1
|
Tian M, Luo L, Jin B, Liu J, Chen T, Tang J, Shen Y, Zhang H, Guo J, Zhang H, Cui G, Huang L. Highly efficient Agrobacterium rhizogenes-mediated gene editing system in Salvia miltiorrhiza inbred line bh2-7. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:2406-2417. [PMID: 40139718 PMCID: PMC12120871 DOI: 10.1111/pbi.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/24/2025] [Accepted: 02/13/2025] [Indexed: 03/29/2025]
Abstract
The CRISPR/Cas9 system is a powerful tool for genomic editing with significant potential for gene function validation and molecular breeding in medicinal plants. Salvia miltiorrhiza, a model medicinal plant, was among the pioneers to utilize CRISPR/Cas9 technology, though achieving high-efficiency homozygous knockout mutants has been challenging. In this study, the analysis of variations at 241 single-guide RNA (sgRNA) across different reference genomes and experimental materials was conducted first, leading to the identification of the six-generation inbred line bh2-7 as the most suitable reference genome and experimental material for gene editing research in S. miltiorrhiza. Next, five Agrobacterium rhizogenes strains were evaluated for hairy root induction, editing efficiency, and mutation patterns, with C58C1 and K599 emerging as the most effective delivery systems. Using the CRISPR/Cas9 vector pZKD672, 53 target sites were successfully edited, with K599 achieving 71.07% editing efficiency and 36.74% homozygous or biallelic (HOM) efficiency and C58C1 showing 62.27% editing efficiency and 23.61% HOM efficiency. We thus constructed a large-scale mutant library targeting 121 genes with 170 sgRNAs, yielding 1664 homozygous or biallelic mutants. Analysis of 65 low-efficiency target sites revealed that sgRNA mismatches and secondary structures were key factors reducing HOM efficiency, offering insights for future target design. This study establishes an efficient CRISPR/Cas9 system, advancing precision breeding and metabolic engineering research in medicinal plants.
Collapse
Affiliation(s)
- Mei Tian
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Linglong Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Baolong Jin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Jianing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Ye Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Haiyan Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Huawei Zhang
- National Key Laboratory of Wheat ImprovementPeking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in WeifangWeifangShandongChina
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao‐di Herbs, National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijngChina
| |
Collapse
|
2
|
Hecht AD, Igoshin OA. Kinetic Mechanism for Fidelity of CRISPR-Cas9 Variants. J Phys Chem Lett 2025:5570-5578. [PMID: 40434364 DOI: 10.1021/acs.jpclett.5c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
CRISPR-Cas9 is a nuclease creating DNA breaks at sites with sufficient complementarity to the RNA guide. Notably, Cas9 does not require exact RNA-DNA complementarity and can cleave off-target sequences. Various high-accuracy Cas9 variants have been developed, but the precise mechanism of how these variants achieve higher accuracy remains unclear. Here, we develop a kinetic model of Cas9 substrate selection and cleavage parametrized by data from the literature, including single-molecule Förster resonance energy transfer (FRET) measurements. Based on observed FRET transition statistics, we predict that the Cas9 substrate recognition and cleavage mechanism must allow for HNH domain transitions independent of substrate binding. Additionally, we show that the enhancement in Cas9 substrate specificity must be due to changes in kinetics rather than changes in substrate binding affinities. Finally, we use our model to identify kinetic parameters for HNH domain transitions that can be perturbed to enable high-accuracy cleavage while maintaining cleavage speeds.
Collapse
Affiliation(s)
- Andrew D Hecht
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Rice Synthetic Biology Institute, Rice University, Houston, Texas 77005, United States
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
- Rice Synthetic Biology Institute, Rice University, Houston, Texas 77005, United States
- Department of BioSciences, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
3
|
Chen Y, Li Y, Li P, Li X, Zhao S, Zuo Z. Catching CRISPR-Cas9 in Action. J Chem Theory Comput 2025; 21:5023-5036. [PMID: 40323736 DOI: 10.1021/acs.jctc.5c00165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
CRISPR-Cas9 has revolutionized genome editing, yet its structural dynamics and functional properties remain incompletely understood, partly due to limited atomic-level characterization of its active conformation with a full R-loop. Capitalizing on recent advances in Cas9 structural determination, we constructed a catalytic-state Cas9 model bound to a bona fide R-loop and performed an integrated computational investigation. Our molecular dynamics simulations reveal substantial conformational heterogeneity in the PAM (protospacer-adjacent motif)-distal nontarget DNA strand and adjacent Cas9 regions, leading to dynamically fluctuating interactions, thereby challenging experimental resolution of the full R-loop complex. Comparative analysis highlights a conformational barrier restricting final activation of the HNH nuclease domain, suggesting that strategic modulation of HNH interactions on its two sides could enhance cleavage efficiency. Furthermore, quantum mechanics/molecular mechanics simulations indicate that with H983 protonated at Nε, the RuvC domain favors a phosphate-mediated over a histidine-mediated pathway for nontarget strand cleavage. Additionally, we identify an alternative HNH-mediated target strand cleavage pathway, involving a water nucleophile aligned at the 5' side of the scissile phosphate. Inspired by the basic residue ladder observed in RuvC, we propose extending a similar ladder in HNH to strengthen DNA binding and catalytic activity. Our study provides critical insights into Cas9 structure, dynamics, and catalysis, laying a foundation for the rational design of next-generation CRISPR-Cas9 systems with optimized specificity-efficiency balance.
Collapse
Affiliation(s)
- Yingjie Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yuanhao Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Penghai Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xin Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuxin Zhao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
4
|
Kannan S, Altae-Tran H, Zhu S, Xu P, Strebinger D, Oshiro R, Faure G, Moeller L, Pham J, Mears KS, Ni HM, Macrae RK, Zhang F. Evolution-guided protein design of IscB for persistent epigenome editing in vivo. Nat Biotechnol 2025:10.1038/s41587-025-02655-3. [PMID: 40335752 DOI: 10.1038/s41587-025-02655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 03/26/2025] [Indexed: 05/09/2025]
Abstract
Naturally existing enzymes have been adapted for a variety of molecular technologies, with enhancements or modifications to the enzymes introduced to improve the desired function; however, it is difficult to engineer variants with enhanced activity while maintaining specificity. Here we engineer the compact Obligate Mobile Element Guided Activity (OMEGA) RNA-guided endonuclease IscB and its guiding RNA (ωRNA) by combining ortholog screening, structure-guided protein domain design and RNA engineering, and deep learning-based structure prediction to generate an improved variant, NovaIscB. We show that the compact NovaIscB achieves up to 40% indel activity (~100-fold improvement over wild-type OgeuIscB) on the human genome with improved specificity relative to existing IscBs. We further show that NovaIscB can be fused with a methyltransferase to create a programmable transcriptional repressor, OMEGAoff, that is compact enough to be packaged in a single adeno-associated virus vector for persistent in vivo gene repression. This study highlights the power of combining natural diversity with protein engineering to design enhanced enzymes for molecular biology applications.
Collapse
Affiliation(s)
- Soumya Kannan
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Han Altae-Tran
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Shiyou Zhu
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Peiyu Xu
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Daniel Strebinger
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Rachel Oshiro
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Guilhem Faure
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Lukas Moeller
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Julie Pham
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Kepler S Mears
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Heyuan M Ni
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rhiannon K Macrae
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Yang Tan Collective, Cambridge, MA, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Yang Tan Collective, Cambridge, MA, USA.
| |
Collapse
|
5
|
Shi H, Al-Sayyad N, Wasko KM, Trinidad MI, Doherty EE, Vohra K, Boger RS, Colognori D, Cofsky JC, Skopintsev P, Bryant Z, Doudna JA. Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing. Mol Cell 2025; 85:1730-1742.e9. [PMID: 40273916 DOI: 10.1016/j.molcel.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
RNA-guided CRISPR-Cas enzymes initiate programmable genome editing by recognizing a ∼20-base-pair DNA sequence next to a short protospacer-adjacent motif (PAM). To uncover the molecular determinants of high-efficiency editing, we conducted biochemical, biophysical, and cell-based assays on Streptococcus pyogenes Cas9 (SpyCas9) variants with wide-ranging genome-editing efficiencies that differ in PAM-binding specificity. Our results show that reduced PAM specificity causes persistent non-selective DNA binding and recurrent failures to engage the target sequence through stable guide RNA hybridization, leading to reduced genome-editing efficiency in cells. These findings reveal a fundamental trade-off between broad PAM recognition and genome-editing effectiveness. We propose that high-efficiency RNA-guided genome editing relies on an optimized two-step target capture process, where selective but low-affinity PAM binding precedes rapid DNA unwinding. This model provides a foundation for engineering more effective CRISPR-Cas and related RNA-guided genome editors.
