1
|
Pareja J, Aydin S, Zbinden M, Bouillet E, Zollinger N, Theivendram V, Fahmi A, Pleskač P, Barcos S, Paas F, Kloster F, Blázquez AM, Fonta N, Merkler D, Deutsch U, Engelhardt B. Lack of junctional adhesion molecule (JAM)-B traps CD8 T cells in CNS border zones and ameliorates autoimmune neuroinflammation. Acta Neuropathol Commun 2025; 13:117. [PMID: 40420242 DOI: 10.1186/s40478-025-02021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/29/2025] [Indexed: 05/28/2025] Open
Abstract
The endothelial blood-brain barrier (BBB) tightly controls T cell entry into the central nervous system (CNS). T cell extravasation across the BBB involves a multi-step cascade with a predominant role of α4β1-integrins. In contrast to CD4 T cells, α4β1-integrin mediated CD8 T cell interaction with the BBB was proposed to involve the tight junction protein junctional adhesion molecule (JAM)-B. Here, we made use of ODC-OVA mice expressing ovalbumin as neo-self-antigen in oligodendrocytes that is solely visible to CD8 T cells, allowing to investigate CD8 T cell-mediated autoimmune neuroinflammation. We generated JAM-B-deficient ODC-OVA mice (ODC-OVA; JAM-BKO mice) and compared CD8 T cell mediated autoimmune neuroinflammation to their ODC-OVA; JAM-BWT littermates. ODC-OVA; JAM-BKO mice developed ameliorated clinical disease, which was associated with a marked reduction in CD8 T cell infiltration into the CNS parenchyma. Surprisingly, lack of JAM-B did not affect CD8 T cell arrest or extravasation in spinal cord microvessels but rather resulted in CD8 T cell accumulation in the subarachnoid space and perivascular spaces in ODC-OVA; JAM-BKO mice. Detection of Jam-2 RNA expression in cells other than BBB endothelial cells contributing to CNS barriers including astrocytes forming the glia limitans, Bergmann glial cells, meningeal fibroblasts and choroid plexus epithelial cells suggests that JAM-B may regulate CD8 T cell entry into the CNS at barriers other than the BBB, particularly at the glia limitans. Thus, targeting JAM-B could provide a therapeutic strategy for treating neuroinflammation without disrupting T cell-mediated immune surveillance in CNS border compartments.
Collapse
Affiliation(s)
- Javier Pareja
- Theodor Kocher Institute, University of Bern, Bern, Switzerland.
- Department of Biomedicine, University of Basel, Basel, Switzerland.
| | - Sidar Aydin
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
- Department of Pharmacology, University of California, San Diego, USA
| | - Mara Zbinden
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Elisa Bouillet
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | - Amal Fahmi
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Petr Pleskač
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Sara Barcos
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Felix Paas
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | | | - Nicolas Fonta
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | |
Collapse
|
2
|
Trigo FF, Alcamí P, Curti S. Functional interaction of electrical coupling and H-current and its putative impact on inhibitory transmission. Neuroscience 2025; 574:13-20. [PMID: 40147622 DOI: 10.1016/j.neuroscience.2025.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
The flow of information within neural circuits depends on the communication between neurons, primarily taking place at chemical and electrical synapses. The coexistence of these two modalities of synaptic transmission and their dynamical interaction with voltage-gated membrane conductances enables a rich repertoire of complex functional operations. One such operation, coincidence detection, allows electrically coupled neurons to respond more strongly to simultaneous synaptic inputs than to temporally dispersed ones. Using the mesencephalic trigeminal (MesV) nucleus-a structure composed of large, somatically coupled neurons-as an experimental model, we first demonstrate that electrical coupling strength in the hyperpolarized voltage range is highly time-dependent due to the involvement of the IH current. We then show how this property influences the coincidence detection of hyperpolarizing signals. Specifically, simultaneous hyperpolarizing inputs induce larger membrane potential changes, resulting in stronger IH current activation. This, in turn, shortens the temporal window for coincidence detection. We propose that this phenomenon may be crucial for network dynamics in circuits of electrically coupled neurons that receive inhibitory synaptic inputs and express the IH current. In particular, molecular layer interneurons (MLIs) of the cerebellar cortex provide an ideal model for studying coincidence detection of inhibitory synaptic inputs, and how this operation is shaped by the voltage-dependent conductances like the IH current, potentially impacting on motor coordination and learning.
Collapse
Affiliation(s)
- Federico F Trigo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Pepe Alcamí
- Division of Neurobiology, Faculty of Biology, LMU Munich, Martinsried, Germany; Department of Behavioural Neurobiology, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Sebastian Curti
- Laboratorio de Neurofisiología Celular, Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Delvendahl I, Daswani R, Winterer J, Germain PL, Uhr NM, Schratt G, Müller M. MicroRNA-138-5p suppresses excitatory synaptic strength at the cerebellar input layer. J Physiol 2025. [PMID: 40349307 DOI: 10.1113/jp288019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/14/2025] [Indexed: 05/14/2025] Open
Abstract
MicroRNAs are small, highly conserved non-coding RNAs that negatively regulate mRNA translation and stability. In the brain, miRNAs contribute to neuronal development, synaptogenesis, and synaptic plasticity. MicroRNA 138-5p (miR-138-5p) controls inhibitory synaptic transmission in the hippocampus and is highly expressed in cerebellar excitatory neurons. However, its specific role in cerebellar synaptic transmission remains unknown. Here, we investigated excitatory transmission in the cerebellum of mice expressing a sponge construct that sequesters endogenous miR-138-5p. Mossy fibre stimulation-evoked EPSCs in granule cells were ∼40% larger in miR-138-5p sponge mice compared to controls. Furthermore, we observed larger miniature EPSC amplitudes, suggesting an increased number of functional postsynaptic AMPA receptors. High-frequency train stimulation revealed enhanced short-term depression following miR-138-5p downregulation. Together with computational modelling, this suggests a negative regulation of presynaptic release probability. Overall, our results demonstrate that miR-138-5p suppresses synaptic strength through pre- and postsynaptic mechanisms, providing a potentially powerful mechanism for tuning excitatory synaptic input into the cerebellum. KEY POINTS: MicroRNAs are powerful regulators of mRNA translation and control key cell biological processes including synaptic transmission, but their role in regulating synaptic function in the cerebellum has remained elusive. In this study, we investigated how microRNA-138-5p (miR-138-5p) modulates excitatory transmission at adult murine cerebellar mossy fibre to granule cell synapses. Downregulation of miR-138-5p enhances excitatory synaptic strength at the cerebellar input layer and increases short-term depression. miR-138-5p exerts its regulatory function through both pre- and postsynaptic mechanisms by negatively regulating release probability at mossy fibre boutons, as well as functional AMPA receptor numbers in granule cells. These findings provide insights into the role of miR-138-5p in the cerebellum and expand our understanding of microRNA-dependent control of excitatory synaptic transmission and short-term plasticity.
Collapse
Affiliation(s)
- Igor Delvendahl
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reetu Daswani
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
- Present address: Sixfold Bioscience Ltd, Translation and Innovation Hub, London, UK
| | - Jochen Winterer
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Pierre-Luc Germain
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Nora Maria Uhr
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Gerhard Schratt
- Neuroscience Center Zurich, Zurich, Switzerland
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich (UZH), Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Wang X, Zhang H, Wan Z, Li X, Ibáñez CF, Xie M. A single-cell transcriptomic atlas of all cell types in the brain of 5xFAD Alzheimer mice in response to dietary inulin supplementation. BMC Biol 2025; 23:124. [PMID: 40346662 PMCID: PMC12065180 DOI: 10.1186/s12915-025-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/30/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that is a major threat to the aging population. Due to lack of effective therapy, preventive treatments are important strategies to limit AD onset and progression, of which dietary regimes have been implicated as a key factor. Diet with high fiber content is known to have beneficial effects on cognitive decline in AD. However, a global survey on microbiome and brain cell dynamics in response to high fiber intake at single-cell resolution in AD mouse models is still missing. RESULTS Here, we show that dietary inulin supplementation synergized with AD progression to specifically increase the abundance of Akkermansia muciniphila in gut microbiome of 5 × Familial AD (FAD) mice. By performing single-nucleus RNA sequencing on different regions of the whole brain with three independent biological replicates, we reveal region-specific changes in the proportion of neuron, astrocyte, and granule cell subpopulations upon inulin supplementation in 5xFAD mice. In addition, we find that astrocytes have more pronounced region-specific diversity than microglia. Intriguingly, such dietary change reduces amyloid-β plaque burden and alleviates microgliosis in the forebrain region, without affecting the spatial learning and memory. CONCLUSIONS These results provide a comprehensive overview on the transcriptomic changes in individual cells of the entire mouse brain in response to high fiber intake and a resourceful foundation for future mechanistic studies on the influence of diet and gut microbiome on the brain during neurodegeneration.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China
| | - Houyu Zhang
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhou Wan
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuetong Li
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Carlos F Ibáñez
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
- Chinese Institute for Brain Research, Zhongguancun Life Science Park, Beijing, 102206, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Department of Neuroscience, Karolinska Institute, 17165, Stockholm, Sweden.
| | - Meng Xie
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
- PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
- Beijing Key Laboratory of Behavior and Mental Health, School of Psychological and Cognitive Sciences, Peking University, Beijing, 100871, China.
- Department of Medicine Huddinge, Karolinska Institute, 14183, Stockholm, Sweden.
| |
Collapse
|
5
|
Chen D, Zhuang Z, Huang M, Huang Y, Yan Y, Zhang Y, Lin Y, Jin X, Wang Y, Huang J, Xu W, Pan J, Wang H, Huang F, Liao K, Cheng M, Zhu Z, Bai Y, Niu Z, Zhang Z, Xiang Y, Wei X, Yang T, Zeng T, Dong Y, Lei Y, Sun Y, Wang J, Yang H, Sun Y, Cao G, Poo M, Liu L, Naumann RK, Xu C, Wang Z, Xu X, Liu S. Genomic evolution reshapes cell-type diversification in the amniote brain. Dev Cell 2025:S1534-5807(25)00252-7. [PMID: 40367951 DOI: 10.1016/j.devcel.2025.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 03/05/2025] [Accepted: 04/18/2025] [Indexed: 05/16/2025]
Abstract
Over 320 million years of evolution, amniotes have developed complex brains and cognition through largely unexplored genetic and gene expression mechanisms. We created a comprehensive single-cell atlas of over 1.3 million cells from the telencephalon and cerebellum of turtles, zebra finches, pigeons, mice, and macaques, employing single-cell resolution spatial transcriptomics to validate gene expression patterns across species. Our study identifies significant species-specific variations in cell types, highlighting their conservation and diversification in evolution. We found pronounced differences in telencephalon excitatory neurons (EXs) and cerebellar cell types between birds and mammals. Birds predominantly express SLC17A6 in EX, whereas mammals express SLC17A7 in the neocortex and SLC17A6 elsewhere, possibly due to loss of function of SLC17A7 in birds. Additionally, we identified a bird-specific Purkinje cell subtype (SVIL+), implicating the lysine-specific demethylase 11 (LSD1)/KDM1A pathway in learning and circadian rhythms and containing numerous positively selected genes, which suggests an evolutionary optimization of cerebellar functions for ecological and behavioral adaptation. Our findings elucidate the complex interplay between genetic evolution and environmental adaptation, underscoring the role of genetic diversification in the development of specialized cell types across amniotes.
