1
|
Nater M, Brügger M, Cecconi V, Pereira P, Forni G, Köksal H, Dimakou D, Herbst M, Calvanese AL, Lucchiari G, Schneider C, Valenta T, van den Broek M. Hepatic iNKT cells facilitate colorectal cancer metastasis by inducing a fibrotic niche in the liver. iScience 2025; 28:112364. [PMID: 40292307 PMCID: PMC12032931 DOI: 10.1016/j.isci.2025.112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
The liver is an important metastatic organ that contains many innate immune cells, yet little is known about their role in anti-metastatic defense. We investigated how invariant natural killer T (iNKT) cells influence colorectal cancer-derived liver metastasis using different models in immunocompetent mice. We found that hepatic iNKT cells promote metastasis by creating a supportive niche for disseminated cancer cells. Mechanistically, iNKT cells respond to disseminating cancer cells by producing the fibrogenic cytokines interleukin-4 (IL-4) and IL-13 in a T cell receptor-independent manner. Selective abrogation of IL-4 and IL-13 sensing in hepatic stellate cells prevented their transdifferentiation into extracellular matrix-producing myofibroblasts, which hindered metastatic outgrowth of disseminated cancer cells. This study highlights a novel tumor-promoting axis driven by iNKT cells in the initial stages of metastasis.
Collapse
Affiliation(s)
- Marc Nater
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Brügger
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Virginia Cecconi
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Paulo Pereira
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Geo Forni
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Hakan Köksal
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Despoina Dimakou
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Michael Herbst
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Giulia Lucchiari
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | | | - Tomas Valenta
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Wu Z, Shan Q, Jiang Y, Huang W, Wang Z, Zhuang Y, Liu J, Li T, Yang Z, Li C, Wei T, Wen C, Cui W, Qiu Z, Liu X, Wang Z. Irreversible electroporation combined with PD-L1/IL-6 dual blockade promotes anti-tumor immunity via cDC2/CD4 +T cell axis in MHC-I deficient pancreatic cancer. Cancer Lett 2025; 617:217620. [PMID: 40068706 DOI: 10.1016/j.canlet.2025.217620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/28/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a "cold" solid tumor with frequent Major Histocompatibility Complex I (MHC-I) deficiency, thereby making it resistant to type-1-conventional dendritic cell (cDC1)-CD8+T cell mediated anti-tumor immunity. Current studies have demonstrated the emerging compensatory role of MHC-II-mediated antigen presentation and CD4+T cell activation in anti-tumor immunity against MHC-I-deficient tumors. However, the underlying mechanism of the compensatory immune response by CD4+T cells in cancer ablation therapy remains to be elucidate. In clinical samples and murine models, we observed that irreversible electroporation (IRE) ablation therapy promoted immune infiltration and the conversion of CD4+T cells into anti-tumor IFN-γ+Th1 cells and Th17 cells in MHC-I low-expressed PDAC using scRNA-seq and flow-cytometry analyses. Furthermore, we found that PD-L1 blockade predominantly enhanced the activation of CD11b+CD103-type-2 conventional dendritic cells (cDC2s) and their antigen presentation to CD4+T cells after ablation, stimulating the anti-tumor immune response through the tumor antigen-specific IFN-γ+Th1-NK cell axis. Elevated plasma levels of IL-6 in pancreatic cancer patients receiving ablation therapy are significant indicators for impaired prognosis. IL-6 and PD-L1 dual blockade could significantly augment the ratio of IFN-γ+Th1 in CD4+T cells to boost the anti-tumor immunity of NK cells, leading to prolonged survival of mouse bearing pancreatic cancer. Collectively, we have elucidated that PD-L1 blockade activates the cDC2-CD4+T cell axis after IRE therapy, thereby playing a pivotal compensatory anti-tumor role in MHC-I low-expressed pancreatic cancer. Moreover, a combination strategy involving dual-target blockade of PD-L1/IL-6 along with ablation therapy could emerge as a novel therapeutic approach for MHC-I deficient tumors.
Collapse
Affiliation(s)
- Zhuozhuo Wu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Qungang Shan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yuyue Jiang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Wei Huang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Ziyin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jingjing Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Tiankuan Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Ziyu Yang
- Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Chaojie Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China; Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No.149, South Chongqing Road, Shanghai, 200025, China
| | - Tao Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, China
| | - Chenlei Wen
- Department of Pancreatic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zilong Qiu
- Songjiang Research Institute, Institute of Autism & MOE-Shanghai Key Laboratory for Children's Environmental Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China, No.748, Middle Zhongshan Road, Shanghai, 200025, China
| | - Xiaoyu Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China; Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhongmin Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China; Faculty of Medical Imaging Technology, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, No.197, Ruijin 2nd Road, Shanghai, 200025, China; Department of Radiology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, No.149, South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
3
|
Waldron RT, Wang R, Shishido SN, Lugea A, Ibrahim AG, Mason J, Ayres M, Parker SJ, Van Eyk JE, Lo SK, Kuhn P, Pandol SJ. Selective removal of proteins and microvesicles ex vivo from blood of pancreatic cancer patients using bioengineered adsorption filters. Cancer Lett 2025; 614:217546. [PMID: 39952600 PMCID: PMC12010918 DOI: 10.1016/j.canlet.2025.217546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/24/2025] [Accepted: 02/09/2025] [Indexed: 02/17/2025]
Abstract
Metastatic pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with limited efficacious therapeutic options. Recent investigations have provided proof of concept that circulating tumor cells (CTCs) are reduced by purification of PDAC patient blood samples through ExThera Seraph100™ adsorption filters. Whether additional tumorigenic factors are also removed remains inadequately studied. Here, matched whole blood and purified blood samples from seven PDAC patients were analyzed for microparticle and soluble protein content. For microparticle analysis, patient samples were stratified by abundance. Filters markedly reduced ∼200-nm particles when in high abundance. Exosomes, or vesicles ranging from ∼50 to 150-nm were not significantly affected by the purification process. Proteomic analysis of plasma from the whole and purified blood revealed only a limited number of differentially expressed proteins. The complement C1Q proteins were reduced by the purification process, likely due to their heparin binding affinity. In contrast, there was an elevation in cytoplasmic proteins after purification, which may be due to cell destruction. Taken together, this study shows the selective removal of a subfraction of larger (>200 nm) microvesicles and C1Q during blood purification by the Seraph100™. The clinical significance of these findings requires further study.
Collapse
Affiliation(s)
- Richard T Waldron
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Stephanie N Shishido
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aurelia Lugea
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Ahmed G Ibrahim
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jeremy Mason
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA; Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Matthew Ayres
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sarah J Parker
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Simon K Lo
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Peter Kuhn
- Convergent Science Institute for Cancer, Michelson Center, University of Southern California, Los Angeles, CA, 90089, USA; Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA; Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
4
|
Jiang Y, Long G, Huang X, Wang W, Cheng B, Pan W. Single-cell transcriptomic analysis reveals dynamic changes in the liver microenvironment during colorectal cancer metastatic progression. J Transl Med 2025; 23:336. [PMID: 40091048 PMCID: PMC11910851 DOI: 10.1186/s12967-025-06351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Metastasis is a leading cause of cancer-related deaths, with the liver being the most frequent site of metastasis in colorectal cancer. Previous studies have predominantly focused on the influence of the primary tumor itself on metastasis, with relatively limited research examining the changes within target organs. METHODS Using an orthotopic mouse model of colorectal cancer, single-cell sequencing was employed to profile the transcriptomic landscape of pre-metastatic and metastatic livers. The analysis focused on identifying cellular and molecular changes within the hepatic microenvironment, with particular emphasis on inflammatory pathways and immune cell populations. RESULTS A neutrophil subpopulation with high Prok2 expression was identified, showing elevated levels in the pre-metastatic and metastatic liver. Increased infiltration of Prok2⁺ neutrophils correlated with poor prognosis in liver metastatic colorectal cancer patients. In the liver metastatic niche (MN), these neutrophils showed high App and Cd274 (PD-L1) expression, suppressing macrophage phagocytosis and promoting T-cell exhaustion. CONCLUSION A Prok2⁺ neutrophil subpopulation infiltrated both pre-metastatic and macro-metastatic liver environments, potentially driving immunosuppression through macrophage inhibition and T-cell exhaustion. Targeting Prok2⁺ neutrophils could represent a novel therapeutic strategy for preventing liver metastasis in colorectal cancer patients.
Collapse
Affiliation(s)
- Yue Jiang
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Guojie Long
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Xiaoming Huang
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Wenyu Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Bing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China.
| | - Weidong Pan
- Department of General Surgery (Department of Pancreatic Hepatobiliary Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, No. 26, Yuancun Erheng Road, Tianhe District, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
| |
Collapse
|
5
|
Xu W, Xu J, Liu J, Wang N, Zhou L, Guo J. Liver Metastasis in Cancer: Molecular Mechanisms and Management. MedComm (Beijing) 2025; 6:e70119. [PMID: 40027151 PMCID: PMC11868442 DOI: 10.1002/mco2.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Liver metastasis is a leading cause of mortality from malignant tumors and significantly impairs the efficacy of therapeutic interventions. In recent years, both preclinical and clinical research have made significant progress in understanding the molecular mechanisms and therapeutic strategies of liver metastasis. Metastatic tumor cells from different primary sites undergo highly similar biological processes, ultimately achieving ectopic colonization and growth in the liver. In this review, we begin by introducing the inherent metastatic-friendly features of the liver. We then explore the panorama of liver metastasis and conclude the three continuous, yet distinct phases based on the liver's response to metastasis. This includes metastatic sensing stage, metastatic stress stage, and metastasis support stage. We discuss the intricate interactions between metastatic tumor cells and various resident and recruited cells. In addition, we emphasize the critical role of spatial remodeling of immune cells in liver metastasis. Finally, we review the recent advancements and the challenges faced in the clinical management of liver metastasis. Future precise antimetastatic treatments should fully consider individual heterogeneity and implement different targeted interventions based on stages of liver metastasis.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jia Xu
- State Key Laboratory of Fine ChemicalsDepartment of Pharmaceutical SciencesSchool of Chemical EngineeringDalian University of TechnologyDalianChina
| | - Jianzhou Liu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nanzhou Wang
- Department of Colorectal SurgeryState Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Li Zhou
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junchao Guo
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Wu H, Zhou Y, Wang X, Tang C, Yang F, Xu K, Ren T. Systematic exploration of prognostic alternative splicing events related to tumor immune microenvironment of Clear Cell Renal Cell Carcinoma. Cancer Biomark 2025; 42:18758592251317402. [PMID: 40171812 DOI: 10.1177/18758592251317402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
BackgroundPathologically, clear cell renal cell carcinoma (ccRCC) is the most common type of renal carcinoma, with high heterogeneity and poor prognosis. There is increasing evidence that alternative splicing (AS) is involved in tumor evolution and tumor immune microenvironment (TIME). However, studies on the exploration of AS events and TIME in ccRCC are still few but needed.MethodsThe transcriptional data and clinicopathological information of patients with ccRCC in The Cancer Genome Atlas (TCGA) database were extracted completely. Patients were grouped according to the ESTIMATE algorithm and differentially expressed AS events (DEASs) were identified. The relationship between AS events and features of TIME were investigated by functional enrichment analysis and unsupervised consensus analysis. Finally, hub splicing factors (SFs) was identified by the regulatory network of survival-related AS events and intersection SFs, and its biological function was further verified in vitro.ResultsIn total, the data of 515 patients with ccRCC were extracted and analyzed. Patients with low immune-score presented longer overall survival (OS) than high immune-score. 861 AS events were identified as DEASs, and they were enriched in immune-related pathways. 3 AS-based clusters were identified and found to have different prognoses and unique immune features. Finally, MBNL1 was identified as a hub SF, and it was shown to inhibit proliferation and metastasis, promote apoptosis, and block cells in G2/M phase in 786O and A498 cells. Mechanistically, MBNL1 regulates QKI expression through AS.ConclusionThe prognostic risk model constructed base on immune-related AS events has good predictive ability for ccRCC. The hub SF MBNL1 identied in the present study could inhibit the progression of ccRCC. This effect is likely due to the regulation of QKI expression through AS.