Collapse
Affiliation(s)
- Honglue Shi
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Noor Al-Sayyad
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Kevin M Wasko
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Marena I Trinidad
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erin E Doherty
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kamakshi Vohra
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ron S Boger
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Colognori
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua C Cofsky
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Petr Skopintsev
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Zev Bryant
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University Medical Center, Stanford, CA 94305, USA.
| | - Jennifer A Doudna
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Li Ka Shing Center for Genomic Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA; Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Duan M, Gao P, Zhang YZ, Hu YL, Zhou L, Xu ZC, Qiu HY, Tong XH, Ji RJ, Lei XL, Yin H, Guo CL, Zhang Y. TOPO-seq reveals DNA topology-induced off-target activity by Cas9 and base editors. Nat Chem Biol 2025:10.1038/s41589-025-01867-7. [PMID: 40175512 DOI: 10.1038/s41589-025-01867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/25/2025] [Indexed: 04/04/2025]
Abstract
With the increasing use of CRISPR-Cas9, detecting off-target events is essential for safety. Current methods primarily focus on guide RNA (gRNA) sequence mismatches, often overlooking the impact of DNA topology in regulating off-target activity. Here we present TOPO-seq, a high-throughput and sensitive method that identifies genome-wide off-target effects of Cas9 and base editors while accounting for DNA topology. TOPO-seq revealed that topology-induced off-target sites frequently harbor higher mismatches than the relaxed DNA sequence, with over 50% of off-target sites containing six mismatches, which are usually overlooked using previous methods. Applying TOPO-seq to three therapeutic gRNAs in hematopoietic stem cells identified 47 bona fide off-target loci, six of which are specifically induced by DNA topology. These findings highlight DNA topology as a regulator of off-target editing rates, establish TOPO-seq as a robust method for capturing DNA topology-induced off-target events and underscore its importance in off-target detection for developing safe genome-editing therapies.
Collapse
Affiliation(s)
- Min Duan
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Pan Gao
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yi-Zhou Zhang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yu-Long Hu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Zhou
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhong-Chen Xu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Hou-Yuan Qiu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xiao-Han Tong
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Rui-Jin Ji
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Xin-Lin Lei
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
| | - Hao Yin
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China
- State Key Laboratory of Virology and Biosafety, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Departments of Urology and Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Cun-Lan Guo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Ying Zhang
- Department of Esophagus, Mediastinum and Lymphatic Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, China.
- State Key Laboratory of Virology and Biosafety, Wuhan University, Wuhan, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
- Department of Rheumatology and Immunology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Chen J, Chen Y, Huang L, Lin X, Chen H, Xiang W, Liu L. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding. Nat Biotechnol 2025; 43:558-568. [PMID: 38811761 DOI: 10.1038/s41587-024-02255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/18/2024] [Indexed: 05/31/2024]
Abstract
Type V and type VI CRISPR-Cas systems have been shown to cleave nonspecific single-stranded DNA (ssDNA) or single-stranded RNA (ssRNA) in trans, but this has not been observed in type II CRISPR-Cas systems using single guide RNA. We show here that the type II CRISPR-Cas9 systems directed by CRISPR RNA and trans-activating CRISPR RNA dual RNAs show RuvC domain-dependent trans-cleavage activity for both ssDNA and ssRNA substrates. Cas9 possesses sequence preferences for trans-cleavage substrates, preferring to cleave T- or C-rich ssDNA substrates. We find that the trans-cleavage activity of Cas9 can be activated by target ssDNA, double-stranded DNA and ssRNA. The crystal structure of Cas9 in complex with guide RNA and target RNA provides a structural basis for the binding of target RNA to activate Cas9. Based on the trans-cleavage activity of Cas9 and nucleic acid amplification technology, we develop the nucleic acid detection platforms DNA-activated Cas9 detection and RNA-activated Cas9 detection, which are capable of detecting DNA and RNA samples with high sensitivity and specificity.
Collapse
Affiliation(s)
- Jiyun Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Ying Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Linglong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaofeng Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Hong Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Wenwen Xiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Liang Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
8
|
Ahsan M, Pindi C, Palermo G. Emerging Mechanisms of Metal-Catalyzed RNA and DNA Modifications. Annu Rev Phys Chem 2025; 76:497-518. [PMID: 39952635 DOI: 10.1146/annurev-physchem-082423-030241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
Metal ions play a critical role in various chemical, biological, and environmental processes. This review reports on emerging chemical mechanisms in the catalysis of DNA and RNA. We provide an overview of the metal-dependent mechanisms of DNA cleavage in CRISPR (clustered regularly interspaced short palindromic repeats)-Cas systems that are transforming life sciences through genome editing technologies, and showcase intriguing metal-dependent mechanisms of RNA cleavages. We show that newly discovered CRISPR-Cas complexes operate as protein-assisted ribozymes, highlighting RNA's versatility and the enhancement of CRISPR-Cas functions through strategic metal ion use. We demonstrate the power of computer simulations in observing chemical processes as they unfold and in advancing structural biology through innovative approaches for refining cryo-electron microscopy maps. Understanding metal ion involvement in nucleic acid catalysis is crucial for advancing genome editing, aiding therapeutic interventions for genetic disorders, and improving the editing tools' specificity and efficiency.