Collapse
Affiliation(s)
- Duoyuan Chen
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Zhenkun Zhuang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China
| | - Maolin Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Yuting Yan
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yanru Zhang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Youning Lin
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Xiaoying Jin
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yuanmei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China
| | - Jinfeng Huang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Wenbo Xu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | - Hong Wang
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China
| | - Fubaoqian Huang
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Kuo Liao
- BGI Research, Hangzhou 310030, China; School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Mengnan Cheng
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Zhiyong Zhu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Yinqi Bai
- BGI Research, Hangzhou 310030, China
| | - Zhiwei Niu
- BGI Research, Hangzhou 310030, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ze Zhang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China
| | - Ya Xiang
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaofeng Wei
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen 518120, China; Guangdong Genomics Data Center, BGl research, Shenzhen 518120, China
| | - Tao Zeng
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Yuliang Dong
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China
| | - Ying Lei
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Yangang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jian Wang
- BGI Research, Hangzhou 310030, China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Shenzhen 518083, China; HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310018, China; James D. Watson Institute of Genome Sciences, Hangzhou 310029, China
| | - Yidi Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Cao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Muming Poo
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Longqi Liu
- BGI Research, Hangzhou 310030, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Robert K Naumann
- The Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 1068 Xueyuan Avenue, Shenzhen University Town, Nanshan District, Shenzhen 518055, China.
| | - Chun Xu
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhenlong Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Xun Xu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Shanxi Medical University, BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China.
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China; BGI Research, Shenzhen 518083, China; Key Laboratory of Spatial Omics of Zhejiang Province, BGI Research, Hangzhou 310030, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Hangzhou 310030, China.
| |
Collapse
|
6
|
Xu Y, Yu B, Chen X, Peng A, Tao Q, He Y, Wang Y, Li XM. DSCT: a novel deep-learning framework for rapid and accurate spatial transcriptomic cell typing. Natl Sci Rev 2025; 12:nwaf030. [PMID: 40313458 PMCID: PMC12045154 DOI: 10.1093/nsr/nwaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 05/03/2025] Open
Abstract
Unraveling complex cell-type-composition and gene-expression patterns at the cellular spatial resolution is crucial for understanding intricate cell functions in the brain. In this study, we developed Deep Neural Network-based Spatial Cell Typing (DSCT)-an innovative framework for spatial cell typing within spatial transcriptomic data sets. This approach utilizes a synergistic integration of an enhanced gene-selection strategy and a lightweight deep neural network for data training, offering a more rapid and accurate solution for the analysis of spatial transcriptomic data. Based on comprehensive analysis, DSCT achieved exceptional accuracy in cell-type identification across various brain regions, species and spatial transcriptomic platforms. It also performed well in mapping finer cell types, thereby showcasing its versatility and adaptability across diverse data sets. Strikingly, DSCT exhibited high efficiency and remarkable processing speed, with fewer computational resource demands. As such, this novel approach opens new avenues for exploring the spatial organization of cell types and gene-expression patterns, advancing our understanding of biological functions and pathologies within the nervous system.
Collapse
Affiliation(s)
- Yiheng Xu
- Department of Neurology and Department of Psychiatry, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310000, China
| | - Bin Yu
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Institute of brain and cognitive science, Hangzhou City University School of Medicine, Hangzhou 310015, China
| | - Xuan Chen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Aibing Peng
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | | | - Youzhe He
- BGI Research, Hangzhou 310030, China
| | - Yueming Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310000, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310058, China
- The Nanhu Brain-computer Interface institute, Hangzhou 311100, China
| | - Xiao-Ming Li
- Department of Neurology and Department of Psychiatry, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Takei Y, Yang Y, White J, Goronzy IN, Yun J, Prasad M, Ombelets LJ, Schindler S, Bhat P, Guttman M, Cai L. Spatial multi-omics reveals cell-type-specific nuclear compartments. Nature 2025; 641:1037-1047. [PMID: 40205045 DOI: 10.1038/s41586-025-08838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 02/25/2025] [Indexed: 04/11/2025]
Abstract
The mammalian nucleus is compartmentalized by diverse subnuclear structures. These subnuclear structures, marked by nuclear bodies and histone modifications, are often cell-type specific and affect gene regulation and 3D genome organization1-3. Understanding their relationships rests on identifying the molecular constituents of subnuclear structures and mapping their associations with specific genomic loci and transcriptional levels in individual cells, all in complex tissues. Here, we introduce two-layer DNA seqFISH+, which enables simultaneous mapping of 100,049 genomic loci, together with the nascent transcriptome for 17,856 genes and subnuclear structures in single cells. These data enable imaging-based chromatin profiling of diverse subnuclear markers and can capture their changes at genomic scales ranging from 100-200 kilobases to approximately 1 megabase, depending on the marker and DNA locus. By using multi-omics datasets in the adult mouse cerebellum, we showed that repressive chromatin regions are more variable by cell type than are active regions across the genome. We also discovered that RNA polymerase II-enriched foci were locally associated with long, cell-type-specific genes (bigger than 200 kilobases) in a manner distinct from that of nuclear speckles. Furthermore, our analysis revealed that cell-type-specific regions of heterochromatin marked by histone H3 trimethylated at lysine 27 (H3K27me3) and histone H4 trimethylated at lysine 20 (H4K20me3) are enriched at specific genes and gene clusters, respectively, and shape radial chromosomal positioning and inter-chromosomal interactions in neurons and glial cells. Together, our results provide a single-cell high-resolution multi-omics view of subnuclear structures, associated genomic loci and their effects on gene regulation, directly within complex tissues.
Collapse
Affiliation(s)
- Yodai Takei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Yujing Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jonathan White
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jina Yun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Meera Prasad
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Prashant Bhat
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Long Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
8
|
Busch SE, Hansel C. Non-allometric expansion and enhanced compartmentalization of Purkinje cell dendrites in the human cerebellum. eLife 2025; 14:RP105013. [PMID: 40231436 PMCID: PMC11999696 DOI: 10.7554/elife.105013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Purkinje cell (PC) dendrites are optimized to integrate the vast cerebellar input array and drive the sole cortical output. PCs are classically seen as stereotypical computational units, yet mouse PCs are morphologically diverse and those with multi-branched structure can receive non-canonical climbing fiber (CF) multi-innervation that confers independent compartment-specific signaling. While otherwise uncharacterized, human PCs are universally multi-branched. Do they exceed allometry to achieve enhanced integrative capacities relative to mouse PCs? To answer this, we used several comparative histology techniques in adult human and mouse to analyze cellular morphology, parallel fiber (PF) and CF input arrangement, and regional PC demographics. Human PCs are substantially larger than previously described; they exceed allometric constraint by cortical thickness and are the largest neuron in the brain with 6-7 cm total dendritic length. Unlike mouse, human PC dendrites ramify horizontally to form a multi-compartment motif that we show can receive multiple CFs. Human spines are denser (6.9 vs 4.9 spines/μm), larger (~0.36 vs 0.29 μm), and include an unreported 'spine cluster' structure-features that may be congruent with enhanced PF association and amplification as human-specific adaptations. By extrapolation, human PCs may receive 500,000 to 1 million synaptic inputs compared with 30-40,000 in mouse. Collectively, human PC morphology and input arrangement is quantitatively and qualitatively distinct from rodent. Multi-branched PCs are more prevalent in posterior and lateral cerebellum, co-varying with functional boundaries, supporting the hypothesis that this morphological motif permits expanded input multiplexing and may subserve task-dependent needs for input association.
Collapse
Affiliation(s)
- Silas E Busch
- Department of Neurobiology and Neuroscience Institute, The University of ChicagoChicagoUnited States
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, The University of ChicagoChicagoUnited States
| |
Collapse
|
9
|
David AP, Biswas S, Soltis MP, Eltawil Y, Zhou R, Easow SA, Cheng AG, Heller S, Jan TA. Crosstalk Signaling Between the Epithelial and Non-Epithelial Compartments of the Mouse Inner Ear. J Assoc Res Otolaryngol 2025; 26:127-145. [PMID: 40080263 PMCID: PMC11996748 DOI: 10.1007/s10162-025-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/23/2025] [Indexed: 03/15/2025] Open
Abstract
PURPOSE The otolith organs of the inner ear consist of the utricle and saccule that detect linear acceleration. These organs rely on mechanosensitive hair cells for transduction of signals to the central nervous system. In the murine utricle, about half of the hair cells are born during the first postnatal week. Here, we wanted to explore the role and interaction of the non-epithelial mesenchymal cells with the sensory epithelium and provide a resource for the auditory neurosciences community. METHODS We utilized full-length Smart-seq2 single-cell RNA sequencing at postnatal days 4 and 6 along with a host of computational methods to infer interactions between the epithelial and non-epithelial compartments of the mouse utricle. We validated these findings using a combination of immunohistochemistry and quantitative multiplex in situ hybridization. RESULTS We report diverse cell-cell crosstalk among the 12 annotated cell populations (n = 955 cells) in the developing neonatal mouse utricle, including epithelial and non-epithelial cellular signaling. The mesenchymal cells are the dominant signal senders during the postnatal period. Epithelial to mesenchymal signaling, as well as mesenchymal to epithelial signaling, are quantitatively shown through the TGFβ and pleiotrophin pathways. CONCLUSION This study highlights the dynamic process of postnatal vestibular organ development that relies not only on epithelial cells, but also on crosstalk between spatial compartments and among different cell groups. We further provide a data-rich resource for the inner ear community.
Collapse
Affiliation(s)
- Abel P David
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
- Department of Otolaryngology - Head and Neck Surgery, Mass Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sushobhan Biswas
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Macey P Soltis
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Yasmin Eltawil
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Ruiqi Zhou
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Sarah A Easow
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Stefan Heller
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taha A Jan
- Department of Otolaryngology - Head and Neck Surgery, Epithelial Biology Center, Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Preston Research Building, PRB 752, 2220 Pierce Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
10
|
Klomp AJ, Pace M, Mehr JB, Arrieta MFH, Hayes C, Fleck A, Heiney S, Williams AJ. Deletion of the voltage-gated calcium channel gene, Ca V 1.3, reduces Purkinje cell dendritic complexity without altering cerebellar-mediated eyeblink conditioning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645586. [PMID: 40196480 PMCID: PMC11974831 DOI: 10.1101/2025.03.27.645586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Genetic variation in CACNA1D , the gene that encodes the pore-forming subunit of the L-type calcium channel Ca V 1.3, has been associated with increased risk for neuropsychiatric disorders that display abnormalities in cerebellar structures. We sought to clarify if deletion of Ca V 1.3 in mice would induce abnormalities in cerebellar cortex cytoarchitecture or synapse morphology. Since Ca V 1.3 is highly expressed in cerebellar molecular layer interneurons (MLIs) and L-type channels appear to regulate GABA release from MLIs, we hypothesized that loss of Ca V 1.3 would alter GABAergic synapses between MLIs and Purkinje cells (PCs) without altering MLI numbers or PC structure. As expected, we did not observe changes in the numbers of MLIs or PCs. Surprisingly, Ca V 1.3 KO mice do have decreased complexity of PC dendritic arbors without differences in the number or structure of GABAergic synapses onto PCs. Loss of Ca V 1.3 was not associated with impaired acquisition of delay eyeblink conditioning. Therefore, our data suggest that Ca V 1.3 expression is important for PC structure but does not affect other measures of cerebellar cortex morphology or cerebellar function as assessed by delay eyeblink conditioning.
