1
|
Nalikkaramal S, Hill SR, Ignell R. Impact of elevated CO 2 level and egg quiescence duration on gene expression in the peripheral olfactory system of Aedes aegypti. Sci Rep 2025; 15:14318. [PMID: 40275031 PMCID: PMC12022256 DOI: 10.1038/s41598-025-98159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Elevation in CO2 can significantly impact the biology of various organisms, affecting life-history traits of both aquatic and terrestrial forms, including disease-vectoring mosquitoes. For mosquitoes, this effect is accentuated by egg quiescence duration, resulting in a change in foraging of adult females. Female mosquitoes rely on their olfactory system for locating resources, such as nectar and blood. This study employs a transcriptomic approach to investigate how a projected elevation in CO2 level, under a worst-case scenario, interacts with extended egg quiescence duration to modulate the molecular machinery of the peripheral olfactory system, the antennae and maxillary palps, of the yellow fever mosquito, Aedes aegypti. The transcriptome analysis demonstrates significant changes in the abundance of genes related to metabolism, xenobiotics degradation and chemosensory function, with the most pronounced effects observed in the CO2 sensing tissue, the maxillary palp. The study provides novel insights into how anthropogenic climate change can modulate the olfactory sensory system of disease vectors, which may have cascading effects on resource-seeking behaviour.
Collapse
Affiliation(s)
- Sukritha Nalikkaramal
- Department of Plant Protection Biology, Disease Vector Group, Box 102 234 56, Lomma, Alnarp, Sweden
- Max Planck Center Next Generation Insect Chemical Ecology, Alnarp, Sweden
| | - Sharon Rose Hill
- Department of Plant Protection Biology, Disease Vector Group, Box 102 234 56, Lomma, Alnarp, Sweden
- Max Planck Center Next Generation Insect Chemical Ecology, Alnarp, Sweden
| | - Rickard Ignell
- Department of Plant Protection Biology, Disease Vector Group, Box 102 234 56, Lomma, Alnarp, Sweden.
- Max Planck Center Next Generation Insect Chemical Ecology, Alnarp, Sweden.
| |
Collapse
|
2
|
Flores-Valle A, Vishniakou I, Seelig JD. Dynamics of glia and neurons regulate homeostatic rest, sleep and feeding behavior in Drosophila. Nat Neurosci 2025:10.1038/s41593-025-01942-1. [PMID: 40259071 DOI: 10.1038/s41593-025-01942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/19/2025] [Indexed: 04/23/2025]
Abstract
Homeostatic processes, including sleep, are critical for brain function. Here we identify astrocyte-like glia (or astrocytes, AL) and ensheathing glia (EG), the two major classes of glia that arborize inside the brain, as brain-wide, locally acting homeostats for the short, naturally occurring rest and sleep bouts of Drosophila, and show that a subset of neurons in the fan-shaped body encodes feeding homeostasis. We show that the metabolic gas carbon dioxide, changes in pH and behavioral activity all induce long-lasting calcium responses in EG and AL, and that calcium levels in both glia types show circadian modulation. The homeostatic dynamics of these glia can be modeled based on behavior. Additionally, local optogenetic activation of AL or EG is sufficient to induce rest. Together, these results suggest that glial calcium levels are homeostatic controllers of metabolic activity, thus establishing a link between metabolism, rest and sleep.
Collapse
Affiliation(s)
- Andres Flores-Valle
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany.
| | - Ivan Vishniakou
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany
| | - Johannes D Seelig
- Max Planck Institute for Neurobiology of Behavior - caesar (MPINB), Bonn, Germany.
| |
Collapse
|
3
|
Keesey IW, Doll G, Chakraborty SD, Baschwitz A, Lemoine M, Kaltenpoth M, Svatoš A, Sachse S, Knaden M, Hansson BS. Neuroecology of alcohol risk and reward: Methanol boosts pheromones and courtship success in Drosophila melanogaster. SCIENCE ADVANCES 2025; 11:eadi9683. [PMID: 40173238 PMCID: PMC11963984 DOI: 10.1126/sciadv.adi9683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Attraction of Drosophila melanogaster toward by-products of alcoholic fermentation, especially ethanol, has been extensively studied. Previous research has provided several interpretations of this attraction, including potential drug abuse, or a self-medicating coping strategy after mate rejection. We posit that the ecologically adaptive value of alcohol attraction has not been fully explored. Here, we assert a simple yet vital biological rationale for this alcohol preference. Flies display attraction to fruits rich in alcohol, specifically ethanol and methanol, where contact results in a rapid amplification of fatty acid-derived pheromones that enhance courtship success. We also identify olfactory sensory neurons that detect these alcohols, where we reveal roles in both attraction and aversion, and show that valence is balanced around alcohol concentration. Moreover, we demonstrate that methanol can be deadly, and adult flies must therefore accurately weigh the trade-off between benefits and costs for exposure within their naturally fermented and alcohol-rich environments.
Collapse
Affiliation(s)
- Ian W. Keesey
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Georg Doll
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sudeshna Das Chakraborty
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
- European Neuroscience Institute (ENI), Neural Computation and Behavior, Grisebachstraße 5, 37077 Göttingen, Germany
| | - Amelie Baschwitz
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Marion Lemoine
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Martin Kaltenpoth
- Max Planck Institute for Chemical Ecology, Department of Insect Symbiosis, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Aleš Svatoš
- Max Planck Institute for Chemical Ecology, Mass Spectrometry/Proteomics Research Group, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Silke Sachse
- Max Planck Institute for Chemical Ecology, Research Group Olfactory Coding, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Bill S. Hansson
- Max Planck Institute for Chemical Ecology, Department of Evolutionary Neuroethology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
4
|
Thomas A, Roy M, Gupta N. Olfactory coding in the mosquito antennal lobe: labeled lines or combinatorial code? CURRENT OPINION IN INSECT SCIENCE 2025; 68:101299. [PMID: 39550060 DOI: 10.1016/j.cois.2024.101299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
Odors serve as important cues for many behaviors in mosquitoes, including host-seeking, foraging, and oviposition. They are detected by olfactory receptor neurons present in the sensory organs, whose axons take this signal to the antennal lobe, the first olfactory processing center in the insect brain. We review the organization and the functioning of the antennal lobe in mosquitoes, focusing on two populations of interneurons present there: the local neurons (LNs) and the projection neurons (PNs). LNs enable information processing in the antennal lobe by providing lateral inhibition and excitation. PNs carry the processed output to downstream neurons in the lateral horn and the mushroom body. We compare the ideas of labeled lines and combinatorial codes, and argue that the PN population encodes odors combinatorially. Throughout this review, we discuss the observations from Aedes, Anopheles, and Culex mosquitoes in the context of previous findings from Drosophila and other insects.
Collapse
Affiliation(s)
- Abin Thomas
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Madhurima Roy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Nitin Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India; Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
5
|
Stupski SD, van Breugel F. Wind gates olfaction-driven search states in free flight. Curr Biol 2024; 34:4397-4411.e6. [PMID: 39067453 PMCID: PMC11461137 DOI: 10.1016/j.cub.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/08/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
For organisms tracking a chemical cue to its source, the motion of their surrounding fluid provides crucial information for success. Swimming and flying animals engaged in olfaction-driven search often start by turning into the direction of an oncoming wind or water current. However, it is unclear how organisms adjust their strategies when directional cues are absent or unreliable, as is often the case in nature. Here, we use the genetic toolkit of Drosophila melanogaster to develop an optogenetic paradigm to deliver temporally precise "virtual" olfactory experiences for free-flying animals in either laminar wind or still air. We first confirm that in laminar wind flies turn upwind. Furthermore, we show that they achieve this using a rapid (∼100 ms) turn, implying that flies estimate the ambient wind direction prior to "surging" upwind. In still air, flies adopt a remarkably stereotyped "sink and circle" search state characterized by ∼60° turns at 3-4 Hz, biased in a consistent direction. Together, our results show that Drosophila melanogaster assesses the presence and direction of ambient wind prior to deploying a distinct search strategy. In both laminar wind and still air, immediately after odor onset, flies decelerate and often perform a rapid turn. Both maneuvers are consistent with predictions from recent control theoretic analyses for how insects may estimate properties of wind while in flight. We suggest that flies may use their deceleration and "anemometric" turn as active sensing maneuvers to rapidly gauge properties of their wind environment before initiating a proximal or upwind search routine.
Collapse
Affiliation(s)
- S David Stupski
- Integrative Neuroscience Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Ecology Evolution and Conservation Biology Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Department of Mechanical Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA
| | - Floris van Breugel
- Integrative Neuroscience Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Ecology Evolution and Conservation Biology Program, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA; Department of Mechanical Engineering, University of Nevada, Reno, 1664 N. Virginia St., Reno, NV 89557, USA.
| |
Collapse
|
6
|
Stupski SD, van Breugel F. Wind Gates Olfaction Driven Search States in Free Flight. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.30.569086. [PMID: 38076971 PMCID: PMC10705368 DOI: 10.1101/2023.11.30.569086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
For organisms tracking a chemical cue to its source, the motion of their surrounding fluid provides crucial information for success. Swimming and flying animals engaged in olfaction driven search often start by turning into the direction of an oncoming wind or water current. However, it is unclear how organisms adjust their strategies when directional cues are absent or unreliable, as is often the case in nature. Here, we use the genetic toolkit of Drosophila melanogaster to develop an optogenetic paradigm to deliver temporally precise "virtual" olfactory experiences for free-flying animals in either laminar wind or still air. We first confirm that in laminar wind flies turn upwind. Furthermore, we show that they achieve this using a rapid (∼100 ms) turn, implying that flies estimate the ambient wind direction prior to "surging" upwind. In still air, flies adopt remarkably stereotyped "sink and circle" search state characterized by ∼60°turns at 3-4 Hz, biased in a consistent direction. Together, our results show that Drosophila melanogaster assess the presence and direction of ambient wind prior to deploying a distinct search strategy. In both laminar wind and still air, immediately after odor onset, flies decelerate and often perform a rapid turn. Both maneuvers are consistent with predictions from recent control theoretic analyses for how insects may estimate properties of wind while in flight. We suggest that flies may use their deceleration and "anemometric" turn as active sensing maneuvers to rapidly gauge properties of their wind environment before initiating a proximal or upwind search routine.