Collapse
Affiliation(s)
- Mohd Ahsan
- Department of Bioengineering, University of California, Riverside, California, USA; , ,
| | - Chinmai Pindi
- Department of Bioengineering, University of California, Riverside, California, USA; , ,
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, California, USA; , ,
- Department of Chemistry, University of California, Riverside, California, USA
| |
Collapse
|
9
|
Zhang Y, Zou W, Zhou Y, Chen J, Hu Y, Wu F. Pamoic acid and carbenoxolone specifically inhibit CRISPR/Cas9 in bacteria, mammalian cells, and mice in a DNA topology-specific manner. Genome Biol 2025; 26:75. [PMID: 40156040 PMCID: PMC11951523 DOI: 10.1186/s13059-025-03521-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 02/28/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Regulation of the target DNA cleavage activity of CRISPR/Cas has naturally evolved in a few bacteria or bacteriophages but is lacking in higher species. Thus, identification of bioactive agents and mechanisms that can suppress the activity of Cas9 is urgently needed to rebalance this new genetic pressure. RESULTS Here, we identify four specific inhibitors of Cas9 by screening 4607 compounds that could inhibit the endonuclease activity of Cas9 via three distinct mechanisms: substrate-competitive and protospacer adjacent motif (PAM)-binding site-occupation; substrate-targeting; and sgRNA-targeting mechanisms. These inhibitors inhibit, in a dose-dependent manner, the activity of Streptococcus pyogenes Cas9 (SpyCas9), Staphylococcus aureus Cas9 (SauCas9), and SpyCas9 nickase-based BE4 base editors in in vitro purified enzyme assays, bacteria, mammalian cells, and mice. Importantly, pamoic acid and carbenoxolone show DNA-topology selectivity and preferentially inhibit the cleavage of linear DNA compared with a supercoiled plasmid. CONCLUSIONS These pharmacologically selective inhibitors and new mechanisms offer new tools for controlling the DNA-topology selective activity of Cas9.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wentao Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yueyang Zhou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiaqi Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youtian Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Yang J, Wang T, Huang Y, Long Z, Li X, Zhang S, Zhang L, Liu Z, Zhang Q, Sun H, Zhang M, Yin H, Liu Z, Zhang H. Insights into the compact CRISPR-Cas9d system. Nat Commun 2025; 16:2462. [PMID: 40075056 PMCID: PMC11903963 DOI: 10.1038/s41467-025-57455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Cas9d, the smallest known member of the Cas9 family, employs a compact domain architecture for effective target cleavage. However, the underlying mechanism remains unclear. Here, we present the cryo-EM structures of the Cas9d-sgRNA complex in both target-free and target-bound states. Biochemical assays elucidated the PAM recognition and DNA cleavage mechanisms of Cas9d. Structural comparisons revealed that at least 17 base pairs in the guide-target heteroduplex is required for nuclease activity. Beyond its typical role as an adaptor between Cas9 enzymes and targets, the sgRNA also provides structural support and functional regulation for Cas9d. A segment of the sgRNA scaffold interacts with the REC domain to form a functional target recognition module. Upon target binding, this module undergoes a coordinated conformational rearrangement, enabling heteroduplex propagation and facilitating nuclease activity. This hybrid functional module precisely monitors heteroduplex complementarity, resulting in a lower mismatch tolerance compared to SpyCas9. Moreover, structure-guided engineering in both the sgRNA and Cas9d protein led to a more compact Cas9 system with well-maintained nuclease activity. Altogether, our findings provide insights into the target recognition and cleavage mechanisms of Cas9d and shed light on the development of high-fidelity mini-CRISPR tools.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tongyao Wang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Huang
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhaoyi Long
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xuzichao Li
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuqin Zhang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingling Zhang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhikun Liu
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qian Zhang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Huabing Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, Department of Chemical Biology, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Minjie Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hang Yin
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhongmin Liu
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Heng Zhang
- State Key Laboratory of Experimental Hematology, Tianjin Institute of Immunology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Biochemistry and Molecular Biology, Tianjin Key Laboratory of Cellular Homeostasis and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
11
|
Hibshman GN, Taylor DW. Visualizing the conformational landscape of CRISPR-Cas9 through kinetics-informed structural studies. Methods Enzymol 2025; 712:41-53. [PMID: 40121081 DOI: 10.1016/bs.mie.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
CRISPR-Cas9 has transformed genome editing through its programmability and versatility. Its DNA cleavage activity involves dynamic conformational changes during gRNA binding, DNA recognition, R-loop formation, and endonuclease activation. Understanding these molecular transitions is critical for improving the specificity and efficiency of Cas9, but this remains challenging precisely due to these rapid structural rearrangements. Early structural studies provided foundational insights but were limited to static states under catalytically inactive conditions. Cryo-EM has since enabled visualization of the dynamic nature of active Cas9, by enriching for specific conformations. This chapter introduces a kinetics-informed cryo-EM approach to capture the stepwise activation of Cas9 in real time. With thorough kinetic analyses, such as stopped-flow measurements of R-loop formation, we describe how to identify optimal timepoints to visualize key conformational states with cryo-EM. Integration of kinetic and structural data enables precise mapping of the conformational landscape of Cas9 and other dynamic enzymes, advancing our understanding of their molecular mechanisms and providing a framework for engineering enhanced variants.
Collapse
Affiliation(s)
- Grace N Hibshman
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, United States; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.
| | - David W Taylor
- Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX, United States; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
12
|
Zhu Y, Yu X, Wu J. CRISPR/Cas: a toolkit for plant disease diagnostics. TRENDS IN PLANT SCIENCE 2025; 30:245-248. [PMID: 39694744 DOI: 10.1016/j.tplants.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024]
Abstract
Genetic factors and infectious pathogens that cause plant diseases have a major impact on agricultural production. In recent years, the potential of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) system in nucleic acid analysis and plant disease diagnostics has been demonstrated. We highlight progress of CRISPR/Cas technology that is significant for monitoring plant growth and preventing diseases.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- College of Biosystems Engineering and Food Science & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058/311215, China
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Jian Wu
- College of Biosystems Engineering and Food Science & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058/311215, China.
| |
Collapse
|
13
|
De Paula VS, Dubey A, Arthanari H, Sgourakis NG. Dynamic sampling of a surveillance state enables DNA proofreading by Cas9. Cell Chem Biol 2025; 32:267-279.e5. [PMID: 39471812 PMCID: PMC12051036 DOI: 10.1016/j.chembiol.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/22/2024] [Accepted: 10/03/2024] [Indexed: 11/01/2024]
Abstract
CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled in vitro, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this "surveillance state" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.
Collapse
Affiliation(s)
- Viviane S De Paula
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6059, USA.
| | - Abhinav Dubey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nikolaos G Sgourakis
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, Philadelphia, PA 19104-6059, USA.
| |
Collapse
|
14
|
Wu Y, Jin H, Yu Q, Wei Z, Zhu J, Qiu X, Luo G, Li J, Zhan Y, Cai D, Chen S. Optimizing genome editing efficiency in Streptomyces fradiae via a CRISPR/Cas9n-mediated editing system. Appl Environ Microbiol 2025; 91:e0195324. [PMID: 39840981 PMCID: PMC11837490 DOI: 10.1128/aem.01953-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/13/2024] [Indexed: 01/23/2025] Open
Abstract
Streptomyces fradiae is an important bioresource to produce various antibacterial natural products, however, the time-consuming and labor-intensive genome editing toolkits hindered the construction and application of engineered strains, and this study aimed to establish an efficient CRISPR/Cas9n genome editing system in S. fradiae. Initially, the CRISPR/Cas9-mediated editing tool was employed to replace those awkward genome editing tools that relied on homologous recombination, while the off-target Cas9 exhibited high toxicity to S. fradiae Sf01. Therefore, the nickase mutation D10A, high-fidelity mutations including N497A, R661A, Q695A, and Q926A, and thiostrepton-induced promotor PtipA were incorporated into the Cas9 expression cassette, which reduced its toxicity. The deletion of single gene neoI and long fragment sequence (13.3 kb) were achieved with efficiencies of 77.8% and 44%, respectively. Additionally, the established tool was applied to facilitate the rapid deletion of nagB, replacement of Pfrr with PermE*, and integration of exogenous vgbS, with respective efficiencies of 77.8%, 100%, and 67.8%, and all of the above modification strategies benefited neomycin synthesis in S. fradiae. Taken together, this research established an efficient CRISPR/Cas9n-mediated genome editing toolkit in S. fradiae, paving the way for developing high-performance neomycin-producing strains and facilitating the genetic modification of Streptomyces.IMPORTANCEThis study describes the development and application of a genome editing system mediated by CRISPR/Cas9n in Streptomyces fradiae for the first time, which overcomes the challenges associated with genome editing caused by high GC content (74.5%) coupling with complex genome structure, and reduces the negative impact of "off-target effect." Our work not only provides a facile editing tool for constructing S. fradiae strains of high-yield neomycin but also offers the technical guidance for the design of a CRISPR/Cas9n mediated genome editing tool in those creatures with high GC content genomes.
Collapse
Affiliation(s)
- Yuhan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Qiang Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Zihan Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Jiang Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Xiangqi Qiu
- Lifecome Biochemistry Co. Ltd., Nanping, China
| | - Gan Luo
- Lifecome Biochemistry Co. Ltd., Nanping, China
| | - Junhui Li
- Lifecome Biochemistry Co. Ltd., Nanping, China
| | - Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
15
|
Zheng W, Li H, Liu M, Wei Y, Liu B, Li Z, Xiong C, Huang S, Hu C, Ouyang S. Molecular insights and rational engineering of a compact CRISPR-Cas effector Cas12h1 with a broad-spectrum PAM. Signal Transduct Target Ther 2025; 10:66. [PMID: 39955288 PMCID: PMC11830025 DOI: 10.1038/s41392-025-02147-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/01/2025] [Accepted: 01/16/2025] [Indexed: 02/17/2025] Open
Abstract
Cas12h1 is a compact CRISPR-associated nuclease from functionally diverse type V CRISPR-Cas effectors and recognizes a purine-rich protospacer adjacent motif (PAM) distinct from that of other type V Cas effectors. Here, we report the nickase preference of Cas12h1, which predominantly cleaves the nontarget strand (NTS) of a double-stranded DNA (dsDNA) substrate. In addition, Cas12h1 acts as a nickase in human cells. We further determined the cryo-EM structures of Cas12h1 in the surveillance, R-loop formation, and interference states, revealing the molecular mechanisms involved in the crRNA maturation, target recognition, R-loop formation, nuclease activation and target degradation. Cas12h1 notably recognizes a broad 5'-DHR-3' PAM (D is A, G, or T; H is A, C, or T; R is A or G) both in vitro and in human cells. In addition, Cas12h1 utilizes a distinct activation mechanism that the lid motif undergoes a "flexible to stable" transition to expose the catalytic site to the substrate. A high-fidelity nucleic acid detector, Cas12h1hf, was developed through rational engineering, which distinguishes single-base mismatches and retains comparable on-target activities. Our results shed light on the molecular mechanisms underlying Cas12h1 nickase, improve the understanding of type V Cas effectors, and expand the CRISPR toolbox for genome editing and molecular diagnosis.
