, Inglese M, Marfia GA, Patti F. Towards a biological view of multiple sclerosis from early subtle to clinical progression: an expert opinion. J Neurol 2025; 272:179. [PMID: 39891770 PMCID: PMC11787267 DOI: 10.1007/s00415-025-12917-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
The classification of multiple sclerosis (MS) into the two distinct phases of relapsing-remitting and progressive, including primary progressive and secondary progressive phenotypes (PPMS and SPMS, respectively) has long been accepted; however, there are several unmet needs associated with this particular model. The observation that both inflammation and neurodegeneration are present from the onset of MS has resulted in a paradigm shift towards MS as a disease continuum driven by pathological mechanisms underlying clinical progression. Here we report the results from a meeting of Italian MS specialists, exploring the evolving perception of MS pathobiology and its implications for diagnosis and treatment. Insights garnered from the expert panel advocate for a redefined understanding of MS. This expert opinion paper reviews the disease continuum and the intertwined nature of inflammatory and neurodegenerative processes. Also, the need for changes in diagnostic criteria and treatment strategies, including the development of novel biomarkers and new therapies targeting smouldering disease, is discussed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Maria Pia Amato
- University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Carlo Avolio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Azienda Ospedaliero-Universitaria Policlinico, Foggia, Italy
| | - Paolo Gallo
- University of Padua, Padua, Italy
- Azienda Ospedaliera of Padua, Padua, Italy
| | | | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Fondazione Policlinico Tor Vergata, Department of Systems Medicine, University Tor Vergata, Rome, Italy
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, University of Catania, Catania, Italy
- Azienda Ospedaliero-Universitaria Policlinico "G. Rodolico-S. Marco", Catania, Italy
| |
Collapse
|
3
|
Martorelli M, Dengler M, Laux J, Fischer T, Vaiceliunaite A, Hahn U, Weinstein T, Cruces S, Pokoj C, de Oliveira da Cunha L, Wohlbold L, Koch P, Laufer S, Burnet M, Maier F. A Defined Diet Combined with Sonicated Inoculum Provides a High Incidence, Moderate Severity Form of Experimental Autoimmune Encephalomyelitis (EAE). ACS Pharmacol Transl Sci 2024; 7:3827-3845. [PMID: 39698286 PMCID: PMC11650733 DOI: 10.1021/acsptsci.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/16/2024] [Accepted: 10/16/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-peptide induced experimental autoimmune encephalomyelitis (EAE) is a model for inflammation of the brain and spinal cord. However, its severity and incidence vary within and between laboratories. Severe scores can lead to premature termination and are both unnecessary for readouts and detrimental to animal welfare. Ideally, the model would have high incidence, moderate severity, and low interindividual variability to fulfill the "Refine" aspect of the 3R concept. Nevertheless, most efforts to increase incidence also increase the severity. When the effects of potential therapies are tested, moderate severity is sufficient to detect useful drug effects as long as variation is low. Low variation can also reduce group sizes, which supports the "Reduce" aspect of 3R approaches in disease modeling. We set out to reduce variation and control severity by assessing the effects of mouse age, dietary fiber, antigen emulsion, and the dose of MOG and pertussis toxin on incidence, variability, and severity in the MOG-EAE model. METHODS We compared 14- and 33-week-old female C57BL/6 mice and varied the diet and inoculum in two studies. We measured disease signs in vivo as well as gene expression in the brain and spinal cord and histology by immunofluorescence. Ordinary one-way ANOVA was used for multiple comparisons. RESULTS The most reliable induction conditions were with a low-fermentative/fiber diet (AIN 93M) combined with a sonicated emulsion of the MOG35-55-peptide. High-dose pertussis toxin increased EAE severity and incidence in 14-week-old mice (25% survival) while being more moderate in mature mice (100% survival). Varying all parameters suggests that duration of prefeeding defined diet, emulsion quality, and mouse maturity were factors that increase uniformity of response allowing incidence to reach 100% without excess severity. Microglia and astrocyte-associated markers were upregulated proportionally to score consistent with known EAE pathology. CONCLUSIONS A defined fiber/high-sugar diet with sonicated inoculum provides for a moderate severity, high incidence, and less variable EAE. The resulting uniformity in animal response and associated cytokine patterns, and the strong link to a defined diet, suggest that this may be a more clinically translatable protocol for the induction of EAE. This is consistent with reported effects of low-fermentable diets on immune modulation in human patients with autoimmune diseases.
Collapse
Affiliation(s)
- Mariella Martorelli
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | - Julian Laux
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tina Fischer
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | | | - Ulrike Hahn
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Thilo Weinstein
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Santiago Cruces
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Christina Pokoj
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | | | - Lara Wohlbold
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Pierre Koch
- Department
of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Stefan Laufer
- Department
of Pharmaceutical/Medicinal Chemistry, Eberhard
Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- Cluster
of Excellence iFIT (EXC 2180) “Image-Guided and Functionally
Instructed Tumor Therapies”, University
of Tübingen, 72076 Tübingen, Germany
- Tübingen
Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Michael Burnet
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| | - Florian Maier
- Synovo
GmbH, Paul-Ehrlich-Straße
15, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Bulliard Y, Freeborn R, Uyeda MJ, Humes D, Bjordahl R, de Vries D, Roncarolo MG. From promise to practice: CAR T and Treg cell therapies in autoimmunity and other immune-mediated diseases. Front Immunol 2024; 15:1509956. [PMID: 39697333 PMCID: PMC11653210 DOI: 10.3389/fimmu.2024.1509956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission. Notably, we highlight the emergence of CD19-targeted CAR T cell therapies, and their ability to drive sustained remission in B cell-mediated autoimmune diseases, suggesting a possible paradigm shift. Further, we discuss the therapeutic potential of Type 1 and FOXP3+ Treg and CAR-Treg cells, which aim to achieve localized immune modulation by targeting their activity to specific tissues or cell types, thereby minimizing the risk of generalized immunosuppression. By examining the latest advances in this rapidly evolving field, we underscore the potential of these innovative cell therapies to address the unmet need for long-term remission and potential tolerance induction in individuals with autoimmune and immune-mediated diseases.
Collapse
Affiliation(s)
- Yannick Bulliard
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Robert Freeborn
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Molly Javier Uyeda
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Daryl Humes
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Ryan Bjordahl
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - David de Vries
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
| | - Maria Grazia Roncarolo
- Department of Research and Development, Tr1X, Inc., San Diego, CA, United States
- Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
5
|
Scalfari A, Traboulsee A, Oh J, Airas L, Bittner S, Calabrese M, Garcia Dominguez JM, Granziera C, Greenberg B, Hellwig K, Illes Z, Lycke J, Popescu V, Bagnato F, Giovannoni G. Smouldering-Associated Worsening in Multiple Sclerosis: An International Consensus Statement on Definition, Biology, Clinical Implications, and Future Directions. Ann Neurol 2024; 96:826-845. [PMID: 39051525 DOI: 10.1002/ana.27034] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Despite therapeutic suppression of relapses, multiple sclerosis (MS) patients often experience subtle deterioration, which extends beyond the definition of "progression independent of relapsing activity." We propose the concept of smouldering-associated-worsening (SAW), encompassing physical and cognitive symptoms, resulting from smouldering pathological processes, which remain unmet therapeutic targets. We provide a consensus-based framework of possible pathological substrates and manifestations of smouldering MS, and we discuss clinical, radiological, and serum/cerebrospinal fluid biomarkers for potentially monitoring SAW. Finally, we share considerations for optimizing disease surveillance and implications for clinical trials to promote the integration of smouldering MS into routine practice and future research efforts. ANN NEUROL 2024;96:826-845.