Collapse
|
7
|
Alonso San Alberto D, Rusch C, Riffell JA. Experiments and Analysis of Mosquito Flight Behaviors in a Wind Tunnel: An Introduction. Cold Spring Harb Protoc 2024; 2024:pdb.top107674. [PMID: 37137567 DOI: 10.1101/pdb.top107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mosquitoes detect and navigate to important resources, like a host, using combinations of different sensory stimuli. The relative importance of the sensory cues can change as the mosquito gets closer to their target. Other factors, both internal and external, can also influence the mosquito behavior. A mechanistic understanding of these sensory stimuli, and how they impact mosquito navigation, can now be readily studied using wind tunnels and associated computer vision systems. In this introduction, we present a behavioral paradigm using a wind tunnel for flight behavior analysis. The wind tunnel's large size with its associated cameras and software system for analysis of the mosquito flight tracks can be sophisticated and sometimes cost-prohibitive. Nevertheless, the wind tunnel's flexibility in allowing the testing of multimodal stimuli and scaling of environmental stimuli makes it possible to reproduce conditions from the field and test them in the laboratory, while also allowing the observation of natural flight kinematics.
Collapse
Affiliation(s)
| | - Claire Rusch
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
8
|
Zhou Z, Luo Y, Wang X, He J, Zhou Q. Identification and sex expression profiles of candidate chemosensory genes from Atherigona orientalis via the antennae and leg transcriptome analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101222. [PMID: 38430710 DOI: 10.1016/j.cbd.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Atherigona orientalis Schiner (1868) is an acknowledged agricultural pest owing to its feeding habits and breeding locations. This insect is a tropical and subtropical pest in fruits and vegetables, in which >50 varieties of fruits and vegetables in 26 families, such as Capsicum annuum, Lycopersicon esculentum, and Cucumis melo have been attacked. Moreover, A. orientalis may also develop in rotten crops and feces or insect carcasses, which are also considered one kind of sanitary pest and medical insect. At present, the invasion ranges of A. orientalis are still increasing and more preventive and management measures are to be processed. To gain a better understanding of the molecular mechanisms involved in olfactory reception in A. orientalis, the transcriptome of male and female antennae and legs was systematically analyzed. In total, 131 chemosensory-related genes, including 63 odorant receptors (ORs), 20 gustatory receptors (GRs), 18 ionotropic receptors (IRs), 27 odorant binding proteins (OBPs), 1 chemosensory protein (CSP), and 2 sensory neuron membrane proteins (SNMPs), were identified. The analysis focused on obtaining expression information of candidate olfactory genes at the transcriptomic level by examining the differentially expressed genes (DEGs) in all samples. Totally, 41 DEGs were identified between male antennae (MA) and female antennae (FA), including 32 ORs, 5 OBPs, 1 IR, 2 GRs and 1 SNMP. In MA versus male legs (ML), 78 DEGs were identified (45 ORs, 18 OBPs, 6 GRs, 6 IRs, 1 CSP and 2 SNMPs). In FA and female legs (FL), 96 DEGs were identified (51 ORs, 21 OBPs, 9 GRs, 12 IRs, 1 CSP and 2 SNMPs). For ML and FL, 3 DEGs were identified, including 2 ORs and 1 SNMP. Our results supplement valuable insights for future research on the chemoreception mechanisms in A. orientalis.
Collapse
Affiliation(s)
- Zihao Zhou
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Yujie Luo
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Xintong Wang
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Jing He
- College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Qiong Zhou
- College of Life Sciences, Hunan Normal University, Changsha 410006, China.
| |
Collapse
|
9
|
Zhang J, Duan S, Wang W, Liu D, Wang Y. Molecular Basis of CO 2 Sensing in Hyphantria cunea. Int J Mol Sci 2024; 25:5987. [PMID: 38892175 PMCID: PMC11172650 DOI: 10.3390/ijms25115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon dioxide (CO2) released by plants can serve as a cue for regulating insect behaviors. Hyphantria cunea is a widely distributed forestry pest that may use CO2 as a cue for foraging and oviposition. However, the molecular mechanism underlying its ability to sense CO2 has not been elucidated. Our initial study showed that CO2 is significantly attractive to H. cunea adults. Subsequently, 44 H. cunea gustatory receptors (GRs) were identified using transcriptome data, and 3 candidate CO2 receptors that are specifically expressed in the labial palps were identified. In vivo electrophysiological assays revealed that the labial palp is the primary organ for CO2 perception in H. cunea, which is similar to findings in other lepidopteran species. By using the Xenopus oocyte expression system, we showed that the HcunGR1 and HcunGR3 co-expressions produced a robust response to CO2, but HcunGR2 had an inhibitory effect on CO2 perception. Finally, immunohistochemical staining revealed sexual dimorphism in the CO2-sensitive labial pit organ glomerulus (LPOG). Taken together, our results clarified the mechanism by which H. cunea sense CO2, laying the foundation for further investigations into the role of CO2 in the rapid spread of H. cunea.
Collapse
Affiliation(s)
- Jian Zhang
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Shiwen Duan
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Wenlong Wang
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Duo Liu
- School of Life Sciences, Changchun Normal University, Changchun 130033, China
| | - Yinliang Wang
- School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
10
|
Larnerd C, Kachewar N, Wolf FW. Drosophila learning and memory centers and the actions of drugs of abuse. Learn Mem 2024; 31:a053815. [PMID: 38862166 PMCID: PMC11199947 DOI: 10.1101/lm.053815.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/27/2024] [Indexed: 06/13/2024]
Abstract
Drug addiction and the circuitry for learning and memory are intimately intertwined. Drugs of abuse create strong, inappropriate, and lasting memories that contribute to many of their destructive properties, such as continued use despite negative consequences and exceptionally high rates of relapse. Studies in Drosophila melanogaster are helping us understand how drugs of abuse, especially alcohol, create memories at the level of individual neurons and in the circuits where they function. Drosophila is a premier organism for identifying the mechanisms of learning and memory. Drosophila also respond to drugs of abuse in ways that remarkably parallel humans and rodent models. An emerging consensus is that, for alcohol, the mushroom bodies participate in the circuits that control acute drug sensitivity, not explicitly associative forms of plasticity such as tolerance, and classical associative memories of their rewarding and aversive properties. Moreover, it is becoming clear that drugs of abuse use the mushroom body circuitry differently from other behaviors, potentially providing a basis for their addictive properties.
Collapse
Affiliation(s)
- Caleb Larnerd
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
| | - Neha Kachewar
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
- Health Sciences Research Institute, University of California, Merced, California 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Group, University of California, Merced, California 95343, USA
- Department of Molecular and Cell Biology, University of California, Merced, California 95343, USA
| |
Collapse
|
11
|
Costa-da-Silva AL, Cabal S, Lopez K, Boloix J, Rodriguez BG, Marrero KM, Bellantuono AJ, DeGennaro M. Female Aedes aegypti mosquitoes use communal cues to manage population density at breeding sites. Commun Biol 2024; 7:143. [PMID: 38297108 PMCID: PMC10830494 DOI: 10.1038/s42003-024-05830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Where a female mosquito lays her eggs creates the conditions for reproductive success. Here we identify a communal behavior among ovipositing female mosquitoes. When choosing equal breeding sites, gravid Aedes aegypti aggregate more often than expected. This aggregation occurs when water contact is restricted and does not require the presence of eggs. Instead, the aggregation is regulated by the number of females present at the breeding site. Using assays with both occupied and empty oviposition sites, we show that the Orco olfactory co-receptor and a carbon dioxide receptor, Gr3, detect the presence of mosquitoes. orco mutants aggregate more often in empty sites, suggesting attractive olfactory cues influence females to associate with one another. Gr3 mutant females do not prefer either site, suggesting that the CO2 receptor is necessary to evaluate mosquito population density at breeding sites. Further, raising CO2 levels is sufficient to cause wild-type mosquitoes to avoid empty oviposition sites. Our results demonstrate that female mosquitoes can regulate their own population density at breeding sites using attractive and repellent communal cues.