Collapse
Affiliation(s)
- Hongwei Wu
- Clinical Medical College, Chengdu Medical College, Chengdu, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuchuan Zhou
- Clinical Medical College, Chengdu Medical College, Chengdu, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Wang
- Department of Ultrasound, the General Hospital of Western Theater Command, Chengdu, China
| | - Chunhan Tang
- Clinical Medical College, Chengdu Medical College, Chengdu, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Fang Yang
- Clinical Medical College, Chengdu Medical College, Chengdu, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Ke Xu
- Clinical Medical College, Chengdu Medical College, Chengdu, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Tao Ren
- Clinical Medical College, Chengdu Medical College, Chengdu, China
- Department of Oncology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
7
|
Tauch S, Hey J, Kast B, Gengenbacher N, Weiß L, Sator‐Schmitt M, Lohr S, Brobeil A, Schirmacher P, Utikal J, Augustin HG, Plass C, Angel P. A Unique Signature for Cancer-Associated Fibroblasts in Melanoma Metastases. Pigment Cell Melanoma Res 2025; 38:e70002. [PMID: 39924882 PMCID: PMC11808227 DOI: 10.1111/pcmr.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Cancer-associated fibroblasts (CAFs) represent a central cell population of the tumor microenvironment (TME). Recently, single-cell RNA-sequencing (scRNA-seq) analyses of primary tumors of different cancer entities yielded different classifications of CAF subsets underscoring the heterogeneity of CAFs within the TME. Here, we analyzed the transcriptional signatures of approximately 8400 CAFs and normal fibroblasts by scRNA-seq and compared genetic profiles of CAFs from murine melanoma primary tumors to CAFs from corresponding melanoma lung metastases. This revealed distinct subsets for primary tumor and metastasis-specific CAF populations, respectively. Combined with the spatial characterization of metastasis CAFs at the RNA and protein level, scRNA analyses indicate tumor-dependent crosstalk between neutrophils and CAFs, mediated via SAA3 and IL1b-related signaling pathways, which can be recapitulated in vitro. Analyzing tissue sections of human patient samples, this interaction was found to be present in human melanoma metastasis. Taken together, our data highlight unique characteristics of metastasis CAFs with potential therapeutic impact for melanoma metastasis.
Collapse
Affiliation(s)
- Saskia Tauch
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Joschka Hey
- Division of Cancer EpigenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Bettina Kast
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Nicolas Gengenbacher
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
| | - Lena Weiß
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Melanie Sator‐Schmitt
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Sabrina Lohr
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| | - Alexander Brobeil
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Peter Schirmacher
- Institute of PathologyUniversity Hospital HeidelbergHeidelbergGermany
| | - Jochen Utikal
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
- Skin Cancer UnitGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Dermatology, Venereology and AllergologyUniversity Medical Center Mannheim, Ruprecht‐Karl University of HeidelbergMannheimGermany
| | - Hellmut G. Augustin
- Division of Vascular Oncology and MetastasisGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
- European Center for Angioscience (ECAS), Medical Faculty MannheimHeidelberg UniversityMannheimGermany
- DKFZ‐Hector Cancer Institute, University Medical Centre MannheimMannheimGermany
| | - Christoph Plass
- Division of Cancer EpigenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Peter Angel
- Division Signal Transduction and Growth ControlGerman Cancer Research Center (DKFZ‐ZMBH Alliance)HeidelbergGermany
| |
Collapse
|
8
|
Kwon JY, Vera RE, Fernandez-Zapico ME. The multi-faceted roles of cancer-associated fibroblasts in pancreatic cancer. Cell Signal 2025; 127:111584. [PMID: 39756502 PMCID: PMC11807759 DOI: 10.1016/j.cellsig.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
The tumor microenvironment (TME) has been linked with the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), the most common histological subtype of pancreatic cancer. A central component of the TME are cancer-associated fibroblasts (CAFs), which can either suppress or promote tumor growth in a context-dependent manner. In this review, we will discuss the multi-faceted roles of CAFs in tumor-stroma interactions influencing cancer initiation, progression and therapeutic response.
Collapse
Affiliation(s)
- John Y Kwon
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | - Renzo E Vera
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Rochester, MN 55901, USA.
| | | |
Collapse
|
9
|
Li Z, Ma L, Chen M, Chen X, Sha M, Hang H. Single-cell analyses reveal metastasis mechanism and microenvironment remodeling of lymph node in intrahepatic cholangiocarcinoma. JHEP Rep 2025; 7:101275. [PMID: 40041119 PMCID: PMC11876886 DOI: 10.1016/j.jhepr.2024.101275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 03/06/2025] Open
Abstract
Background & Aims Lymph node metastasis (LNM) is a major determinant of recurrence and prognosis in intrahepatic cholangiocarcinoma (iCCA). LNM disrupts T cell-mediated cytotoxicity, promotes tumor-specific immune tolerance, and facilitates distant metastasis. Despite its importance, extensive research on LMN in iCCA is lacking. This study aimed to systematically explore the heterogeneity of the LNM-associated microenvironment in iCCA by integrating single-cell and multi-omics analyses, identifying metastasis-associated cell subgroups, and validating these findings through multiple cohorts. Methods We analyzed single-cell transcriptomics data from primary tumors, cancer-adjacent liver tissues, and tumor-draining lymph nodes of four patients with iCCA who underwent radical surgery. Additionally, we collected 81 tumor and matched lymph node tissue sections from patients with iCCA. We performed single-cell RNA sequencing and multiplex immunohistochemistry, followed by differential gene expression analysis, functional enrichment analysis, single-cell copy number variation assessment, and pseudotime analysis. Results Our analysis revealed the complex heterogeneity of the iCCA LNM-associated microenvironment. We found a significant increase in stromal and mature immune cells in the metastatic lymph nodes. T cells constitute the predominant component, with diverse functional subtypes. We identified CD36+ macrophages and SAA1+ tumor cells as key players in the metastatic process. The SAA1-CD36 receptor‒ligand pair may be crucial in forming the LNM-associated microenvironment. Conclusions We identified several metastasis-associated cell subgroups. These findings provide new insights into the mechanisms underlying LNM in iCCA and lay the groundwork for the development of novel therapeutic strategies. Our study highlights the importance of single-cell technologies in understanding tumor microenvironment complexity and offers valuable resources for future research. Impact and implications The lack of single-cell transcriptome analysis of intrahepatic cholangiocarcinoma (iCCA) lymph node metastases has prevented us from understanding the underlying mechanisms of disease progression. To fill this knowledge gap, we elucidated the unique ecosystem of iCCA lymph node metastases, which is an important advance in clarifying the impact of the immune environment on the development of this disease. The results of this study identified several LNM-related therapeutic targets, which will not only be helpful to basic researchers, but also provide potential diagnostic and treatment ideas for physicians, thereby helping patients and their caregivers develop more personalized treatment plans. This finding is highly important for improving the prognosis of patients with advanced iCCA in the future.
Collapse
Affiliation(s)
- Zhe Li
- Department of Liver Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Lijie Ma
- Department of Liver Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Mengdi Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai, China
| | - Xing Chen
- Department of Hepatopancreatobiliary Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Zhejiang, China
| | - Meng Sha
- Department of Liver Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Hualian Hang
- Department of Liver Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
10
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
11
|
Gu Y, Mi Y, Cao Y, Yu K, Zhang Z, Lian P, Li D, Qin J, Zhao S. The lncRNA MIR181A1HG in extracellular vesicles derived from highly metastatic colorectal cancer cells promotes liver metastasis by remodeling the extracellular matrix and recruiting myeloid-derived suppressor cells. Cell Biosci 2025; 15:23. [PMID: 39972363 PMCID: PMC11841002 DOI: 10.1186/s13578-025-01365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Colorectal liver metastasis (CRLM) is the main cause of death in colorectal cancer (CRC) patients worldwide. In the initial stage of metastasis, primary tumors provide the necessary conditions for metastasis by shaping the local microenvironment of the target organ, forming "premetastatic niches" (PMNs), and extracellular vesicles (EVs) play important roles in shaping PMNs. Therefore, investigating the EVs involved in the regulation of PMNs and their mechanism is highly valuable for the further understanding of CRLM. METHODS Transmission electron microscopy and differential ultracentrifugation were used to verify the existence of exosomes. In vivo and in vitro assays were used to identify the roles of MIR181A1HG in EVs in CRLM. RNA pull-down and dual-luciferase reporter assays were used to clarify the mechanism by which MIR181A1HG in EVs regulated the crosstalk between CRC cells and hepatic stellate cells (HSCs). RESULTS We demonstrated that the lncRNA MIR181A1HG was progressively upregulated in tissues, serum EVs from healthy normal controls to CRC and paired liver metastatic groups. Additionally, we verified that HNRNPA2B1 mediated the packaging of MIR181A1HG into CRC cell-derived EVs, which in turn functioned as a ceRNA by sponging miR373-3p to activate HSCs via the TGFβRII/Smad2/3 signaling pathway. Furthermore, activated HSCs could secrete the chemokine CXCL12 to promote CRLM by remodeling the extracellular matrix and recruiting myeloid-derived suppressor cells in the liver, which resulted in liver metastasis. CONCLUSIONS MIR181A1HG in EVs from highly metastatic CRC cells promoted CRLM by activating HSCs to form PMNs in the liver, which contributes to the further understanding of the mechanism of CRLM and provides potential predictive markers for CRLM.
Collapse
Affiliation(s)
- Yichao Gu
- Department of General Surgery, Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China
| | - Yushuai Mi
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Street, Jinan, Shandong, 250033, China
| | - Yifan Cao
- Department of General Surgery, Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China
| | - Kuan Yu
- Department of General Surgery, Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China
| | - Zihao Zhang
- Department of General Surgery, Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China
| | - Peng Lian
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| | - Jing Qin
- Department of General Surgery, Zhongshan Hospital, 180 Fenglin Road, Shanghai, 200032, China.
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China.
| |
Collapse
|
12
|
Zhu Q, Wang Y, Xu L, Shi M, Meng Y, Shao C, Lu Y, He Y, Huang J, Li X, Li B, Long Y, Ding Y, Qi J, Wang W, Du Y, Sun Y. Role of SAA1 in Endometrial Extracellular Matrix Remodeling in Polycystic Ovary Syndrome: Implication for Pregnancy Loss. J Clin Endocrinol Metab 2025; 110:658-667. [PMID: 39210610 DOI: 10.1210/clinem/dgae596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
CONTEXT Abnormal endometrial extracellular matrix (ECM) remodeling compromises endometrial receptivity and diminishes the probability of a successful live birth. Serum amyloid A1 (SAA1), a modulator of inflammation, is elevated in the circulation of polycystic ovary syndrome (PCOS) patients and involved in ECM remodeling during tissue repair. However, the specific role of SAA1 in endometrial ECM remodeling and subsequent risk of pregnancy loss in PCOS patients remains unclear. OBJECTIVE To examine the role and underlying mechanism of SAA1 in ECM remodeling in the endometrium of PCOS patients. DESIGN Serum samples from PCOS and control patients were utilized to investigate the relationship between the abundance of SAA1 and pregnancy loss. Human endometrial tissues and primary human endometrial stromal cells were used to examine the role and underlying mechanism of SAA1 in ECM remodeling. RESULTS Serum SAA1 concentration was elevated and could serve as an independent risk of pregnancy loss in PCOS patients. Increased SAA1 abundance was also observed in endometrium obtained from these patients. Further mechanistic studies showed that SAA1 stimulated collagen I chains synthesis (COL1A1 and COL1A2) in endometrial stromal cells, suggesting excessive SAA1 may contribute to endometrial ECM remodeling, resulting in a nonsupportive environment for ongoing pregnancy. This effect was abolished by either a toll-like receptor 2/4 antagonist or a nuclear factor κB inhibitor. CONCLUSION The locally elevated levels of SAA1 in endometrium contribute to ECM overdeposition by inducing collagen I synthesis in PCOS patients, which may hamper embryo implantation and increase the risk of pregnancy loss. These observations highlight the crucial role of heightened SAA1 in orchestrating endometrial dysfunction and shed light on potential therapeutic avenues for improving reproductive outcomes in PCOS patients.