Collapse
Affiliation(s)
- Weiwei Zheng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Hongyu Li
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Mengxi Liu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Yuhang Wei
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Bo Liu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Zekai Li
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Chenyang Xiong
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Shiqing Huang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science; Department of Biochemistry, Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117557, Singapore.
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
16
|
Hibshman GN, Taylor DW. Structural basis for a dual-function type II-B CRISPR-Cas9. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.22.619592. [PMID: 39990493 PMCID: PMC11844402 DOI: 10.1101/2024.10.22.619592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Cas9 from Streptococcus pyogenes (SpCas9) revolutionized genome editing by enabling programmable DNA cleavage guided by an RNA. However, SpCas9 tolerates mismatches in the DNA-RNA duplex, which can lead to deleterious off-target editing. Here, we reveal that Cas9 from Francisella novicida (FnCas9) possesses a unique structural feature-the REC3 clamp-that underlies its intrinsic high-fidelity DNA targeting. Through kinetic and structural analyses, we show that the REC3 clamp forms critical contacts with the PAM-distal region of the R-loop, thereby imposing a novel checkpoint during enzyme activation. Notably, F. novicida encodes a non-canonical small CRISPR-associated RNA (scaRNA) that enables FnCas9 to repress an endogenous bacterial lipoprotein gene, subverting host immune detection. Structures of FnCas9 with scaRNA illustrate how partial R-loop complementarity hinders REC3 clamp docking and prevents cleavage in favor of transcriptional repression. The REC3 clamp is conserved in type II-B CRISPR-Cas9 systems, pointing to a potential path for engineering precise genome editors or developing novel antibacterial strategies. These findings reveal the dual mechanisms of high specificity and virulence by FnCas9, with broad implications for biotechnology and therapeutic development.
Collapse
|
17
|
Goolab S, Terburgh K, du Plessis C, Scholefield J, Louw R. CRISPR-Cas9 mediated knockout of NDUFS4 in human iPSCs: A model for mitochondrial complex I deficiency. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167569. [PMID: 39547516 DOI: 10.1016/j.bbadis.2024.167569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Mitochondrial diseases, often caused by defects in complex I (CI) of the oxidative phosphorylation system, currently lack curative treatments. Human-relevant, high-throughput drug screening platforms are crucial for the discovery of effective therapeutics, with induced pluripotent stem cells (iPSCs) emerging as a valuable technology for this purpose. Here, we present a novel iPSC model of NDUFS4-related CI deficiency that displays a strong metabolic phenotype in the pluripotent state. Human iPSCs were edited using CRISPR-Cas9 to target the NDUFS4 gene, generating isogenic NDUFS4 knockout (KO) cell lines. Sanger sequencing detected heterozygous biallelic deletions, whereas no indel mutations were found in isogenic control cells. Western blotting confirmed the absence of NDUFS4 protein in KO iPSCs and CI enzyme kinetics showed a ~56 % reduction in activity compared to isogenic controls. Comprehensive metabolomic profiling revealed a distinct metabolic phenotype in NDUFS4 KO iPSCs, predominantly associated with an elevated NADH/NAD+ ratio, consistent with alterations observed in other models of mitochondrial dysfunction. Additionally, β-lapachone, a recognized NAD+ modulator, alleviated reductive stress in KO iPSCs by modifying the redox state in both the cytosol and mitochondria. Although undifferentiated iPSCs cannot fully replicate the complex cellular dynamics of the disease seen in vivo, these findings highlight the utility of iPSCs in providing a relevant metabolic milieu that can facilitate early-stage, high-throughput exploration of therapeutic strategies for mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shivani Goolab
- Bioengineering and Integrated Genomics Group, Future Productions: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Charl du Plessis
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Productions: Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
18
|
Rubach P, Majorek KA, Gucwa M, Murzyn K, Wlodawer A, Minor W. Advances in cryo-electron microscopy (cryoEM) for structure-based drug discovery. Expert Opin Drug Discov 2025; 20:163-176. [PMID: 39789967 DOI: 10.1080/17460441.2025.2450636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Accepted: 01/04/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Macromolecular X-ray crystallography (XRC), nuclear magnetic resonance (NMR), and cryo-electron microscopy (cryoEM) are the primary techniques for determining atomic-level, three-dimensional structures of macromolecules essential for drug discovery. With advancements in artificial intelligence (AI) and cryoEM, the Protein Data Bank (PDB) is solidifying its role as a key resource for 3D macromolecular structures. These developments underscore the growing need for enhanced quality metrics and robust validation standards for experimental structures. AREAS COVERED This review examines recent advancements in cryoEM for drug discovery, analyzing structure quality metrics, resolution improvements, metal-ligand and water molecule identification, and refinement software. It compares cryoEM with other techniques like XRC and NMR, emphasizing the global expansion of cryoEM facilities and its increasing significance in drug discovery. EXPERT OPINION CryoEM is revolutionizing structural biology and drug discovery, particularly for large, complex structures in induced proximity and antibody-antigen interactions. It supports vaccine design, CAR T-cell optimization, gene editing, and gene therapy. Combined with AI, cryoEM enhances particle identification and 3D structure determination. With recent breakthroughs, cryoEM is emerging as a crucial tool in drug discovery, driving the development of new, effective therapies.
Collapse
Affiliation(s)
- Pawel Rubach
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Institute of Information Systems and Digital Economy, Warsaw School of Economics, Warsaw, Poland
| | - Karolina A Majorek
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Michal Gucwa
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Jagiellonian University, Krakow, Poland
| | - Alexander Wlodawer
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
19
|
Soczek K, Cofsky J, Tuck O, Shi H, Doudna J. CRISPR-Cas12a bends DNA to destabilize base pairs during target interrogation. Nucleic Acids Res 2025; 53:gkae1192. [PMID: 39698811 PMCID: PMC11754666 DOI: 10.1093/nar/gkae1192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ∼20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes. We show here that Cas12a initiates DNA target recognition by bending DNA to induce transient nucleotide flipping that exposes nucleobases for DNA-RNA hybridization. Cryo-EM structural analysis of a trapped Cas12a-RNA-DNA surveillance complex and fluorescence-based conformational probing show that Cas12a-induced DNA helix destabilization enables target discovery and engagement. This mechanism of initial DNA interrogation resembles that of CRISPR-Cas9 despite distinct evolutionary origins and different RNA-DNA hybridization directionality of these enzyme families. Our findings support a model in which RNA-mediated DNA interference begins with local helix distortion by transient CRISPR-Cas protein binding.