Collapse
Affiliation(s)
- Andre Luis Costa-da-Silva
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Silvia Cabal
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Kristian Lopez
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Jean Boloix
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Brian Garcia Rodriguez
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Kaylee M Marrero
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Anthony J Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
12
|
Xu Y, Ma L, Liu S, Liang Y, Liu Q, He Z, Tian L, Duan Y, Cai W, Li H, Song F. Chromosome-level genome of the poultry shaft louse Menopon gallinae provides insight into the host-switching and adaptive evolution of parasitic lice. Gigascience 2024; 13:giae004. [PMID: 38372702 PMCID: PMC10904027 DOI: 10.1093/gigascience/giae004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Lice (Psocodea: Phthiraptera) are one important group of parasites that infects birds and mammals. It is believed that the ancestor of parasitic lice originated on the ancient avian host, and ancient mammals acquired these parasites via host-switching from birds. Here we present the first chromosome-level genome of Menopon gallinae in Amblycera (earliest diverging lineage of parasitic lice). We explore the transition of louse host-switching from birds to mammals at the genomic level by identifying numerous idiosyncratic genomic variations. RESULTS The assembled genome is 155 Mb in length, with a contig N50 of 27.42 Mb. Hi-C scaffolding assigned 97% of the bases to 5 chromosomes. The genome of M. gallinae retains a basal insect repertoire of 11,950 protein-coding genes. By comparing the genomes of lice to those of multiple representative insects in other orders, we discovered that gene families of digestion, detoxification, and immunity-related are generally conserved between bird lice and mammal lice, while mammal lice have undergone a significant reduction in genes related to chemosensory systems and temperature. This suggests that mammal lice have lost some of these genes through the adaption to environment and temperatures after host-switching. Furthermore, 7 genes related to hematophagy were positively selected in mammal lice, suggesting their involvement in the hematophagous behavior. CONCLUSIONS Our high-quality genome of M. gallinae provides a valuable resource for comparative genomic research in Phthiraptera and facilitates further studies on adaptive evolution of host-switching within parasitic lice.
Collapse
Affiliation(s)
- Ye Xu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shanlin Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yanxin Liang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qiaoqiao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhixin He
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
13
|
Chen L, Yu XY, Xue XF, Zhang F, Guo LX, Zhang HM, Hoffmann AA, Hong XY, Sun JT. The genome sequence of a spider mite, Tetranychus truncatus, provides insights into interspecific host range variation and the genetic basis of adaptation to a low-quality host plant. INSECT SCIENCE 2023; 30:1208-1228. [PMID: 37279769 DOI: 10.1111/1744-7917.13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
The phytophagous mite Tetranychus truncatus is a serious pest in East Asia but has a relatively narrower host range than the pest mite Tetranychus urticae, which can feed on over 1200 plant species. Here, we generated a high-quality chromosomal level genome of T. truncatus and compared it with that of T. urticae, with an emphasis on the genes related to detoxification and chemoreception, to explore the genomic basis underlying the evolution of host range. We also conducted population genetics analyses (in 86 females from 10 populations) and host transfer experiments (in 4 populations) to investigate transcription changes following transfer to a low-quality host (Solanum melongena, eggplant), and we established possible connections between fitness on eggplant and genes related to detoxification and chemoreception. We found that T. truncatus has fewer genes related to detoxification, transport, and chemoreception than T. urticae, with a particularly strong reduction in gustatory receptor (GR) genes. We also found widespread transcriptional variation among T. truncatus populations, which varied in fitness on eggplant. We characterized selection on detoxification-related genes through ω values and found a negative correlation between expression levels and ω values. Based on the transcription results, as well as the fitness and genetic differences among populations, we identified genes potentially involved in adaptation to eggplant in T. truncatus. Our work provides a genomic resource for this pest mite and new insights into mechanisms underlying the adaptation of herbivorous mites to host plants.
Collapse
Affiliation(s)
- Lei Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xin-Yue Yu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Feng Xue
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Feng Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Li-Xue Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Hua-Meng Zhang
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ary A Hoffmann
- Bio21 Institute, School of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Tao Sun
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Sizemore TR, Jonaitis J, Dacks AM. Heterogeneous receptor expression underlies non-uniform peptidergic modulation of olfaction in Drosophila. Nat Commun 2023; 14:5280. [PMID: 37644052 PMCID: PMC10465596 DOI: 10.1038/s41467-023-41012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Sensory systems are dynamically adjusted according to the animal's ongoing needs by neuromodulators, such as neuropeptides. Neuropeptides are often widely-distributed throughout sensory networks, but it is unclear whether such neuropeptides uniformly modulate network activity. Here, we leverage the Drosophila antennal lobe (AL) to resolve whether myoinhibitory peptide (MIP) uniformly modulates AL processing. Despite being uniformly distributed across the AL, MIP decreases olfactory input to some glomeruli, while increasing olfactory input to other glomeruli. We reveal that a heterogeneous ensemble of local interneurons (LNs) are the sole source of AL MIP, and show that differential expression of the inhibitory MIP receptor across glomeruli allows MIP to act on distinct intraglomerular substrates. Our findings demonstrate how even a seemingly simple case of modulation can have complex consequences on network processing by acting non-uniformly within different components of the overall network.
Collapse
Affiliation(s)
- Tyler R Sizemore
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Molecular, Cellular, and Developmental Biology, Yale Science Building, Yale University, New Haven, CT, 06520-8103, USA.
| | - Julius Jonaitis
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA
| | - Andrew M Dacks
- Department of Biology, Life Sciences Building, West Virginia University, Morgantown, WV, 26506, USA.
- Department of Neuroscience, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
15
|
Jayaram V, Sehdev A, Kadakia N, Brown EA, Emonet T. Temporal novelty detection and multiple timescale integration drive Drosophila orientation dynamics in temporally diverse olfactory environments. PLoS Comput Biol 2023; 19:e1010606. [PMID: 37167321 PMCID: PMC10205008 DOI: 10.1371/journal.pcbi.1010606] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/23/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
To survive, insects must effectively navigate odor plumes to their source. In natural plumes, turbulent winds break up smooth odor regions into disconnected patches, so navigators encounter brief bursts of odor interrupted by bouts of clean air. The timing of these encounters plays a critical role in navigation, determining the direction, rate, and magnitude of insects' orientation and speed dynamics. Disambiguating the specific role of odor timing from other cues, such as spatial structure, is challenging due to natural correlations between plumes' temporal and spatial features. Here, we use optogenetics to isolate temporal features of odor signals, examining how the frequency and duration of odor encounters shape the navigational decisions of freely-walking Drosophila. We find that fly angular velocity depends on signal frequency and intermittency-the fraction of time signal can be detected-but not directly on durations. Rather than switching strategies when signal statistics change, flies smoothly transition between signal regimes, by combining an odor offset response with a frequency-dependent novelty-like response. In the latter, flies are more likely to turn in response to each odor hit only when the hits are sparse. Finally, the upwind bias of individual turns relies on a filtering scheme with two distinct timescales, allowing rapid and sustained responses in a variety of signal statistics. A quantitative model incorporating these ingredients recapitulates fly orientation dynamics across a wide range of environments and shows that temporal novelty detection, when combined with odor motion detection, enhances odor plume navigation.
Collapse
Affiliation(s)
- Viraaj Jayaram
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
| | - Aarti Sehdev
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
| | - Nirag Kadakia
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Swartz Foundation for Theoretical Neuroscience, Yale University, New Haven, Connecticut, United States of America
| | - Ethan A. Brown
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Yale College, Yale University, New Haven, Connecticut, United States of America
| | - Thierry Emonet
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, United States of America
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, United States of America
- Department of Physics, Yale University, New Haven, Connecticut, United States of America
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, United States of America
| |
Collapse
|
16
|
Clites BL, Hofmann HA, Pierce JT. The Promise of an Evolutionary Perspective of Alcohol Consumption. Neurosci Insights 2023; 18:26331055231163589. [PMID: 37051560 PMCID: PMC10084549 DOI: 10.1177/26331055231163589] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/27/2023] [Indexed: 04/07/2023] Open
Abstract
The urgent need for medical treatments of alcohol use disorders has motivated the search for novel molecular targets of alcohol response. Most studies exploit the strengths of lab animals without considering how these and other species may have adapted to respond to alcohol in an ecological context. Here, we provide an evolutionary perspective on the molecular and genetic underpinnings of alcohol consumption by reviewing evidence that alcohol metabolic enzymes have undergone adaptive evolution at 2 evolutionary junctures: first, to enable alcohol consumption accompanying the advent of a frugivorous diet in a primate ancestor, and second, to decrease the likelihood of excessive alcohol consumption concurrent with the spread of agriculture and fermentation in East Asia. By similarly considering how diverse vertebrate and invertebrate species have undergone natural selection for alcohol responses, novel conserved molecular targets of alcohol are likely be discovered that may represent promising therapeutic targets.