Collapse
|
11
|
Boonstra JT. The cerebellar connectome. Behav Brain Res 2025; 482:115457. [PMID: 39884319 DOI: 10.1016/j.bbr.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The cerebellum, once primarily associated with motor functions, has emerged as a critical component in higher cognitive processes and emotional regulation. This paradigm shift frames the cerebellum as an essential focal point for elucidating sophisticated functional brain circuitry. Network neuroscience often maintains a cortical-centric viewpoint, potentially overlooking the significant contributions of the cerebellum in connectome organization. Enhanced recognition and integration of cerebellar aspects in connectomic analyses hold significant potential for elucidating cerebellar circuitry within comprehensive brain networks and in neuropsychiatric conditions where cerebellar involvement is evident. This review explores the intricate anatomy, connectivity, and functional organization of the cerebellum within the broader context of large-scale brain networks. Cerebellar-specific networks are examined, emphasizing their role in supporting diverse cognitive functions via the cerebellum's hierarchical functional organization. The clinical significance of cerebellar connectomics is then addressed, highlighting the interplay between cerebellar circuitry and neurological and psychiatric conditions. The paper concludes by considering neurostimulation treatments and future directions in the field. This comprehensive review underscores the cerebellum's integral role in the human connectome.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
12
|
Pomeroy J, Borczyk M, Kawalec M, Hajto J, Carlson E, Svärd S, Verma S, Bareke E, Boratyńska-Jasińska A, Dymkowska D, Mellado-Ibáñez A, Laight D, Zabłocki K, Occhipinti A, Majewska L, Angione C, Majewski J, Yegutkin GG, Korostynski M, Zabłocka B, Górecki DC. Spatiotemporal diversity in molecular and functional abnormalities in the mdx dystrophic brain. Mol Med 2025; 31:108. [PMID: 40114059 PMCID: PMC11924731 DOI: 10.1186/s10020-025-01109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/28/2025] [Indexed: 03/22/2025] Open
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration and neuropsychiatric abnormalities. Loss of full-length dystrophins is both necessary and sufficient to initiate DMD. These isoforms are expressed in the hippocampus, cerebral cortex (Dp427c), and cerebellar Purkinje cells (Dp427p). However, our understanding of the consequences of their absence, which is crucial for developing targeted interventions, remains inadequate. We combined RNA sequencing with genome-scale metabolic modelling (GSMM), immunodetection, and mitochondrial assays to investigate dystrophic alterations in the brains of the mdx mouse model of DMD. The cerebra and cerebella were analysed separately to discern the roles of Dp427c and Dp427p, respectively. Investigating these regions at 10 days (10d) and 10 weeks (10w) followed the evolution of abnormalities from development to early adulthood. These time points also encompass periods before onset and during muscle inflammation, enabling assessment of the potential damage caused by inflammatory mediators crossing the dystrophic blood-brain barrier. For the first time, we demonstrated that transcriptomic and functional dystrophic alterations are unique to the cerebra and cerebella and vary substantially between 10d and 10w. The common anomalies involved altered numbers of retained introns and spliced exons across mdx transcripts, corresponding with alterations in the mRNA processing pathways. Abnormalities in the cerebra were significantly more pronounced in younger mice. The top enriched pathways included those related to metabolism, mRNA processing, and neuronal development. GSMM indicated dysregulation of glucose metabolism, which corresponded with GLUT1 protein downregulation. The cerebellar dystrophic transcriptome, while significantly altered, showed an opposite trajectory to that of the cerebra, with few changes identified at 10 days. These late defects are specific and indicate an impact on the functional maturation of the cerebella that occurs postnatally. Although no classical neuroinflammation markers or microglial activation were detected at 10 weeks, specific differences indicate that inflammation impacts DMD brains. Importantly, some dystrophic alterations occur late and may therefore be amenable to therapeutic intervention, offering potential avenues for mitigating DMD-related neuropsychiatric defects.
Collapse
Affiliation(s)
- Joanna Pomeroy
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Malgorzata Borczyk
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Maria Kawalec
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jacek Hajto
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Emma Carlson
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Samuel Svärd
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Suraj Verma
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Anna Boratyńska-Jasińska
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Alvaro Mellado-Ibáñez
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - David Laight
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Annalisa Occhipinti
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Loydie Majewska
- Department of Pediatrics, McGill University, McGill Health Centre Glen Site, 1001 Decarie Blvd, EM02210, Montreal, QC, H4A 3J1, Canada
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
| | - Gennady G Yegutkin
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Michal Korostynski
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Str., 31-343, Krakow, Poland
| | - Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dariusz C Górecki
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, PO1 2DT, UK.
| |
Collapse
|
13
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. Mol Biol Cell 2025; 36:ar33. [PMID: 39878654 PMCID: PMC11974963 DOI: 10.1091/mbc.e24-11-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 knockout (KO) cells revealed simultaneous up-regulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a prosurvival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7aflx/Y :: Vil1Cre/+ mice identified up-regulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are improved or rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Shatabdi Bhattacharjee
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Stephanie A. Zlatic
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Anne M. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Felix G. Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| |
Collapse
|
14
|
Schilling K. A Gene-Expression Based Comparison of Murine and Human Inhibitory Interneurons in the Cerebellar Cortex and Nuclei. CEREBELLUM (LONDON, ENGLAND) 2025; 24:55. [PMID: 40019676 PMCID: PMC11870911 DOI: 10.1007/s12311-025-01809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Cerebellar information processing is critically shaped by several types of inhibitory interneurons forming various intra-cerebellar feed-forward and feed-back loops. Evidence gathered over the past decades has focused interest on a non-uniform set of cortical inhibitory interneurons distinct from "classical" Golgi, basket or stellate cells, summarily referred to as PLIs (for Purkinje cell layer interneurons). Similarly, cerebellar nuclear inhibitory interneurons have gained increasing attention. Our understanding of the functions of these cells is still fragmentary. For humans, we lack functional data, and even any dependable morphological classification for these cells. Here, I used publicly available single cell based gene expression data to compare inhibitory interneurons from the cerebellar cortex and inhibitory nuclear neurons of humans and mice. Integration of nuclear and cortical cells revealed transcriptomic similarities between subsets of these cells and suggest known characteristics of cortical cell types may be helpful to devise strategies for the further characterization of nuclear inhibitory interneurons. Comparison of human and murine PLIs indicate that these strongly differ by the expression of genes used to characterize these cells in mice. This limits their utility to identify and classify human PLIs, and leaves the question open as to the number and characteristics of non-Golgi inhibitory interneurons resident in the cerebellar granule cell and Purkinje cell layers in humans.
Collapse
Affiliation(s)
- Karl Schilling
- Anatomisches Institut- Anatomie und Zellbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 10, D53115, Bonn, Germany.
| |
Collapse
|
15
|
Pangrazzi L, Cerilli E, Balasco L, Khurshid C, Tobia C, Dall'O' GM, Chelini G, Perini S, Filosi M, Barbieri A, Ravizza T, Vezzani A, Provenzano G, Pastore A, Weinberger B, Rubert J, Domenici E, Bozzi Y. The interplay between oxidative stress and inflammation supports autistic-related behaviors in Cntnap2 knockout mice. Brain Behav Immun 2025; 127:57-71. [PMID: 40023202 DOI: 10.1016/j.bbi.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/22/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025] Open
Abstract
Autism Spectrum Disorder (ASD) is a highly prevalent neurodevelopmental condition characterized by social communication deficits and repetitive/restricted behaviors. Several studies showed that oxidative stress and inflammation may contribute to ASD. Indeed, increased levels of oxygen radicals and pro-inflammatory molecules were described in the brain and peripheral blood of persons with ASD and mouse models. Despite this, a potential direct connection between oxidative stress and inflammation within specific brain areas and ASD-related behaviors has not been investigated in detail yet. Here, we used RT-qPCR, RNA sequencing, metabolomics, immunohistochemistry, and flow cytometry to show that pro-inflammatory molecules were increased in the cerebellum and periphery of mice lacking Cntnap2, a robust model of ASD. In parallel, oxidative stress was present in the cerebellum of mutant animals. Systemic treatment with N-acetyl-cysteine (NAC) rescued cerebellar oxidative stress, inflammation, as well as motor and social impairments in Cntnap2-/- mice, concomitant with enhanced function of microglia cells in NAC-treated mutants. Intriguingly, social deficits, cerebellar inflammation, and microglia dysfunction were induced by NAC in Cntnap2+/+ animals. Our findings suggest that the interplay between oxidative stress and inflammation accompanied by genetic vulnerability may underlie ASD-related behaviors in Cntnap2 mutant mice.
Collapse
Affiliation(s)
- Luca Pangrazzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy; Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10 6020 Innsbruck, Austria.
| | - Enrica Cerilli
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy
| | - Luigi Balasco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy; Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Chrow Khurshid
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands; College of Agriculture, University of Kirkuk, Kirkuk, Iraq
| | - Caterina Tobia
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy
| | - Ginevra Matilde Dall'O'
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy
| | - Gabriele Chelini
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy; CNR Neuroscience Institute, 56124 Pisa, Italy
| | - Samuel Perini
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy
| | - Michele Filosi
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy
| | - Anna Barbieri
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy
| | - Anna Pastore
- Metabolomics and Proteomics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10 6020 Innsbruck, Austria
| | - Josep Rubert
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| | - Enrico Domenici
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9 38123 Trento, Italy; Fondazione The Microsoft Research - University of Trento Center for Computational and Systems Biology (COSBI), 38068 Rovereto, Trento, Italy
| | - Yuri Bozzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1 38068 Rovereto, Trento, Italy; CNR Neuroscience Institute, 56124 Pisa, Italy
| |
Collapse
|
16
|
Tolve M, Tutas J, Özer-Yildiz E, Klein I, Petzold A, Fritz VJ, Overhoff M, Silverman Q, Koletsou E, Liebsch F, Schwarz G, Korotkova T, Valtcheva S, Gatto G, Kononenko NL. The endocytic adaptor AP-2 maintains Purkinje cell function by balancing cerebellar parallel and climbing fiber synapses. Cell Rep 2025; 44:115256. [PMID: 39918958 DOI: 10.1016/j.celrep.2025.115256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/02/2024] [Accepted: 01/10/2025] [Indexed: 02/09/2025] Open
Abstract
The loss of cerebellar Purkinje cells is a hallmark of neurodegenerative movement disorders, but the mechanisms remain enigmatic. We show that endocytic adaptor protein complex 2 (AP-2) is crucial for Purkinje cell survival. Using mouse genetics, viral tracing, calcium imaging, and kinematic analysis, we demonstrate that loss of the AP-2 μ subunit in Purkinje cells leads to early-onset ataxia and progressive degeneration. Synaptic dysfunction, marked by an overrepresentation of parallel fibers (PFs) over climbing fibers (CFs), precedes Purkinje cell loss. Mechanistically, AP-2 interacts with the PF-enriched protein GRID2IP, and its loss triggers GRID2IP degradation and glutamate δ2 receptor (GLURδ2) accumulation, leading to an excess of PFs while CFs are reduced. The overrepresentation of PFs increases Purkinje cell network activity, which is mitigated by enhancing glutamate clearance with ceftriaxone. These findings highlight the role of AP-2 in regulating GRID2IP levels in Purkinje cells to maintain PF-CF synaptic balance and prevent motor dysfunction.