Collapse
Affiliation(s)
- Antonio Scalfari
- Center of Neuroscience, Department of Medicine, Charing Cross Hospital, Imperial College, London, UK
| | | | - Jiwon Oh
- Division of Neurology, Department of Medicine, St Michael's Hospital, University of Toronto, Toronto, Canada
| | - Laura Airas
- University of Turku and Turku University Hospital, Turku, Finland
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (THiNK) Basel, Department of Biomedical Engineering, Faculty of Medicine, University of Basel, Basel, Switzerland
- Department of Neurology and MS Center, University Hospital Basel Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Basel, Switzerland
| | | | | | - Zsolt Illes
- Department of Neurology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Jan Lycke
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Veronica Popescu
- University MS Centre Pelt-Hasselt, Noorderhart Hospital, Belgium Hasselt University, Pelt, Belgium
| | - Francesca Bagnato
- Neuroimaging Unit, Neuroimmunology Division, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurology, VA Hospital, TN Valley Healthcare System, Nashville, TN, USA
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Sanabria-Diaz G, Cagol A, Lu PJ, Barakovic M, Ocampo-Pineda M, Chen X, Weigel M, Ruberte E, Siebenborn NDOS, Galbusera R, Schädelin S, Benkert P, Kuhle J, Kappos L, Melie-Garcia L, Granziera C. Advanced MRI Measures of Myelin and Axon Volume Identify Repair in Multiple Sclerosis. Ann Neurol 2024. [PMID: 39390658 DOI: 10.1002/ana.27102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Pathological studies suggest that multiple sclerosis (MS) lesions endure multiple waves of damage and repair; however, the dynamics and characteristics of these processes are poorly understood in patients living with MS. METHODS We studied 128 MS patients (75 relapsing-remitting, 53 progressive) and 72 healthy controls who underwent advanced magnetic resonance imaging and clinical examination at baseline and 2 years later. Magnetization transfer saturation and multi-shell diffusion imaging were used to quantify longitudinal changes in myelin and axon volumes within MS lesions. Lesions were grouped into 4 classes (repair, damage, mixed repair damage, and stable). The frequency of each class was correlated to clinical measures, demographic characteristics, and levels of serum neurofilament light chain (sNfL). RESULTS Stable lesions were the most frequent (n = 2,276; 44%), followed by lesions with patterns of "repair" (n = 1,352; 26.2%) and damage (n = 1,214; 23.5%). The frequency of "repair" lesion was negatively associated with disability (β = -0.04; p < 0.001) and sNfL (β = -0.16; p < 0.001) at follow-up. The frequency of the "damage" class was higher in progressive than relapsing-remitting patients (p < 0.05) and was related to disability (baseline: β = -0.078; follow-up: β = -0.076; p < 0.001) and age (baseline: β = -0.078; p < 0.001). Stable lesions were more frequent in relapsing-remitting than in progressive patients (p < 0.05), and in younger patients versus older (β = -0.07; p < 0.001) at baseline. Further, "mixed" lesions were most frequent in older patients (β = 0.004; p < 0.001) at baseline. INTERPRETATION These findings show that repair and damage processes within MS lesions occur across the entire disease spectrum and that their frequency correlates with patients disability, age, disease duration, and extent of neuroaxonal damage. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Gretel Sanabria-Diaz
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Health Sciences, University of Genova, Genoa, Italy
| | - Po-Jui Lu
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Esther Ruberte
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Nina de Oliveira S Siebenborn
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Riccardo Galbusera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schädelin
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre, Department of Neurology, Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
De Biasi S, Ciobanu AL, Santacroce E, Lo Tartaro D, Degliesposti G, D’Angerio M, Leccese M, Cardi M, Trenti T, Cuccorese M, Gibellini L, Ferraro D, Cossarizza A. SARS-CoV-2 Vaccination Responses in Anti-CD20-Treated Progressive Multiple Sclerosis Patients Show Immunosenescence in Antigen-Specific B and T Cells. Vaccines (Basel) 2024; 12:924. [PMID: 39204047 PMCID: PMC11360119 DOI: 10.3390/vaccines12080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) shows that inflammation starts early and progresses with age. B cells play a central role in this process, contributing to cytokine production, defective regulatory functions, and abnormal immunoglobulin production, even in the central nervous system. Anti-CD20 (aCD20) therapies, which deplete CD20+ B cells, are largely used in the treatment of both relapsing remitting (RR) and progressive (PR) forms of MS. Although effective against MS symptoms and lesions detectable by magnetic resonance imaging, aCD20 therapies can reduce the immune response to COVID-19 vaccination. By using high-parameter flow cytometry, we examined the antigen-specific (Ag+) immune response six months post-third COVID-19 mRNA vaccination in MS patients with RR and PR forms on aCD20 therapy. Despite lower Ag+ B cell responses and lower levels of anti-SARS-CoV2, both total and neutralizing antibodies, RR and PR patients developed strong Ag+ T cell responses. We observed similar percentages and numbers of Ag+ CD4+ T cells and a high proportion of Ag+ CD8+ T cells, with slight differences in T cell phenotype and functionality; this, however, suggested the presence of differences in immune responses driven by age and disease severity.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Gianluca Degliesposti
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Maristella Leccese
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Martina Cardi
- AOU Policlinico di Modena, Neurology Unit, Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Trenti
- AOU Policlinico di Modena, Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, 41124 Modena, Italy
| | - Michela Cuccorese
- AOU Policlinico di Modena, Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, 41124 Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Diana Ferraro
- AOU Policlinico di Modena, Neurology Unit, Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| |
Collapse
|
8
|
Kalincik T, Sharmin S, Roos I, Massey J, Sutton I, Withers B, Freedman MS, Atkins H, Krasulova E, Kubala Havrdova E, Trneny M, Kozak T, Burman J, Macdonell R, Torkildsen Ø, Bø L, Lehmann AK, Sharrack B, Snowden J. Effectiveness of autologous haematopoietic stem cell transplantation versus natalizumab in progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2024; 95:775-783. [PMID: 38538060 DOI: 10.1136/jnnp-2023-332790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/12/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Natalizumab was not shown to modify disability in progressive multiple sclerosis (MS). This matched observational study compared the effectiveness of autologous haematopoietic stem cell transplantation (AHSCT) with natalizumab in progressive MS. METHODS Patients with primary/secondary progressive MS from seven AHSCT MS centres and the MSBase registry, treated with AHSCT or natalizumab, were matched on a propensity score derived from sex, age, Expanded Disability Status Scale (EDSS), number of relapses 12/24 months before baseline, time from MS onset, the most effective prior therapy and country. The pairwise-censored groups were compared on hazards of 6-month confirmed EDSS worsening and improvement, relapses and annualised relapse rates (ARRs), using Andersen-Gill proportional hazards models and conditional negative binomial model. RESULTS 39 patients treated with AHSCT (37 with secondary progressive MS, mean age 37 years, EDSS 5.7, 28% with recent disability progression, ARR 0.54 during the preceding year) were matched with 65 patients treated with natalizumab. The study found no evidence for difference in hazards of confirmed EDSS worsening (HR 1.49, 95% CI 0.70 to 3.14) and improvement (HR 1.50, 95% CI 0.22 to 10.29) between AHSCT and natalizumab over up to 4 years. The relapse activity was also similar while treated with AHSCT and natalizumab (ARR: mean±SD 0.08±0.28 vs 0.08±0.25; HR 1.05, 95% CI 0.39 to 2.82). In the AHSCT group, 3 patients experienced febrile neutropenia during mobilisation, 9 patients experienced serum sickness, 6 patients required intensive care unit admission and 36 patients experienced complications after discharge. No treatment-related deaths were reported. CONCLUSION This study does not support the use of AHSCT to control disability in progressive MS with advanced disability and low relapse activity.