Collapse
Affiliation(s)
- Qinling Zhu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yuan Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Lizhen Xu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Mengjia Shi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yiwen Meng
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Chongwen Shao
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yao Lu
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yaqiong He
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Jiaan Huang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Xinyu Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Boyu Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yijing Long
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Ying Ding
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Jia Qi
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Wangsheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| | - Yun Sun
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, P.R. China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, P.R. China
| |
Collapse
|
13
|
Yang S, Seo J, Choi J, Kim SH, Kuk Y, Park KC, Kang M, Byun S, Joo JY. Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies. Mol Cancer 2025; 24:47. [PMID: 39953555 PMCID: PMC11829473 DOI: 10.1186/s12943-025-02250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
Delving into cancer dormancy has been an inherent task that may drive the lethal recurrence of cancer after primary tumor relief. Cells in quiescence can survive for a short or long term in silence, may undergo genetic or epigenetic changes, and can initiate relapse through certain contextual cues. The state of dormancy can be induced by multiple conditions including cancer drug treatment, in turn, undergoes a life cycle that generally occurs through dissemination, invasion, intravasation, circulation, immune evasion, extravasation, and colonization. Throughout this cascade, a cellular machinery governs the fate of individual cells, largely affected by gene regulation. Despite its significance, a precise view of cancer dormancy is yet hampered. Revolutionizing advanced single cell and long read sequencing through analysis methodologies and artificial intelligence, the most recent stage in the research tool progress, is expected to provide a holistic view of the diverse aspects of cancer dormancy.
Collapse
Affiliation(s)
- Sumin Yang
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Jieun Seo
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Jeonghyeon Choi
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Sung-Hyun Kim
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea
| | - Yunmin Kuk
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Kyung Chan Park
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea
| | - Mingon Kang
- Department of Computer Science, University of Nevada, Las Vegas, NV, 89154, USA
| | - Sangwon Byun
- Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Korea.
| | - Jae-Yeol Joo
- Department of Pharmacy, College of Pharmacy, Hanyang University, Ansan, Gyeonggi-do, 15588, Korea.
- Department of Pharmacy, College of Pharmacy, Hanyang University, Rm 407, Bldg.42, 55 Hanyangdaehak-ro, Sangnok-gu Ansan, Gyeonggi-do, 15588, Republic of Korea.
| |
Collapse
|
14
|
Kim J, Seki E. Inflammation and Immunity in Liver Neoplasms: Implications for Future Therapeutic Strategies. Mol Cancer Ther 2025; 24:188-199. [PMID: 39365846 PMCID: PMC11794036 DOI: 10.1158/1535-7163.mct-23-0726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 10/06/2024]
Abstract
Over the past two decades, the "hallmarks of cancer" have revolutionized cancer research and highlighted the crucial roles of inflammation and immunity. Protumorigenic inflammation promotes cancer development along with inhibition of antitumor immunity, shaping the tumor microenvironment (TME) toward a tumor-permissive state and further enhancing the malignant potential of cancer cells. This immunosuppressive TME allows tumors to evade immunosurveillance. Thus, understanding the complex interplay between tumors and the immune system within the TME has become pivotal, especially with the advent of immunotherapy. Although immunotherapy has achieved notable success in many malignancies, primary liver cancer, particularly hepatocellular carcinoma, presents unique challenges. The hepatic immunosuppressive environment poses obstacles to the effectiveness of immunotherapy, along with high mortality rates and limited treatment options for patients with liver cancer. In this review, we discuss current understanding of the complex immune-mediated mechanisms underlying liver neoplasms, focusing on hepatocellular carcinoma and liver metastases. We describe the molecular and cellular heterogeneity within the TME, highlighting how this presents unique challenges and opportunities for immunotherapy in liver cancers. By unraveling the immune landscape of liver neoplasms, this review aims to contribute to the development of more effective therapeutic interventions, ultimately improving clinical outcomes for patients with liver cancer.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
15
|
Cheng PSW, Zaccaria M, Biffi G. Functional heterogeneity of fibroblasts in primary tumors and metastases. Trends Cancer 2025; 11:135-153. [PMID: 39674792 DOI: 10.1016/j.trecan.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/16/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are abundant components of the tumor microenvironment (TME) of most solid malignancies and have emerged as key regulators of cancer progression and therapy response. Although recent technological advances have uncovered substantial CAF molecular heterogeneity at the single-cell level, defining functional roles for most described CAF populations remains challenging. With the aim of bridging CAF molecular and functional heterogeneity, this review focuses on recently identified functional interactions of CAF subtypes with malignant cells, immune cells, and other stromal cells in primary tumors and metastases. Dissecting the heterogeneous functional crosstalk of specific CAF populations with other components is starting to uncover candidate combinatorial strategies for therapeutically targeting the TME and cancer progression.
Collapse
Affiliation(s)
- Priscilla S W Cheng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Marta Zaccaria
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, UK.
| |
Collapse
|
16
|
Zhang X, Huang N, Mu Y, Chen H, Zhu M, Zhang S, Liu P, Zhang H, Deng H, Feng K, Shang Q, Liu X, Zhang C, Shi M, Yang L, Sun J, Kong G, Geng J, Lu S, Li Z. Mechanical Force-Induced cGAS Activation in Carcinoma Cells Facilitates Splenocytes into Liver to Drive Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2401127. [PMID: 39737867 PMCID: PMC11848607 DOI: 10.1002/advs.202401127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/27/2024] [Indexed: 01/01/2025]
Abstract
Liver metastasis is the main cause of cancer-related mortality. During the metastasis process, circulating carcinoma cells hardly pass through narrow capillaries, leading to nuclear deformation. However, the effects of nuclear deformation and its underlying mechanisms on metastasis need further study. Here, it is shown that mechanical force-induced nuclear deformation exacerbates liver metastasis by activating the cGAS-STING pathway, which promotes splenocyte infiltration in the liver. Mechanical force results in nuclear deformation and rupture of the nuclear envelope with inevitable DNA leakage. Cytoplasmic DNA triggers the activation of cGAS-STING pathway, enhancing the production of IL6, TNFα, and CCL2. Additionally, splenocyte recruitment by the proinflammatory cytokines support carcinoma cell survival and colonization in the liver. Importantly, both intervening activity of cGAS and blocking of splenocyte migration to the liver efficiently ameliorate liver metastasis. Overall, these findings reveal a mechanism by which mechanical force-induced nuclear deformation exacerbates liver metastasis by regulating splenocyte infiltration into the liver and support targeting cGAS and blocking splenocyte recruitment as candidate therapeutic approaches for liver metastasis.
Collapse
|
17
|
Cheng Y, Chen X, Feng L, Yang Z, Xiao L, Xiang B, Wang X, Liu D, Lin P, Shi J, Song G, Qian W, Zhang B, Xu Y, Gao Z, Chen L, Wu Y, Ma J, Lin Y, Zhao H, Peng L, Mao X, Liu Y, Hou H, Yang M, Ji Y, Wang X, Zhou J, Xu X, Liu X, Wei W, Zhang X, Gao Q, Zhou H, Sun Y, Wu K, Fan J. Stromal architecture and fibroblast subpopulations with opposing effects on outcomes in hepatocellular carcinoma. Cell Discov 2025; 11:1. [PMID: 39870619 PMCID: PMC11772884 DOI: 10.1038/s41421-024-00747-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 10/29/2024] [Indexed: 01/29/2025] Open
Abstract
Dissecting the spatial heterogeneity of cancer-associated fibroblasts (CAFs) is vital for understanding tumor biology and therapeutic design. By combining pathological image analysis with spatial proteomics, we revealed two stromal archetypes in hepatocellular carcinoma (HCC) with different biological functions and extracellular matrix compositions. Using paired single-cell RNA and epigenomic sequencing with Stereo-seq, we revealed two fibroblast subsets CAF-FAP and CAF-C7, whose spatial enrichment strongly correlated with the two stromal archetypes and opposing patient prognosis. We discovered two functional units, one is the intratumor inflammatory hub featured by CAF-FAP plus CD8_PDCD1 proximity and the other is the marginal wound-healing hub with CAF-C7 plus Macrophage_SPP1 co-localization. Inhibiting CAF-FAP combined with anti-PD-1 in orthotopic HCC models led to improved tumor regression than either monotherapy. Collectively, our findings suggest stroma-targeted strategies for HCC based on defined stromal archetypes, raising the concept that CAFs change their transcriptional program and intercellular crosstalk according to the spatial context.
Collapse
Affiliation(s)
- Yifei Cheng
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofang Chen
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhicheng Yang
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyun Xiao
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Bin Xiang
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaodong Wang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Dongbin Liu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Penghui Lin
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Jieyi Shi
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wulei Qian
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Boan Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Yanan Xu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zheng Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lv Chen
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haichao Zhao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lihua Peng
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | | | - Yang Liu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Hou
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingyu Yang
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xun Xu
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, Guangdong, China
| | - Xiyang Liu
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, China
| | - Wu Wei
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Hu Zhou
- Department of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yidi Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Kui Wu
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, Zhejiang, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, Guangdong, China.
- Institute of Intelligent Medical Research (IIMR), BGI Genomics, Shenzhen, Guangdong, China.
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
18
|
Chang Y, Liu Y, Zou Y, Ye RD. Recent Advances in Studies of Serum Amyloid A: Implications in Inflammation, Immunity and Tumor Metastasis. Int J Mol Sci 2025; 26:987. [PMID: 39940756 PMCID: PMC11817213 DOI: 10.3390/ijms26030987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Research on serum amyloid A (SAA) has seen major advancement in recent years with combined approaches of structural analysis and genetically altered mice. Initially identified as an acute-phase reactant, SAA is now recognized as a major player in host defense, inflammation, lipid metabolism and tumor metastasis. SAA binding and the neutralization of LPS attenuate sepsis in mouse models. SAA also displays immunomodulatory functions in Th17 differentiation and macrophage polarization, contributing to a pro-metastatic tumor microenvironment. In spite of the progress, the regulatory mechanisms for these diverse functions of SAA remain unclear. This review provides a brief summary of recent advances in SAA research on immunity, inflammation, tumor microenvironment and in vivo models.