Collapse
Affiliation(s)
- Marianna Tolve
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Janine Tutas
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ebru Özer-Yildiz
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ines Klein
- Neurology Department, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Anne Petzold
- Institute for Systems Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veronika J Fritz
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Melina Overhoff
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Quinn Silverman
- Neurology Department, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Ellie Koletsou
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Filip Liebsch
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Tatiana Korotkova
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Institute for Systems Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Silvana Valtcheva
- Institute for Systems Physiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Graziana Gatto
- Neurology Department, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Natalia L Kononenko
- Cologne Excellence Cluster Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
17
|
Herzfeld DJ, Lisberger SG. Neural circuit mechanisms to transform cerebellar population dynamics for motor control in monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639459. [PMID: 40027752 PMCID: PMC11870495 DOI: 10.1101/2025.02.21.639459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
We exploit identification of neuron types during extracellular recording to demonstrate how the cerebellar cortex's well-established architecture transforms inputs into outputs. During smooth pursuit eye movements, the floccular complex performs distinct input-output transformations of temporal dynamics and directional response properties. The responses of different interneuron types localize the circuit mechanisms of each transformation. Mossy fibers and unipolar brush cells emphasize eye position dynamics uniformly across the cardinal axes; Purkinje cells and molecular layer interneurons code eye velocity along directionally biased axes; Golgi cells show unmodulated firing. Differential directional response properties of different neuron types localize the directional input-output transformation to the last-order inputs to Purkinje cells. Differential temporal dynamics pinpoint the site of the temporal input-output transformation to granule cells. Specific granule cell population dynamics allow the temporal transformations required in the area we study and generalize to many temporal transformations, providing a complete framework to understand cerebellar circuit computation. Impact statement We dissect the circuit computations performed by the floccular complex of the cerebellum during an exemplar sensory-motor behavior, taking advantage of knowledge of the circuit architecture, existence of discrete neuron types, and a newfound ability to identify neuron types from extracellular recordings. Our results describe the contributions of the major neuron types to the cerebellar input-output computations, identify the population dynamics needed in granule cells to support those computations, and to create a basis set to enable temporally-specific motor behavior and motor learning.
Collapse
|
18
|
Busch SE, Hansel C. Non-allometric expansion and enhanced compartmentalization of Purkinje cell dendrites in the human cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.09.612113. [PMID: 39554002 PMCID: PMC11565726 DOI: 10.1101/2024.09.09.612113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Purkinje cell (PC) dendrites are optimized to integrate the vast cerebellar input array and drive the sole cortical output. PCs are classically seen as stereotypical computational units, yet mouse PCs are morphologically diverse and those with multi-branched structure can receive non-canonical climbing fiber (CF) multi-innervation that confers independent compartment-specific signaling. While otherwise uncharacterized, human PCs are universally multi-branched. Do they exceed allometry to achieve enhanced integrative capacities relative to mouse PCs? To answer this, we used several comparative histology techniques in adult human and mouse to analyze cellular morphology, parallel fiber (PF) and CF input arrangement, and regional PC demographics. Human PCs are substantially larger than previously described; they exceed allometric constraint by cortical thickness and are the largest neuron in the brain with 6-7cm total dendritic length. Unlike mouse, human PC dendrites ramify horizontally to form a multi-compartment motif that we show can receive multiple CFs. Human spines are denser (6.9 vs 4.9 spines/μm), larger (~0.36 vs 0.29μm), and include an unreported 'spine cluster' structure-features that may be congruent with enhanced PF association and amplification as human-specific adaptations. By extrapolation, human PCs may receive 500,000 to 1 million synaptic inputs compared with 30-40,000 in mouse. Collectively, human PC morphology and input arrangement is quantitatively and qualitatively distinct from rodent. Multi-branched PCs are more prevalent in posterior and lateral cerebellum, co-varying with functional boundaries, supporting the hypothesis that this morphological motif permits expanded input multiplexing and may subserve task-dependent needs for input association.
Collapse
Affiliation(s)
- Silas E. Busch
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| | - Christian Hansel
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Xie F, Jain S, Xu R, Butrus S, Tan Z, Xu X, Shekhar K, Zipursky SL. Spatial profiling of the interplay between cell type- and vision-dependent transcriptomic programs in the visual cortex. Proc Natl Acad Sci U S A 2025; 122:e2421022122. [PMID: 39946537 PMCID: PMC11848306 DOI: 10.1073/pnas.2421022122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/07/2025] [Indexed: 02/19/2025] Open
Abstract
How early sensory experience during "critical periods" of postnatal life affects the organization of the mammalian neocortex at the resolution of neuronal cell types is poorly understood. We previously reported that the functional and molecular profiles of layer 2/3 (L2/3) cell types in the primary visual cortex (V1) are vision-dependent [S. Cheng et al., Cell 185, 311-327.e24 (2022)]. Here, we characterize the spatial organization of L2/3 cell types with and without visual experience. Spatial transcriptomic profiling based on 500 genes recapitulates the zonation of L2/3 cell types along the pial-ventricular axis in V1. By applying multitasking theory, we suggest that the spatial zonation of L2/3 cell types is linked to the continuous nature of their gene expression profiles, which can be represented as a 2D manifold bounded by three archetypal cell types. By comparing normally reared and dark reared L2/3 cells, we show that visual deprivation-induced transcriptomic changes comprise two independent gene programs. The first, induced specifically in the visual cortex, includes immediate-early genes and genes associated with metabolic processes. It manifests as a change in cell state that is orthogonal to cell-type-specific gene expression programs. By contrast, the second program impacts L2/3 cell-type identity, regulating a subset of cell-type-specific genes and shifting the distribution of cells within the L2/3 cell-type manifold. Through an integrated analysis of spatial transcriptomics with single-nucleus RNA-seq data, we describe how vision patterns cortical L2/3 cell types during the critical period.
Collapse
Affiliation(s)
- Fangming Xie
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Saumya Jain
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA30332
| | - Runzhe Xu
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
| | - Zhiqun Tan
- Department of Anatomy and Neurobiology, Center for Neural Circuit Mapping, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, Center for Neural Circuit Mapping, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA92697
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA94720
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - S. Lawrence Zipursky
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| |
Collapse
|
20
|
Budoff SA, Poleg-Polsky A. A Complete Spatial Map of Mouse Retinal Ganglion Cells Reveals Density and Gene Expression Specializations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.10.637538. [PMID: 39990332 PMCID: PMC11844403 DOI: 10.1101/2025.02.10.637538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Retinal ganglion cells (RGCs) transmit visual information from the eye to the brain. In mice, several RGC subtypes show nonuniform spatial distributions, potentially mediating specific visual functions. However, the full extent of RGC specialization remains unknown. Here, we used en-face cryosectioning, spatial transcriptomics, and machine learning to map the spatial distribution of all RGC subtypes identified in previous single-cell studies. While two-thirds of RGC subtypes were evenly distributed, others showed strong biases toward ventral or dorso-temporal regions associated with sky vision and the area retinae temporalis (ART), the predicted homolog of the area centralis. Additionally, we observed unexpected spatial variation in gene expression within several subtypes along the dorso-ventral axis or within vs. outside the ART, independent of RGC density profiles. Finally, we found limited correlations between the gene profiles of the ART and the primate macula, suggesting divergent specialization between the mouse and primate central vision.
Collapse
Affiliation(s)
- Samuel A. Budoff
- University of Colorado Anschutz Medical Center, Department of Physiology and Biophysics, Aurora, 80045, USA
| | - Alon Poleg-Polsky
- University of Colorado Anschutz Medical Center, Department of Physiology and Biophysics, Aurora, 80045, USA
| |
Collapse
|
21
|
Chitra U, Arnold BJ, Sarkar H, Sanno K, Ma C, Lopez-Darwin S, Raphael BJ. Mapping the topography of spatial gene expression with interpretable deep learning. Nat Methods 2025; 22:298-309. [PMID: 39849132 DOI: 10.1038/s41592-024-02503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/14/2024] [Indexed: 01/25/2025]
Abstract
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of these data complicates analysis of spatial gene expression patterns. We address this issue by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a quantity called the isodepth. Contours of constant isodepths enclose domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in expression. We develop GASTON (gradient analysis of spatial transcriptomics organization with neural networks), an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gradients and piecewise linear expression functions that model both continuous gradients and discontinuous variation in gene expression. We show that GASTON accurately identifies spatial domains and marker genes across several tissues, gradients of neuronal differentiation and firing in the brain, and gradients of metabolism and immune activity in the tumor microenvironment.
Collapse
Affiliation(s)
- Uthsav Chitra
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Brian J Arnold
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Hirak Sarkar
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Ludwig Cancer Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Kohei Sanno
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Cong Ma
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Sereno Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
22
|
Abay T, Stickels RR, Takizawa MT, Nalbant BN, Hsieh YH, Hwang S, Snopkowski C, Yu KKH, Abou-Mrad Z, Tabar V, Howitt BE, Ludwig LS, Chaligné R, Satpathy AT, Lareau CA. Transcript-specific enrichment enables profiling of rare cell states via single-cell RNA sequencing. Nat Genet 2025; 57:451-460. [PMID: 39779958 DOI: 10.1038/s41588-024-02036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing identifies rare populations that express specific marker transcript combinations, traditional flow sorting requires cell surface markers with high-fidelity antibodies, limiting our ability to interrogate these populations. In addition, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers. In the present report, we addressed these limitations by developing Programmable Enrichment via RNA FlowFISH by sequencing (PERFF-seq), a scalable assay that enables scRNA-seq profiling of subpopulations defined by the abundance of specific RNA transcripts. Across immune populations (n = 184,126 cells) and fresh-frozen and formalin-fixed, paraffin-embedded brain tissue (n = 33,145 nuclei), we demonstrated that programmable sorting logic via RNA-based cytometry can isolate rare cell populations and uncover phenotypic heterogeneity via downstream, high-throughput, single-cell genomics analyses.