Collapse
Affiliation(s)
- Tomas Kalincik
- CORe, Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Sifat Sharmin
- CORe, Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Izanne Roos
- CORe, Department of Medicine, University of Melbourne, Parkville, Victoria, Australia
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Jennifer Massey
- Department of Neurology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Ian Sutton
- Department of Neurology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- University of Syndey, Sydney, New South Wales, Australia
| | - Barbara Withers
- St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
- Department of Haematology, St Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Mark S Freedman
- Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Harold Atkins
- Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Eva Krasulova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
- General University Hospital in Prague, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
- General University Hospital in Prague, Prague, Czech Republic
| | - Marek Trneny
- General University Hospital in Prague, Prague, Czech Republic
- Department of Haematology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Kozak
- Department of Haematology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Joachim Burman
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala, Sweden
| | - Richard Macdonell
- Department of Neurology, Austin Health, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| | - Øivind Torkildsen
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lars Bø
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | | - Basil Sharrack
- Department of Neuroscience and Sheffield NIHR Translational Neuroscience Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - John Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Metabolism, Medical School, The University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Moura J, Granziera C, Marta M, Silva AM. Emerging imaging markers in radiologically isolated syndrome: implications for earlier treatment initiation. Neurol Sci 2024; 45:3061-3068. [PMID: 38374458 DOI: 10.1007/s10072-024-07402-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
The presence of central nervous system lesions fulfilling the criteria of dissemination in space and time on MRI leads to the diagnosis of a radiologically isolated syndrome (RIS), which may be an early sign of multiple sclerosis (MS). However, some patients who do not fulfill the necessary criteria for RIS still evolve to MS, and some T2 hyperintensities that resemble demyelinating lesions may originate from mimics. In light of the recent recognition of the efficacy of disease-modifying therapy (DMT) in RIS, it is relevant to consider additional imaging features that are more specific of MS. We performed a narrative review on cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL) in patients with RIS. In previous RIS studies, the reported prevalence of CLs ranges between 20.0 and 40.0%, CVS + white matter lesions (WMLs) between 87.0 and 93.0% and PRLs between 26.7 and 63.0%. Overall, these imaging findings appear to be frequent in RIS cohorts, although not consistently taken into account in previous studies. The search for CLs, CVS + WML and PRLs in RIS patients could lead to earlier identification of patients who will evolve to MS and benefit from DMTs.
Collapse
Affiliation(s)
- João Moura
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal.
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel, Basel, Switzerland
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Monica Marta
- Department of Neurology, Royal London Hospital, Barts Health NHS Trust, London, UK
- Neuroscience and Trauma, Blizard Institute of Cell and Molecular Science, London, UK
| | - Ana Martins Silva
- Department of Neurology, Centro Hospitalar Universitário de Santo António, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- Unit of Multidisciplinary Research in Biomedicine, Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
10
|
Naval-Baudin P, Arroyo-Pereiro P, Majós C. The pressing need for imaging biomarkers of disability progression in multiple sclerosis. Eur Radiol 2024; 34:3823-3825. [PMID: 37999730 DOI: 10.1007/s00330-023-10459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/30/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Pablo Naval-Baudin
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain.
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvitge, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain.
- Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain.
| | - Pablo Arroyo-Pereiro
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Neurological Diseases and Neurogenetic Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Carles Majós
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvitge, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| |
Collapse
|
11
|
Aliyu M, Zohora FT, Ceylan A, Hossain F, Yazdani R, Azizi G. Immunopathogenesis of multiple sclerosis: molecular and cellular mechanisms and new immunotherapeutic approaches. Immunopharmacol Immunotoxicol 2024; 46:355-377. [PMID: 38634438 DOI: 10.1080/08923973.2024.2330642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/09/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a central nervous system (CNS) demyelinating autoimmune disease with increasing global prevalence. It predominantly affects females, especially those of European descent. The interplay between environmental factors and genetic predisposition plays a crucial role in MS etiopathogenesis. METHODS We searched recent relevant literature on reputable databases, which include, PubMed, Embase, Web of Science, Scopus, and ScienceDirect using the following keywords: multiple sclerosis, pathogenesis, autoimmunity, demyelination, therapy, and immunotherapy. RESULTS Various animal models have been employed to investigate the MS etiopathogenesis and therapeutics. Autoreactive T cells within the CNS recruit myeloid cells through chemokine expression, leading to the secretion of inflammatory cytokines driving the MS pathogenesis, resulting in demyelination, gliosis, and axonal loss. Key players include T cell lymphocytes (CD4+ and CD8+), B cells, and neutrophils. Signaling dysregulation in inflammatory pathways and the immunogenetic basis of MS are essential considerations for any successful therapy to MS. Data indicates that B cells and neutrophils also have significant roles in MS, despite the common belief that T cells are essential. High neutrophil-to-lymphocyte ratios correlate with MS severity, indicating their contribution to disease progression. Dysregulated signaling pathways further exacerbate MS progression. CONCLUSION MS remains incurable, but disease-modifying therapies, monoclonal antibodies, and immunomodulatory drugs offer hope for patients. Research on the immunogenetics and immunoregulatory functions of gut microbiota is continuing to provide light on possible treatment avenues. Understanding the complex interplay between genetic predisposition, environmental factors, and immune dysregulation is critical for developing effective treatments for MS.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran
- Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ayca Ceylan
- Medical Faculty, Department of Pediatrics, Division of Immunology and Allergy, Selcuk University, Konya, Turkey
| | - Fariha Hossain
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Reza Yazdani
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gholamreza Azizi
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
12
|
Zhong Y, Stauss HJ. Targeted Therapy of Multiple Sclerosis: A Case for Antigen-Specific Tregs. Cells 2024; 13:797. [PMID: 38786021 PMCID: PMC11119434 DOI: 10.3390/cells13100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Multiple sclerosis is an autoinflammatory condition that results in damage to myelinated neurons in affected patients. While disease-modifying treatments have been successful in slowing the progression of relapsing-remitting disease, most patients still progress to secondary progressive disease that is largely unresponsive to disease-modifying treatments. Similarly, there is currently no effective treatment for patients with primary progressive MS. Innate and adaptive immune cells in the CNS play a critical role in initiating an autoimmune attack and in maintaining the chronic inflammation that drives disease progression. In this review, we will focus on recent insights into the role of T cells with regulatory function in suppressing the progression of MS, and, more importantly, in promoting the remyelination and repair of MS lesions in the CNS. We will discuss the exciting potential to genetically reprogram regulatory T cells to achieve immune suppression and enhance repair locally at sites of tissue damage, while retaining a fully competent immune system outside the CNS. In the future, reprogramed regulatory T cells with defined specificity and function may provide life medicines that can persist in patients and achieve lasting disease suppression after one cycle of treatment.