Collapse
Affiliation(s)
- Benjamin L Clites
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Hans A Hofmann
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Jonathan T Pierce
- Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
- Institute for Cellular & Molecular Biology, University of Texas at Austin, Austin, TX, USA
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Olfactory and gustatory receptor genes in fig wasps: Evolutionary insights from comparative studies. Gene 2023; 850:146953. [PMID: 36243214 DOI: 10.1016/j.gene.2022.146953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
The mechanisms of chemoreception in fig wasps (Hymenoptera, Agaonidae) are of primary importance in their co-evolutionary relationship with the fig trees they pollinate. We used transcriptome sequences of 25 fig wasps in six genera that allowed a comparative approach to the evolution of key molecular components of fig wasp chemoreception: their odorant (OR) and gustatory (GR) receptor genes. In total, we identified 311 ORs and 47 GRs, with each species recording from 5 to 30 OR genes and 1-4 GR genes. 304 OR genes clustered into 18 orthologous groups known to be sensitive to cuticular hydrocarbons (CHC), pheromones, acids, alcohols and a variety of floral scents such as cineole, Linalool, and Heptanone. 45 GR genes clustered into 4 orthologous groups that contain sweet, bitter, CO2 and undocumented receptors. Gene sequences in most orthologous groups varied greatly among species, except for ORco (60.0% conserved) and sweet receptors (30.7% conserved). Strong purifying selection of both odorant and gustatory genes was detected, as shown by low ω values. Signatures of positive selection were detected in loci from both OR and GR orthologous groups. Fig wasps have relatively few olfactory and especially gustatory receptors, reflecting the natural history of the system. Amino acid sequences nonetheless vary significantly between species and are consistent with the phylogenetic relationships among fig wasps. The differences in ORs within some orthologous groups from the same species, but different hosts and from closely related species from one host can reach as low as 49.3% and 9.8% respectively, implying the ORs of fig wasps can evolve rapidly to novel ecological environments. Our results provide a starting point for understanding the molecular basis of the chemosensory systems of fig wasps.
Collapse
|
18
|
Scholz H. From Natural Behavior to Drug Screening: Invertebrates as Models to Study Mechanisms Associated with Alcohol Use Disorders. Curr Top Behav Neurosci 2023. [PMID: 36598738 DOI: 10.1007/7854_2022_413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Humans consume ethanol-containing beverages, which may cause an uncontrollable or difficult-to-control intake of ethanol-containing liquids and may result in alcohol use disorders. How the transition at the molecular level from "normal" ethanol-associated behaviors to addictive behaviors occurs is still unknown. One problem is that the components contributing to normal ethanol intake and their underlying molecular adaptations, especially in neurons that regulate behavior, are not clear. The fruit fly Drosophila melanogaster and the earthworm Caenorhabditis elegans show behavioral similarities to humans such as signs of intoxication, tolerance, and withdrawal. Underlying the phenotypic similarities, invertebrates and vertebrates share mechanistic similarities. For example in Drosophila melanogaster, the dopaminergic neurotransmitter system regulates the positive reinforcing properties of ethanol and in Caenorhabditis elegans, serotonergic neurons regulate feeding behavior. Since these mechanisms are fundamental molecular mechanisms and are highly conserved, invertebrates are good models for uncovering the basic principles of neuronal adaptation underlying the behavioral response to ethanol. This review will focus on the following aspects that might shed light on the mechanisms underlying normal ethanol-associated behaviors. First, the current status of what is required at the behavioral and cellular level to respond to naturally occurring levels of ethanol is summarized. Low levels of ethanol delay the development and activate compensatory mechanisms that in turn might be beneficial for some aspects of the animal's physiology. Repeated exposure to ethanol however might change brain structures involved in mediating learning and memory processes. The smell of ethanol is already a key component in the environment that is able to elicit behavioral changes and molecular programs. Minimal networks have been identified that regulate normal ethanol consumption. Other environmental factors that influence ethanol-induced behaviors include the diet, dietary supplements, and the microbiome. Second, the molecular mechanisms underlying neuronal adaptation to the cellular stressor ethanol are discussed. Components of the heat shock and oxidative stress pathways regulate adaptive responses to low levels of ethanol and in turn change behavior. The adaptive potential of the brain cells is challenged when the organism encounters additional cellular stressors caused by aging, endosymbionts or environmental toxins or excessive ethanol intake. Finally, to underline the conserved nature of these mechanisms between invertebrates and higher organisms, recent approaches to identify drug targets for ethanol-induced behaviors are provided. Already approved drugs regulate ethanol-induced behaviors and they do so in part by interfering with cellular stress pathways. In addition, invertebrates have been used to identify new compounds targeting molecules involved in the regulation in ethanol withdrawal-like symptoms. This review primarily highlights the advances of the last 5 years concerning Drosophila melanogaster, but also provides intriguing examples of Caenorhabditis elegans and Apis mellifera in support.
Collapse
Affiliation(s)
- Henrike Scholz
- Department of Biology, Institute for Zoology, University of Köln, Köln, Germany.
| |
Collapse
|
19
|
Zocchi D, Ye ES, Hauser V, O'Connell TF, Hong EJ. Parallel encoding of CO 2 in attractive and aversive glomeruli by selective lateral signaling between olfactory afferents. Curr Biol 2022; 32:4225-4239.e7. [PMID: 36070776 PMCID: PMC9561050 DOI: 10.1016/j.cub.2022.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 12/14/2022]
Abstract
We describe a novel form of selective crosstalk between specific classes of primary olfactory receptor neurons (ORNs) in the Drosophila antennal lobe. Neurotransmitter release from ORNs is driven by two distinct sources of excitation: direct activity derived from the odorant receptor and stimulus-selective lateral signals originating from stereotypic subsets of other ORNs. Consequently, the level of presynaptic neurotransmitter release from an ORN can be significantly dissociated from its firing rate. Stimulus-selective lateral signaling results in the distributed representation of CO2-a behaviorally important environmental cue that directly excites a single ORN class-in multiple olfactory glomeruli, each with distinct response dynamics. CO2-sensitive glomeruli coupled to behavioral attraction respond preferentially to fast changes in CO2 concentration, whereas those coupled to behavioral aversion more closely follow absolute levels of CO2. Behavioral responses to CO2 also depend on the temporal structure of the stimulus: flies walk upwind to fluctuating, but not sustained, pulses of CO2. Stimulus-selective lateral signaling generalizes to additional odors and glomeruli, revealing a subnetwork of lateral interactions between ORNs that reshapes the spatial and temporal structure of odor representations in a stimulus-specific manner.
Collapse
Affiliation(s)
- Dhruv Zocchi
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Emily S Ye
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Virginie Hauser
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Thomas F O'Connell
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth J Hong
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
20
|
Devineni AV. Sensory biology: Olfactory crosstalk reshapes odor coding. Curr Biol 2022; 32:R1002-R1005. [PMID: 36220084 DOI: 10.1016/j.cub.2022.08.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New research uncovers a novel form of crosstalk between olfactory pathways in the antennal lobe, the first olfactory center of the fly brain. This crosstalk reshapes odor coding and may explain how carbon dioxide can elicit either attraction or aversion.
Collapse
Affiliation(s)
- Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
21
|
Barredo E, Raji JI, Ramon M, DeGennaro M, Theobald J. Carbon dioxide and blood-feeding shift visual cue tracking during navigation in Aedes aegypti mosquitoes. Biol Lett 2022; 18:20220270. [PMID: 36166270 PMCID: PMC9514554 DOI: 10.1098/rsbl.2022.0270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
Haematophagous mosquitoes need a blood meal to complete their reproductive cycle. To accomplish this, female mosquitoes seek vertebrate hosts, land on them and bite. As their eggs mature, they shift attention away from hosts and towards finding sites to lay eggs. We asked whether females were more tuned to visual cues when a host-related signal, carbon dioxide, was present, and further examined the effect of a blood meal, which shifts behaviour to ovipositing. Using a custom, tethered-flight arena that records wing stroke changes while displaying visual cues, we found the presence of carbon dioxide enhances visual attention towards discrete stimuli and improves contrast sensitivity for host-seeking Aedes aegypti mosquitoes. Conversely, intake of a blood meal reverses vertical bar tracking, a stimulus that non-fed females readily follow. This switch in behaviour suggests that having a blood meal modulates visual attention in mosquitoes, a phenomenon that has been described before in olfaction but not in visually driven behaviours.
Collapse
Affiliation(s)
- Elina Barredo
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Joshua I. Raji
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Michael Ramon
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Matthew DeGennaro
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Jamie Theobald
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
22
|
Nilsson DE, Smolka J, Bok M. The vertical light-gradient and its potential impact on animal distribution and behavior. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.951328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The visual environment provides vital cues allowing animals to assess habitat quality, weather conditions or measure time of day. Together with other sensory cues and physiological conditions, the visual environment sets behavioral states that make the animal more prone to engage in some behaviors, and less in others. This master-control of behavior serves a fundamental and essential role in determining the distribution and behavior of all animals. Although it is obvious that visual information contains vital input for setting behavioral states, the precise nature of these visual cues remains unknown. Here we use a recently described method to quantify the distribution of light reaching animals’ eyes in different environments. The method records the vertical gradient (as a function of elevation angle) of intensity, spatial structure and spectral balance. Comparison of measurements from different types of environments, weather conditions, times of day, and seasons reveal that these aspects can be readily discriminated from one another. The vertical gradients of radiance, spatial structure (contrast) and color are thus reliable indicators that are likely to have a strong impact on animal behavior and spatial distribution.