Collapse
Affiliation(s)
- Yixin Chang
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yezhou Liu
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yuanrui Zou
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Richard D. Ye
- Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- The Chinese University of Hong Kong, Shenzhen Futian Biomedical Innovation R&D Center, Shenzhen 518000, China
| |
Collapse
|
19
|
Liao R, Yi G, Shen L, Xiao X, Zeng C, Liu L, Tang H, Huang S, Zhang X, Xu Z, Yang Z, Peng Y. Characterization of the genomic landscape in liver oligometastatic NSCLC. BMC Cancer 2025; 25:93. [PMID: 39819288 PMCID: PMC11737069 DOI: 10.1186/s12885-025-13478-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Emerging data have shown that local treatment could provide clinical benefit for non-small cell lung cancer (NSCLC) patients with oligometastasis. Liver metastases have the worst prognosis in advanced NSCLC, but the genomic characteristics of liver oligometastasis remain unclear. The aim of our study was to elucidate the molecular features of liver oligometastatic NSCLC. METHODS Paired liver metastatic tissue samples and peripheral blood from 32 liver oligometastatic NSCLC patients were concurrently collected for comprehensive genomic analysis using next-generation sequencing. RESULTS A total of 206 mutated genes in 32 patients were detected, with a median of 4 mutations per sample. The most frequent alterations (> 10%) in liver oligometastasis were TP53 (72%), EGFR (50%), RB1 (19%) and SMARCA4 (12%). The co-occurrence rate of TP53 and RB1 in our cohort was significantly higher than that in the TCGA-LUAD cohort. Age, APOBEC, homologous recombination deficiency (HRD) and deficient mismatch repair (dMMR) established the mutational signature of liver oligometastatic NSCLC. The median tumor mutation burden (TMB) was 4.8 mutations/Mb. A total of 78.12% patients harbored at least one potentially actionable molecular alteration that may guide further targeted therapy according to the OncoKB evidence. CONCLUSIONS Our study comprehensively delineated the genomic characteristics of liver oligometastatic NSCLC - such findings were helpful to better understand the distinct clinic-biological features of oligometastasis and optimize personalized treatment of this population.
Collapse
Affiliation(s)
- Rongxin Liao
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Guangming Yi
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Oncology, The Third Hospital of Mianyang (Sichuan Mental Health Center), Mianyang, Sichuan, China
| | - Lu Shen
- Geneplus-Beijing, Beijing, China
| | | | - Chuan Zeng
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Liangzhong Liu
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hongjun Tang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shunping Huang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaoyue Zhang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhenzhou Yang
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Chongqing Clinical Research Center for Geriatrics and Gerontology, Chongqing, China.
- Department of Cancer Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Yuan Peng
- Department of Cancer Center, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Guchengtai Community Health Center of Chengxi District Xining, Xining, Qinghai, China.
- Department of Cancer Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
20
|
Link JM, Eng JR, Pelz C, MacPherson-Hawthorne K, Worth PJ, Sivagnanam S, Keith DJ, Owen S, Langer EM, Grossblatt-Wait A, Salgado-Garza G, Creason AL, Protzek S, Egger J, Holly H, Heskett MB, Chin K, Kirchberger N, Betre K, Bucher E, Kilburn D, Hu Z, Munks MW, English IA, Tsuda M, Goecks J, Demir E, Adey AC, Kardosh A, Lopez CD, Sheppard BC, Guimaraes A, Brinkerhoff B, Morgan TK, Mills GB, Coussens LM, Brody JR, Sears RC. Ongoing replication stress tolerance and clonal T cell responses distinguish liver and lung recurrence and outcomes in pancreatic cancer. NATURE CANCER 2025; 6:123-144. [PMID: 39789181 PMCID: PMC11779630 DOI: 10.1038/s43018-024-00881-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 11/15/2024] [Indexed: 01/12/2025]
Abstract
Patients with metastatic pancreatic ductal adenocarcinoma survive longer if disease spreads to the lung but not the liver. Here we generated overlapping, multi-omic datasets to identify molecular and cellular features that distinguish patients whose disease develops liver metastasis (liver cohort) from those whose disease develops lung metastasis without liver metastases (lung cohort). Lung cohort patients survived longer than liver cohort patients, despite sharing the same tumor subtype. We developed a primary organotropism (pORG) gene set enriched in liver cohort versus lung cohort primary tumors. We identified ongoing replication stress response pathways in high pORG/liver cohort tumors, whereas low pORG/lung cohort tumors had greater densities of lymphocytes and shared T cell clonal responses. Our study demonstrates that liver-avid pancreatic ductal adenocarcinoma is associated with tolerance to ongoing replication stress, limited tumor immunity and less-favorable outcomes, whereas low replication stress, lung-avid/liver-averse tumors are associated with active tumor immunity that may account for favorable outcomes.
Collapse
Affiliation(s)
- Jason M Link
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA.
| | - Jennifer R Eng
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Carl Pelz
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | | | - Patrick J Worth
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Shamaline Sivagnanam
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Dove J Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Sydney Owen
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Ellen M Langer
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
| | - Alison Grossblatt-Wait
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
| | | | - Allison L Creason
- Knight Cancer Institute, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Sara Protzek
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Julian Egger
- Knight Cancer Institute, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Hannah Holly
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - Koei Chin
- Knight Cancer Institute, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Nell Kirchberger
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Konjit Betre
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Elmar Bucher
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - David Kilburn
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Zhi Hu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Michael W Munks
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
| | - Isabel A English
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Motoyuki Tsuda
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Jeremy Goecks
- Knight Cancer Institute, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Emek Demir
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Andrew C Adey
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
| | - Adel Kardosh
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Charles D Lopez
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, OR, USA
| | - Brett C Sheppard
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Alex Guimaraes
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Brian Brinkerhoff
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Terry K Morgan
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Center for Early Detection Advanced Research, Oregon Health and Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
- Department of Pathology and Laboratory Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Gordon B Mills
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Oncological Sciences, Oregon Health and Science University, Portland, OR, USA
| | - Lisa M Coussens
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Jonathan R Brody
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA
- Knight Cancer Institute, Portland, OR, USA
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
- Department of Cell, Development and Cancer Biology, Oregon Health and Science University, Portland, OR, USA
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Brenden-Colson Center for Pancreatic Care, Oregon Health and Science University, Portland, OR, USA.
- Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
21
|
Luo WJ, Hsu WL, Lu CY, Chien MH, Chang JH, Su KY. DNAJB4/HLJ1 deficiency sensitizes diethylnitrosamine-induced hepatocarcinogenesis with peritumoral STAT3 activation. Cell Biol Toxicol 2024; 41:20. [PMID: 39738726 PMCID: PMC11685265 DOI: 10.1007/s10565-024-09978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/21/2024] [Indexed: 01/02/2025]
Abstract
Environmental chemicals and toxins are known to impact human health and contribute to cancer developments. Among these, genotoxins induce genetic mutations critical for cancer initiation. In the liver, proliferation serves not only as a compensatory mechanism for tissue repair but also as a potential risk factor for the progression of premalignant lesions. The role of Human Liver DnaJ-Like Protein (DNAJB4/HLJ1), a stress-responsive heat shock protein 40, in genotoxin-induced liver carcinogenesis remains unexplored. Using whole-genome transcriptomic analysis, we demonstrate that HLJ1 deficiency in mice results in altered gene signatures enriched in pathways associated with chemically induced liver cancer and IL-6/STAT3 signaling activation. Employing diethylnitrosamine (DEN) as a carcinogen, we further reveal that STAT3 and H2AX phosphorylation induced by short-term DEN treatment are amplified in HLJ1-deficient mice. In long-term DEN experiments, HLJ1 deletion enhances tumor proliferation and progression, accompanied by pronounced STAT3 phosphorylation in normal tissues rather than in tumor regions. The tumor-suppressive role of peritumoral HLJ1 is validated through the transplantation of HLJ1-wildtype B16F1 and LLC cancer cell lines into syngeneic HLJ1-deficient mice, which exhibits an augmented tumorigenic phenotype compared to wildtype controls. This study uncovers a previously unrecognized role of HLJ1 in suppressing liver carcinogenesis via the downregulation of STAT3 signaling in peritumoral normal cells. These findings suggest that HLJ1 reinforcement represents a promising strategy for liver cancer treatment and prevention.
Collapse
Affiliation(s)
- Wei-Jia Luo
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Lun Hsu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yun Lu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Min-Hui Chien
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jung-Hsuan Chang
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
22
|
Li D, Chu X, Ma Y, Zhang F, Tian X, Yang Y, Yang Y. Tumor-derived exosomes: Unravelling the pathogenesis of pancreatic cancer with liver metastases and exploring the potential for clinical translation. Cancer Lett 2024; 611:217403. [PMID: 39709178 DOI: 10.1016/j.canlet.2024.217403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Pancreatic cancer (PC) is one of the most malignant solid cancers, and PC metastasis, particularly liver metastasis, is a major cause of cancer mortality. A key event in tumor metastasis is the formation of pre-metastatic niche (PMN), which provides a microenvironment conducive to tumor cells colonization and progression. Various molecules loaded in tumor-derived exosomes (TDEs) contribute to PMN formation and distant tumor metastasis, by regulating immune and stromal cell function, inducing angiogenesis, and promoting metabolic reprogramming. Therefore, therapies targeting PMN may offer novel advantages to prevent tumor metastasis at an earlier stage. In this review, we summarize multifaceted mechanisms underlying hepatic PMN formation, with a focus on how PC TDEs participate in angiogenesis and vascular permeability, create immune suppressive microenvironment, remodel the extracellular matrix, and regulate metabolic reprogramming. In addition, we highlight the promise of TDEs for early diagnosis and effective therapy of PC liver metastases.
Collapse
Affiliation(s)
- Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yanlian Yang
- CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
23
|
Rabas N, Ferreira RMM, Di Blasio S, Malanchi I. Cancer-induced systemic pre-conditioning of distant organs: building a niche for metastatic cells. Nat Rev Cancer 2024; 24:829-849. [PMID: 39390247 DOI: 10.1038/s41568-024-00752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/12/2024]
Abstract
From their early genesis, tumour cells integrate with the surrounding normal cells to form an abnormal structure that is tightly integrated with the host organism via blood and lymphatic vessels and even neural associations. Using these connections, emerging cancers send a plethora of mediators that efficiently perturb the entire organism and induce changes in distant tissues. These perturbations serendipitously favour early metastatic establishment by promoting a more favourable tissue environment (niche) that supports the persistence of disseminated tumour cells within a foreign tissue. Because the establishment of early metastatic niches represents a key limiting step for metastasis, the creation of a more suitable pre-conditioned tissue strongly enhances metastatic success. In this Review, we provide an updated view of the mechanisms and mediators of primary tumours described so far that induce a pro-metastatic conditioning of distant organs, which favours early metastatic niche formation. We reflect on the nature of cancer-induced systemic conditioning, considering that non-cancer-dependent perturbations of tissue homeostasis are also able to trigger pro-metastatic conditioning. We argue that a more holistic view of the processes catalysing metastatic progression is needed to identify preventive or therapeutic opportunities.
Collapse
Affiliation(s)
- Nicolas Rabas
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Rute M M Ferreira
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Stefania Di Blasio
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK
| | - Ilaria Malanchi
- Tumour-Host Interaction Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
24
|
Ni X, Wei Y, Li X, Pan J, Fang B, Zhang T, Lu Y, Ye D, Zhu Y. From biology to the clinic - exploring liver metastasis in prostate cancer. Nat Rev Urol 2024; 21:593-614. [PMID: 38671281 DOI: 10.1038/s41585-024-00875-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
Liver metastases from prostate cancer are associated with an aggressive disease course and poor prognosis. Results from autopsy studies indicate a liver metastasis prevalence of up to 25% in patients with advanced prostate cancer. Population data estimate that ~3-10% of patients with metastatic castration-resistant prostate cancer harbour liver metastases at the baseline, rising to 20-30% in post-treatment cohorts, suggesting that selective pressure imposed by novel therapies might promote metastatic spread to the liver. Liver metastases are associated with more aggressive tumour biology than lung metastases. Molecular profiling of liver lesions showed an enrichment of low androgen receptor, neuroendocrine phenotypes and high genomic instability. Despite advancements in molecular imaging modalities such as prostate-specific membrane antigen PET-CT, and liquid biopsy markers such as circulating tumour DNA, early detection of liver metastases from prostate cancer remains challenging, as both approaches are hampered by false positive and false negative results, impeding the accurate identification of early liver lesions. Current therapeutic strategies showed limited efficacy in this patient population. Emerging targeted radionuclide therapies, metastasis-directed therapy, and novel systemic agents have shown preliminary activity against liver metastases, but require further validation. Treatment with various novel prostate cancer therapies might lead to an increase in the prevalence of liver metastasis, underscoring the urgent need for coordinated efforts across preclinical and clinical researchers to improve characterization, monitoring, and management of liver metastases from prostate cancer. Elucidating molecular drivers of liver tropism and interactions with the liver microenvironment might ultimately help to identify actionable targets to enhance survival in this high-risk patient group.