Collapse
Affiliation(s)
| | - Hans J. Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, Rowland Hill Street, London NW3 2PP, UK;
| |
Collapse
|
13
|
Naval-Baudin P, Pons-Escoda A, Castillo-Pinar A, Martínez-Zalacaín I, Arroyo-Pereiro P, Flores-Casaperalta S, Garay-Buitron F, Calvo N, Martinez-Yélamos A, Cos M, Martínez-Yélamos S, Majós C. The T1-dark-rim: A novel imaging sign for detecting smoldering inflammation in multiple sclerosis. Eur J Radiol 2024; 173:111358. [PMID: 38340569 DOI: 10.1016/j.ejrad.2024.111358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE Paramagnetic rim lesions (PRLs), usually identified in susceptibility-weighted imaging (SWI), are a promising prognostic biomarker of disability progression in multiple sclerosis (MS). However, SWI is not routinely performed in clinical practice. The objective of this study is to define a novel imaging sign, the T1-dark rim, identifiable in a standard 3DT1 gradient-echo inversion-recovery sequence, such as 3D T1 turbo field echo (3DT1FE) and explore its performance as a SWI surrogate to define PRLs. METHODS This observational cross-sectional study analyzed MS patients who underwent 3T magnetic resonance imaging (MRI) including 3DT1TFE and SWI. Rim lesions were evaluated in 3DT1TFE, processed SWI, and SWI phase and categorized as true positive, false positive, or false negative based on the value of the T1-dark rim in predicting SWI phase PRLs. Sensitivity and positive predictive values of the T1-dark rim for detecting PRLs were calculated. RESULTS Overall, 80 rim lesions were identified in 63 patients (60 in the SWI phase and 78 in 3DT1TFE; 58 true positives, 20 false positives, and two false negatives). The T1-dark rim demonstrated 97% sensitivity and 74% positive predictive value for detecting PRLs. More PRLs were detected in the SWI phase than in processed SWI (60 and 57, respectively). CONCLUSION The T1-dark rim sign is a promising and accessible novel imaging marker to detect PRLs whose high sensitivity may enable earlier detection of chronic active lesions to guide MS treatment escalation. The relevance of T1-dark rim lesions that are negative on SWI opens up a new field for analysis.
Collapse
Affiliation(s)
- Pablo Naval-Baudin
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain; Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain.
| | - Albert Pons-Escoda
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain; Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain
| | - Albert Castillo-Pinar
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain
| | - Ignacio Martínez-Zalacaín
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain
| | - Pablo Arroyo-Pereiro
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain; Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Neurological Diseases and Neurogenetic Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Susanie Flores-Casaperalta
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Francis Garay-Buitron
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Nahum Calvo
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Antonio Martinez-Yélamos
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain; Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Neurological Diseases and Neurogenetic Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Mónica Cos
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036 Barcelona, Spain; Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Neurological Diseases and Neurogenetic Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Carles Majós
- Radiology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907 Barcelona, Spain; Diagnostic Imaging and Nuclear Medicine Research Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
14
|
Linnerbauer M, Lößlein L, Vandrey O, Peter A, Han Y, Tsaktanis T, Wogram E, Needhamsen M, Kular L, Nagel L, Zissler J, Andert M, Meszaros L, Hanspach J, Zuber F, Naumann UJ, Diebold M, Wheeler MA, Beyer T, Nirschl L, Cirac A, Laun FB, Günther C, Winkler J, Bäuerle T, Jagodic M, Hemmer B, Prinz M, Quintana FJ, Rothhammer V. The astrocyte-produced growth factor HB-EGF limits autoimmune CNS pathology. Nat Immunol 2024; 25:432-447. [PMID: 38409259 PMCID: PMC10907300 DOI: 10.1038/s41590-024-01756-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
Central nervous system (CNS)-resident cells such as microglia, oligodendrocytes and astrocytes are gaining increasing attention in respect to their contribution to CNS pathologies including multiple sclerosis (MS). Several studies have demonstrated the involvement of pro-inflammatory glial subsets in the pathogenesis and propagation of inflammatory events in MS and its animal models. However, it has only recently become clear that the underlying heterogeneity of astrocytes and microglia can not only drive inflammation, but also lead to its resolution through direct and indirect mechanisms. Failure of these tissue-protective mechanisms may potentiate disease and increase the risk of conversion to progressive stages of MS, for which currently available therapies are limited. Using proteomic analyses of cerebrospinal fluid specimens from patients with MS in combination with experimental studies, we here identify Heparin-binding EGF-like growth factor (HB-EGF) as a central mediator of tissue-protective and anti-inflammatory effects important for the recovery from acute inflammatory lesions in CNS autoimmunity. Hypoxic conditions drive the rapid upregulation of HB-EGF by astrocytes during early CNS inflammation, while pro-inflammatory conditions suppress trophic HB-EGF signaling through epigenetic modifications. Finally, we demonstrate both anti-inflammatory and tissue-protective effects of HB-EGF in a broad variety of cell types in vitro and use intranasal administration of HB-EGF in acute and post-acute stages of autoimmune neuroinflammation to attenuate disease in a preclinical mouse model of MS. Altogether, we identify astrocyte-derived HB-EGF and its epigenetic regulation as a modulator of autoimmune CNS inflammation and potential therapeutic target in MS.
Collapse
Affiliation(s)
- Mathias Linnerbauer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lena Lößlein
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Oliver Vandrey
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Anne Peter
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Yanan Han
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Thanos Tsaktanis
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Emile Wogram
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Needhamsen
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Lisa Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Julia Zissler
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Marie Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Lisa Meszaros
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jannis Hanspach
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Finnja Zuber
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Ulrike J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Martin Diebold
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael A Wheeler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Tobias Beyer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Lucy Nirschl
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ana Cirac
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Frederik B Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Claudia Günther
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Jürgen Winkler
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bäuerle
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany
| | - Maja Jagodic
- Department of Clinical Neuroscience, Karolinska Institutet, Karolinska University Hospital, Center for Molecular Medicine, Stockholm, Sweden
| | - Bernhard Hemmer
- Department of Neurology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Veit Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
15
|
De Keersmaecker AV, Van Doninck E, Popescu V, Willem L, Cambron M, Laureys G, D’ Haeseleer M, Bjerke M, Roelant E, Lemmerling M, D’hooghe MB, Derdelinckx J, Reynders T, Willekens B. A metformin add-on clinical study in multiple sclerosis to evaluate brain remyelination and neurodegeneration (MACSiMiSE-BRAIN): study protocol for a multi-center randomized placebo controlled clinical trial. Front Immunol 2024; 15:1362629. [PMID: 38680485 PMCID: PMC11046490 DOI: 10.3389/fimmu.2024.1362629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/05/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Despite advances in immunomodulatory treatments of multiple sclerosis (MS), patients with non-active progressive multiple sclerosis (PMS) continue to face a significant unmet need. Demyelination, smoldering inflammation and neurodegeneration are important drivers of disability progression that are insufficiently targeted by current treatment approaches. Promising preclinical data support repurposing of metformin for treatment of PMS. The objective of this clinical trial is to evaluate whether metformin, as add-on treatment, is superior to placebo in delaying disease progression in patients with non-active PMS. Methods and analysis MACSiMiSE-BRAIN is a multi-center two-arm, 1:1 randomized, triple-blind, placebo-controlled clinical trial, conducted at five sites in Belgium. Enrollment of 120 patients with non-active PMS is planned. Each participant will undergo a screening visit with assessment of baseline magnetic resonance imaging (MRI), clinical tests, questionnaires, and a safety laboratory assessment. Following randomization, participants will be assigned to either the treatment (metformin) or placebo group. Subsequently, they will undergo a 96-week follow-up period. The primary outcome is change in walking speed, as measured by the Timed 25-Foot Walk Test, from baseline to 96 weeks. Secondary outcome measures include change in neurological disability (Expanded Disability Status Score), information processing speed (Symbol Digit Modalities Test) and hand function (9-Hole Peg test). Annual brain MRI will be performed to assess evolution in brain volumetry and diffusion metrics. As patients may not progress in all domains, a composite outcome, the Overall Disability Response Score will be additionally evaluated as an exploratory outcome. Other exploratory outcomes will consist of paramagnetic rim lesions, the 2-minute walking test and health economic analyses as well as both patient- and caregiver-reported outcomes like the EQ-5D-5L, the Multiple Sclerosis Impact Scale and the Caregiver Strain Index. Ethics and dissemination Clinical trial authorization from regulatory agencies [Ethical Committee and Federal Agency for Medicines and Health Products (FAMHP)] was obtained after submission to the centralized European Clinical Trial Information System. The results of this clinical trial will be disseminated at scientific conferences, in peer-reviewed publications, to patient associations and the general public. Trial registration ClinicalTrials.gov Identifier: NCT05893225, EUCT number: 2023-503190-38-00.