Collapse
|
23
|
Cummins EP, Bharat A, Sznajder JI, Vadász I. Editorial: Elevated Carbon Dioxide Sensing and Physiologic Effects. Front Physiol 2022; 13:894222. [PMID: 35574468 PMCID: PMC9092065 DOI: 10.3389/fphys.2022.894222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Eoin P Cummins
- School of Medicine and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Ankit Bharat
- Division of Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - István Vadász
- Department of Internal Medicine, Member of the German Center for Lung Research (DZL), Justus Liebig University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,The Cardio-Pulmonary Institute (CPI), Giessen, Germany.,Institute for Lung Health (ILH), Giessen, Germany
| |
Collapse
|
24
|
Tao L, Bhandawat V. Mechanisms of Variability Underlying Odor-Guided Locomotion. Front Behav Neurosci 2022; 16:871884. [PMID: 35600988 PMCID: PMC9115574 DOI: 10.3389/fnbeh.2022.871884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Changes in locomotion mediated by odors (odor-guided locomotion) are an important mechanism by which animals discover resources important to their survival. Odor-guided locomotion, like most other behaviors, is highly variable. Variability in behavior can arise at many nodes along the circuit that performs sensorimotor transformation. We review these sources of variability in the context of the Drosophila olfactory system. While these sources of variability are important, using a model for locomotion, we show that another important contributor to behavioral variability is the stochastic nature of decision-making during locomotion as well as the persistence of these decisions: Flies choose the speed and curvature stochastically from a distribution and locomote with the same speed and curvature for extended periods. This stochasticity in locomotion will result in variability in behavior even if there is no noise in sensorimotor transformation. Overall, the noise in sensorimotor transformation is amplified by mechanisms of locomotion making odor-guided locomotion in flies highly variable.
Collapse
Affiliation(s)
- Liangyu Tao
- School of Biomedical Engineering, Science and Health, Drexel University, Philadelphia, PA, United States
| | - Vikas Bhandawat
- School of Biomedical Engineering, Science and Health, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
25
|
Context-dependent control of behavior in Drosophila. Curr Opin Neurobiol 2022; 73:102523. [DOI: 10.1016/j.conb.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 12/16/2022]
|
26
|
Kanwal JK, Parker J. The neural basis of interspecies interactions in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100891. [PMID: 35218937 DOI: 10.1016/j.cois.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
As insects move through the world, they continuously engage in behavioral interactions with other species. These interactions take on a spectrum of forms, from inconsequential encounters to predation, defense, and specialized symbiotic partnerships. All such interactions rely on sensorimotor pathways that carry out efficient categorization of different organisms and enact behaviors that cross species boundaries. Despite the universality of interspecies interactions, how insect brains perceive and process salient features of other species remains unexplored. Here, we present an overview of major questions concerning the neurobiology and evolution of behavioral interactions between species, providing a framework for future research on this critical role of the insect nervous system.
Collapse
Affiliation(s)
- Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| |
Collapse
|
27
|
Koranteng F, Cho B, Shim J. Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila. Mol Cells 2022; 45:101-108. [PMID: 35253654 PMCID: PMC8926866 DOI: 10.14348/molcells.2022.2039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/27/2022] Open
Abstract
Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.
Collapse
Affiliation(s)
| | - Bumsik Cho
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Jiwon Shim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Natural Science, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
28
|
Drosophila melanogaster Chemosensory Pathways as Potential Targets to Curb the Insect Menace. INSECTS 2022; 13:insects13020142. [PMID: 35206716 PMCID: PMC8874460 DOI: 10.3390/insects13020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The perception and processing of chemosensory stimuli are indispensable to the survival of living organisms. In insects, olfaction and gustation play a critical role in seeking food, finding mates and avoiding signs of danger. This review aims to present updated information about olfactory and gustatory signaling in the fruit fly Drosophila melanogaster. We have described the mechanisms involved in olfactory and gustatory perceptions at the molecular level, the receptors along with the allied molecules involved, and their signaling pathways in the fruit fly. Due to the magnifying problems of disease-causing insect vectors and crop pests, the applications of chemosensory signaling in controlling pests and insect vectors are also discussed. Abstract From a unicellular bacterium to a more complex human, smell and taste form an integral part of the basic sensory system. In fruit flies Drosophila melanogaster, the behavioral responses to odorants and tastants are simple, though quite sensitive, and robust. They explain the organization and elementary functioning of the chemosensory system. Molecular and functional analyses of the receptors and other critical molecules involved in olfaction and gustation are not yet completely understood. Hence, a better understanding of chemosensory cue-dependent fruit flies, playing a major role in deciphering the host-seeking behavior of pathogen transmitting insect vectors (mosquitoes, sandflies, ticks) and crop pests (Drosophila suzukii, Queensland fruit fly), is needed. Using D. melanogaster as a model organism, the knowledge gained may be implemented to design new means of controlling insects as well as in analyzing current batches of insect and pest repellents. In this review, the complete mechanisms of olfactory and gustatory perception, along with their implementation in controlling the global threat of disease-transmitting insect vectors and crop-damaging pests, are explained in fruit flies.
Collapse
|
29
|
Abstract
In this review, we highlight sources of alcohols in nature, as well as the behavioral and ecological roles that these fermentation cues play in the short lifespan of Drosophila melanogaster. With a focus on neuroethology, we describe the olfactory detection of alcohol as well as ensuing neural signaling within the brain of the fly. We proceed to explain the plethora of behaviors related to alcohol, including attraction, feeding, and oviposition, as well as general effects on aggression and courtship. All of these behaviors are shaped by physiological state and social contexts. In a comparative perspective, we also discuss inter- and intraspecies differences related to alcohol tolerance and metabolism. Lastly, we provide corollaries with other dipteran and coleopteran insect species that also have olfactory systems attuned to ethanol detection and describe ecological and evolutionary directions for further studies of the natural history of alcohol and the fly.
Collapse
Affiliation(s)
- Ian W Keesey
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA;
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany;
| |
Collapse
|
30
|
Devineni AV, Scaplen KM. Neural Circuits Underlying Behavioral Flexibility: Insights From Drosophila. Front Behav Neurosci 2022; 15:821680. [PMID: 35069145 PMCID: PMC8770416 DOI: 10.3389/fnbeh.2021.821680] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Behavioral flexibility is critical to survival. Animals must adapt their behavioral responses based on changes in the environmental context, internal state, or experience. Studies in Drosophila melanogaster have provided insight into the neural circuit mechanisms underlying behavioral flexibility. Here we discuss how Drosophila behavior is modulated by internal and behavioral state, environmental context, and learning. We describe general principles of neural circuit organization and modulation that underlie behavioral flexibility, principles that are likely to extend to other species.
Collapse
Affiliation(s)
- Anita V. Devineni
- Department of Biology, Emory University, Atlanta, GA, United States
- Zuckerman Mind Brain Institute, Columbia University, New York, NY, United States
| | - Kristin M. Scaplen
- Department of Psychology, Bryant University, Smithfield, RI, United States
- Center for Health and Behavioral Studies, Bryant University, Smithfield, RI, United States
- Department of Neuroscience, Brown University, Providence, RI, United States
| |
Collapse
|
31
|
Zhu X, Xu B, Qin Z, Kader A, Song B, Chen H, Liu Y, Liu W. Identification of Candidate Olfactory Genes in Scolytus schevyrewi Based on Transcriptomic Analysis. Front Physiol 2021; 12:717698. [PMID: 34671270 PMCID: PMC8521011 DOI: 10.3389/fphys.2021.717698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/30/2021] [Indexed: 11/20/2022] Open
Abstract
The bark beetle, Scolytus schevyrewi (S. schevyrewi), is an economically important pest in China that causes serious damage to the fruit industry, particularly, in Xinjiang Province. Chemical signals play an important role in the behavior of most insects, accordingly, ecofriendly traps can be used to monitor and control the target pests in agriculture. In order to lay a foundation for future research on chemical communication mechanisms at the molecular level, we generate antennal transcriptome databases for male and female S. schevyrewi using RNA sequencing (RNA-seq) analysis. By assembling and analyzing the adult male and female antennal transcriptomes, we identified 47 odorant receptors (ORs), 22 ionotropic receptors (IRs), 22 odorant-binding proteins (OBPs), and 11 chemosensory proteins (CSPs). Furthermore, expression levels of all the candidate OBPs and CSPs were validated in different tissues of male and female adults by semiquantitative reverse transcription PCR (RT-PCR). ScosOBP2 and ScosOBP18 were highly expressed in female antennae. ScosCSP2, ScosCSP3, and ScosCSP5 were specifically expressed in the antennae of both males and females. These results provide new potential molecular targets to inform and improve future management strategies of S. schevyrewi.
Collapse
Affiliation(s)
- Xiaofeng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bingqiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenjie Qin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Abudukyoum Kader
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Haoyu Chen
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Liu
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
32
|
Drosophila melanogaster Stress Odorant (dSO) Displays the Characteristics of an Interspecific Alarm Cue. J Chem Ecol 2021; 47:719-731. [PMID: 34402994 DOI: 10.1007/s10886-021-01300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Organisms depend on visual, auditory, and olfactory cues to signal the presence of danger that could impact survival and reproduction. Drosophila melanogaster emits an olfactory alarm signal, termed the Drosophila stress odorant (dSO), in response to mechanical agitation or electric shock. While it has been shown that conspecifics avoid areas previously occupied by stressed individuals, the contextual underpinnings of the emission of, and response to dSO, have received little attention. Using a binary choice assay, we determined that neither age and sex of emitters, nor the time of the day, affected the emission or avoidance of dSO. However, both sex and mating status affected the response to dSO. We also demonstrated that while D. melanogaster, D. simulans, and D. suzukii, have different dSO profiles, its avoidance was not species-specific. Thus, dSO should not be considered a pheromone but a general alarm signal for Drosophila. However, the response levels to both intra- and inter-specific cues differed between Drosophila species and possible reasons for these differences are discussed.