Collapse
Affiliation(s)
- Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Joshua C Cofsky
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
| | - Owen T Tuck
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
| | - Honglue Shi
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
20
|
Van R, Pan X, Rostami S, Liu J, Agarwal PK, Brooks B, Rajan R, Shao Y. Exploring CRISPR-Cas9 HNH-Domain-Catalyzed DNA Cleavage Using Accelerated Quantum Mechanical Molecular Mechanical Free Energy Simulation. Biochemistry 2025; 64:289-299. [PMID: 39680038 PMCID: PMC12005057 DOI: 10.1021/acs.biochem.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The target DNA (tDNA) cleavage catalyzed by the CRISPR Cas9 enzyme is a critical step in the Cas9-based genome editing technologies. Previously, the tDNA cleavage from an active SpyCas9 enzyme conformation was modeled by Palermo and co-workers (Nierzwicki et al., Nat. Catal. 2022 5, 912) using ab initio quantum mechanical molecular mechanical (ai-QM/MM) free energy simulations, where the free energy barrier was found to be more favorable than that from a pseudoactive enzyme conformation. In this work, we performed ai-QM/MM simulations based on another catalytically active conformation (PDB 7Z4J) of the Cas9 HNH domain from cryo-electron microscopy experiments. For the wildtype enzyme, we acquired a free energy profile for the tDNA cleavage that is largely consistent with the previous report. Furthermore, we explored the role of the active-site K866 residue on the catalytic efficiency by modeling the K866A mutant and found that the K866A mutation increased the reaction free energy barrier, which is consistent with the experimentally observed reduction in the enzyme activity.
Collapse
Affiliation(s)
- Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Jin Liu
- Department of Pharmaceutical Sciences, University of North Texas System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Pratul K. Agarwal
- High Performance Computing Center, Oklahoma State University, 106 Math Sciences, Stillwater, OK 74078, United States
| | - Bernard Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Pkwy, Norman, OK 73019, United States
| |
Collapse
|
21
|
Kiernan K, Kwon J, Merrill B, Simonović M. Structural basis of Cas9 DNA interrogation with a 5' truncated sgRNA. Nucleic Acids Res 2025; 53:gkae1164. [PMID: 39657754 PMCID: PMC11724282 DOI: 10.1093/nar/gkae1164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/23/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
The efficiency and accuracy of CRISPR-Cas9 targeting varies considerably across genomic targets and remains a persistent issue for using this system in cells. Studies have shown that the use of 5' truncated single guide RNAs (sgRNAs) can reduce the rate of unwanted off-target recognition while still maintaining on-target specificity. However, it is not well-understood how reducing target complementarity enhances specificity or how truncation past 15 nucleotides (nts) prevents full Cas9 activation without compromising on-target binding. Here, we use biochemistry and cryogenic electron microscopy to investigate Cas9 structure and activity when bound to a 14-nt sgRNA. Our structures reveal that the shortened path of the displaced non-target strand (NTS) sterically occludes docking of the HNH L1 linker and prevents proper positioning of the nuclease domains. We show that cleavage inhibition can be alleviated by either artificially melting the protospacer adjacent motif (PAM)-distal duplex or providing a supercoiled substrate. Even though Cas9 forms a stable complex with its target, we find that plasmid cleavage is ∼1000-fold slower with a 14-nt sgRNA than with a full-length 20-nt sgRNA. Our results provide a structural basis for Cas9 target binding with 5' truncated sgRNAs and underline the importance of PAM-distal NTS availability in promoting Cas9 activation.
Collapse
Affiliation(s)
- Kaitlyn A Kiernan
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Jieun Kwon
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, 900 S Ashland Ave, Chicago, IL 60607, USA
| |
Collapse
|
22
|
Chu HY, Peng J, Mou Y, Wong ASL. Quantifying Protein-Nucleic Acid Interactions for Engineering Useful CRISPR-Cas9 Genome-Editing Variants. Methods Mol Biol 2025; 2870:227-243. [PMID: 39543038 DOI: 10.1007/978-1-0716-4213-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Numerous high-specificity Cas9 variants have been engineered for precision genome editing. These variants typically harbor multiple mutations designed to alter the Cas9-single guide RNA (sgRNA)-DNA complex interactions for reduced off-target cleavage. By dissecting the contributions of individual mutations, we attempt to derive principles for designing high-specificity Cas9 variants. Here, we computationally modeled the specificity harnessing mutations of the widely used Cas9 isolated from Streptococcus pyogenes (SpCas9) and investigated their individual mutational effects. We quantified the mutational effects in terms of energy and contact changes by comparing the wild-type and mutant structures. We found that these mutations disrupt the protein-protein or protein-DNA contacts within the Cas9-sgRNA-DNA complex. We also identified additional impacted amino acid sites via energy changes that constitute the structural microenvironment encompassing the focal mutation, giving insights into how the mutations contribute to the high-specificity phenotype of SpCas9. Our method outlines a strategy to evaluate mutational effects that can facilitate rational design for Cas9 optimization.
Collapse
Affiliation(s)
- Hoi Yee Chu
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Jiaxing Peng
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yuanbiao Mou
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Alan S L Wong
- Laboratory of Combinatorial Genetics and Synthetic Biology, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
| |
Collapse
|
23
|
Jiang C, Li Y, Wang R, Sun X, Zhang Y, Zhang Q. Development and optimization of base editors and its application in crops. Biochem Biophys Res Commun 2024; 739:150942. [PMID: 39547118 DOI: 10.1016/j.bbrc.2024.150942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Genome editing technologies hold significant potential for targeted mutagenesis in crop development, aligning with evolving agricultural needs. Point mutations, or single nucleotide polymorphisms (SNPs), define key agronomic traits in various crop species and play a pivotal role. The implementation of single nucleotide variations through genome editing-based base editing offers substantial promise in expediting crop improvement by inducing advantageous trait variations. Among many genome editing techniques, base editing stands out as an advanced next-generation technology, evolved from the CRISPR/Cas9 system.Base editing, a recent advancement in genome editing, enables precise DNA modification without the risks associated with double-strand breaks. Base editors, designed as precise genome editing tools, enable the direct and irreversible conversion of specific target bases. Base editors consist of catalytically active CRISPR-Cas9 domains, including Cas9 variants, fused with domains like cytidine deaminase, adenine deaminase, or reverse transcriptase. These fusion proteins enable the introduction of specific point mutations in target genomic regions. Currently developed are cytidine base editors (CBEs), mutating C to T; adenine base editors (ABEs), changing A to G; and prime editors (PEs), enabling arbitrary base conversions, precise insertions, and deletions. In this review, the research, development, and progress of various base editing systems, along with their potential applications in crop improvement, were intended to be summarized. The limitations of this technology will also be discussed. Finally, an outlook on the future of base editors will be provided.
Collapse
Affiliation(s)
- Chuandong Jiang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, China
| | - Ran Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiao Sun
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Qiang Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
24
|
Sánchez-León S, Marín-Sanz M, Guzmán-López MH, Gavilán-Camacho M, Simón E, Barro F. CRISPR/Cas9-mediated multiplex gene editing of gamma and omega gliadins: paving the way for gliadin-free wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7079-7095. [PMID: 39238167 PMCID: PMC11630021 DOI: 10.1093/jxb/erae376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Wheat is a staple cereal in the human diet. Despite its significance, an increasing percentage of the population suffers adverse reactions to wheat, which are triggered by wheat gluten, particularly the gliadin fractions. In this study, we employed CRISPR/Cas [clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated protein] multiplexing to introduce targeted mutations into γ- and ω-gliadin genes of wheat, to produce lines deficient in one or both immunogenic gliadin fractions simultaneously. For this study, eight single guide RNAs (sgRNAs) were designed and combined into four plasmids to produce 59 modified wheat lines, of which 20 exhibited mutations in the target genes. Characterization of these lines through Sanger sequencing or next-generation sequencing revealed a complex pattern of InDels, including deletions spanning multiple sgRNAs. The mutations were transmitted to the offspring, and the analysis of homozygous derived lines by reverse-phase HPLC and monoclonal antibodies showed a 97.7% reduction in gluten content. Crossing these lines with other CRISPR/Cas lines deficient in the α-gliadins allowed multiple mutations to be combined. This work represents an important step forward in the use of CRISPR/Cas to develop gluten-free wheat.