Collapse
Affiliation(s)
- Xudong Ni
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yu Wei
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Xiaomeng Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Jian Pan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Bangwei Fang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Tingwei Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Genitourinary Cancer Institute, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, China.
| |
Collapse
|
25
|
Wang Y, Jia J, Wang F, Fang Y, Yang Y, Zhou Q, Yuan W, Gu X, Hu J, Yang S. Pre-metastatic niche: formation, characteristics and therapeutic implication. Signal Transduct Target Ther 2024; 9:236. [PMID: 39317708 PMCID: PMC11422510 DOI: 10.1038/s41392-024-01937-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024] Open
Abstract
Distant metastasis is a primary cause of mortality and contributes to poor surgical outcomes in cancer patients. Before the development of organ-specific metastasis, the formation of a pre-metastatic niche is pivotal in promoting the spread of cancer cells. This review delves into the intricate landscape of the pre-metastatic niche, focusing on the roles of tumor-derived secreted factors, extracellular vesicles, and circulating tumor cells in shaping the metastatic niche. The discussion encompasses cellular elements such as macrophages, neutrophils, bone marrow-derived suppressive cells, and T/B cells, in addition to molecular factors like secreted substances from tumors and extracellular vesicles, within the framework of pre-metastatic niche formation. Insights into the temporal mechanisms of pre-metastatic niche formation such as epithelial-mesenchymal transition, immunosuppression, extracellular matrix remodeling, metabolic reprogramming, vascular permeability and angiogenesis are provided. Furthermore, the landscape of pre-metastatic niche in different metastatic organs like lymph nodes, lungs, liver, brain, and bones is elucidated. Therapeutic approaches targeting the cellular and molecular components of pre-metastatic niche, as well as interventions targeting signaling pathways such as the TGF-β, VEGF, and MET pathways, are highlighted. This review aims to enhance our understanding of pre-metastatic niche dynamics and provide insights for developing effective therapeutic strategies to combat tumor metastasis.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Jiachi Jia
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Fuqi Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Yingshuai Fang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Yabing Yang
- College of Medicine, Zhengzhou University, Zhengzhou, 450001, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China
| | - Xiaoming Gu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Junhong Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| | - Shuaixi Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450000, China.
| |
Collapse
|
26
|
Mucciolo G, Li W, Biffi G. Cancer-Associated Fibroblasts: From Spectators to Protagonists in Pancreatic Cancer Progression. Cancer Res 2024; 84:2938-2940. [PMID: 39279382 DOI: 10.1158/0008-5472.can-24-2448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/18/2024]
Abstract
Our knowledge of the origins, heterogeneity, and functions of cancer-associated fibroblasts (CAF) in pancreatic ductal adenocarcinoma (PDAC) has exponentially increased over the last two decades. This has been facilitated by the implementation of new models and single-cell technologies. However, a few key studies preceded the current exciting times in CAF research and were fundamental in initiating the investigation of CAFs and of their roles in PDAC. With their study published in Cancer Research in 2008, Hwang and colleagues have been first to successfully isolate and immortalize human pancreatic stellate cells (HPSC) from PDAC tissues. This new tool allowed them to probe the roles of CAFs in PDAC as never done before. By performing complementary in vitro and in vivo analyses, the authors demonstrated the involvement of HPSCs in PDAC malignant cell proliferation, invasion, and therapy resistance. Here, we leverage that seminal study as a framework to discuss the advances made over the last 16 years in understanding the complexity and central roles of CAFs in PDAC progression. See related article by Hwang and colleagues, Cancer Res 2008;68:918-26.
Collapse
Affiliation(s)
| | - Wenlong Li
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Giulia Biffi
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
27
|
Sogunro A, Muzumdar MD. Keep It Moving: Physical Activity in the Prevention of Obesity-Driven Pancreatic Cancer. Cancer Res 2024; 84:2935-2937. [PMID: 39279380 DOI: 10.1158/0008-5472.can-24-1474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 09/18/2024]
Abstract
Despite the already dire impact of pancreatic cancer, a growing subset of patients with obesity exhibits an amplified risk of disease and worse outcomes. Mouse models have revealed that obesity is distinctly pathogenic, accelerating pancreatic ductal adenocarcinoma (PDAC) progression and inducing increased desmoplasia and myeloid cell infiltration in the tumor microenvironment. However, whether and how obesity-countering interventions, such as exercise, reverse the protumorigenic effects of obesity is incompletely understood. In this issue of Cancer Research, Pita-Grisanti and colleagues investigate the impact of physical activity (PA) in disrupting obesity-driven PDAC. Employing a variety of sophisticated models, including autochthonous genetically engineered mice, orthotopic syngeneic allografts, high-fat diet-induced obesity, and PA interventions in mice and humans, the authors found that PA impedes PDAC development in obese mice but does not impact the growth of advanced tumors. These antitumor effects correlated with reduced inflammation and fibrosis in the tumor microenvironment, a decline in high-fat diet-induced circulating inflammatory cytokines, and an increase in the IL15 signaling axis in white adipose tissue. Although adipose-targeted IL15 therapy was effective in suppressing advanced tumor growth in lean mice, obese mice were resistant to its therapeutic benefits. Together, the findings argue that PA delays obesity-driven early PDAC progression, implicating the preferential benefit of exercise as a preventative strategy. They further identify changes in obesity-associated local and systemic cytokine production as a possible mechanism for the antitumor effects of PA and help define context-specific determinants of response for emerging IL15-based immunotherapies. See related article by Pita-Grisanti et al., p. 3058.
Collapse
Affiliation(s)
- Akin Sogunro
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut
- M.D.-Ph.D. Program, Yale University, New Haven, Connecticut
| | - Mandar D Muzumdar
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, Connecticut
- Yale Cancer Biology Institute, Yale University, West Haven, Connecticut
- M.D.-Ph.D. Program, Yale University, New Haven, Connecticut
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University, New Haven, Connecticut
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University, New Haven, Connecticut
- Molecular Cell Biology, Genetics, and Development Graduate Program, Yale Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, Connecticut
| |
Collapse
|
28
|
Huang Y, Wang Y, Zheng T, Nie S, Wang Y, Shen H, Mo F. Development of Dual Diagnostic-Therapeutic Nanoformulation Effective Against Pancreatic Cancer in Animal Model. Int J Nanomedicine 2024; 19:9121-9143. [PMID: 39258004 PMCID: PMC11386073 DOI: 10.2147/ijn.s464788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Purpose Erythrocytes and fibroblasts in the pancreatic cancer tumor microenvironment promote tumor cell growth and invasion by providing nutrients and promoting immunosuppression. Additionally, they form a barrier against the penetration of chemotherapeutic drugs. Therefore, the search for diversified tumor-targeting materials plays an essential role in solving the above problems. Methods Physicochemical characterization of Graphene fluorescent nanoparticles (GFNPs) and nanomedicines were analyzed by transmission electron microscopy (TEM), elemental analyzers and ultraviolet fluorescence (UV/FL) spectrophotometer. Localization of GFNPs in cell and tissue sections imaged with laser confocal microscope, fluorescence scanner and small animal in vivo imager. Qualitative detection and quantitative detection of GFNPs and GFNPs-GEM were performed using High performance liquid chromatography (HPLC). Results Based on the 3 nm average dimensions, GFNPs penetrate vascular endothelial cells and smooth muscle cells, achieve up to label 30% tumor cells and 60% cancer-associated fibroblasts (CAFs) cells, and accurately label mature red blood cells in the tumor microenvironment. In orthotopic transplanted pancreatic cancer models, the fluorescence intensity of GFNPs in tumors showed a positive correlation with the cycle size of tumor development. The differential spatial distribution of GFNPs in three typical clinical pancreatic cancer samples demonstrated their diagnostic potential. To mediate the excellent targeting properties of GFNPs, we synthesized a series of nanomedicines using popular chemotherapeutic drugs, in which complex of GFNPs and gemcitabine (GFNPs-GEM) possessed stability in vivo and exhibited effective reduction of tumor volume and fewer side effects. Conclusion GFNPs with multiple targeting tumor microenvironments in pancreatic cancer possess diagnostic efficiency and therapeutic potential.
Collapse
Affiliation(s)
- Yanan Huang
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yunfeng Wang
- Department of Gastroenterology, Changhai Hospital, Shanghai, People's Republic of China
| | - Tianyu Zheng
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Shuang Nie
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Yanli Wang
- International Joint Research Center of Human-Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan, People's Republic of China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| | - Fengfeng Mo
- Department of Naval Nutrition and Food Hygiene, Faculty of Navy Medicine, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
29
|
Kong WS, Li JJ, Deng YQ, Ju HQ, Xu RH. Immunomodulatory molecules in colorectal cancer liver metastasis. Cancer Lett 2024; 598:217113. [PMID: 39009068 DOI: 10.1016/j.canlet.2024.217113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/05/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Colorectal cancer (CRC) ranks as the third most common cancer and the second leading cause of cancer-related deaths. According to clinical diagnosis and treatment, liver metastasis occurs in approximately 50 % of CRC patients, indicating a poor prognosis. The unique immune tolerance of the liver fosters an immunosuppressive tumor microenvironment (TME). In the context of tumors, numerous membrane and secreted proteins have been linked to tumor immune evasion as immunomodulatory molecules, but much remains unknown about how these proteins contribute to immune evasion in colorectal cancer liver metastasis (CRLM). This article reviews recently discovered membrane and secreted proteins with roles as both immunostimulatory and immunosuppressive molecules within the TME that influence immune evasion in CRC primary and metastatic lesions, particularly their mechanisms in promoting CRLM. This article also addresses screening strategies for identifying proteins involved in immune evasion in CRLM and provides insights into potential protein targets for treating CRLM.
Collapse
Affiliation(s)
- Wei-Shuai Kong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Jia-Jun Li
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yu-Qing Deng
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China
| | - Huai-Qiang Ju
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| | - Rui-Hua Xu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University, Guangzhou, 510060, China; Research Unit of Precision Diagnosis and Treatment for Gastrointestinal Cancer, Chinese Academy of Medical Sciences, Guangzhou, 510060, China.
| |
Collapse
|
30
|
Li L, McAllister F, Maitra A. The liver casts a wide NET for metastatic pancreatic cancer. Nat Med 2024; 30:2125-2126. [PMID: 38992125 DOI: 10.1038/s41591-024-03112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Affiliation(s)
- Le Li
- Department of Genetics, University of Texas MD Anderson Cancer Centre, Houston, TX, USA
| | - Florencia McAllister
- Department of Genetics, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
- Department of Immunology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
| | - Anirban Maitra
- Department of Pathology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
- Sheikh Ahmed Centre for Pancreatic Cancer Research, University of Texas MD Anderson Cancer Centre, Houston, TX, USA.
| |
Collapse
|
31
|
Kim J, Seki E. Unveiling the cancer risk nexus of the steatotic liver. Trends Endocrinol Metab 2024; 35:708-719. [PMID: 38531699 PMCID: PMC11321945 DOI: 10.1016/j.tem.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
Steatotic liver, characterized by the accumulation of fat in the liver, poses significant health risks including metabolic dysfunction-associated steatotic liver disease (MASLD) and an elevated risk of primary liver cancer. Emerging evidence indicates a robust association between steatotic liver and increased susceptibility to extrahepatic primary cancers and their metastases. The deposition of fat induces dynamic changes in hepatic microenvironments, thereby fostering inflammation and immune responses that enhance liver metastasis from extrahepatic primary cancers. This review explores the impact of steatotic liver on hepatic carcinogenesis and metastasis from extrahepatic cancers, with a specific focus on hepatocyte-derived factors and the immune microenvironment. By emphasizing novel conclusions, this article underscores the timely relevance of understanding these intricate connections.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
32
|
van Luyk ME, Krotenberg Garcia A, Lamprou M, Suijkerbuijk SJE. Cell competition in primary and metastatic colorectal cancer. Oncogenesis 2024; 13:28. [PMID: 39060237 PMCID: PMC11282291 DOI: 10.1038/s41389-024-00530-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Adult tissues set the scene for a continuous battle between cells, where a comparison of cellular fitness results in the elimination of weaker "loser" cells. This phenomenon, named cell competition, is beneficial for tissue integrity and homeostasis. In fact, cell competition plays a crucial role in tumor suppression, through elimination of early malignant cells, as part of Epithelial Defense Against Cancer. However, it is increasingly apparent that cell competition doubles as a tumor-promoting mechanism. The comparative nature of cell competition means that mutational background, proliferation rate and polarity all factor in to determine the outcome of these processes. In this review, we explore the intricate and context-dependent involvement of cell competition in homeostasis and regeneration, as well as during initiation and progression of primary and metastasized colorectal cancer. We provide a comprehensive overview of molecular and cellular mechanisms governing cell competition and its parallels with regeneration.