Collapse
|
33
|
Montell C. Drosophila sensory receptors-a set of molecular Swiss Army Knives. Genetics 2021; 217:1-34. [PMID: 33683373 DOI: 10.1093/genetics/iyaa011] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/17/2020] [Indexed: 01/01/2023] Open
Abstract
Genetic approaches in the fruit fly, Drosophila melanogaster, have led to a major triumph in the field of sensory biology-the discovery of multiple large families of sensory receptors and channels. Some of these families, such as transient receptor potential channels, are conserved from animals ranging from worms to humans, while others, such as "gustatory receptors," "olfactory receptors," and "ionotropic receptors," are restricted to invertebrates. Prior to the identification of sensory receptors in flies, it was widely assumed that these proteins function in just one modality such as vision, smell, taste, hearing, and somatosensation, which includes thermosensation, light, and noxious mechanical touch. By employing a vast combination of genetic, behavioral, electrophysiological, and other approaches in flies, a major concept to emerge is that many sensory receptors are multitaskers. The earliest example of this idea was the discovery that individual transient receptor potential channels function in multiple senses. It is now clear that multitasking is exhibited by other large receptor families including gustatory receptors, ionotropic receptors, epithelial Na+ channels (also referred to as Pickpockets), and even opsins, which were formerly thought to function exclusively as light sensors. Genetic characterizations of these Drosophila receptors and the neurons that express them also reveal the mechanisms through which flies can accurately differentiate between different stimuli even when they activate the same receptor, as well as mechanisms of adaptation, amplification, and sensory integration. The insights gleaned from studies in flies have been highly influential in directing investigations in many other animal models.
Collapse
Affiliation(s)
- Craig Montell
- Department of Molecular, Cellular, and Developmental Biology, The Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
34
|
Hernandez-Nunez L, Chen A, Budelli G, Berck ME, Richter V, Rist A, Thum AS, Cardona A, Klein M, Garrity P, Samuel ADT. Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis. SCIENCE ADVANCES 2021; 7:7/35/eabg6707. [PMID: 34452914 PMCID: PMC8397275 DOI: 10.1126/sciadv.abg6707] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Body temperature homeostasis is essential and reliant upon the integration of outputs from multiple classes of cooling- and warming-responsive cells. The computations that integrate these outputs are not understood. Here, we discover a set of warming cells (WCs) and show that the outputs of these WCs combine with previously described cooling cells (CCs) in a cross-inhibition computation to drive thermal homeostasis in larval Drosophila WCs and CCs detect temperature changes using overlapping combinations of ionotropic receptors: Ir68a, Ir93a, and Ir25a for WCs and Ir21a, Ir93a, and Ir25a for CCs. WCs mediate avoidance to warming while cross-inhibiting avoidance to cooling, and CCs mediate avoidance to cooling while cross-inhibiting avoidance to warming. Ambient temperature-dependent regulation of the strength of WC- and CC-mediated cross-inhibition keeps larvae near their homeostatic set point. Using neurophysiology, quantitative behavioral analysis, and connectomics, we demonstrate how flexible integration between warming and cooling pathways can orchestrate homeostatic thermoregulation.
Collapse
Affiliation(s)
- Luis Hernandez-Nunez
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard University, Cambridge, Boston, MA 02115, USA
| | - Alicia Chen
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Harvard College, Harvard University, Cambridge, MA 02138, USA
| | - Gonzalo Budelli
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Matthew E Berck
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Vincent Richter
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Anna Rist
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Andreas S Thum
- University of Leipzig, Institute of Biology, Talstraße 33, 04103 Leipzig, Germany
| | - Albert Cardona
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mason Klein
- Department of Physics, University of Miami, Coral Gables, FL 33124, USA.
| | - Paul Garrity
- National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA 02454, USA
| | - Aravinthan D T Samuel
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
35
|
Breugel FV. Correlated decision making across multiple phases of olfactory guided search in Drosophila improves search efficiency. J Exp Biol 2021; 224:271881. [PMID: 34286337 DOI: 10.1242/jeb.242267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/19/2021] [Indexed: 11/20/2022]
Abstract
Nearly all motile organisms must search for food, often requiring multiple phases of exploration across heterogeneous environments. The fruit fly, Drosophila, has emerged as an effective model system for studying this behavior, however, little is known about the extent to which experiences at one point in their search might influence decisions in another. To investigate whether prior experiences impact flies' search behavior after landing, I tracked individually labelled fruit flies as they explored three odor emitting but food-barren objects. I found two features of their behavior that are correlated with the distance they travel on foot. First, flies walked larger distances when they approached the odor source, which they were almost twice as likely to do when landing on the patch farthest downwind. Computational fluid dynamics simulations suggest this patch may have had a stronger baseline odor, but only ∼15% higher than the other two. This small increase, together with flies' high olfactory sensitivity, suggests that perhaps their flight trajectory used to approach the patches plays a role. Second, flies also walked larger distances when the time elapsed since their last visit was longer. However, the correlation is subtle and subject to a large degree of variability. Using agent-based models, I show that this small correlation can increase search efficiency by 25-50% across many scenarios. Furthermore, my models provide mechanistic hypotheses explaining the variability through either a noisy or straightforward decision-making process. Surprisingly, these stochastic decision-making algorithms enhance search efficiency in challenging but realistic search scenarios compared to deterministic strategies.
Collapse
|
36
|
Mongeau JM, Schweikert LE, Davis AL, Reichert MS, Kanwal JK. Multimodal integration across spatiotemporal scales to guide invertebrate locomotion. Integr Comp Biol 2021; 61:842-853. [PMID: 34009312 DOI: 10.1093/icb/icab041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Locomotion is a hallmark of organisms that has enabled adaptive radiation to an extraordinarily diverse class of ecological niches, and allows animals to move across vast distances. Sampling from multiple sensory modalities enables animals to acquire rich information to guide locomotion. Locomotion without sensory feedback is haphazard, therefore sensory and motor systems have evolved complex interactions to generate adaptive behavior. Notably, sensory-guided locomotion acts over broad spatial and temporal scales to permit goal-seeking behavior, whether to localize food by tracking an attractive odor plume or to search for a potential mate. How does the brain integrate multimodal stimuli over different temporal and spatial scales to effectively control behavior? In this review, we classify locomotion into three ordinally ranked hierarchical layers that act over distinct spatiotemporal scales: stabilization, motor primitives, and higher-order tasks, respectively. We discuss how these layers present unique challenges and opportunities for sensorimotor integration. We focus on recent advances in invertebrate locomotion due to their accessible neural and mechanical signals from the whole brain, limbs and sensors. Throughout, we emphasize neural-level description of computations for multimodal integration in genetic model systems, including the fruit fly, Drosophila melanogaster, and the yellow fever mosquito, Aedes aegypti. We identify that summation (e.g. gating) and weighting-which are inherent computations of spiking neurons-underlie multimodal integration across spatial and temporal scales, therefore suggesting collective strategies to guide locomotion.
Collapse
Affiliation(s)
- Jean-Michel Mongeau
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lorian E Schweikert
- Institute of Environment, Department of Biological Sciences, Florida International University, North Miami, FL 33181. University of North Carolina Wilmington, Department of Biology and Marine Biology, Wilmington, NC, U.S.A
| | | | - Michael S Reichert
- Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
37
|
Leitch KJ, Ponce FV, Dickson WB, van Breugel F, Dickinson MH. The long-distance flight behavior of Drosophila supports an agent-based model for wind-assisted dispersal in insects. Proc Natl Acad Sci U S A 2021; 118:e2013342118. [PMID: 33879607 PMCID: PMC8092610 DOI: 10.1073/pnas.2013342118] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite the ecological importance of long-distance dispersal in insects, its mechanistic basis is poorly understood in genetic model species, in which advanced molecular tools are readily available. One critical question is how insects interact with the wind to detect attractive odor plumes and increase their travel distance as they disperse. To gain insight into dispersal, we conducted release-and-recapture experiments in the Mojave Desert using the fruit fly, Drosophila melanogaster We deployed chemically baited traps in a 1 km radius ring around the release site, equipped with cameras that captured the arrival times of flies as they landed. In each experiment, we released between 30,000 and 200,000 flies. By repeating the experiments under a variety of conditions, we were able to quantify the influence of wind on flies' dispersal behavior. Our results confirm that even tiny fruit flies could disperse ∼12 km in a single flight in still air and might travel many times that distance in a moderate wind. The dispersal behavior of the flies is well explained by an agent-based model in which animals maintain a fixed body orientation relative to celestial cues, actively regulate groundspeed along their body axis, and allow the wind to advect them sideways. The model accounts for the observation that flies actively fan out in all directions in still air but are increasingly advected downwind as winds intensify. Our results suggest that dispersing insects may strike a balance between the need to cover large distances while still maintaining the chance of intercepting odor plumes from upwind sources.