Collapse
Affiliation(s)
- Susana Sánchez-León
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), E-14004 Córdoba, Spain
| | - Miriam Marín-Sanz
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), E-14004 Córdoba, Spain
| | - María H Guzmán-López
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), E-14004 Córdoba, Spain
| | - Marta Gavilán-Camacho
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), E-14004 Córdoba, Spain
| | - Edurne Simón
- GLUTEN 3S Research Group, Department of Nutrition and Food Science, University of the Basque Country, Vitoria-Gasteiz, 01006, Spain
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture (IAS-CSIC), E-14004 Córdoba, Spain
| |
Collapse
|
25
|
Mamatha Bhanu LS, Kataki S, Chatterjee S. CRISPR: New promising biotechnological tool in wastewater treatment. J Microbiol Methods 2024; 227:107066. [PMID: 39491556 DOI: 10.1016/j.mimet.2024.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for water resources with increase in population has sparked interest in reusing produced water, especially in water-scarce regions. The clustered regularly interspaced short palindromic repeats (CRISPR) technology is an emerging genome editing tool that has the potential to trigger significant impact with broad application scope in wastewater treatment. We provide a comprehensive overview of the scope of CRISPR-Cas based tool for treating wastewater that may bring new scope in wastewater management in future in controlling harmful contaminants and pathogens. As an advanced versatile genome engineering tool, focusing on particular genes and enzymes that are accountable for pathogen identification, regulation of antibiotic/antimicrobial resistance, and enhancing processes for wastewater bioremediation constitute the primary focal points of research associated with this technology. The technology is highly recommended for targeted mutations to incorporate desirable microalgal characteristics and the development of strains capable of withstanding various wastewater stresses. However, concerns about gene leakage from strains with modified genome and off target mutations should be considered during field application. A comprehensive interdisciplinary approach involving various fields and an intense research focus concerning delivery systems, target genes, detection, environmental conditions, and monitoring at both lab and ground level should be considered to ensure its successful application in sustainable and safe wastewater treatment.
Collapse
Affiliation(s)
- L S Mamatha Bhanu
- Department of Biotechnology, Yuvaraja's College, University of Mysore, Mysuru, Karnataka, India
| | - Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| |
Collapse
|
26
|
Panda G, Ray A. Deciphering Cas9 specificity: Role of domain dynamics and RNA:DNA hybrid interactions revealed through machine learning and accelerated molecular simulations. Int J Biol Macromol 2024; 283:137835. [PMID: 39566771 DOI: 10.1016/j.ijbiomac.2024.137835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/04/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
CRISPR/Cas9 technology is widely used for gene editing, but off-targeting still remains a major concern in therapeutic applications. Although Cas9 variants with better mismatch discrimination have been developed, they have significantly lower rates of on-target DNA cleavage. This study compares the dynamics of the highly specific Cas9 from Francisella novicida (FnCas9) to the commonly used SpCas9. Using long-scale atomistic Gaussian accelerated molecular dynamic simulations and machine learning techniques, we deciphered the structural factors behind FnCas9's higher specificity in native and off-target forms. Our analysis revealed that Cas9's cleavage specificity relies more on its domain rearrangement than on RNA:DNA heteroduplex shape, with significant conformational variations in Cas9 domains among off-target forms, while the RNA:DNA hybrid showed minimal changes, especially in FnCas9 compared to SpCas9. REC1-REC3 domains contacts with the RNA:DNA hybrid in FnCas9 acted as critical discriminator of off-target effects playing a pivotal role in influencing specificity. In FnCas9, allosteric signal transmission involves the REC3 and HNH domain, bypassing REC2, leading to a superior efficiency in information transmission. This study offers a quantitative framework for understanding the structural basis of elevated specificity, paving the way for the rational design of Cas9 variants with improved precision and specificity in genome editing applications.
Collapse
Affiliation(s)
- Gayatri Panda
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India.
| |
Collapse
|
27
|
Razavi Z, Soltani M, Souri M, van Wijnen AJ. CRISPR innovations in tissue engineering and gene editing. Life Sci 2024; 358:123120. [PMID: 39426588 DOI: 10.1016/j.lfs.2024.123120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The CRISPR/Cas9 system is a powerful tool for genome editing, utilizing the Cas9 nuclease and programmable single guide RNA (sgRNA). However, the Cas9 nuclease activity can be disabled by mutation, resulting in catalytically deactivated Cas9 (dCas9). By combining the customizable sgRNA with dCas9, researchers can inhibit specific gene expression (CRISPR interference, CRISPRi) or activate the expression of a target gene (CRISPR activation, CRISPRa). In this review, we present the principles and recent advancements of these CRISPR technologies, as well as their delivery vectors. We also explore their applications in stem cell engineering and regenerative medicine, with a focus on in vitro stem cell fate manipulation and in vivo treatments. These include the prevention of retinal and muscular degeneration, neural regeneration, bone regeneration, cartilage tissue engineering, and the treatment of blood, skin, and liver diseases. Furthermore, we discuss the challenges of translating CRISPR technologies into regenerative medicine and provide future perspectives. Overall, this review highlights the potential of CRISPR in advancing regenerative medicine and offers insights into its application in various areas of research and therapy.
Collapse
Affiliation(s)
- ZahraSadat Razavi
- Physiology Research Center, Iran University Medical Sciences, Tehran, Iran; Biochemistry Research Center, Iran University Medical Sciences, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, Canada; Centre for Sustainable Business, International Business University, Toronto, Canada.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Andre J van Wijnen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA; Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
28
|
Gilioli G, Lankester AC, de Kivit S, Staal FJT, Ott de Bruin LM. Gene therapy strategies for RAG1 deficiency: Challenges and breakthroughs. Immunol Lett 2024; 270:106931. [PMID: 39303994 DOI: 10.1016/j.imlet.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mutations in the recombination activating genes (RAG) cause various forms of immune deficiency. Hematopoietic stem cell transplantation (HSCT) is the only cure for patients with severe manifestations of RAG deficiency; however, outcomes are suboptimal with mismatched donors. Gene therapy aims to correct autologous hematopoietic stem and progenitor cells (HSPC) and is emerging as an alternative to allogeneic HSCT. Gene therapy based on viral gene addition exploits viral vectors to add a correct copy of a mutated gene into the genome of HSPCs. Only recently, after a prolonged phase of development, viral gene addition has been approved for clinical testing in RAG1-SCID patients. In the meantime, a new technology, CRISPR/Cas9, has made its debut to compete with viral gene addition. Gene editing based on CRISPR/Cas9 allows to perform targeted genomic integrations of a correct copy of a mutated gene, circumventing the risk of virus-mediated insertional mutagenesis. In this review, we present the biology of the RAG genes, the challenges faced during the development of viral gene addition for RAG1-SCID, and the current status of gene therapy for RAG1 deficiency. In particular, we highlight the latest advances and challenges in CRISPR/Cas9 gene editing and their potential for the future of gene therapy.
Collapse
Affiliation(s)
- Giorgio Gilioli
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| | - Sander de Kivit
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frank J T Staal
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Lisa M Ott de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; Department of Pediatrics, Pediatric Stem Cell Transplantation Program and Laboratory for Pediatric Immunology, Willem-Alexander Children's Hospital, the Netherlands
| |
Collapse
|
29
|
Kiernan KA, Taylor DW. Visualization of a multi-turnover Cas9 after product release. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625307. [PMID: 39651158 PMCID: PMC11623592 DOI: 10.1101/2024.11.25.625307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While the most widely used CRISPR-Cas enzyme is the S. pyogenes Cas9 endonuclease (Cas9), it exhibits single-turnover enzyme kinetics which leads to long residence times on product DNA. This blocks access to DNA repair machinery and acts as a major bottleneck during CRISPR-Cas9 gene editing. Although Cas9 can eventually be forcibly removed by extrinsic factors (translocating polymerases, helicases, chromatin modifying complexes, etc), the mechanisms contributing to Cas9 dissociation following cleavage remain poorly understood. Interestingly, it's been shown that Cas9 can be more easily dislodged when complexes collide with the PAM-distal region of the Cas9 complex or when the strength of Cas9 interactions in this region are weakened. Here, we employ truncated guide RNAs as a strategy to weaken PAM-distal nucleic acid interactions and still support Cas9 activity. We find that guide truncation promotes much faster Cas9 turnover and used this to capture previously uncharacterized Cas9 reaction states. Kinetics-guided cryo-EM enabled us to enrich for rare, transient states that are often difficult to capture in standard workflows. From a single dataset, we examine the entire conformational landscape of a multi-turnover Cas9, including the first detailed snapshots of Cas9 dissociating from product DNA. We discovered that while the PAM-distal product dissociates from Cas9 following cleavage, tight binding of the PAM-proximal product directly inhibits re-binding of new targets. Our work provides direct evidence as to why Cas9 acts as a single-turnover enzyme and will guide future Cas9 engineering efforts.