Collapse
Affiliation(s)
- Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
33
|
Wu Z, Zhang J, Jia Z, Yang Z, Liu S, Wang H, Zhao C, Zhao J, Tang Q, Xiong Y, Yang Y, Zhang Y, Zhou Z, Yue J, Xiao F, Sun Q, Gong A, Yao W, Li H, Song X, Ye Y, Zhu Y, Dong P, Ma F, Wu X, Gong W. TRIM21-mediated ubiquitylation of TAT suppresses liver metastasis in gallbladder cancer. Cancer Lett 2024; 592:216923. [PMID: 38697462 DOI: 10.1016/j.canlet.2024.216923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/21/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ziyou Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyao Jia
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Shilei Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Huakai Wang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Cheng Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Jingwei Zhao
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Qiuyi Tang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yichen Xiong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yue Yang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yu Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Zhe Zhou
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Juanqing Yue
- Department of Pathology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Xiao
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quan Sun
- Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Albie Gong
- Biochemistry, Faculty of Science, The University of British Columbia, Vancouver, Canada
| | - Wenyan Yao
- Department of General Surgery, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huaifeng Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Xiaoling Song
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Yidi Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China
| | - Fei Ma
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiangsong Wu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wei Gong
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, China; Shanghai Research Center of Biliary Tract Disease, Shanghai, China; Biliary Disease Research Institute of Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Wang MJ, Zhang HL, Chen F, Guo XJ, Liu QG, Hou J. The double-edged effects of IL-6 in liver regeneration, aging, inflammation, and diseases. Exp Hematol Oncol 2024; 13:62. [PMID: 38890694 PMCID: PMC11184755 DOI: 10.1186/s40164-024-00527-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine and exerts its complex biological functions mainly through three different signal modes, called cis-, trans-, and cluster signaling. When IL-6 binds to its membrane or soluble receptors, the co-receptor gp130 is activated to initiate downstream signaling and induce the expression of target genes. In the liver, IL-6 can perform its anti-inflammatory activities to promote hepatocyte reprogramming and liver regeneration. On the contrary, IL-6 also exerts the pro-inflammatory functions to induce liver aging, fibrosis, steatosis, and carcinogenesis. However, understanding the roles and underlying mechanisms of IL-6 in liver physiological and pathological processes is still an ongoing process. So far, therapeutic agents against IL‑6, IL‑6 receptor (IL‑6R), IL-6-sIL-6R complex, or IL-6 downstream signal transducers have been developed, and determined to be effective in the intervention of inflammatory diseases and cancers. In this review, we summarized and highlighted the understanding of the double-edged effects of IL-6 in liver homeostasis, aging, inflammation, and chronic diseases, for better shifting the "negative" functions of IL-6 to the "beneficial" actions, and further discussed the potential therapeutic effects of targeting IL-6 signaling in the clinics.
Collapse
Affiliation(s)
- Min-Jun Wang
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China.
| | - Hai-Ling Zhang
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China
- Department of Neurology, Changhai Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fei Chen
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xiao-Jing Guo
- Department of Health Statistics, Faculty of Health Service, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Qing-Gui Liu
- Department of Cell Biology, Center for Stem Cell and Medicine, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jin Hou
- National Key Laboratory of Immunity and Inflammation, Institute of Immunology, Second Military Medical University (Naval Medical University), Shanghai, China.
| |
Collapse
|
35
|
Thakur C, Qiu Y, Pawar A, Chen F. Epigenetic regulation of breast cancer metastasis. Cancer Metastasis Rev 2024; 43:597-619. [PMID: 37857941 DOI: 10.1007/s10555-023-10146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is the most frequently diagnosed malignancy and the second leading cause of cancer-related mortality among women worldwide. Recurrent metastasis is associated with poor patient outcomes and poses a significant challenge in breast cancer therapies. Cancer cells adapting to a new tissue microenvironment is the key event in distant metastasis development, where the disseminating tumor cells are likely to acquire genetic and epigenetic alterations during the process of metastatic colonization. Despite several decades of research in this field, the exact mechanisms governing metastasis are not fully understood. However, emerging body of evidence indicates that in addition to genetic changes, epigenetic reprogramming of cancer cells and the metastatic niche are paramount toward successful metastasis. Here, we review and discuss the latest knowledge about the salient attributes of metastasis and epigenetic regulation in breast cancer and crucial research domains that need further investigation.
Collapse
Affiliation(s)
- Chitra Thakur
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| | - Yiran Qiu
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Aashna Pawar
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA
| | - Fei Chen
- Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
| |
Collapse
|
36
|
Arneson‐Wissink PC, Mendez H, Pelz K, Dickie J, Bartlett AQ, Worley BL, Krasnow SM, Eil R, Grossberg AJ. Hepatic signal transducer and activator of transcription-3 signalling drives early-stage pancreatic cancer cachexia via suppressed ketogenesis. J Cachexia Sarcopenia Muscle 2024; 15:975-988. [PMID: 38632714 PMCID: PMC11154744 DOI: 10.1002/jcsm.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Patients with pancreatic ductal adenocarcinoma (PDAC) often suffer from cachexia, a wasting syndrome that significantly reduces both quality of life and survival. Although advanced cachexia is associated with inflammatory signalling and elevated muscle catabolism, the early events driving wasting are poorly defined. During periods of nutritional scarcity, the body relies on hepatic ketogenesis to generate ketone bodies, and lipid metabolism via ketogenesis is thought to protect muscle from catabolizing during nutritional scarcity. METHODS We developed an orthotopic mouse model of early PDAC cachexia in 12-week-old C57BL/6J mice. Murine pancreatic cancer cells (KPC) were orthotopically implanted into the pancreas of wild-type, IL-6-/-, and hepatocyte STAT3-/- male and female mice. Mice were subject to fasting, 50% food restriction, ad libitum feeding or ketogenic diet interventions. We measured longitudinal body composition by EchoMRI, body mass and food intake. At the endpoint, we measured tissue mass, tissue gene expression by quantitative real-time polymerase chain reaction, whole-body calorimetry, circulating hormone levels, faecal protein and lipid content, hepatic lipid content and ketogenic response to medium-chain fatty acid bolus. We assessed muscle atrophy in vivo and C2C12 myotube atrophy in vitro. RESULTS Pre-cachectic PDAC mice did not preserve gastrocnemius muscle mass during 3-day food restriction (-13.1 ± 7.7% relative to food-restricted sham, P = 0.0117) and displayed impaired fatty acid oxidation during fasting, resulting in a hypoketotic state (ketogenic response to octanoate bolus, -83.0 ± 17.3%, P = 0.0328; Hmgcs2 expression, -28.3 ± 7.6%, P = 0.0004). PDAC human patients display impaired fasting ketones (-46.9 ± 7.1%, P < 0.0001) and elevated circulating interleukin-6 (IL-6) (12.4 ± 16.5-fold increase, P = 0.0001). IL-6-/- PDAC mice had improved muscle mass (+35.0 ± 3.9%, P = 0.0031) and ketogenic response (+129.4 ± 44.4%, P = 0.0033) relative to wild-type PDAC mice. Hepatocyte-specific signal transducer and activator of transcription 3 (STAT3) deletion prevented muscle loss (+9.3 ± 4.0%, P = 0.009) and improved fasting ketone levels (+52.0 ± 43.3%, P = 0.018) in PDAC mice. Without affecting tumour growth, a carbohydrate-free diet improved tibialis anterior myofibre diameter (+16.5 ± 3.5%, P = 0.0089), circulating ketone bodies (+333.0 ± 117.6%, P < 0.0001) and Hmgcs2 expression (+106.5 ± 36.1%, P < 0.0001) in PDAC mice. Ketone supplementation protected muscle against PDAC-induced atrophy in vitro (+111.0 ± 17.6%, P < 0.0001 myofibre diameter). CONCLUSIONS In early PDAC cachexia, muscle vulnerability to wasting is dependent on inflammation-driven metabolic reprogramming in the liver. PDAC suppresses lipid β-oxidation and impairs ketogenesis in the liver, which is reversed in genetically modified mouse models deficient in IL-6/STAT3 signalling or through ketogenic diet supplementation. This work establishes a direct link between skeletal muscle homeostasis and hepatic metabolism. Dietary and anti-inflammatory interventions that restore ketogenesis may be a viable preventative approach for pre-cachectic patients with pancreatic cancer.
Collapse
Affiliation(s)
| | - Heike Mendez
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Katherine Pelz
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Jessica Dickie
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Alexandra Q. Bartlett
- Division of Surgical Oncology, Department of Surgery, Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| | - Beth L. Worley
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
| | - Stephanie M. Krasnow
- Division of Oncological Sciences, Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| | - Robert Eil
- Division of Surgical Oncology, Department of Surgery, Knight Cancer InstituteOregon Health & Science UniversityPortlandORUSA
| | - Aaron J. Grossberg
- Brenden‐Colson Center for Pancreatic CareOregon Health & Science UniversityPortlandORUSA
- Department of Radiation MedicineOregon Health & Science UniversityPortlandORUSA
- Cancer Early Detection Advanced Research CenterOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
37
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
38
|
Liu S, Liu M, Li Y, Song Q. N6-methyladenosine-dependent signaling in colorectal cancer: Functions and clinical potential. Crit Rev Oncol Hematol 2024; 198:104360. [PMID: 38615872 DOI: 10.1016/j.critrevonc.2024.104360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent malignancy worldwide. Despite the gradual expansion of therapeutic options for CRC, its clinical management remains a formidable challenge. And, because of the current dearth of technical means for early CRC screening, most patients are diagnosed at an advanced stage. Therefore, it is imperative to develop novel diagnostic and therapeutic tools for this disease. N6-methyladenosine (m6A), the predominant RNA modification in eukaryotes, can be recognized by m6A-specific methylated reading proteins to modulate gene expression. Studies have revealed that CRC disrupts m6A homeostasis through various mechanisms, thereby sustaining aberrant signal transduction and promoting its own progression. Consequently, m6A-based diagnostic and therapeutic strategies have garnered widespread attention. Although utilizing m6A as a biomarker and drug target has demonstrated promising feasibility, existing observations primarily stem from preclinical models; henceforth necessitating further investigation and resolution of numerous outstanding issues.