Collapse
Affiliation(s)
- Anna-Victoria De Keersmaecker
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences Research Group, Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Eline Van Doninck
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Center of Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Belgium
| | - Veronica Popescu
- Immunology and Infection, University of Hasselt, Diepenbeek, Belgium
- Biomedical Research Institute, University of Hasselt, Diepenbeek, Belgium
- Department of Neurology, Noorderhart Maria Hospital, Pelt, Belgium
- University Multiple Sclerosis Centre, University of Hasselt, Hasselt, Belgium
| | - Lander Willem
- Department of Family Medicine and Population Health, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
- Center of Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Wilrijk, Belgium
| | - Melissa Cambron
- Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
- Department of Neurology, Algemeen Ziekenhuis Sint Jan, Bruges, Belgium
| | - Guy Laureys
- Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
- Department of Neurology, University Hospital Ghent, Ghent, Belgium
| | - Miguel D’ Haeseleer
- Department of Neurology, University Hospital Brussels, Brussels, Belgium
- Department of Neurology, National Multiple Sclerosis Center, Melsbroek, Belgium
- Department Neuroprotection and Neuromodulation, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Maria Bjerke
- Department Neuroprotection and Neuromodulation, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
- Neurochemistry Laboratory, Department of Clinical Biology, Brussels, University Hospital Brussels, Brussels, Belgium
- Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Ella Roelant
- Clinical Trial Center, Antwerp University Hospital, Edegem, Belgium
| | - Marc Lemmerling
- Department of Radiology, Antwerp University Hospital, Edegem, Wilrijk, Belgium
| | - Marie Beatrice D’hooghe
- Department of Neurology, University Hospital Brussels, Brussels, Belgium
- Department of Neurology, National Multiple Sclerosis Center, Melsbroek, Belgium
- Department Neuroprotection and Neuromodulation, Center for Neurosciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Judith Derdelinckx
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Tatjana Reynders
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences Research Group, Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
| | - Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences Research Group, Faculty of Medicine and Health Sciences, University of Antwerp, Edegem, Belgium
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
16
|
Naval-Baudin P, Pons-Escoda A, Camins À, Arroyo P, Viveros M, Castell J, Cos M, Martínez-Yélamos A, Martínez-Yélamos S, Majós C. Deeply 3D-T1-TFE hypointense voxels are characteristic of phase-rim lesions in multiple sclerosis. Eur Radiol 2024; 34:1337-1345. [PMID: 37278854 PMCID: PMC10853299 DOI: 10.1007/s00330-023-09784-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVES The development of new drugs for the treatment of progressive multiple sclerosis (MS) highlights the need for new prognostic biomarkers. Phase-rim lesions (PRLs) have been proposed as markers of progressive disease but are difficult to identify and quantify. Previous studies have identified T1-hypointensity in PRLs. The aim of this study was to compare the intensity profiles of PRLs and non-PRL white-matter lesions (nPR-WMLs) on three-dimensional T1-weighted turbo field echo (3DT1TFE) MRI. We then evaluated the performance of a derived metric as a surrogate for PRLs as potential markers for risk of disease progression. METHODS This study enrolled a cohort of relapsing-remitting (n = 10) and secondary progressive MS (n = 10) patients for whom 3 T MRI was available. PRLs and nPR-WMLs were segmented, and voxel-wise normalized T1-intensity histograms were analyzed. The lesions were divided equally into training and test datasets, and the fifth-percentile (p5)-normalized T1-intensity of each lesion was compared between groups and used for classification prediction. RESULTS Voxel-wise histogram analysis showed a unimodal histogram for nPR-WMLs and a bimodal histogram for PRLs with a large peak in the hypointense limit. Lesion-wise analysis included 1075 nPR-WMLs and 39 PRLs. The p5 intensity of PRLs was significantly lower than that of nPR-WMLs. The T1 intensity-based PRL classifier had a sensitivity of 0.526 and specificity of 0.959. CONCLUSIONS Profound hypointensity on 3DT1TFE MRI is characteristic of PRLs and rare in other white-matter lesions. Given the widespread availability of T1-weighted imaging, this feature might serve as a surrogate biomarker for smoldering inflammation. CLINICAL RELEVANCE STATEMENT Quantitative analysis of 3DT1TFE may detect deeply hypointense voxels in multiple sclerosis lesions, which are highly specific to PRLs. This could serve as a specific indicator of smoldering inflammation in MS, aiding in early detection of disease progression. KEY POINTS • Phase-rim lesions (PRLs) in multiple sclerosis present a characteristic T1-hypointensity on 3DT1TFE MRI. • Intensity-normalized 3DT1TFE can be used to systematically identify and quantify these deeply hypointense foci. • Deep T1-hypointensity may act as an easily detectable, surrogate marker for PRLs.
Collapse
Affiliation(s)
- Pablo Naval-Baudin
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain.
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain.
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain.
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain.
| | - Albert Pons-Escoda
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
| | - Àngels Camins
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Pablo Arroyo
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
| | - Mildred Viveros
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Josep Castell
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Mònica Cos
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Antonio Martínez-Yélamos
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Sergio Martínez-Yélamos
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
- Departament de Ciències Clíniques, Facultat de Medicina I Ciències de La Salut, Universitat de Barcelona (UB), Carrer de Casanova 143, 08036, Barcelona, Spain
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
| | - Carles Majós
- Neuroradiology Section, Department of Radiology, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Institut de Diagnòstic Per La Imatge (IDI), L'Hospitalet de Llobregat, Centre Bellvige, Carrer de Feixa Llarga SN, 08907, Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Universitat de Barcelona (UB), L'Hospitalet de Llobregat, 08907, Barcelona, Spain
| |
Collapse
|
17
|
Qu S, Hu S, Xu H, Wu Y, Ming S, Zhan X, Wang C, Huang X. TREM-2 Drives Development of Multiple Sclerosis by Promoting Pathogenic Th17 Polarization. Neurosci Bull 2024; 40:17-34. [PMID: 37498431 PMCID: PMC10774236 DOI: 10.1007/s12264-023-01094-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/07/2023] [Indexed: 07/28/2023] Open
Abstract
Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease, mediated by pathogenic T helper 17 (Th17) cells. However, the therapeutic effect is accompanied by the fluctuation of the proportion and function of Th17 cells, which prompted us to find the key regulator of Th17 differentiation in MS. Here, we demonstrated that the triggering receptor expressed on myeloid cells 2 (TREM-2), a modulator of pattern recognition receptors on innate immune cells, was highly expressed on pathogenic CD4-positive T lymphocyte (CD4+ T) cells in both patients with MS and experimental autoimmune encephalomyelitis (EAE) mouse models. Conditional knockout of Trem-2 in CD4+ T cells significantly alleviated the disease activity and reduced Th17 cell infiltration, activation, differentiation, and inflammatory cytokine production and secretion in EAE mice. Furthermore, with Trem-2 knockout in vivo experiments and in vitro inhibitor assays, the TREM-2/zeta-chain associated protein kinase 70 (ZAP70)/signal transducer and activator of transcription 3 (STAT3) signal axis was essential for Th17 activation and differentiation in EAE progression. In conclusion, TREM-2 is a key regulator of pathogenic Th17 in EAE mice, and this sheds new light on the potential of this therapeutic target for MS.