Collapse
|
30
|
Degtev D, Bravo J, Emmanouilidi A, Zdravković A, Choong OK, Liz Touza J, Selfjord N, Weisheit I, Francescatto M, Akcakaya P, Porritt M, Maresca M, Taylor D, Sienski G. Engineered PsCas9 enables therapeutic genome editing in mouse liver with lipid nanoparticles. Nat Commun 2024; 15:9173. [PMID: 39511150 PMCID: PMC11544209 DOI: 10.1038/s41467-024-53418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Clinical implementation of therapeutic genome editing relies on efficient in vivo delivery and the safety of CRISPR-Cas tools. Previously, we identified PsCas9 as a Type II-B family enzyme capable of editing mouse liver genome upon adenoviral delivery without detectable off-targets and reduced chromosomal translocations. Yet, its efficacy remains insufficient with non-viral delivery, a common challenge for many Cas9 orthologues. Here, we sought to redesign PsCas9 for in vivo editing using lipid nanoparticles. We solve the PsCas9 ribonucleoprotein structure with cryo-EM and characterize it biochemically, providing a basis for its rational engineering. Screening over numerous guide RNA and protein variants lead us to develop engineered PsCas9 (ePsCas9) with up to 20-fold increased activity across various targets and preserved safety advantages. We apply the same design principles to boost the activity of FnCas9, an enzyme phylogenetically relevant to PsCas9. Remarkably, a single administration of mRNA encoding ePsCas9 and its guide formulated with lipid nanoparticles results in high levels of editing in the Pcsk9 gene in mouse liver, a clinically relevant target for hypercholesterolemia treatment. Collectively, our findings introduce ePsCas9 as a highly efficient, and precise tool for therapeutic genome editing, in addition to the engineering strategy applicable to other Cas9 orthologues.
Collapse
Affiliation(s)
- Dmitrii Degtev
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - Jack Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Aikaterini Emmanouilidi
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Aleksandar Zdravković
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Oi Kuan Choong
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Julia Liz Touza
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Niklas Selfjord
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Isabel Weisheit
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Margherita Francescatto
- Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Pinar Akcakaya
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Michelle Porritt
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| | - David Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA.
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA.
| | - Grzegorz Sienski
- Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D Unit, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
31
|
Mao X, Xu J, Jiang J, Li Q, Yao P, Jiang J, Gong L, Dong Y, Tu B, Wang R, Tang H, Yao F, Wang F. Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Commun Biol 2024; 7:1454. [PMID: 39506042 PMCID: PMC11541961 DOI: 10.1038/s42003-024-07173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR/Cas12a is a highly promising detection tool. However, detecting single nucleotide variations (SNVs) remains challenging. Here, we elucidate Cas12a specificity through crRNA engineering and profiling of single- and double-base mismatch tolerance across three targets. Our findings indicate that Cas12a specificity depends on the number, type, location, and distance of mismatches within the R-loop. We also find that introducing a wobble base pair at position 14 of the R-loop does not affect the free energy change when the spacer length is truncated to 17 bp. Therefore, we develop a new universal specificity enhancement strategy via iterative crRNA design, involving truncated spacers and a wobble base pair at position 14 of the R-loop, which tremendously increases specificity without sacrificing sensitivity. Additionally, we construct a PAM-free one-pot detection platform for SARS-CoV-2 variants, which effectively distinguishes SNV targets across various GC contents. In summary, our work reveals new insights into the specificity mechanism of Cas12a and demonstrates significant potential for in vitro diagnostics.
Collapse
Affiliation(s)
- Xujian Mao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Jian Xu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jingyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Qiong Li
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Ping Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jinyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Li Gong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Yin Dong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Bowen Tu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Rong Wang
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Tang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Fang Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- Changzhou Institute for Advanced Study of Public Health, Nanjing Medical University, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Fengming Wang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
32
|
Wu J, Liu Y, Ou L, Gan T, Zhangding Z, Yuan S, Liu X, Liu M, Li J, Yin J, Xin C, Tian Y, Hu J. Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks. Nat Commun 2024; 15:9438. [PMID: 39487167 PMCID: PMC11530683 DOI: 10.1038/s41467-024-53806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Mitochondria serve as the cellular powerhouse, and their distinct DNA makes them a prospective target for gene editing to treat genetic disorders. However, the impact of genome editing on mitochondrial DNA (mtDNA) stability remains a mystery. Our study reveals previously unknown risks of genome editing that both nuclear and mitochondrial editing cause discernible transfer of mitochondrial DNA segments into the nuclear genome in various cell types including human cell lines, primary T cells, and mouse embryos. Furthermore, drug-induced mitochondrial stresses and mtDNA breaks exacerbate this transfer of mtDNA into the nuclear genome. Notably, we observe that mitochondrial editors, including mitoTALEN and recently developed base editor DdCBE, can also enhance crosstalk between mtDNA and the nuclear genome. Moreover, we provide a practical solution by co-expressing TREX1 or TREX2 exonucleases during DdCBE editing. These findings imply genome instability of mitochondria during induced DNA breaks and explain the origins of mitochondrial-nuclear DNA segments.
Collapse
Affiliation(s)
- Jinchun Wu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Liqiong Ou
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Shaopeng Yuan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Xinyi Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Mengzhu Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhang Yin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Changchang Xin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| |
Collapse
|
33
|
Hashemabadi M, Sasan HA, Hosseinkhani S, Amandadi M, Samareh Gholami A, Sadeghizadeh M. Intelligent guide RNA: dual toehold switches for modulating luciferase in the presence of trigger RNA. Commun Biol 2024; 7:1344. [PMID: 39420075 PMCID: PMC11487279 DOI: 10.1038/s42003-024-06988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The CRISPR system finds extensive application in molecular biology, but its continuous activity can yield adverse effects. Leveraging programmable CRISPR/Cas9 function via nano-device mediation effectively mitigates these drawbacks. The integration of RNA-sensing platforms into CRISPR thus empowers it as a potent tool for processing internal cell data and modulating gene activity. Here, an intelligent guide RNA-a cis-repressed gRNA synthetic circuit enabling efficient recognition of specific trigger RNAs-is developed. This platform carries two toehold switches and includes an inhibited CrRNA sequence. In this system, the presence of cognate trigger RNA promotes precise binding to the first toehold site, initiating a cascade that releases CrRNA to target a reporter gene (luciferase) in this study. Decoupling the CrRNA segment from the trigger RNA enhances the potential of this genetic logic circuit to respond to specific cellular circumstances, offering promise as a synthetic biology platform.