Collapse
Affiliation(s)
- Shaojun Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Min Liu
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Yuxuan Li
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China
| | - Qing Song
- Department of Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese medicine, Suzhou, Jiangsu, China.
| |
Collapse
|
39
|
Krotenberg Garcia A, Ledesma-Terrón M, Lamprou M, Vriend J, van Luyk ME, Suijkerbuijk SJE. Cell competition promotes metastatic intestinal cancer through a multistage process. iScience 2024; 27:109718. [PMID: 38706869 PMCID: PMC11068562 DOI: 10.1016/j.isci.2024.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Cell competition plays an instrumental role in quality control during tissue development and homeostasis. Nevertheless, cancer cells can exploit this process for their own proliferative advantage. In our study, we generated mixed murine organoids and microtissues to explore the impact of cell competition on liver metastasis. Unlike competition at the primary site, the initial effect on liver progenitor cells does not involve the induction of apoptosis. Instead, metastatic competition manifests as a multistage process. Initially, liver progenitors undergo compaction, which is followed by cell-cycle arrest, ultimately forcing differentiation. Subsequently, the newly differentiated liver cells exhibit reduced cellular fitness, rendering them more susceptible to outcompetition by intestinal cancer cells. Notably, cancer cells leverage different interactions with different epithelial populations in the liver, using them as scaffolds to facilitate their growth. Consequently, tissue-specific mechanisms of cell competition are fundamental in driving metastatic intestinal cancer.
Collapse
Affiliation(s)
- Ana Krotenberg Garcia
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Mario Ledesma-Terrón
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Universidad Autónoma de Madrid (UAM), University City of Cantoblanco, 28049 Madrid, Spain
| | - Maria Lamprou
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Joyce Vriend
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Merel Elise van Luyk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Saskia Jacoba Elisabeth Suijkerbuijk
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| |
Collapse
|
40
|
Zhu L, Yu X, Tang X, Hu C, Wu L, Liu Y, Zhou Q. Evolving landscape of treatments targeting the microenvironment of liver metastases in non-small cell lung cancer. Chin Med J (Engl) 2024; 137:1019-1032. [PMID: 38251678 PMCID: PMC11062672 DOI: 10.1097/cm9.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
ABSTRACT Liver metastases (LMs) are common in lung cancer. Despite substantial advances in diagnosis and treatment, the survival rate of patients with LM remains low as the immune-suppressive microenvironment of the liver allows tumor cells to evade the immune system. The impact of LMs on the outcomes of immune checkpoint inhibitors in patients with solid tumors has been the main focus of recent translational and clinical research. Growing evidence indicates that the hepatic microenvironment delivers paracrine and autocrine signals from non-parenchymal and parenchymal cells. Overall, these microenvironments create pre- and post-metastatic conditions for the progression of LMs. Herein, we reviewed the epidemiology, physiology, pathology and immunology, of LMs associated with non-small cell lung cancer and the role and potential targets of the liver microenvironment in LM in each phase of metastasis. Additionally, we reviewed the current treatment strategies and challenges that should be overcome in preclinical and clinical investigations. These approaches target liver elements as the basis for future clinical trials, including combinatorial interventions reported to resolve hepatic immune suppression, such as immunotherapy plus chemotherapy, immunotherapy plus radiotherapy, immunotherapy plus anti-angiogenesis therapy, and surgical resection.
Collapse
Affiliation(s)
- Lingling Zhu
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianzhe Yu
- Department of Gastrointestinal Surgery, Chengdu Second People’s Hospital, Chengdu, Sichuan 610041, China
| | - Xiaojun Tang
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lei Wu
- Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanyang Liu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qinghua Zhou
- Lung Cancer Center, Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
41
|
Karras P, Black JRM, McGranahan N, Marine JC. Decoding the interplay between genetic and non-genetic drivers of metastasis. Nature 2024; 629:543-554. [PMID: 38750233 DOI: 10.1038/s41586-024-07302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.
Collapse
Affiliation(s)
- Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - James R M Black
- Cancer Genome Evolution Research Group, UCL Cancer Institute, London, UK
| | | | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
42
|
Stone ML, Lee J, Lee JW, Coho H, Tariveranmoshabad M, Wattenberg MM, Choi H, Herrera VM, Xue Y, Choi-Bose S, Zingone SK, Patel D, Markowitz K, Delman D, Balachandran VP, Beatty GL. Hepatocytes coordinate immune evasion in cancer via release of serum amyloid A proteins. Nat Immunol 2024; 25:755-763. [PMID: 38641718 PMCID: PMC11186515 DOI: 10.1038/s41590-024-01820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
T cell infiltration into tumors is a favorable prognostic feature, but most solid tumors lack productive T cell responses. Mechanisms that coordinate T cell exclusion are incompletely understood. Here we identify hepatocyte activation via interleukin-6/STAT3 and secretion of serum amyloid A (SAA) proteins 1 and 2 as important regulators of T cell surveillance of extrahepatic tumors. Loss of STAT3 in hepatocytes or SAA remodeled the tumor microenvironment with infiltration by CD8+ T cells, while interleukin-6 overexpression in hepatocytes and SAA signaling via Toll-like receptor 2 reduced the number of intratumoral dendritic cells and, in doing so, inhibited T cell tumor infiltration. Genetic ablation of SAA enhanced survival after tumor resection in a T cell-dependent manner. Likewise, in individuals with pancreatic ductal adenocarcinoma, long-term survivors after surgery demonstrated lower serum SAA levels than short-term survivors. Taken together, these data define a fundamental link between liver and tumor immunobiology wherein hepatocytes govern productive T cell surveillance in cancer.
Collapse
Affiliation(s)
- Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jesse Lee
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jae W Lee
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heather Coho
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mito Tariveranmoshabad
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max M Wattenberg
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hana Choi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronica M Herrera
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuqing Xue
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaanti Choi-Bose
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sofia K Zingone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dhruv Patel
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Markowitz
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Devora Delman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vinod P Balachandran
- Human Oncology and Pathogenesis Program, Hepatopancreatobiliary Service, Department of Surgery, David M. Rubenstein Center for Pancreatic Cancer Research, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
43
|
Berg K, Lodha M, Delazer I, Bartosik K, Garcia YC, Hennig T, Wolf E, Dölken L, Lusser A, Prusty B, Erhard F. Correcting 4sU induced quantification bias in nucleotide conversion RNA-seq data. Nucleic Acids Res 2024; 52:e35. [PMID: 38381903 PMCID: PMC11039982 DOI: 10.1093/nar/gkae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/25/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Nucleoside analogues like 4-thiouridine (4sU) are used to metabolically label newly synthesized RNA. Chemical conversion of 4sU before sequencing induces T-to-C mismatches in reads sequenced from labelled RNA, allowing to obtain total and labelled RNA expression profiles from a single sequencing library. Cytotoxicity due to extended periods of labelling or high 4sU concentrations has been described, but the effects of extensive 4sU labelling on expression estimates from nucleotide conversion RNA-seq have not been studied. Here, we performed nucleotide conversion RNA-seq with escalating doses of 4sU with short-term labelling (1h) and over a progressive time course (up to 2h) in different cell lines. With high concentrations or at later time points, expression estimates were biased in an RNA half-life dependent manner. We show that bias arose by a combination of reduced mappability of reads carrying multiple conversions, and a global, unspecific underrepresentation of labelled RNA emerging during library preparation and potentially global reduction of RNA synthesis. We developed a computational tool to rescue unmappable reads, which performed favourably compared to previous read mappers, and a statistical method, which could fully remove remaining bias. All methods developed here are freely available as part of our GRAND-SLAM pipeline and grandR package.
Collapse
Affiliation(s)
- Kevin Berg
- Chair of Computational Immunology, University of Regensburg, Regensburg, Germany
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Manivel Lodha
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Isabel Delazer
- Medical University of Innsbruck, Biocenter, Institute of Molecular Biology, Innsbruck, Austria
| | - Karolina Bartosik
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Yilliam Cruz Garcia
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Thomas Hennig
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
- Institute of Biochemistry, University of Kiel, Kiel, Germany
| | - Lars Dölken
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Alexandra Lusser
- Medical University of Innsbruck, Biocenter, Institute of Molecular Biology, Innsbruck, Austria
| | - Bhupesh K Prusty
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Florian Erhard
- Chair of Computational Immunology, University of Regensburg, Regensburg, Germany
- Institut für Virologie und Immunbiologie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
44
|
Tang J, Zhang J, Zhang G, Peng W, Ling N, Zhou Y, Xu H, Ren H, Chen M. Stat3 activation-triggered transcriptional networks govern the early stage of HBV-induced hepatic inflammation. mBio 2024; 15:e0306823. [PMID: 38440978 PMCID: PMC11005361 DOI: 10.1128/mbio.03068-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 03/06/2024] Open
Abstract
The chronic carrier state of the hepatitis B virus (HBV) often leads to the development of liver inflammation as carriers age. However, the exact mechanisms that trigger this hepatic inflammation remain poorly defined. We analyzed the sequential processes during the onset of liver inflammation based on time-course transcriptome and transcriptional regulatory networks in an HBV transgenic (HBV-Tg) mice model and chronic HBV-infected (CHB) patients (data from GSE83148). The key transcriptional factor (TF) responsible for hepatic inflammation occurrence was identified and then validated both in HBV-Tg mice and liver specimens from young CHB patients. By time-course analysis, an early stage of hepatic inflammation was demonstrated in 3-month-old HBV-Tg mice: a marked upregulation of genes related to inflammation (Saa1/2, S100a8/9/11, or Il1β), innate immunity (Tlr2, Tlr7, or Tlr8), and cells chemotaxis (Ccr2, Cxcl1, Cxcl13, or Cxcl14). Within CHB samples, a unique early stage of inflammation activation was discriminated from immune tolerance and immune activation groups based on distinct gene expression patterns. Enhanced activation of TF Stat3 was strongly associated with increased inflammatory gene expression in this early stage of inflammation. Expression of phosphorylated Stat3 was higher in liver specimens from young CHB patients with relatively higher alanine aminotransferase levels. Specific inhibition of Stat3 activation significantly attenuated the degree of liver inflammation, the expression of inflammation-related genes, and the inflammatory monocytes and macrophages in 3-month-old HBV-Tg mice. Stat3 activation is essential for hepatic inflammation occurrence and is a novel indicator of early-stage immune activation in chronic HBV carriers. IMPORTANCE Until now, it remains a mystery that chronic hepatitis B virus (HBV)-infected patients in the "immune tolerance phase" will transition to the "immune activation phase" as they age. In this study, we reveal that Stat3 activation-triggered hepatic transcriptional alterations are distinctive characteristics of the early stage of immune/inflammation activation in chronic HBV infection. For the first time, we discover a mechanism that might trigger the transition from immune tolerance to immune activation in chronic HBV carriers.
Collapse
Affiliation(s)
- Jinglin Tang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Transfusion Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiaxuan Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Laboratory Medicine, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Gaoli Zhang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhui Peng
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Ling
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingzhi Zhou
- Department of Infection, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Xu
- Department of Infection, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Ren
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Min Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Zolotykh MA, Mingazova LA, Filina YV, Blatt NL, Nesterova AI, Sabirov AG, Rizvanov AA, Miftakhova RR. Cancer of unknown primary and the «seed and soil» hypothesis. Crit Rev Oncol Hematol 2024; 196:104297. [PMID: 38350543 DOI: 10.1016/j.critrevonc.2024.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/15/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024] Open
Abstract
The worldwide incidence rate of cancer of unknown primary (CUP) reaches 5% (Kang et al, 2021; Lee, Sanoff, 2020; Yang et al, 2022). CUP has an alarmingly high mortality rate, with 84% of patients succumbing within the first year following diagnosis (Registration and Service, 2018). Under normal circumstances, tumor cell metastasis follows the «seed and soil» hypothesis, displaying a tissue-specific pattern of cancer cell homing behavior based on the microenvironment composition of secondary organs. In this study, we questioned whether seed and soil concept applies to CUP, and whether the pattern of tumor and metastasis manifestations for cancer of known primary (CKP) can be used to inform diagnostic strategies for CUP. We compared data from metastatic and primary CUP foci to the metastasis patterns observed in CKP. Furthermore, we evaluated several techniques for identifying the tissue-of-origin (TOO) in CUP profiling, including DNA, RNA, and epigenetic TOO techniques.