Collapse
Affiliation(s)
- Siying Qu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Shengfeng Hu
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Huiting Xu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Siqi Ming
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Xiaoxia Zhan
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, China.
| |
Collapse
|
18
|
Yuan J, Tao Y, Wang M, Huang F, Wu X. Natural compounds as potential therapeutic candidates for multiple sclerosis: Emerging preclinical evidence. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155248. [PMID: 38096716 DOI: 10.1016/j.phymed.2023.155248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Multiple sclerosis is a chronic neurodegenerative disease, with main characteristics of pathological inflammation, neural damage and axonal demyelination. Current mainstream treatments demonstrate more or less side effects, which limit their extensive use. PURPOSE Increasing studies indicate that natural compounds benefit multiple sclerosis without remarkable side effects. Given the needs to explore the potential effects of natural compounds of plant origin on multiple sclerosis and their mechanisms, we review publications involving the role of natural compounds in animal models of multiple sclerosis, excluding controlled trials. STUDY DESIGN AND METHODS Articles were conducted on PubMed and Web of Science databases using the keywords ``multiple sclerosis'' and ``natural compounds'' published from January 1, 2008, to September 1, 2023. RESULTS This review summarized the effects of natural ingredients (flavonoids, terpenoids, polyphenols, alkaloids, glycosides, and others) from three aspects: immune regulation, oxidative stress suppression, and myelin protection and regeneration in multiple sclerosis. CONCLUSION Overall, we concluded 80 studies to show the preclinical evidence that natural compounds may attenuate multiple sclerosis progression via suppressing immune attacks and/or promoting myelin protection or endogenous repair processes. It would pave the roads for the future development of effective therapeutic regiments of multiple sclerosis.
Collapse
Affiliation(s)
- Jinfeng Yuan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanlin Tao
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengxue Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
19
|
Zhang Y, Ya D, Yang J, Jiang Y, Li X, Wang J, Tian N, Deng J, Yang B, Li Q, Liao R. EAAT3 impedes oligodendrocyte remyelination in chronic cerebral hypoperfusion-induced white matter injury. CNS Neurosci Ther 2024; 30:e14487. [PMID: 37803915 PMCID: PMC10805396 DOI: 10.1111/cns.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Chronic cerebral hypoperfusion-induced demyelination causes progressive white matter injury, although the pathogenic pathways are unknown. METHODS The Single Cell Portal and PanglaoDB databases were used to analyze single-cell RNA sequencing experiments to determine the pattern of EAAT3 expression in CNS cells. Immunofluorescence (IF) was used to detect EAAT3 expression in oligodendrocytes and oligodendrocyte progenitor cells (OPCs). EAAT3 levels in mouse brains were measured using a western blot at various phases of development, as well as in traumatic brain injury (TBI) and intracerebral hemorrhage (ICH) mouse models. The mouse bilateral carotid artery stenosis (BCAS) model was used to create white matter injury. IF, Luxol Fast Blue staining, and electron microscopy were used to investigate the effect of remyelination. 5-Ethynyl-2-Deoxy Uridine staining, transwell chamber assays, and IF were used to examine the effects of OPCs' proliferation, migration, and differentiation in vivo and in vitro. The novel object recognition test, the Y-maze test, the rotarod test, and the grid walking test were used to examine the impact of behavioral modifications. RESULTS A considerable amount of EAAT3 was expressed in OPCs and mature oligodendrocytes, according to single-cell RNA sequencing data. During multiple critical phases of mouse brain development, there were no substantial changes in EAAT3 levels in the hippocampus, cerebral cortex, or white matter. Furthermore, neither the TBI nor ICH models significantly affected the levels of EAAT3 in the aforementioned brain areas. The chronic white matter injury caused by BCAS, on the other hand, resulted in a strikingly high level of EAAT3 expression in the oligodendroglia and white matter. Correspondingly, blocking EAAT3 assisted in the recovery of cognitive and motor impairment as well as the restoration of cerebral blood flow following BCAS. Furthermore, EAAT3 suppression was connected to improved OPCs' survival and proliferation in vivo as well as faster OPCs' proliferation, migration, and differentiation in vitro. Furthermore, this study revealed that the mTOR pathway is implicated in EAAT3-mediated remyelination. CONCLUSIONS Our findings provide the first evidence that abnormally high levels of oligodendroglial EAAT3 in chronic cerebral hypoperfusion impair OPCs' pro-remyelination actions, hence impeding white matter repair and functional recovery. EAAT3 inhibitors could be useful in the treatment of ischemia demyelination.
Collapse
Affiliation(s)
- Yingmei Zhang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Dongshan Ya
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiaxin Yang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Yanlin Jiang
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Xiaoxia Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jiawen Wang
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Ning Tian
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Jungang Deng
- Department of PharmacologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Bin Yang
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Qinghua Li
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| | - Rujia Liao
- Laboratory of NeuroscienceAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Department of NeurologyAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
- Guangxi Clinical Research Center for Neurological DiseasesAffiliated Hospital of Guilin Medical University, Guilin Medical UniversityGuilinChina
| |
Collapse
|
20
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
21
|
Hartung HP, Cree BA, Barnett M, Meuth SG, Bar-Or A, Steinman L. Bioavailable central nervous system disease-modifying therapies for multiple sclerosis. Front Immunol 2023; 14:1290666. [PMID: 38162670 PMCID: PMC10755740 DOI: 10.3389/fimmu.2023.1290666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024] Open
Abstract
Disease-modifying therapies for relapsing multiple sclerosis reduce relapse rates by suppressing peripheral immune cells but have limited efficacy in progressive forms of the disease where cells in the central nervous system play a critical role. To our knowledge, alemtuzumab, fumarates (dimethyl, diroximel, and monomethyl), glatiramer acetates, interferons, mitoxantrone, natalizumab, ocrelizumab, ofatumumab, and teriflunomide are either limited to the periphery or insufficiently studied to confirm direct central nervous system effects in participants with multiple sclerosis. In contrast, cladribine and sphingosine 1-phosphate receptor modulators (fingolimod, ozanimod, ponesimod, and siponimod) are central nervous system-penetrant and could have beneficial direct central nervous system properties.