Collapse
Affiliation(s)
- Tsion Abay
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Program in Biological and Biomedical Sciences, Harvard University, Boston, MA, USA
| | - Robert R Stickels
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
| | - Meril T Takizawa
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benan N Nalbant
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Hsin Hsieh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Sidney Hwang
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Catherine Snopkowski
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kenny Kwok Hei Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brooke E Howitt
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Leif S Ludwig
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Ronan Chaligné
- Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| | - Caleb A Lareau
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
23
|
Widner J, Faust PL, Louis ED, Fujita H. Axonal pathology differentially affects human Purkinje cell subtypes in the essential tremor cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.633063. [PMID: 39974874 PMCID: PMC11838201 DOI: 10.1101/2025.01.26.633063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The cerebellar cortex is organized into discrete regions populated by molecularly distinct Purkinje cells (PCs), the sole cortical output neurons. While studies in animal models have shown that PC subtypes differ in their vulnerability to disease, our understanding of human PC subtype and vulnerability remains limited. Here, we demonstrate that human cerebellar regions specialized for motor vs cognitive functions (lobule HV vs Crus I) contain distinct PC populations characterized by specific molecular and anatomical features, which show selective vulnerability in essential tremor (ET), a cerebellar degenerative disorder. Using a known PC subtype marker, neurofilament heavy chain (NEFH), we found that motor lobule HV contains PCs with high NEFH expression, while cognitive lobule Crus I contains PCs with low NEFH expression in post-mortem samples from healthy controls. In the same cerebella, PC axons in lobule HV were 2.2-fold thicker than those in Crus I. Across lobules, axon caliber positively correlated with NEFH expression. In ET cerebella, we identified motor lobule-specific PC axon pathology with a 1.5-fold reduction in caliber and increased axon variability in lobule HV, while Crus I axons were unaffected. Tremor severity and duration in ET correlated with axon diameter variability selectively in lobule HV PCs. Given that axonal caliber is a major determinant of neural signaling capacity, our results (1) suggest that disrupted cerebellar corticonuclear signaling is occurring in ET, (2) provide evidence of region-specific PC subtypes in the human cerebellum and offer insight into how selective PC vulnerability may contribute to the pathophysiology of cerebellar degeneration.
Collapse
Affiliation(s)
- James Widner
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| | - Elan D. Louis
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hirofumi Fujita
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
24
|
Shang L, Wu P, Zhou X. Statistical identification of cell type-specific spatially variable genes in spatial transcriptomics. Nat Commun 2025; 16:1059. [PMID: 39865128 PMCID: PMC11770176 DOI: 10.1038/s41467-025-56280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
An essential task in spatial transcriptomics is identifying spatially variable genes (SVGs). Here, we present Celina, a statistical method for systematically detecting cell type-specific SVGs (ct-SVGs)-a subset of SVGs exhibiting distinct spatial expression patterns within specific cell types. Celina utilizes a spatially varying coefficient model to accurately capture each gene's spatial expression pattern in relation to the distribution of cell types across tissue locations, ensuring effective type I error control and high power. Celina proves powerful compared to existing methods in single-cell resolution spatial transcriptomics and stands as the only effective solution for spot-resolution spatial transcriptomics. Applied to five real datasets, Celina uncovers ct-SVGs associated with tumor progression and patient survival in lung cancer, identifies metagenes with unique spatial patterns linked to cell proliferation and immune response in kidney cancer, and detects genes preferentially expressed near amyloid-β plaques in an Alzheimer's model.
Collapse
Affiliation(s)
- Lulu Shang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peijun Wu
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
25
|
Aboasali F, Castonguay CE, Medeiros M, Dion PA, Rouleau GA. Tremor in the Age of Omics: An Overview of the Transcriptomic Landscape of Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2025; 24:35. [PMID: 39853640 DOI: 10.1007/s12311-025-01793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 01/26/2025]
Abstract
Essential Tremor (ET) is the most common movement disorder and has a worldwide prevalence of 1%, including 5% of the population over 65 years old. It is characterized by an active, postural or kinetic tremor, primarily affecting the upper limbs, and is diagnosed based on clinical characteristics. The pathological mechanisms of ET, however, are mostly unknown. Moreover, despite its high heritability, genetic studies of ET genetics have yielded mixed results. Transcriptomics is a field that has the potential to reveal valuable insights about the processes and pathogenesis of ET thus providing an avenue for the development of more effective therapies. With the emergence of techniques such as single-cell and single-nucleus RNA sequencing (scRNA-seq and snRNA-seq), molecular and cellular events can now be more closely examined, providing valuable insights into potential causal mechanisms. In this review, we review the growing literature on transcriptomic studies in ET, aiming to identify biological pathways involved and explore possible avenues for further ET research. We emphasized the convergence on shared of biological pathways across several studies, specifically axonal guidance and calcium signaling. These findings posit multiple hypotheses linking both pathways through the regulation of axonal and synaptic plasticity. We conclude that increasing the sample size is vital to uncover the subtleties of ET clinical and pathological heterogeneity. Additionally, integrating Multiomics approaches should provide a comprehensive understanding of the disease's pathophysiology.
Collapse
Affiliation(s)
- Farah Aboasali
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Charles-Etienne Castonguay
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Miranda Medeiros
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Patrick A Dion
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.
- Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, H3A 2B4, Canada.
| |
Collapse
|
26
|
Huson V, Regehr WG. Realistic mossy fiber input patterns to unipolar brush cells evoke a continuum of temporal responses comprised of components mediated by different glutamate receptors. eLife 2025; 13:RP102618. [PMID: 39819796 PMCID: PMC11741519 DOI: 10.7554/elife.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.
Collapse
Affiliation(s)
- Vincent Huson
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Wade G Regehr
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
27
|
Jing J, Hu M, Ngodup T, Ma Q, Lau SNN, Ljungberg MC, McGinley MJ, Trussell LO, Jiang X. Molecular logic for cellular specializations that initiate the auditory parallel processing pathways. Nat Commun 2025; 16:489. [PMID: 39788966 PMCID: PMC11717940 DOI: 10.1038/s41467-024-55257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity. The resulting comprehensive cell-type taxonomy reconciles anatomical position, morphological, physiological, and molecular criteria, enabling the determination of the molecular basis of the specialized cellular phenotypes in the CN. In particular, CN cell-type identity is encoded in a transcriptional architecture that orchestrates functionally congruent expression across a small set of gene families to customize projection patterns, input-output synaptic communication, and biophysical features required for encoding distinct aspects of acoustic signals. This high-resolution account of cellular heterogeneity from the molecular to the circuit level reveals the molecular logic driving cellular specializations, thus enabling the genetic dissection of auditory processing and hearing disorders with a high specificity.
Collapse
Affiliation(s)
- Junzhan Jing
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ming Hu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Tenzin Ngodup
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS, University of Washington, Seattle, WA, USA
| | - Qianqian Ma
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shu-Ning Natalie Lau
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew J McGinley
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Laurence O Trussell
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Xiaolong Jiang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Liu X, Chapple RH, Bennett D, Wright WC, Sanjali A, Culp E, Zhang Y, Pan M, Geeleher P. CSI-GEP: A GPU-based unsupervised machine learning approach for recovering gene expression programs in atlas-scale single-cell RNA-seq data. CELL GENOMICS 2025; 5:100739. [PMID: 39788105 PMCID: PMC11770216 DOI: 10.1016/j.xgen.2024.100739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/06/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Exploratory analysis of single-cell RNA sequencing (scRNA-seq) typically relies on hard clustering over two-dimensional projections like uniform manifold approximation and projection (UMAP). However, such methods can severely distort the data and have many arbitrary parameter choices. Methods that can model scRNA-seq data as non-discrete "gene expression programs" (GEPs) can better preserve the data's structure, but currently, they are often not scalable, not consistent across repeated runs, and lack an established method for choosing key parameters. Here, we developed a GPU-based unsupervised learning approach, "consensus and scalable inference of gene expression programs" (CSI-GEP). We show that CSI-GEP can recover ground truth GEPs in real and simulated atlas-scale scRNA-seq datasets, significantly outperforming cutting-edge methods, including GPT-based neural networks. We applied CSI-GEP to a whole mouse brain atlas of 2.2 million cells, disentangling endothelial cell types missed by other methods, and to an integrated scRNA-seq atlas of human tumors and cell lines, discovering mesenchymal-like GEPs unique to cancer cells growing in culture.
Collapse
Affiliation(s)
- Xueying Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard H Chapple
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Declan Bennett
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - William C Wright
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ankita Sanjali
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Erielle Culp
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yinwen Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Min Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
29
|
Labarta-Bajo L, Allen NJ. Astrocytes in aging. Neuron 2025; 113:109-126. [PMID: 39788083 PMCID: PMC11735045 DOI: 10.1016/j.neuron.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood. Astrocytes change their transcriptome during aging, with astrocytes in areas such as the cerebellum, the hypothalamus, and white matter-rich regions being the most affected. While numerous studies describe astrocyte transcriptional changes in aging, many questions still remain. For example, how is astrocyte function altered by transcriptional changes that occur during aging? What are the mechanisms promoting astrocyte aged states? How do aged astrocytes impact brain function? This review discusses features of aged astrocytes and their potential triggers and proposes ways in which they may impact brain function and health span.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
30
|
Tao R, Han K, Wu SC, Friske JD, Roussel MF, Northcott PA. Arrested development: the dysfunctional life history of medulloblastoma. Genes Dev 2025; 39:4-17. [PMID: 39231614 PMCID: PMC11789489 DOI: 10.1101/gad.351936.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Medulloblastoma is a heterogeneous embryonal tumor of the cerebellum comprised of four distinct molecular subgroups that differ in their developmental origins, genomic landscapes, clinical presentation, and survival. Recent characterization of the human fetal cerebellum at single-cell resolution has propelled unprecedented insights into the cellular origins of medulloblastoma subgroups, including those underlying previously elusive groups 3 and 4. In this review, the molecular pathogenesis of medulloblastoma is examined through the lens of cerebellar development. In addition, we discuss how enhanced understanding of medulloblastoma origins has the potential to refine disease modeling for the advancement of treatment and outcomes.
Collapse
Affiliation(s)
- Ran Tao
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Katie Han
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Stephanie C Wu
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Jake D Friske
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Martine F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Paul A Northcott
- Center of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA;
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
31
|
van de Wal MAE, Doornbos C, Bibbe JM, Homberg JR, van Karnebeek C, Huynen MA, Keijer J, van Schothorst EM, 't Hoen PAC, Janssen MCH, Adjobo-Hermans MJW, Wieckowski MR, Koopman WJH. Ndufs4 knockout mice with isolated complex I deficiency engage a futile adaptive brain response. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2025; 1873:141055. [PMID: 39395749 DOI: 10.1016/j.bbapap.2024.141055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Paediatric Leigh syndrome (LS) is an early-onset and fatal neurodegenerative disorder lacking treatment options. LS is frequently caused by mutations in the NDUFS4 gene, encoding an accessory subunit of mitochondrial complex I (CI), the first complex of the oxidative phosphorylation (OXPHOS) system. Whole-body Ndufs4 knockout (KO) mice (WB-KO mice) are widely used to study isolated CI deficiency, LS pathology and interventions. These animals develop a brain-specific phenotype via an incompletely understood pathomechanism. Here we performed a quantitative analysis of the sub-brain proteome in six-weeks old WB-KO mice vs. wildtype (WT) mice. Brain regions comprised of a brain slice (BrSl), cerebellum (CB), cerebral cortex (CC), hippocampus (HC), inferior colliculus (IC), and superior colliculus (SC). Proteome analysis demonstrated similarities between CC/HC, and between IC/SC, whereas BrSl and CB differed from these two groups and each other. All brain regions displayed greatly reduced levels of two CI structural subunits (NDUFS4, NDUFA12) and an increased level of the CI assembly factor NDUFAF2. The level of CI-Q module subunits was significantly more reduced in IC/SC than in BrSl/CB/CC/HC, whereas other OXPHOS complex levels were not reduced. Gene ontology and pathway analysis demonstrated specific and common proteome changes between brain regions. Across brain regions, upregulation of cold-shock-associated proteins, mitochondrial fatty acid (FA) oxidation and synthesis (mtFAS) were the most prominent. FA-related pathways were predominantly upregulated in CB and HC. Based upon these results, we argue that stimulation of these pathways is futile and pro-pathological and discuss alternative strategies for therapeutic intervention in LS. SIGNIFICANCE: The Ndufs4 knockout mouse model is currently the most relevant and most widely used animal model to study the brain-linked pathophysiology of human Leigh Syndrome (LS) and intervention strategies. We demonstrate that the Ndufs4 knockout brain engages futile and pro-pathological responses. These responses explain both negative and positive outcomes of intervention studies in Leigh Syndrome mice and patients, thereby guiding novel intervention opportunities.