Collapse
Affiliation(s)
- Katherine J Leitch
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Francesca V Ponce
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - William B Dickson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Floris van Breugel
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| | - Michael H Dickinson
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
38
|
Üçpunar HK, Grunwald Kadow IC. Flies Avoid Current Atmospheric CO 2 Concentrations. Front Physiol 2021; 12:646401. [PMID: 33927640 PMCID: PMC8076854 DOI: 10.3389/fphys.2021.646401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022] Open
Abstract
CO2 differs from most other odors by being ubiquitously present in the air animals inhale. CO2 levels of the atmosphere, however, are subject to change. Depending on the landscape, temperature, and time of the year, CO2 levels can change even on shortest time scales. In addition, since the 18th century the CO2 baseline keeps increasing due to the intensive fossil fuel usage. However, we do not know whether this change is significant for animals, and if yes whether and how animals adapt to this change. Most insects possess olfactory receptors to detect the gaseous molecule, and CO2 is one of the key odorants for insects such as the vinegar fly Drosophila melanogaster to find food sources and to warn con-specifics. So far, CO2 and its sensory system have been studied in the context of rotting fruit and other CO2-emitting sources to investigate flies’ response to significantly elevated levels of CO2. However, it has not been addressed whether flies detect and potentially react to atmospheric levels of CO2. By using behavioral experiments, here we show that flies can detect atmospheric CO2 concentrations and, if given the choice, prefer air with sub-atmospheric levels of the molecule. Blocking the synaptic release from CO2 receptor neurons abolishes this choice. Based on electrophysiological recordings, we hypothesize that CO2 receptors, similar to ambient temperature receptors, actively sample environmental CO2 concentrations close to atmospheric levels. Based on recent findings and our data, we hypothesize that Gr-dependent CO2 receptors do not primarily serve as a cue detector to find food sources or avoid danger, instead they function as sensors for preferred environmental conditions.
Collapse
Affiliation(s)
- Habibe K Üçpunar
- Department of Physiology, School of Medicine, Ankara Medipol University, Ankara, Turkey
| | | |
Collapse
|
39
|
Muria A, Musso PY, Durrieu M, Portugal FR, Ronsin B, Gordon MD, Jeanson R, Isabel G. Social facilitation of long-lasting memory is mediated by CO 2 in Drosophila. Curr Biol 2021; 31:2065-2074.e5. [PMID: 33740428 DOI: 10.1016/j.cub.2021.02.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/22/2020] [Accepted: 02/17/2021] [Indexed: 01/05/2023]
Abstract
How social interactions influence cognition is a fundamental question, yet rarely addressed at the neurobiological level. It is well established that the presence of conspecifics affects learning and memory performance, but the neural basis of this process has only recently begun to be investigated. In the fruit fly Drosophila melanogaster, the presence of other flies improves retrieval of a long-lasting olfactory memory. Here, we demonstrate that this is a composite memory composed of two distinct elements. One is an individual memory that depends on outputs from the α'β' Kenyon cells (KCs) of the mushroom bodies (MBs), the memory center in the insect brain. The other is a group memory requiring output from the αβ KCs, a distinct sub-part of the MBs. We show that social facilitation of memory increases with group size and is triggered by CO2 released by group members. Among the different known neurons carrying CO2 information in the brain, we establish that the bilateral ventral projection neuron (biVPN), which projects onto the MBs, is necessary for social facilitation. Moreover, we demonstrate that CO2-evoked memory engages a serotoninergic pathway involving the dorsal-paired medial (DPM) neurons, revealing a new role for this pair of serotonergic neurons. Overall, we identified both the sensorial cue and the neural circuit (biVPN>αβ>DPM>αβ) governing social facilitation of memory in flies. This study provides demonstration that being in a group recruits the expression of a cryptic memory and that variations in CO2 concentration can affect cognitive processes in insects.
Collapse
Affiliation(s)
- Aurélie Muria
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Pierre-Yves Musso
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France; Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthias Durrieu
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Felipe Ramon Portugal
- Laboratoire Évolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse, CNRS, IRD, 118 route de Narbonne, Bat 4R1, 31062 Toulouse Cedex 9, France; Ecole Nationale Supérieure Formation de l'Enseignement Agricole, Castanet-Tolosan, France
| | - Brice Ronsin
- CBI, Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Michael D Gordon
- Department of Zoology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Raphaël Jeanson
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France
| | - Guillaume Isabel
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, Bat 4R4, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
40
|
Abstract
Multisensory integration is synergistic—input from one sensory modality might modulate the behavioural response to another. Work in flies has shown that a small visual object presented in the periphery elicits innate aversive steering responses in flight, likely representing an approaching threat. Object aversion is switched to approach when paired with a plume of food odour. The ‘open-loop’ design of prior work facilitated the observation of changing valence. How does odour influence visual object responses when an animal has naturally active control over its visual experience? In this study, we use closed-loop feedback conditions, in which a fly's steering effort is coupled to the angular velocity of the visual stimulus, to confirm that flies steer toward or ‘fixate’ a long vertical stripe on the visual midline. They tend either to steer away from or ‘antifixate’ a small object or to disengage active visual control, which manifests as uncontrolled object ‘spinning’ within this experimental paradigm. Adding a plume of apple cider vinegar decreases the probability of both antifixation and spinning, while increasing the probability of frontal fixation for objects of any size, including a normally typically aversive small object.
Collapse
Affiliation(s)
- Karen Y Cheng
- UCLA Department of Integrative Biology and Physiology, Los Angeles, CA, USA
| | - Mark A Frye
- UCLA Department of Integrative Biology and Physiology, Los Angeles, CA, USA
| |
Collapse
|
41
|
Riffell JA. The neuroecology of insect-plant interactions: the importance of physiological state and sensory integration. CURRENT OPINION IN INSECT SCIENCE 2020; 42:118-124. [PMID: 33127509 PMCID: PMC7749044 DOI: 10.1016/j.cois.2020.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Natural behaviorally important stimuli are combinations of cues that are integrated by the nervous system to elicit behavior. Nonetheless, these cues dynamically change in time and space. In turn, the animal's internal state can cause changes in the encoding and representation of these stimuli. Despite abundant behavioral examples, links between the neural bases of sensory integration and the internal state-dependency of these responses remains an active study area. Recent studies in different insect models have provided new insights into how plasticity and the insect's internal state may influence odor representation. These studies show that complex stimuli are represented in unique percepts that are different from their sensory channels and that the representations may be modulated by physiological state.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- University of Washington, Department of Biology, Seattle, WA 98195-1800, United States.
| |
Collapse
|
42
|
Kozma MT, Ngo-Vu H, Rump MT, Bobkov YV, Ache BW, Derby CD. Single cell transcriptomes reveal expression patterns of chemoreceptor genes in olfactory sensory neurons of the Caribbean spiny lobster, Panulirus argus. BMC Genomics 2020; 21:649. [PMID: 32962631 PMCID: PMC7510291 DOI: 10.1186/s12864-020-07034-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/27/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Crustaceans express several classes of receptor genes in their antennules, which house olfactory sensory neurons (OSNs) and non-olfactory chemosensory neurons. Transcriptomics studies reveal that candidate chemoreceptor proteins include variant Ionotropic Receptors (IRs) including both co-receptor IRs and tuning IRs, Transient Receptor Potential (TRP) channels, Gustatory Receptors, epithelial sodium channels, and class A G-protein coupled receptors (GPCRs). The Caribbean spiny lobster, Panulirus argus, expresses in its antennules nearly 600 IRs, 17 TRP channels, 1 Gustatory Receptor, 7 epithelial sodium channels, 81 GPCRs, 6 G proteins, and dozens of enzymes in signaling pathways. However, the specific combinatorial expression patterns of these proteins in single sensory neurons are not known for any crustacean, limiting our understanding of how their chemosensory systems encode chemical quality. RESULTS The goal of this study was to use transcriptomics to describe expression patterns of chemoreceptor genes in OSNs of P. argus. We generated and analyzed transcriptomes from 7 single OSNs, some of which were shown to respond to a food odor, as well as an additional 7 multicell transcriptomes from preparations containing few (2-4), several (ca. 15), or many (ca. 400) OSNs. We found that each OSN expressed the same 2 co-receptor IRs (IR25a, IR93a) but not the other 2 antennular coIRs (IR8a, IR76b), 9-53 tuning IRs but only one to a few in high abundance, the same 5 TRP channels plus up to 5 additional TRPs, 12-17 GPCRs including the same 5 expressed in every single cell transcriptome, the same 3 G proteins plus others, many enzymes in the signaling pathways, but no Gustatory Receptors or epithelial sodium channels. The greatest difference in receptor expression among the OSNs was the identity of the tuning IRs. CONCLUSIONS Our results provide an initial view of the combinatorial expression patterns of receptor molecules in single OSNs in one species of decapod crustacean, including receptors directly involved in olfactory transduction and others likely involved in modulation. Our results also suggest differences in receptor expression in OSNs vs. other chemosensory neurons.
Collapse
Affiliation(s)
- Mihika T Kozma
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Hanh Ngo-Vu
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Matthew T Rump
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuriy V Bobkov
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Barry W Ache
- Whitney Laboratory, University of Florida, St. Augustine, Florida, 32084, USA
| | - Charles D Derby
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
43
|
Lutz EK, Ha KT, Riffell JA. Distinct navigation behaviors in Aedes, Anopheles and Culex mosquito larvae. J Exp Biol 2020; 223:jeb221218. [PMID: 32127378 PMCID: PMC7132834 DOI: 10.1242/jeb.221218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/25/2020] [Indexed: 01/04/2023]
Abstract
Mosquitoes spread deadly diseases that impact millions of people every year. Understanding mosquito physiology and behavior is vital for public health and disease prevention. However, many important questions remain unanswered in the field of mosquito neuroethology, particularly in our understanding of the larval stage. In this study, we investigate the innate exploration behavior of six different species of disease vector mosquito larvae. We show that these species exhibit strikingly different movement paths, corresponding to a wide range of exploration behaviors. We also investigated the response of each species to an appetitive food cue, aversive cue or neutral control. In contrast to the large differences in exploration behavior, all species appeared to gather near preferred cues through random aggregation rather than directed navigation, and exhibited slower speeds once encountering food patches. Our results identify key behavioral differences among important disease vector species, and suggest that navigation and exploration among even closely related mosquito species may be much more distinct than previously thought.