Collapse
Affiliation(s)
- Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Department of Neurology, Palacký University Olomouc, Olomouc, Czechia
| | - Bruce A.C. Cree
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Michael Barnett
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Sven G. Meuth
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Beckman Center for Molecular Medicine, Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
22
|
Long Z, Zeng L, He Q, Yang K, Xiang W, Ren X, Deng Y, Chen H. Research progress on the clinical application and mechanism of iguratimod in the treatment of autoimmune diseases and rheumatic diseases. Front Immunol 2023; 14:1150661. [PMID: 37809072 PMCID: PMC10552782 DOI: 10.3389/fimmu.2023.1150661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/04/2023] [Indexed: 10/10/2023] Open
Abstract
Autoimmune diseases are affected by complex pathophysiology involving multiple cell types, cytokines, antibodies and mimicking factors. Different drugs are used to improve these autoimmune responses, including nonsteroidal anti-inflammatory drugs (NSAIDs), corticosteroids, antibodies, and small molecule drugs (DMARDs), which are prevalent clinically in the treatment of rheumatoid arthritis (RA), etc. However, low cost-effectiveness, reduced efficacy, adverse effects, and patient non-response are unattractive factors driving the development of new drugs such as iguratimod. As a new disease-modifying antirheumatic drug, iguratimod has pharmacological activities such as regulating autoimmune disorders, inflammatory cytokines, regulating immune cell activation, differentiation and proliferation, improving bone metabolism, and inhibiting fibrosis. In recent years, clinical studies have found that iguratimod is effective in the treatment of RA, SLE, IGG4-RD, Sjogren 's syndrome, ankylosing spondylitis, interstitial lung disease, and other autoimmune diseases and rheumatic diseases. The amount of basic and clinical research on other autoimmune diseases is also increasing. Therefore, this review systematically reviews the latest relevant literature in recent years, reviews the research results in recent years, and summarizes the research progress of iguratimod in the treatment of related diseases. This review highlights the role of iguratimod in the protection of autoimmune and rheumatic bone and related immune diseases. It is believed that iguratimod's unique mode of action and its favorable patient response compared to other DMARDs make it a suitable antirheumatic and bone protective agent in the future.
Collapse
Affiliation(s)
- Zhiyong Long
- Department of Rehabilitation Medicine, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China
| | - Qi He
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Wang Xiang
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Xiang Ren
- Department of Rheumatology, The First People's Hospital Changde City, Changde, Hunan, China
| | - Ying Deng
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Hua Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Jhelum P, Zandee S, Ryan F, Zarruk JG, Michalke B, Venkataramani V, Curran L, Klement W, Prat A, David S. Ferroptosis induces detrimental effects in chronic EAE and its implications for progressive MS. Acta Neuropathol Commun 2023; 11:121. [PMID: 37491291 PMCID: PMC10369714 DOI: 10.1186/s40478-023-01617-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Ferroptosis is a form of lipid peroxidation-mediated cell death and damage triggered by excess iron and insufficiency in the glutathione antioxidant pathway. Oxidative stress is thought to play a crucial role in progressive forms of multiple sclerosis (MS) in which iron deposition occurs. In this study we assessed if ferroptosis plays a role in a chronic form of experimental autoimmune encephalomyelitis (CH-EAE), a mouse model used to study MS. Changes were detected in the mRNA levels of several ferroptosis genes in CH-EAE but not in relapsing-remitting EAE. At the protein level, expression of iron importers is increased in the earlier stages of CH-EAE (onset and peak). While expression of hemoxygenase-1, which mobilizes iron from heme, likely from phagocytosed material, is increased in macrophages at the peak and progressive stages. Excess iron in cells is stored safely in ferritin, which increases with disease progression. Harmful, redox active iron is released from ferritin when shuttled to autophagosomes by 'nuclear receptor coactivator 4' (NCOA4). NCOA4 expression increases at the peak and progressive stages of CH-EAE and accompanied by increase in redox active ferrous iron. These changes occur in parallel with reduction in the antioxidant pathway (system xCT, glutathione peroxidase 4 and glutathione), and accompanied by increased lipid peroxidation. Mice treated with a ferroptosis inhibitor for 2 weeks starting at the peak of CH-EAE paralysis, show significant improvements in function and pathology. Autopsy samples of tissue sections of secondary progressive MS (SPMS) showed NCOA4 expression in macrophages and oligodendrocytes along the rim of mixed active/inactive lesions, where ferritin+ and iron containing cells are located. Cells expressing NCOA4 express less ferritin, suggesting ferritin degradation and release of redox active iron, as indicated by increased lipid peroxidation. These data suggest that ferroptosis is likely to contribute to pathogenesis in CH-EAE and SPMS.
Collapse
Affiliation(s)
- Priya Jhelum
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Stephanie Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Juan G Zarruk
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Laura Curran
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Wendy Klement
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
24
|
Temmerman J, Engelborghs S, Bjerke M, D’haeseleer M. Cerebrospinal fluid inflammatory biomarkers for disease progression in Alzheimer's disease and multiple sclerosis: a systematic review. Front Immunol 2023; 14:1162340. [PMID: 37520580 PMCID: PMC10374015 DOI: 10.3389/fimmu.2023.1162340] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/12/2023] [Indexed: 08/01/2023] Open
Abstract
Inflammatory processes are involved in the pathophysiology of both Alzheimer's disease (AD) and multiple sclerosis (MS) but their exact contribution to disease progression remains to be deciphered. Biomarkers are needed to define pathophysiological processes of these disorders, who may increasingly co-exist in the elderly generations of the future, due to the rising prevalence in both and ameliorated treatment options with improved life expectancy in MS. The purpose of this review was to provide a systematic overview of inflammatory biomarkers, as measured in the cerebrospinal fluid (CSF), that are associated with clinical disease progression. International peer-reviewed literature was screened using the PubMed and Web of Science databases. Disease progression had to be measured using clinically validated tests representing baseline functional and/or cognitive status, the evolution of such clinical scores over time and/or the transitioning from one disease stage to a more severe stage. The quality of included studies was systematically evaluated using a set of questions for clinical, neurochemical and statistical characteristics of the study. A total of 84 papers were included (twenty-five for AD and 59 for MS). Elevated CSF levels of chitinase-3-like protein 1 (YKL-40) were associated with disease progression in both AD and MS. Osteopontin and monocyte chemoattractant protein-1 were more specifically related to disease progression in AD, whereas the same was true for interleukin-1 beta, tumor necrosis factor alpha, C-X-C motif ligand 13, glial fibrillary acidic protein and IgG oligoclonal bands in MS. We observed a broad heterogeneity of studies with varying cohort characterization, non-disclosure of quality measures for neurochemical analyses and a lack of adequate longitudinal designs. Most of the retrieved biomarkers are related to innate immune system activity, which seems to be an important mediator of clinical disease progression in AD and MS. Overall study quality was limited and we have framed some recommendations for future biomarker research in this field. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42021264741.
Collapse
Affiliation(s)
- Joke Temmerman
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Sebastiaan Engelborghs
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
| | - Maria Bjerke
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universiteit Antwerpen, Department of Biomedical Sciences and Institute Born-Bunge, Reference Center for Biological Markers of Dementia (BIODEM), Wilrijk, Antwerp, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Clinical Biology, Laboratory of Clinical Neurochemistry, Jette, Brussels, Belgium
| | - Miguel D’haeseleer
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Jette, Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Jette, Brussels, Belgium
- National MS Center (NMSC), Neurology, Melsbroek, Steenokkerzeel, Belgium
| |
Collapse
|
25
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
26
|
Moretti M, Caraffi R, Lorenzini L, Ottonelli I, Sannia M, Alastra G, Baldassarro VA, Giuliani A, Duskey JT, Cescatti M, Ruozi B, Aloe L, Vandelli MA, Giardino L, Tosi G, Calzà L. "Combo" Multi-Target Pharmacological Therapy and New Formulations to Reduce Inflammation and Improve Endogenous Remyelination in Traumatic Spinal Cord Injury. Cells 2023; 12:cells12091331. [PMID: 37174731 PMCID: PMC10177268 DOI: 10.3390/cells12091331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Spinal cord injury (SCI) is characterized by a cascade of events that lead to sensory and motor disabilities. To date, this condition is irreversible, and no cure exists. To improve myelin repair and limit secondary degeneration, we developed a multitherapy based on nanomedicines (NMeds) loaded with the promyelinating agent triiodothyronine (T3), used in combination with systemic ibuprofen and mouse nerve growth factor (mNGF). Poly-L-lactic-co-glycolic acid (PLGA) NMeds were optimized and loaded with T3 to promote sustained release. In vitro experiments confirmed the efficacy of T3-NMeds to differentiate oligodendrocyte precursor cells. In vivo rat experiments were performed in contusion SCI to explore the NMed biodistribution and efficacy of combo drugs at short- and long-term post-lesion. A strong anti-inflammatory effect was observed in the short term with a reduction of type M1 microglia and glutamate levels, but with a subsequent increase of TREM2. In the long term, an improvement of myelination in NG2-IR, an increase in MBP content, and a reduction of the demyelination area were observed. These data demonstrated that NMeds can successfully be used to obtain more controlled local drug delivery and that this multiple treatment could be effective in improving the outcome of SCIs.