Collapse
Affiliation(s)
- Melissa A E van de Wal
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cenna Doornbos
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janne M Bibbe
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam, the Netherlands; United for Metabolic Diseases, the Netherlands
| | - Martijn A Huynen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | | | - Peter A C 't Hoen
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merel J W Adjobo-Hermans
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Werner J H Koopman
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, the Netherlands; Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands.
| |
Collapse
|
32
|
Qin L, Liu Z, Guo S, Han Y, Wang X, Ren W, Chen J, Zhen H, Nie C, Xing KK, Chen T, Südhof TC, Sun Y, Zhang B. Astrocytic Neuroligin-3 influences gene expression and social behavior, but is dispensable for synapse number. Mol Psychiatry 2025; 30:84-96. [PMID: 39003414 PMCID: PMC11649564 DOI: 10.1038/s41380-024-02659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Neuroligin-3 (Nlgn3) is an autism-associated cell-adhesion molecule that interacts with neurexins and is robustly expressed in both neurons and astrocytes. Neuronal Nlgn3 is an essential regulator of synaptic transmission but the function of astrocytic Nlgn3 is largely unknown. Given the high penetrance of Nlgn3 mutations in autism and the emerging role of astrocytes in neuropsychiatric disorders, we here asked whether astrocytic Nlgn3 might shape neural circuit properties in the cerebellum similar to neuronal Nlgn3. Imaging of tagged Nlgn3 protein produced by CRISPR/Cas9-mediated genome editing showed that Nlgn3 is enriched in the cell body but not the fine processes of cerebellar astrocytes (Bergmann glia). Astrocyte-specific knockout of Nlgn3 did not detectably alter the number of synapses, synaptic transmission, or astrocyte morphology in mouse cerebellum. However, spatial transcriptomic analyses revealed a significant shift in gene expression among multiple cerebellar cell types after the deletion of astrocytic Nlgn3. Hence, in contrast to neuronal Nlgn3, astrocytic Nlgn3 in the cerebellum is not involved in shaping synapses but may modulate gene expression in specific brain areas.
Collapse
Affiliation(s)
- Liming Qin
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhili Liu
- BGI Research, Shenzhen, 518083, China
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sile Guo
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Ying Han
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Xiankun Wang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wen Ren
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Jiewen Chen
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Hefu Zhen
- BGI Research, Shenzhen, 518083, China
| | - Chao Nie
- BGI Research, Shenzhen, 518083, China
| | - Ke-Ke Xing
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Thomas C Südhof
- Department of molecular and cellular physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94043, USA.
| | - Yuzhe Sun
- BGI Research, Shenzhen, 518083, China.
- BGI Research, 102601, Beijing, China.
- Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Bo Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
33
|
Walker H, Frost NA. Protocol for the generation of single-nuclei RNA-seq libraries and quantification of heterogeneous cell types activated during social interaction. STAR Protoc 2024; 5:103395. [PMID: 39423127 PMCID: PMC11532268 DOI: 10.1016/j.xpro.2024.103395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
Quantifying immediate early gene expression as a marker of cellular activity in single-nuclei RNA sequencing data allows for the identification of neurons involved in specific behaviors. Here, we present a protocol for generating single-nuclei libraries from the mouse brain and identifying active cell populations following social interactions. We describe steps for the dissection, preparation, and analysis of the prefrontal cortex, hippocampus, and cerebellum. This protocol has the potential to be modified for any brain region or behavior of interest. For complete details on the use and execution of this protocol, please refer to Walker and Frost.1.
Collapse
Affiliation(s)
- Hailee Walker
- University of Utah, Department of Neurology, Salt Lake City, UT 84132, USA
| | - Nicholas A Frost
- University of Utah, Department of Neurology, Salt Lake City, UT 84132, USA.
| |
Collapse
|
34
|
Parvathy S, Basu B, Surya S, Jose R, Meera V, Riya PA, Jyothi NP, Sanalkumar R, Praz V, Riggi N, Nair BS, Gulia KK, Kumar M, Binukumar BK, James J. TLX3 regulates CGN progenitor proliferation during cerebellum development and its dysfunction can lead to autism. iScience 2024; 27:111260. [PMID: 39628587 PMCID: PMC11612787 DOI: 10.1016/j.isci.2024.111260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 10/23/2024] [Indexed: 12/06/2024] Open
Abstract
Tlx3, a master regulator of the fate specification of excitatory neurons, is primarily known to function in post-mitotic cells. Although we have previously identified TLX3 expression in the proliferating granule neuron progenitors (GNPs) of cerebellum, its primary role is unknown. Here, we demonstrate that the dysfunction of Tlx3 from the GNPs significantly reduced its proliferation through regulating anti-proliferative genes. Consequently, the altered generation of GNPs resulted in cerebellar hypoplasia, patterning defects, granule neuron-Purkinje ratio imbalance, and aberrant synaptic connections in the cerebellum. This altered cerebellar homeostasis manifested into a typical autism-like behavior in mice with motor, and social function disabilities. We also show the presence of TLX3 variants with uncharacterized mutations in human cases of autism spectrum disorder (ASD). Altogether, our study establishes Tlx3 as a critical gene involved in developing GNPs and that its deletion from the early developmental stage culminates in autism.
Collapse
Affiliation(s)
- Surendran Parvathy
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | - Budhaditya Basu
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana 121001, India
| | - Suresh Surya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | - Rahul Jose
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana 121001, India
| | - Vadakkath Meera
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | - Paul Ann Riya
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | - Nair Pradeep Jyothi
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
| | | | - Viviane Praz
- CHUV-Lausanne University Hospital, Rue du Bugnon 46, 1005 Lausanne, Switzerland
| | - Nicolò Riggi
- CHUV-Lausanne University Hospital, Rue du Bugnon 46, 1005 Lausanne, Switzerland
| | - Biju Surendran Nair
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
| | - Kamalesh K. Gulia
- Division of Sleep Research, Department of Applied Biology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Trivandrum, Kerala 695012, India
| | - Mukesh Kumar
- Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi 110025, India
| | | | - Jackson James
- Neuro Stem Cell Biology Laboratory, Neurobiology Division, Rajiv Gandhi Centre for Biotechnology (BRIC-RGCB), Thiruvananthapuram, Kerala 695 014, India
- Research Centre, The University of Kerala, Thiruvananthapuram, Kerala 695 014, India
- Regional Centre for Biotechnology (BRIC-RCB), Faridabad, Haryana 121001, India
| |
Collapse
|
35
|
Kizeev G, Witteveen I, Balmer T. Balance Performance in Aged Mice is Dependent on Unipolar Brush Cells. CEREBELLUM (LONDON, ENGLAND) 2024; 24:16. [PMID: 39699796 DOI: 10.1007/s12311-024-01767-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 12/20/2024]
Abstract
The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers. Each UBC excites numerous granule cells and could contribute to computations necessary for balance-related motor function. Prior research has implicated UBCs in motor function, but their influence on balance performance remains unclear, especially in aged mice that have age-related impairment. Here we tested whether UBCs contribute to motor coordination and balance by disrupting their activity with chemogenetics in aged and young mice. Age-related balance deficits were apparent in mice > 6 months old. Disrupting the activity of a subpopulation of UBCs caused aged mice to fall off a balance beam more frequently and altered swimming behaviors that are sensitive to vestibular dysfunction. These effects were not seen in young (7-week-old) mice. Thus, disrupting the activity of UBCs impairs mice with age-related balance issues and suggest that UBCs are essential for balance and vestibular function in aged mice.
Collapse
Affiliation(s)
- Gabrielle Kizeev
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Isabelle Witteveen
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Timothy Balmer
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
36
|
Jiang Z, Huang W, Lam RHW, Zhang W. Spall: accurate and robust unveiling cellular landscapes from spatially resolved transcriptomics data using a decomposition network. BMC Bioinformatics 2024; 25:379. [PMID: 39695962 DOI: 10.1186/s12859-024-06003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Recent developments in spatially resolved transcriptomics (SRT) enable the characterization of spatial structures for different tissues. Many decomposition methods have been proposed to depict the cellular distribution within tissues. However, existing computational methods struggle to balance spatial continuity in cell distribution with the preservation of cell-specific characteristics. To address this, we propose Spall, a novel decomposition network that integrates scRNA-seq data with SRT data to accurately infer cell type proportions. Spall introduced the GATv2 module, featuring a flexible dynamic attention mechanism to capture relationships between spots. This improves the identification of cellular distribution patterns in spatial analysis. Additionally, Spall incorporates skip connections to address the loss of cell-specific information, thereby enhancing the prediction capability for rare cell types. Experimental results show that Spall outperforms the state-of-the-art methods in reconstructing cell distribution patterns on multiple datasets. Notably, Spall reveals tumor heterogeneity in human pancreatic ductal adenocarcinoma samples and delineates complex tissue structures, such as the laminar organization of the mouse cerebral cortex and the mouse cerebellum. These findings highlight the ability of Spall to provide reliable low-dimensional embeddings for downstream analyses, offering new opportunities for deciphering tissue structures.
Collapse
Affiliation(s)
- Zhongning Jiang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Wei Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, Guangdong, China.
| | - Wei Zhang
- Center of Intelligent Medicine, School of Control Science and Engineering, Shandong University, Jinan, 250061, Shandong, China.
| |
Collapse
|
37
|
Onyeogaziri FC, Smith R, Arce M, Huang H, Erzar I, Rorsman C, Malinverno M, Orsenigo F, Sundell V, Fernando D, Daniel G, Niemelä M, Laakso A, Jahromi BR, Olsson AK, Magnusson PU. Pharmacological blocking of neutrophil extracellular traps attenuates immunothrombosis and neuroinflammation in cerebral cavernous malformation. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1549-1567. [PMID: 39632986 PMCID: PMC11634782 DOI: 10.1038/s44161-024-00577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Cerebral cavernous malformation (CCM) is a neurovascular disease with symptoms such as strokes, hemorrhages and neurological deficits. With surgery being the only treatment strategy, understanding the molecular mechanisms of CCM is crucial in finding alternative therapeutic options for CCM. Neutrophil extracellular traps (NETs) were recently reported in CCM, and NETs were shown to have positive or negative effects in different disease contexts. In this study, we investigated the roles of NETs in CCM by pharmacologically inhibiting NET formation using Cl-amidine (a peptidyl arginine deiminase inhibitor). We show here that Cl-amidine treatment reduced lesion burden, coagulation and endothelial-to-mesenchymal transition. Furthermore, NETs promoted the activation of microglia and fibroblasts, leading to increased neuroinflammation and a chronic wound microenvironment in CCM. The inhibition of NET formation caused endothelial quiescence and promoted a healthier microenvironment. Our study suggests the inhibition of NETs as a potential therapeutic strategy in CCM.