Collapse
Affiliation(s)
- Mariya A Zolotykh
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Leysan A Mingazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Yuliya V Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Nataliya L Blatt
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Alfiya I Nesterova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Republican Clinical Oncology Dispensary named after prof. M.Z.Sigal, Kazan, Russian Federation.
| | - Alexey G Sabirov
- Republican Clinical Oncology Dispensary named after prof. M.Z.Sigal, Kazan, Russian Federation
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Regina R Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| |
Collapse
|
46
|
Chen H, Bian A, Zhou W, Miao Y, Ye J, Li J, He P, Zhang Q, Sun Y, Sun Z, Ti C, Chen Y, Yi Z, Liu M. Discovery of the Highly Selective and Potent STAT3 Inhibitor for Pancreatic Cancer Treatment. ACS CENTRAL SCIENCE 2024; 10:579-594. [PMID: 38559310 PMCID: PMC10979493 DOI: 10.1021/acscentsci.3c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is an attractive cancer therapeutic target. Unfortunately, targeting STAT3 with small molecules has proven to be very challenging, and for full activation of STAT3, the cooperative phosphorylation of both tyrosine 705 (Tyr705) and serine 727 (Ser727) is needed. Further, a selective inhibitor of STAT3 dual phosphorylation has not been developed. Here, we identified a low nanomolar potency and highly selective small-molecule STAT3 inhibitor that simultaneously inhibits both STAT3 Tyr705 and Ser727 phosphorylation. YY002 potently inhibited STAT3-dependent tumor cell growth in vitro and achieved potent suppression of tumor growth and metastasis in vivo. More importantly, YY002 exhibited favorable pharmacokinetics, an acceptable safety profile, and superior antitumor efficacy compared to BBI608 (STAT3 inhibitor that has advanced into phase III trials). For the mechanism, YY002 is selectively bound to the STAT3 Src Homology 2 (SH2) domain over other STAT members, which strongly suppressed STAT3 nuclear and mitochondrial functions in STAT3-dependent cells. Collectively, this study suggests the potential of small-molecule STAT3 inhibitors as possible anticancer therapeutic agents.
Collapse
Affiliation(s)
- Huang Chen
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Aiwu Bian
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Wenbo Zhou
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| | - Ying Miao
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Jiangnan Ye
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Jiahui Li
- Southern
Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Peng He
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Qiansen Zhang
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Yue Sun
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Zhenliang Sun
- Southern
Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Chaowen Ti
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Yihua Chen
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Zhengfang Yi
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
| | - Mingyao Liu
- Shanghai
Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences
and School of Life Sciences, East China
Normal University, Shanghai 200241, P.R. China
- Shanghai
Yuyao Biotech Co., LTD. Shanghai 200241, China
| |
Collapse
|
47
|
Rogava M, Aprati TJ, Chi WY, Melms JC, Hug C, Davis SH, Earlie EM, Chung C, Deshmukh SK, Wu S, Sledge G, Tang S, Ho P, Amin AD, Caprio L, Gurjao C, Tagore S, Ngo B, Lee MJ, Zanetti G, Wang Y, Chen S, Ge W, Melo LMN, Allies G, Rösler J, Gibney GT, Schmitz OJ, Sykes M, Creusot RJ, Tüting T, Schadendorf D, Röcken M, Eigentler TK, Molotkov A, Mintz A, Bakhoum SF, Beyaz S, Cantley LC, Sorger PK, Meckelmann SW, Tasdogan A, Liu D, Laughney AM, Izar B. Loss of Pip4k2c confers liver-metastatic organotropism through insulin-dependent PI3K-AKT pathway activation. NATURE CANCER 2024; 5:433-447. [PMID: 38286827 PMCID: PMC11175596 DOI: 10.1038/s43018-023-00704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/08/2023] [Indexed: 01/31/2024]
Abstract
Liver metastasis (LM) confers poor survival and therapy resistance across cancer types, but the mechanisms of liver-metastatic organotropism remain unknown. Here, through in vivo CRISPR-Cas9 screens, we found that Pip4k2c loss conferred LM but had no impact on lung metastasis or primary tumor growth. Pip4k2c-deficient cells were hypersensitized to insulin-mediated PI3K/AKT signaling and exploited the insulin-rich liver milieu for organ-specific metastasis. We observed concordant changes in PIP4K2C expression and distinct metabolic changes in 3,511 patient melanomas, including primary tumors, LMs and lung metastases. We found that systemic PI3K inhibition exacerbated LM burden in mice injected with Pip4k2c-deficient cancer cells through host-mediated increase in hepatic insulin levels; however, this circuit could be broken by concurrent administration of an SGLT2 inhibitor or feeding of a ketogenic diet. Thus, this work demonstrates a rare example of metastatic organotropism through co-optation of physiological metabolic cues and proposes therapeutic avenues to counteract these mechanisms.
Collapse
Affiliation(s)
- Meri Rogava
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tyler J Aprati
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wei-Yu Chi
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Johannes C Melms
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Clemens Hug
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Stephanie H Davis
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ethan M Earlie
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Charlie Chung
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Sharon Wu
- Caris Life Sciences, Phoenix, AZ, USA
| | | | - Stephen Tang
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Patricia Ho
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Amit Dipak Amin
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lindsay Caprio
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Carino Gurjao
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Somnath Tagore
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Bryan Ngo
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Michael J Lee
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Giorgia Zanetti
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yiping Wang
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sean Chen
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - William Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Luiza Martins Nascentes Melo
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - Gabriele Allies
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - Jonas Rösler
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - Goeffrey T Gibney
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - Oliver J Schmitz
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Megan Sykes
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Rémi J Creusot
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas Tüting
- Laboratory for Experimental Dermatology, Department of Dermatology, University of Magdeburg, Magdeburg, Germany
| | - Dirk Schadendorf
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - Martin Röcken
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas K Eigentler
- Department of Dermatology, Venerology and Allergology, Charité University Hospital, Berlin, Germany
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Akiva Mintz
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
| | - Samuel F Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | - Peter K Sorger
- Laboratory for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department for Dermatology, Venerology and Allergology, University Hospital Essen, NCT West, Campus Essen, German Cancer Consortium, Partner Site Essen & University Alliance Ruhr, Research Center One Health, Essen, Germany
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ashley M Laughney
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin Izar
- Division of Hematology/Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos School of Physicians and Surgeons, New York, NY, USA.
- Columbia Center for Translational Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Program for Mathematical Genomics, Department of Systems Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
48
|
He M, Liu Y, Chen S, Deng H, Feng C, Qiao S, Chen Q, Hu Y, Chen H, Wang X, Jiang X, Xia X, Zhao M, Lyu N. Serum amyloid A promotes glycolysis of neutrophils during PD-1 blockade resistance in hepatocellular carcinoma. Nat Commun 2024; 15:1754. [PMID: 38409200 PMCID: PMC10897330 DOI: 10.1038/s41467-024-46118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/15/2024] [Indexed: 02/28/2024] Open
Abstract
The response to programmed death-1 (PD-1) blockade varies in hepatocellular carcinoma (HCC). We utilize a panel of 16 serum factors to show that a circulating level of serum amyloid A (SAA) > 20.0 mg/L has the highest accuracy in predicting anti-PD-1 resistance in HCC. Further experiments show a correlation between peritumoral SAA expression and circulating SAA levels in patients with progressive disease after PD-1 inhibition. In vitro experiments demonstrate that SAA induces neutrophils to express PD-L1 through glycolytic activation via an LDHA/STAT3 pathway and to release oncostatin M, thereby attenuating cytotoxic T cell function. In vivo, genetic or pharmacological inhibition of STAT3 or SAA eliminates neutrophil-mediated immunosuppression and enhances antitumor efficacy of anti-PD-1 treatment. This study indicates that SAA may be a critical inflammatory cytokine implicated in anti-PD-1 resistance in HCC. Targeting SAA-induced PD-L1+ neutrophils through STAT3 or SAA inhibition may present a potential approach for overcoming anti-PD1 resistance.
Collapse
Affiliation(s)
- Meng He
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yongxiang Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Song Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Haijing Deng
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Cheng Feng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qifeng Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yue Hu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xun Wang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiongying Jiang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ming Zhao
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Ning Lyu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Li Y, Chang RB, Stone ML, Delman D, Markowitz K, Xue Y, Coho H, Herrera VM, Li JH, Zhang L, Choi-Bose S, Giannone M, Shin SM, Coyne EM, Hernandez A, Gross NE, Charmsaz S, Ho WJ, Lee JW, Beatty GL. Multimodal immune phenotyping reveals microbial-T cell interactions that shape pancreatic cancer. Cell Rep Med 2024; 5:101397. [PMID: 38307029 PMCID: PMC10897543 DOI: 10.1016/j.xcrm.2024.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024]
Abstract
Microbes are an integral component of the tumor microenvironment. However, determinants of microbial presence remain ill-defined. Here, using spatial-profiling technologies, we show that bacterial and immune cell heterogeneity are spatially coupled. Mouse models of pancreatic cancer recapitulate the immune-microbial spatial coupling seen in humans. Distinct intra-tumoral niches are defined by T cells, with T cell-enriched and T cell-poor regions displaying unique bacterial communities that are associated with immunologically active and quiescent phenotypes, respectively, but are independent of the gut microbiome. Depletion of intra-tumoral bacteria slows tumor growth in T cell-poor tumors and alters the phenotype and presence of myeloid and B cells in T cell-enriched tumors but does not affect T cell infiltration. In contrast, T cell depletion disrupts the immunological state of tumors and reduces intra-tumoral bacteria. Our results establish a coupling between microbes and T cells in cancer wherein spatially defined immune-microbial communities differentially influence tumor biology.
Collapse
Affiliation(s)
- Yan Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renee B Chang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meredith L Stone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Devora Delman
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kelly Markowitz
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuqing Xue
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Coho
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Veronica M Herrera
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joey H Li
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liti Zhang
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shaanti Choi-Bose
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Giannone
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sarah M Shin
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Erin M Coyne
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Alexei Hernandez
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Nicole E Gross
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Soren Charmsaz
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Won Jin Ho
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Mass Cytometry Facility, Johns Hopkins University, Baltimore, MD, USA; Convergence Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jae W Lee
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Gregory L Beatty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Abudukelimu S, de Miranda NFCC, Hawinkels LJAC. Fibroblasts in Orchestrating Colorectal Tumorigenesis and Progression. Cell Mol Gastroenterol Hepatol 2024; 17:821-826. [PMID: 38307492 PMCID: PMC10966773 DOI: 10.1016/j.jcmgh.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/04/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are an abundant component of the tumor microenvironment and have been shown to possess critical functions in tumor progression. Although their roles predominantly have been described as tumor-promoting, more recent findings have identified subsets of CAFs with tumor-restraining functions. Accumulating evidence underscores large heterogeneity in fibroblast subsets in which distinct subsets differentially impact the initiation, progression, and metastasis of colorectal cancer. In this review, we summarize and discuss the evolving role of CAFs in colorectal cancer, highlighting the ongoing controversies regarding their distinct origins and multifaceted functions. In addition, we explore how CAFs can confer resistance to current therapies and the challenges of developing effective CAF-directed therapies. Taken together, we believe that, in this rapidly evolving field, it is crucial first to understand CAF dynamics comprehensively, and to bridge existing knowledge gaps regarding CAF heterogeneity and plasticity before further exploring the clinical targeting of CAFs.
Collapse
Affiliation(s)
- Subinuer Abudukelimu
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|