Collapse
Affiliation(s)
- Marzia Moretti
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Riccardo Caraffi
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luca Lorenzini
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Giuseppe Alastra
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Vito Antonio Baldassarro
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Alessandro Giuliani
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luigi Aloe
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Luciana Giardino
- Department of Veterinary Medical Science (DIMEVET), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
- IRET Foundation, Ozzano Emilia, 40064 Bologna, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Laura Calzà
- Health Science and Technologies, Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, 40064 Bologna, Italy
- Montecatone Rehabilitation Institute, 40026 Imola, Italy
- Department of Pharmacy and Biotechnology (FaBit), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
27
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
28
|
Chhabra S, Mehan S. Matrine exerts its neuroprotective effects by modulating multiple neuronal pathways. Metab Brain Dis 2023; 38:1471-1499. [PMID: 37103719 DOI: 10.1007/s11011-023-01214-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
Recent evidence suggests that misfolding, clumping, and accumulation of proteins in the brain may be common causes and pathogenic mechanism for several neurological illnesses. This causes neuronal structural deterioration and disruption of neural circuits. Research from various fields supports this idea, indicating that developing a single treatment for several severe conditions might be possible. Phytochemicals from medicinal plants play an essential part in maintaining the brain's chemical equilibrium by affecting the proximity of neurons. Matrine is a tetracyclo-quinolizidine alkaloid derived from the plant Sophora flavescens Aiton. Matrine has been shown to have a therapeutic effect on Multiple Sclerosis, Alzheimer's disease, and various other neurological disorders. Numerous studies have demonstrated that matrine protects neurons by altering multiple signalling pathways and crossing the blood-brain barrier. As a result, matrine may have therapeutic utility in the treatment of a variety of neurocomplications. This work aims to serve as a foundation for future clinical research by reviewing the current state of matrine as a neuroprotective agent and its potential therapeutic application in treating neurodegenerative and neuropsychiatric illnesses. Future research will answer many concerns and lead to fascinating discoveries that could impact other aspects of matrine.
Collapse
Affiliation(s)
- Swesha Chhabra
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
29
|
Gao D, Zheng CC, Hao JP, Yang CC, Hu CY. Icariin ameliorates behavioral deficits and neuropathology in a mouse model of multiple sclerosis. Brain Res 2023; 1804:148267. [PMID: 36731819 DOI: 10.1016/j.brainres.2023.148267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Multiple sclerosis (MS) is a systemic inflammatory illness of the central nervous system that involves demyelinating lesions in the myelin-rich white matter and pathology in the grey matter. Despite significant advancements in drug research for MS, the disease's complex pathophysiology makes it difficult to treat the progressive forms of the disease. In this study, we identified a natural flavonoid compound icariin (ICA) as a potent effective agent for MS in ameliorating the deterioration of symptoms including the neurological deficit score and the body weight in a murine experimental autoimmune encephalomyelitis (EAE) model. These improvements were associated with decreased demyelination in the corpus callosum and neuron loss in the hippocampus and cortex confirmed by immunohistochemistry analysis. Meanwhile, it was observed that the activation of microglia in cerebral cortex and hippocampus were inhibited followed by the neuroinflammatory cytokines downregulation such as IL-1β, IL-6 and TNF-α after ICA treatment, which was probably attributable to the suppression of microglial NLRP3 inflammasome activation. Additionally, molecular docking also revealed the binding force of ICA to NLRP3 inflammasome protein complexes in vitro. Taken together, our findings have demonstrated that ICA, as pleiotropic agent, prevents EAE-induced MS by improving demyelination and neuron loss, which interferes with the neuroinflammation via microglial NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Ceng-Ceng Zheng
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Jin-Ping Hao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China
| | - Cui-Cui Yang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China.
| | - Chao-Ying Hu
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing Engineering Research Center for Nervous System Drugs, Beijing 100053, China; Phase I Clinical Trial Unit, Beijing Ditan Hospital Capital Medical University, Beijing 100015, China.
| |
Collapse
|
30
|
Abstract
Significance: Central nervous system (CNS) diseases are disorders of the brain and/or spinal cord and include neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Nuclear factor erythroid 2-related factor 2 (NRF2) is a transcription factor belonging to the cap-n-collar family that harbors a unique basic leucine zipper motif and plays as a master regulator of homeostatic responses. Recent Advances: Kelch-like ECH-associated protein 1 (KEAP1) is an adaptor of the Cullin3 (CUL3)-based ubiquitin E3 ligase that enhances the ubiquitylation of NRF2, which promotes the degradation of NRF2 to suppress its transcriptional activity in the absence of stress. Cysteine residues of KEAP1 are modified under stress conditions, and NRF2 degradation is attenuated, allowing it to accumulate and induce the expression of target genes. This regulatory system is referred to as the KEAP1-NRF2 system and plays a central role in protecting cells against various stresses. NRF2 also negatively regulates the expression of inflammatory cytokine and chemokine genes and suppresses pathological inflammation. As oxidative stress, inflammation, and proteostasis are known to contribute to neurodegenerative diseases, the KEAP1-NRF2 system is an attractive target for the treatment of these diseases. Critical Issues: In mouse models of neurodegenerative diseases, Nrf2 depletion exacerbates symptoms and enhances oxidative damage and inflammation in the CNS. In contrast, chemical or genetic NRF2 activation improves these symptoms. Indeed, the NRF2-activating chemical dimethyl fumarate is now widely used for the clinical treatment of MS. Future Directions: The KEAP1-NRF2 system is a promising therapeutic target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
31
|
Abstract
Neurological disorders are the leading cause of physical and cognitive disability across the globe, currently affecting approximately 15% of the worldwide population [...].
Collapse
|
32
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
33
|
Franklin RJM, Simons M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron 2022; 110:3549-3565. [PMID: 36228613 DOI: 10.1016/j.neuron.2022.09.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Remyelination, the myelin regenerative response that follows demyelination, restores saltatory conduction and function and sustains axon health. Its declining efficiency with disease progression in the chronic autoimmune disease multiple sclerosis (MS) contributes to the currently untreatable progressive phase of the disease. Although some of the bona fide myelin regenerative medicine clinical trials have succeeded in demonstrating proof-of-principle, none of these compounds have yet proceeded toward approval. There therefore remains a need to increase our understanding of the fundamental biology of remyelination so that existing targets can be refined and new ones discovered. Here, we review the role of inflammation, in particular innate immunity, in remyelination, describing its many and complex facets and discussing how our evolving understanding can be harnessed to translational goals.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs - Cambridge Institute of Science, Granta Park, Cambridge CB21 6GP, UK.
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany; German Center for Neurodegenerative Diseases, Munich, Germany; Cluster of Systems Neurology (SyNergy), Munich, Germany; Institute for Stroke and Dementia Research, Munich, Germany.
| |
Collapse
|