Collapse
Affiliation(s)
- Favour C Onyeogaziri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Maximiliano Arce
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Hua Huang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Iza Erzar
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Charlotte Rorsman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Matteo Malinverno
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Fabrizio Orsenigo
- Vascular Biology Unit, The FIRC Institute of Molecular Oncology Foundation, Milan, Italy
| | - Veronica Sundell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Dinesh Fernando
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Geoffrey Daniel
- Department of Biomaterials and Technology/Wood Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Behnam Rezai Jahromi
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
Liu Y, Jiang S, Li Y, Zhao S, Yun Z, Zhao ZH, Zhang L, Wang G, Chen X, Manubens-Gil L, Hang Y, Gong Q, Li Y, Qian P, Qu L, Garcia-Forn M, Wang W, De Rubeis S, Wu Z, Osten P, Gong H, Hawrylycz M, Mitra P, Dong H, Luo Q, Ascoli GA, Zeng H, Liu L, Peng H. Neuronal diversity and stereotypy at multiple scales through whole brain morphometry. Nat Commun 2024; 15:10269. [PMID: 39592611 PMCID: PMC11599929 DOI: 10.1038/s41467-024-54745-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
We conducted a large-scale whole-brain morphometry study by analyzing 3.7 peta-voxels of mouse brain images at the single-cell resolution, producing one of the largest multi-morphometry databases of mammalian brains to date. We registered 204 mouse brains of three major imaging modalities to the Allen Common Coordinate Framework (CCF) atlas, annotated 182,497 neuronal cell bodies, modeled 15,441 dendritic microenvironments, characterized the full morphology of 1876 neurons along with their axonal motifs, and detected 2.63 million axonal varicosities that indicate potential synaptic sites. Our analyzed six levels of information related to neuronal populations, dendritic microenvironments, single-cell full morphology, dendritic and axonal arborization, axonal varicosities, and sub-neuronal structural motifs, along with a quantification of the diversity and stereotypy of patterns at each level. This integrative study provides key anatomical descriptions of neurons and their types across a multiple scales and features, contributing a substantial resource for understanding neuronal diversity in mammalian brains.
Collapse
Affiliation(s)
- Yufeng Liu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Shengdian Jiang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Yingxin Li
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Sujun Zhao
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zhixi Yun
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Computer Science and Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Zuo-Han Zhao
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Lingli Zhang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Gaoyu Wang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Xin Chen
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Linus Manubens-Gil
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Yuning Hang
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Qiaobo Gong
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Yuanyuan Li
- Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China
| | - Penghao Qian
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Lei Qu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
- Ministry of Education Key Laboratory of Intelligent Computation and Signal Processing, Information Materials and Intelligent Sensing Laboratory of Anhui Province, School of Electronics and Information Engineering, Anhui University, Hefei, Anhui, China
| | - Marta Garcia-Forn
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Wang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silvia De Rubeis
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Alper Center for Neural Development and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhuhao Wu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hui Gong
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, China
| | | | - Partha Mitra
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hongwei Dong
- Center for Integrative Connectomics, Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qingming Luo
- State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Haikou, China
- Key Laboratory of Biomedical Engineering of Hainan Province, One Health Institute, Hainan University, Haikou, China
| | - Giorgio A Ascoli
- Volgenau School of Engineering, George Mason University, Fairfax, VA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lijuan Liu
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China.
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, China.
| | - Hanchuan Peng
- New Cornerstone Science Laboratory, SEU-ALLEN Joint Center, Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
39
|
Huson V, Regehr WG. Realistic mossy fiber input patterns to unipolar brush cells evoke a continuum of temporal responses comprised of components mediated by different glutamate receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613480. [PMID: 39345419 PMCID: PMC11429827 DOI: 10.1101/2024.09.17.613480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.
Collapse
Affiliation(s)
- Vincent Huson
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wade G. Regehr
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Belchikov N, Hsu J, Li XJ, Jarroux J, Hu W, Joglekar A, Tilgner HU. Understanding isoform expression by pairing long-read sequencing with single-cell and spatial transcriptomics. Genome Res 2024; 34:1735-1746. [PMID: 39567235 DOI: 10.1101/gr.279640.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
RNA isoform diversity, produced via alternative splicing, and alternative usage of transcription start and poly(A) sites, results in varied transcripts being derived from the same gene. Distinct isoforms can play important biological roles, including by changing the sequences or expression levels of protein products. The first single-cell approaches to RNA sequencing-and later, spatial approaches-which are now widely used for the identification of differentially expressed genes, rely on short reads and offer the ability to transcriptomically compare different cell types but are limited in their ability to measure differential isoform expression. More recently, long-read sequencing methods have been combined with single-cell and spatial technologies in order to characterize isoform expression. In this review, we provide an overview of the emergence of single-cell and spatial long-read sequencing and discuss the challenges associated with the implementation of these technologies and interpretation of these data. We discuss the opportunities they offer for understanding the relationships between the distinct variable elements of transcript molecules and highlight some of the ways in which they have been used to characterize isoforms' roles in development and pathology. Single-nucleus long-read sequencing, a special case of the single-cell approach, is also discussed. We attempt to cover both the limitations of these technologies and their significant potential for expanding our still-limited understanding of the biological roles of RNA isoforms.
Collapse
Affiliation(s)
- Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Justine Hsu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Xiang Jennie Li
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Computational Biology Master's Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Anoushka Joglekar
- New York Genome Center, New York, New York 10013, USA
- Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA;
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
41
|
Westerhuis JAW, Dudink J, Wijnands BECA, De Zeeuw CI, Canto CB. Impact of Intrauterine Insults on Fetal and Postnatal Cerebellar Development in Humans and Rodents. Cells 2024; 13:1911. [PMID: 39594658 PMCID: PMC11592629 DOI: 10.3390/cells13221911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Many children suffer from neurodevelopmental aberrations that have long-term effects. To understand the consequences of pathological processes during particular periods in neurodevelopment, one has to understand the differences in the developmental timelines of brain regions. The cerebellum is one of the first brain structures to differentiate during development but one of the last to achieve maturity. This relatively long period of development underscores its vulnerability to detrimental environmental exposures throughout gestation. Moreover, as postnatal functionality of the cerebellum is multifaceted, enveloping sensorimotor, cognitive, and emotional domains, prenatal disruptions in cerebellar development can result in a large variety of neurological and mental health disorders. Here, we review major intrauterine insults that affect cerebellar development in both humans and rodents, ranging from abuse of toxic chemical agents, such as alcohol, nicotine, cannabis, and opioids, to stress, malnutrition, and infections. Understanding these pathological mechanisms in the context of the different stages of cerebellar development in humans and rodents can help us to identify critical and vulnerable periods and thereby prevent the risk of associated prenatal and early postnatal damage that can lead to lifelong neurological and cognitive disabilities. The aim of the review is to raise awareness and to provide information for obstetricians and other healthcare professionals to eventually design strategies for preventing or rescuing related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Judith A. W. Westerhuis
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
| | - Jeroen Dudink
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Bente E. C. A. Wijnands
- Department of Neonatology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, 3584 EA Utrecht, The Netherlands; (J.D.); (B.E.C.A.W.)
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| | - Cathrin B. Canto
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands; (J.A.W.W.); (C.I.D.Z.)
- Department of Neuroscience, Erasmus Medical Center, 3015 AA Rotterdam, The Netherlands
| |
Collapse
|
42
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612106. [PMID: 39314281 PMCID: PMC11419079 DOI: 10.1101/2024.09.09.612106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that was associated with a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 KO cells revealed simultaneous upregulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7a flx/Y :: Vil1 Cre/+ mice identified upregulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | | | | | - Anne M. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Felix G Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| |
Collapse
|
43
|
Tasevski S, Kyung Nam H, Ghannam A, Moughni S, Atoui T, Mashal Y, Hatch N, Zhang Z. Tissue nonspecific alkaline phosphatase deficiency impairs Purkinje cell development and survival in a mouse model of infantile hypophosphatasia. Neuroscience 2024; 560:357-370. [PMID: 39369942 DOI: 10.1016/j.neuroscience.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Loss-of-function mutations in the tissue-nonspecific alkaline phosphatase (TNAP) gene can result in hypophosphatasia (HPP), an inherited multi-systemic metabolic disorder that is well-known for skeletal and dental hypomineralization. However, emerging evidence shows that both adult and pediatric patients with HPP suffer from cognitive deficits, higher measures of depression and anxiety, and impaired sensorimotor skills. The cerebellum plays an important role in sensorimotor coordination, cognition, and emotion. To date, the impact of TNAP mutation on the cerebellar circuitry development and function remains poorly understood. The main objective of this study was to investigate the roles of TNAP in cerebellar development and function, with a particular focus on Purkinje cells, in a mouse model of infantile HPP. Male and female wild type (WT) and TNAP knockout (KO) mice underwent behavioral testing on postnatal day 13-14 and were euthanized after completion of behavioral tests. Cerebellar tissues were harvested for gene expression and immunohistochemistry analyses. We found that TNAP mutation resulted in significantly reduced body weight, shorter body length, and impaired sensorimotor functions in both male and female KO mice. These developmental and behavioral deficits were accompanied by abnormal Purkinje cell morphology and dysregulation of genes that regulates synaptic transmission, cellular growth, proliferation, and death. In conclusion, inactivation of TNAP via gene deletion causes developmental delays, sensorimotor impairment, and Purkinje cell maldevelopment. These results shed light on a new perspective of cerebellar dysfunction in HPP.
Collapse
Affiliation(s)
- Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Hwa Kyung Nam
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Tia Atoui
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Yara Mashal
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan-Ann Arbor, 1011 N University Ave, Ann Arbor, MI 48109, USA
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, USA.
| |
Collapse
|
44
|
Khouri-Farah N, Guo Q, Perry TA, Dussault R, Li JY. FOXP Genes Regulate Purkinje Cell Diversity in Cerebellar Development and Evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.07.622485. [PMID: 39574602 PMCID: PMC11581015 DOI: 10.1101/2024.11.07.622485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Mammalian cerebellar development is thought to be influenced by distinct Purkinje cell (PC) subtypes. However, the degree of PC heterogeneity and the molecular drivers of this diversity have remained unclear, hindering efforts to manipulate PC diversification and assess its role in cerebellar development. Here, we demonstrate the critical role of Foxp genes in cerebellar development by regulating PC diversification. We identified 11 PC subtypes in the embryonic mouse cerebellum through single-cell RNA sequencing. Using a novel unsupervised method, we mapped these subtypes in three-dimensional space, revealing discrete PC subtypes predictive of adult cerebellar organization, including longitudinal stripes and lobules. These subtypes exhibit unique combinations of Foxp1 , Foxp2 , and Foxp4 expression. Deletion of Foxp2 and Foxp1 disrupts PC diversification, leading to altered cerebellar patterning, including the loss of a specific Foxp1 -expressing subtype and the cerebellar hemisphere. The Foxp1 -expressing PC subtype is much more abundant in the fetal human cerebellum than in mice, but rare in the chick cerebellum, correlating with cerebellar hemisphere size in these species. This highlights the significance of Foxp1 -expressing PCs in cerebellar hemisphere development and evolution. Therefore, our study identifies Foxp genes as key regulators of PC diversity, providing new insights into the developmental and evolutionary underpinnings of the cerebellum.