Collapse
Affiliation(s)
- Eleanor K Lutz
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Kim T Ha
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Jeffrey A Riffell
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
44
|
Yan H, Jafari S, Pask G, Zhou X, Reinberg D, Desplan C. Evolution, developmental expression and function of odorant receptors in insects. J Exp Biol 2020; 223:jeb208215. [PMID: 32034042 PMCID: PMC7790194 DOI: 10.1242/jeb.208215] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animals rely on their chemosensory system to discriminate among a very large number of attractive or repulsive chemical cues in the environment, which is essential to respond with proper action. The olfactory sensory systems in insects share significant similarities with those of vertebrates, although they also exhibit dramatic differences, such as the molecular nature of the odorant receptors (ORs): insect ORs function as heteromeric ion channels with a common Orco subunit, unlike the G-protein-coupled olfactory receptors found in vertebrates. Remarkable progress has recently been made in understanding the evolution, development and function of insect odorant receptor neurons (ORNs). These studies have uncovered the diversity of olfactory sensory systems among insect species, including in eusocial insects that rely extensively on olfactory sensing of pheromones for social communication. However, further studies, notably functional analyses, are needed to improve our understanding of the origins of the Orco-OR system, the mechanisms of ORN fate determination, and the extraordinary diversity of behavioral responses to chemical cues.
Collapse
Affiliation(s)
- Hua Yan
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
- Center for Smell and Taste (UFCST), University of Florida, Gainesville, FL 32610, USA
| | - Shadi Jafari
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Department of Biology, New York University, New York, NY 10003, USA
| | - Gregory Pask
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, 510642 Guangzhou, China
| | - Danny Reinberg
- Howard Hughes Medical Institute (HHMI), Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
45
|
Xu P, Wen X, Leal WS. CO 2 per se activates carbon dioxide receptors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 117:103284. [PMID: 31760135 PMCID: PMC6980743 DOI: 10.1016/j.ibmb.2019.103284] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 05/04/2023]
Abstract
Carbon dioxide has been used in traps for more than six decades to monitor mosquito populations and help make informed vector management decisions. CO2 is sensed by gustatory receptors (GRs) housed in neurons in the maxillary palps. CO2-sensitive GRs have been identified from the vinegar fly and mosquitoes, but it remains to be resolved whether these receptors respond to CO2 or bicarbonate. As opposed to the vinegar fly, mosquitoes have three GR subunits, but it is assumed that subunits GR1 and GR3 form functional receptors. In our attempt to identify the chemical species that bind these receptors, we discovered that GR2 and GR3 are essential for receptor function and that GR1 appears to function as a modulator. While Xenopus oocytes coexpressing Culex quinquefasciatus subunits CquiGR1/3 and CquiGR1/2 were not activated, CquiGR2/3 gave robust responses to sodium bicarbonate. Interestingly, CquiGR1/2/3-coexpressing oocytes gave significantly lower responses. That the ternary combination is markedly less sensitive than the GR2/GR3 combination was also observed with orthologs from the yellow fever and the malaria mosquito. By comparing responses of CquiGR2/CquiGR3-coexpressing oocytes to sodium bicarbonate samples (with or without acidification) and measuring the concentration of aqueous CO2, we showed that there is a direct correlation between dissolved CO2 and receptor response. We then concluded that subunits GR2 and GR3 are essential for these carbon dioxide-sensitive receptors and that they are activated by CO2 per se, not bicarbonate.
Collapse
Affiliation(s)
- Pingxi Xu
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Xiaolan Wen
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, 95616, USA.
| |
Collapse
|
46
|
Anholt RRH. Chemosensation and Evolution of Drosophila Host Plant Selection. iScience 2020; 23:100799. [PMID: 31923648 PMCID: PMC6951304 DOI: 10.1016/j.isci.2019.100799] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/01/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
The ability to respond to chemosensory cues is critical for survival of most organisms. Among insects, Drosophila melanogaster has the best characterized olfactory system, and the availability of genome sequences of 30 Drosophila species provides an ideal scenario for studies on evolution of chemosensation. Gene duplications of chemoreceptor genes allow for functional diversification of the rapidly evolving chemoreceptor repertoire. Although some species of the genus Drosophila are generalists for host plant selection, rapid evolution of olfactory receptors, gustatory receptors, odorant-binding proteins, and cytochrome P450s has enabled diverse host specializations of different members of the genus. Here, I review diversification of the chemoreceptor repertoire among members of the genus Drosophila along with co-evolution of detoxification mechanisms that may have enabled occupation of diverse host plant ecological niches.
Collapse
Affiliation(s)
- Robert R H Anholt
- Department of Genetics and Biochemistry and Center for Human Genetics, Clemson University, Greenwood, SC 29646, USA.
| |
Collapse
|
47
|
Neuromodulation of insect motion vision. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 206:125-137. [DOI: 10.1007/s00359-019-01383-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
|
48
|
Gorur-Shandilya S, Martelli C, Demir M, Emonet T. Controlling and measuring dynamic odorant stimuli in the laboratory. ACTA ACUST UNITED AC 2019; 222:jeb.207787. [PMID: 31672728 DOI: 10.1242/jeb.207787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/24/2019] [Indexed: 12/28/2022]
Abstract
Animals experience complex odorant stimuli that vary widely in composition, intensity and temporal properties. However, stimuli used to study olfaction in the laboratory are much simpler. This mismatch arises from the challenges in measuring and controlling them precisely and accurately. Even simple pulses can have diverse kinetics that depend on their molecular identity. Here, we introduce a model that describes how stimulus kinetics depend on the molecular identity of the odorant and the geometry of the delivery system. We describe methods to deliver dynamic odorant stimuli of several types, including broadly distributed stimuli that reproduce some of the statistics of naturalistic plumes, in a reproducible and precise manner. Finally, we introduce a method to calibrate a photo-ionization detector to any odorant it can detect, using no additional components. Our approaches are affordable and flexible and can be used to advance our understanding of how olfactory neurons encode real-world odor signals.
Collapse
Affiliation(s)
- Srinivas Gorur-Shandilya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Carlotta Martelli
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Mahmut Demir
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Thierry Emonet
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA .,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA.,Department of Physics, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
49
|
Pannunzi M, Nowotny T. Odor Stimuli: Not Just Chemical Identity. Front Physiol 2019; 10:1428. [PMID: 31827441 PMCID: PMC6890726 DOI: 10.3389/fphys.2019.01428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 01/14/2023] Open
Abstract
In most sensory modalities the underlying physical phenomena are well understood, and stimulus properties can be precisely controlled. In olfaction, the situation is different. The presence of specific chemical compounds in the air (or water) is the root cause for perceived odors, but it remains unknown what organizing principles, equivalent to wavelength for light, determine the dimensions of odor space. Equally important, but less in the spotlight, odor stimuli are also complex with respect to their physical properties, including concentration and time-varying spatio-temporal distribution. We still lack a complete understanding or control over these properties, in either experiments or theory. In this review, we will concentrate on two important aspects of the physical properties of odor stimuli beyond the chemical identity of the odorants: (1) The amplitude of odor stimuli and their temporal dynamics. (2) The spatio-temporal structure of odor plumes in a natural environment. Concerning these issues, we ask the following questions: (1) Given any particular experimental protocol for odor stimulation, do we have a realistic estimate of the odorant concentration in the air, and at the olfactory receptor neurons? Can we control, or at least know, the dynamics of odorant concentration at olfactory receptor neurons? (2) What do we know of the spatio-temporal structure of odor stimuli in a natural environment both from a theoretical and experimental perspective? And how does this change if we consider mixtures of odorants? For both topics, we will briefly summarize the underlying principles of physics and review the experimental and theoretical Neuroscience literature, focusing on the aspects that are relevant to animals’ physiology and behavior. We hope that by bringing the physical principles behind odor plume landscapes to the fore we can contribute to promoting a new generation of experiments and models.
Collapse
|
50
|
Calhoun AJ, Pillow JW, Murthy M. Unsupervised identification of the internal states that shape natural behavior. Nat Neurosci 2019; 22:2040-2049. [PMID: 31768056 DOI: 10.1038/s41593-019-0533-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 10/07/2019] [Indexed: 02/02/2023]
Abstract
Internal states shape stimulus responses and decision-making, but we lack methods to identify them. To address this gap, we developed an unsupervised method to identify internal states from behavioral data and applied it to a dynamic social interaction. During courtship, Drosophila melanogaster males pattern their songs using feedback cues from their partner. Our model uncovers three latent states underlying this behavior and is able to predict moment-to-moment variation in song-patterning decisions. These states correspond to different sensorimotor strategies, each of which is characterized by different mappings from feedback cues to song modes. We show that a pair of neurons previously thought to be command neurons for song production are sufficient to drive switching between states. Our results reveal how animals compose behavior from previously unidentified internal states, which is a necessary step for quantitative descriptions of animal behavior that link environmental cues, internal needs, neuronal activity and motor outputs.
Collapse
Affiliation(s)
- Adam J Calhoun
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jonathan W Pillow
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|