Collapse
Affiliation(s)
- Nagham Khouri-Farah
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Thomas A. Perry
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Ryan Dussault
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - James Y.H. Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
45
|
Bartelt LC, Switonski PM, Adamek G, Longo F, Carvalho J, Duvick LA, Jarrah SI, McLoughlin HS, Scoles DR, Pulst SM, Orr HT, Hull C, Lowe CB, La Spada AR. Dysregulation of zebrin-II cell subtypes in the cerebellum is a shared feature across polyglutamine ataxia mouse models and patients. Sci Transl Med 2024; 16:eadn5449. [PMID: 39504355 PMCID: PMC11806946 DOI: 10.1126/scitranslmed.adn5449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Spinocerebellar ataxia type 7 (SCA7) is a genetic neurodegenerative disorder caused by a CAG-polyglutamine repeat expansion. Purkinje cells (PCs) are central to the pathology of ataxias, but their low abundance in the cerebellum underrepresents their transcriptomes in sequencing assays. To address this issue, we developed a PC enrichment protocol and sequenced individual nuclei from mice and patients with SCA7. Single-nucleus RNA sequencing in SCA7-266Q mice revealed dysregulation of cell identity genes affecting glia and PCs. Specifically, genes marking zebrin-II PC subtypes accounted for the highest proportion of DEGs in symptomatic SCA7-266Q mice. These transcriptomic changes in SCA7-266Q mice were associated with increased numbers of inhibitory synapses as quantified by immunohistochemistry and reduced spiking of PCs in acute brain slices. Dysregulation of zebrin-II cell subtypes was the predominant signal in PCs of SCA7-266Q mice and was associated with the loss of zebrin-II striping in the cerebellum at motor symptom onset. We furthermore demonstrated zebrin-II stripe degradation in additional mouse models of polyglutamine ataxia and observed decreased zebrin-II expression in the cerebella of patients with SCA7. Our results suggest that a breakdown of zebrin subtype regulation is a shared pathological feature of polyglutamine ataxias.
Collapse
Affiliation(s)
- Luke C Bartelt
- University Program in Genetics & Genomics, Duke University Medical Center, Durham, NC 27710, USA
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Pawel M Switonski
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Grażyna Adamek
- Department of Neuronal Cell Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Fabiana Longo
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
| | - Juliana Carvalho
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lisa A Duvick
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sabrina I Jarrah
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Daniel R Scoles
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT 84132, USA
| | - Harry T Orr
- Institute for Translational Neuroscience, and Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Court Hull
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Craig B Lowe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology & Behavior, University of California, Irvine, Irvine, CA 92697, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
- UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
46
|
Sefik E, Duan K, Li Y, Sholar B, Evans L, Pincus J, Ammar Z, Murphy MM, Klaiman C, Saulnier CA, Pulver SL, Goldman-Yassen AE, Guo Y, Walker EF, Li L, Mulle JG, Shultz S. Structural deviations of the posterior fossa and the cerebellum and their cognitive links in a neurodevelopmental deletion syndrome. Mol Psychiatry 2024; 29:3395-3411. [PMID: 38744992 PMCID: PMC11541222 DOI: 10.1038/s41380-024-02584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yiheng Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brittney Sholar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Evans
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Pincus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zeena Ammar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl Klaiman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - Stormi L Pulver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
47
|
Zhu H, Slonim D. From Noise to Knowledge: Diffusion Probabilistic Model-Based Neural Inference of Gene Regulatory Networks. J Comput Biol 2024; 31:1087-1103. [PMID: 39387266 PMCID: PMC11698671 DOI: 10.1089/cmb.2024.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Understanding gene regulatory networks (GRNs) is crucial for elucidating cellular mechanisms and advancing therapeutic interventions. Original methods for GRN inference from bulk expression data often struggled with the high dimensionality and inherent noise in the data. Here we introduce RegDiffusion, a new class of Denoising Diffusion Probabilistic Models focusing on the regulatory effects among feature variables. RegDiffusion introduces Gaussian noise to the input data following a diffusion schedule and uses a neural network with a parameterized adjacency matrix to predict the added noise. We show that using this process, GRNs can be learned effectively with a surprisingly simple model architecture. In our benchmark experiments, RegDiffusion shows superior performance compared to several baseline methods in multiple datasets. We also demonstrate that RegDiffusion can infer biologically meaningful regulatory networks from real-world single-cell data sets with over 15,000 genes in under 5 minutes. This work not only introduces a fresh perspective on GRN inference but also highlights the promising capacity of diffusion-based models in the area of single-cell analysis. The RegDiffusion software package and experiment data are available at https://github.com/TuftsBCB/RegDiffusion.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA
| | - Donna Slonim
- Department of Computer Science, Tufts University, Medford, Massachusetts, USA
| |
Collapse
|
48
|
Jun S, Park H, Kim M, Kang S, Kim T, Kim D, Yamamoto Y, Tanaka-Yamamoto K. Increased understanding of complex neuronal circuits in the cerebellar cortex. Front Cell Neurosci 2024; 18:1487362. [PMID: 39497921 PMCID: PMC11532081 DOI: 10.3389/fncel.2024.1487362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024] Open
Abstract
The prevailing belief has been that the fundamental structures of cerebellar neuronal circuits, consisting of a few major neuron types, are simple and well understood. Given that the cerebellum has long been known to be crucial for motor behaviors, these simple yet organized circuit structures seemed beneficial for theoretical studies proposing neural mechanisms underlying cerebellar motor functions and learning. On the other hand, experimental studies using advanced techniques have revealed numerous structural properties that were not traditionally defined. These include subdivided neuronal types and their circuit structures, feedback pathways from output Purkinje cells, and the multidimensional organization of neuronal interactions. With the recent recognition of the cerebellar involvement in non-motor functions, it is possible that these newly identified structural properties, which are potentially capable of generating greater complexity than previously recognized, are associated with increased information capacity. This, in turn, could contribute to the wide range of cerebellar functions. However, it remains largely unknown how such structural properties contribute to cerebellar neural computations through the regulation of neuronal activity or synaptic transmissions. To promote further research into cerebellar circuit structures and their functional significance, we aim to summarize the newly identified structural properties of the cerebellar cortex and discuss future research directions concerning cerebellar circuit structures and their potential functions.
Collapse
Affiliation(s)
- Soyoung Jun
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Heeyoun Park
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Muwoong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Seulgi Kang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Taehyeong Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, Korea University, Seoul, Republic of Korea
| | - Daun Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Life Science, Korea University, Seoul, Republic of Korea
| | - Yukio Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
49
|
Xie F, Jain S, Xu R, Butrus S, Tan Z, Xu X, Shekhar K, Zipursky SL. Spatial profiling of the interplay between cell type- and vision-dependent transcriptomic programs in the visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.572244. [PMID: 38187533 PMCID: PMC10769288 DOI: 10.1101/2023.12.18.572244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
How early sensory experience during "critical periods" of postnatal life affects the organization of the mammalian neocortex at the resolution of neuronal cell types is poorly understood. We previously reported that the functional and molecular profiles of layer 2/3 (L2/3) cell types in the primary visual cortex (V1) are vision-dependent (Tan et al., Neuron, 108(4), 2020; Cheng et al., Cell, 185(2), 2022). Here, we characterize the spatial organization of L2/3 cell types with and without visual experience. Spatial transcriptomic profiling based on 500 genes recapitulates the zonation of L2/3 cell types along the pial-ventricular axis in V1. By applying multi-tasking theory (Adler et al., Cell Systems, 8, 2019), we suggest that the spatial zonation of L2/3 cell types is linked to the continuous nature of their gene expression profiles, which can be represented as a 2D manifold bounded by three archetypal cell types ("A", "B", and "C"). By comparing normally reared and dark reared L2/3 cells, we show that visual deprivation-induced transcriptomic changes comprise two independent gene programs. The first, induced specifically in the visual cortex, includes immediate-early genes and genes associated with metabolic processes. It manifests as a change in cell state that is orthogonal to cell type-specific gene expression programs. By contrast, the second program impacts L2/3 cell type identity, regulating a subset of cell type-specific genes and shifting the distribution of cells within the L2/3 manifold, with a depression of the B-type and C-type and a gain of the A-type. Through an integrated analysis of spatial transcriptomic measurements with single-nucleus RNA-seq data from our previous study, we describe how vision patterns L2/3 cortical cell types during the postnatal critical period. Significance statement Layer 2/3 (L2/3) glutamatergic neurons are important sites of experience-dependent plasticity and learning in the mammalian cortex. Their properties vary continuously with cortical depth and depend upon experience. Here, by applying spatial transcriptomics and different computational approaches in the mouse primary visual cortex, we show that vision regulates orthogonal gene expression programs underlying cell states and cell types. Visual deprivation not only induces an activity-dependent cell state, but also alters the composition of L2/3 cell types, which are appropriately described as a transcriptomic continuum. Our results provide insights into how experience shapes transcriptomes that may, in turn, sculpt brain wiring, function, and behavior.
Collapse
Affiliation(s)
- Fangming Xie
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Saumya Jain
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- These authors contributed equally
| | - Runzhe Xu
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Salwan Butrus
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3); Center for Computational Biology; Vision Sciences Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zhiqun Tan
- Center for Neural Circuit Mapping (CNCM), Department of Anatomy and Neurobiology, Institute for Memory Impairments and Neurological Disorders (UCIMIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Xiangmin Xu
- Center for Neural Circuit Mapping (CNCM), Department of Anatomy and Neurobiology, Institute for Memory Impairments and Neurological Disorders (UCIMIND), University of California, Irvine, Irvine, CA 92697, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering; Helen Wills Neuroscience Institute, California Institute for Quantitative Biosciences (QB3); Center for Computational Biology; Vision Sciences Graduate Program, University of California, Berkeley, Berkeley, CA 94720, USA
- Faculty Scientist, Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - S. Lawrence Zipursky
- Department of Biological Chemistry, Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Lead contact
| |
Collapse
|
50
|
Kizeev G, Witteveen I, Balmer T. Balance performance in aged mice is dependent on unipolar brush cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617602. [PMID: 39416048 PMCID: PMC11482929 DOI: 10.1101/2024.10.10.617602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers. Each UBC excites numerous granule cells and could contribute to computations necessary for balance-related motor function. Prior research has implicated UBCs in motor function, but their influence on balance performance remains unclear, especially in aged mice that have age-related impairment. Here we tested whether UBCs contribute to motor coordination and balance by disrupting their activity with chemogenetics in aged and young mice. Age-related balance deficits were apparent in mice > 6 months old. Disrupting the activity of a subpopulation of UBCs caused aged mice to fall off a balance beam more frequently and altered swimming behaviors that are sensitive to vestibular dysfunction. These effects were not seen in young (7-week-old) mice. Thus, disrupting the activity of UBCs impairs mice with age-related balance issues and suggest that UBCs are essential for balance and vestibular function in aged mice.
Collapse
Affiliation(s)
- Gabrielle Kizeev
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Isabelle Witteveen
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Timothy Balmer
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|