Collapse
Affiliation(s)
- Mohammad Hashemabadi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Ali Sasan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mojdeh Amandadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Azadeh Samareh Gholami
- Department of Genetics, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
34
|
Baranova SV, Zhdanova PV, Koveshnikova AD, Pestryakov PE, Vokhtantsev IP, Chernonosov AA, Koval VV. Cleavage of DNA Substrate Containing Nucleotide Mismatch in the Complementary Region to sgRNA by Cas9 Endonuclease: Thermodynamic and Structural Features. Int J Mol Sci 2024; 25:10862. [PMID: 39409191 PMCID: PMC11476762 DOI: 10.3390/ijms251910862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The non-ideal accuracy and insufficient selectivity of CRISPR/Cas9 systems is a serious problem for their use as a genome editing tool. It is important to select the target sequence correctly so that the CRISPR/Cas9 system does not cut similar sequences. This requires an understanding of how and why mismatches in the target sequence can affect the efficiency of the Cas9/sgRNA complex. In this work, we studied the catalytic activity of the Cas9 enzyme to cleave DNA substrates containing nucleotide mismatch at different positions relative to the PAM in the "seed" sequence. We show that mismatches in the complementarity of the sgRNA/DNA duplex at different positions relative to the protospacer adjacent motif (PAM) sequence tend to decrease the cleavage efficiency and increase the half-maximal reaction time. However, for two mismatches at positions 11 and 20 relative to the PAM, an increase in cleavage efficiency was observed, both with and without an increase in half-reaction time. Thermodynamic parameters were obtained from molecular dynamics results, which showed that mismatches at positions 8, 11, and 20 relative to the PAM thermodynamically stabilize the formed complex, and a mismatch at position 2 of the PAM fragment exerts the greatest stabilization compared to the original DNA sequence. The weak correlation of the thermodynamic binding parameters of the components of the Cas9/sgRNA:dsDNA complex with the cleavage data of DNA substrates containing mismatches indicates that the efficiency of Cas9 operation is mainly affected by the conformational changes in Cas9 and the mutual arrangement of sgRNA and substrates.
Collapse
Affiliation(s)
- Svetlana V. Baranova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.D.K.); (P.E.P.); (I.P.V.); (A.A.C.)
| | - Polina V. Zhdanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.D.K.); (P.E.P.); (I.P.V.); (A.A.C.)
| | - Anastasia D. Koveshnikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.D.K.); (P.E.P.); (I.P.V.); (A.A.C.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel E. Pestryakov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.D.K.); (P.E.P.); (I.P.V.); (A.A.C.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ivan P. Vokhtantsev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.D.K.); (P.E.P.); (I.P.V.); (A.A.C.)
| | - Alexander A. Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.D.K.); (P.E.P.); (I.P.V.); (A.A.C.)
| | - Vladimir V. Koval
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (P.V.Z.); (A.D.K.); (P.E.P.); (I.P.V.); (A.A.C.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
35
|
Shi H, Al-Sayyad N, Wasko KM, Trinidad MI, Doherty EE, Vohra K, Boger RS, Colognori D, Cofsky JC, Skopintsev P, Bryant Z, Doudna JA. Rapid two-step target capture ensures efficient CRISPR-Cas9-guided genome editing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.01.616117. [PMID: 40376084 PMCID: PMC12080945 DOI: 10.1101/2024.10.01.616117] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
RNA-guided CRISPR-Cas enzymes initiate programmable genome editing by recognizing a 20-base-pair DNA sequence adjacent to a short protospacer-adjacent motif (PAM). To uncover the molecular determinants of high-efficiency editing, we conducted biochemical, biophysical and cell-based assays on S. pyogenes Cas9 ( Spy Cas9) variants with wide-ranging genome editing efficiencies that differ in PAM binding specificity. Our results show that reduced PAM specificity causes persistent non-selective DNA binding and recurrent failures to engage the target sequence through stable guide RNA hybridization, leading to reduced genome editing efficiency in cells. These findings reveal a fundamental trade-off between broad PAM recognition and genome editing effectiveness. We propose that high-efficiency RNA-guided genome editing relies on an optimized two-step target capture process, where selective but low-affinity PAM binding precedes rapid DNA unwinding. This model provides a foundation for engineering more effective CRISPR-Cas and related RNA-guided genome editors.
Collapse
|
36
|
Lian M, Chen T, Chen M, Peng X, Yang Y, Luo X, Chi Y, Wang J, Tang C, Zhou X, Zhang K, Qin C, Lai L, Zhou J, Zou Q. A modified glycosylase base editor without predictable DNA off-target effects. FEBS Lett 2024; 598:2557-2565. [PMID: 38946058 DOI: 10.1002/1873-3468.14970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Glycosylase base editor (GBE) can induce C-to-G transversion in mammalian cells, showing great promise for the treatment of human genetic disorders. However, the limited efficiency of transversion and the possibility of off-target effects caused by Cas9 restrict its potential clinical applications. In our recent study, we have successfully developed TaC9-CBE and TaC9-ABE by separating nCas9 and deaminase, which eliminates the Cas9-dependent DNA off-target effects without compromising editing efficiency. We developed a novel GBE called TaC9-GBEYE1, which utilizes the deaminase and UNG-nCas9 guided by TALE and sgRNA, respectively. TaC9-GBEYE1 showed comparable levels of on-target editing efficiency to traditional GBE at 19 target sites, without any off-target effects caused by Cas9 or TALE. The TaC9-GBEYE1 is a safe tool for gene therapy.
Collapse
Affiliation(s)
- Meng Lian
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Research Unit of Generation of Large Animal Disease Models, Guangzhou, China
| | - Tao Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xiaohua Peng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yang Yang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xian Luo
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Kun Zhang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liangxue Lai
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Research Unit of Generation of Large Animal Disease Models, Guangzhou, China
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jizeng Zhou
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
37
|
Goolab S, Scholefield J. Making gene editing accessible in resource limited environments: recommendations to guide a first-time user. Front Genome Ed 2024; 6:1464531. [PMID: 39386178 PMCID: PMC11461239 DOI: 10.3389/fgeed.2024.1464531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
The designer nuclease, CRISPR-Cas9 system has advanced the field of genome engineering owing to its programmability and ease of use. The application of these molecular scissors for genome engineering earned the developing researchers the Nobel prize in Chemistry in the year 2020. At present, the potential of this technology to improve global challenges continues to grow exponentially. CRISPR-Cas9 shows promise in the recent advances made in the Global North such as the FDA-approved gene therapy for the treatment of sickle cell anaemia and β-thalassemia and the gene editing of porcine kidney for xenotransplantation into humans affected by end-stage kidney failure. Limited resources, low government investment with an allocation of 1% of gross domestic production to research and development including a shortage of skilled professionals and lack of knowledge may preclude the use of this revolutionary technology in the Global South where the countries involved have reduced science and technology budgets. Focusing on the practical application of genome engineering, successful genetic manipulation is not easily accomplishable and is influenced by the chromatin landscape of the target locus, guide RNA selection, the experimental design including the profiling of the gene edited cells, which impacts the overall outcome achieved. Our assessment primarily delves into economical approaches of performing efficient genome engineering to support the first-time user restricted by limited resources with the aim of democratizing the use of the technology across low- and middle-income countries. Here we provide a comprehensive overview on existing experimental techniques, the significance for target locus analysis and current pitfalls such as the underrepresentation of global genetic diversity. Several perspectives of genome engineering approaches are outlined, which can be adopted in a resource limited setting to enable a higher success rate of genome editing-based innovations in low- and middle-income countries.
Collapse
Affiliation(s)
- Shivani Goolab
- Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Janine Scholefield
- Bioengineering and Integrated Genomics Group, Future Production Chemicals Cluster, Council for Scientific and Industrial Research, Pretoria, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
38
|
Yang LZ, Min YH, Liu YX, Gao BQ, Liu XQ, Huang Y, Wang H, Yang L, Liu ZJ, Chen LL. CRISPR-array-mediated imaging of non-repetitive and multiplex genomic loci in living cells. Nat Methods 2024; 21:1646-1657. [PMID: 38965442 DOI: 10.1038/s41592-024-02333-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 06/05/2024] [Indexed: 07/06/2024]
Abstract
Dynamic imaging of genomic loci is key for understanding gene regulation, but methods for imaging genomes, in particular non-repetitive DNAs, are limited. We developed CRISPRdelight, a DNA-labeling system based on endonuclease-deficient CRISPR-Cas12a (dCas12a), with an engineered CRISPR array to track DNA location and motion. CRISPRdelight enables robust imaging of all examined 12 non-repetitive genomic loci in different cell lines. We revealed the confined movement of the CCAT1 locus (chr8q24) at the nuclear periphery for repressed expression and active motion in the interior nucleus for transcription. We uncovered the selective repositioning of HSP gene loci to nuclear speckles, including a remarkable relocation of HSPH1 (chr13q12) for elevated transcription during stresses. Combining CRISPR-dCas12a and RNA aptamers allowed multiplex imaging of four types of satellite DNA loci with a single array, revealing their spatial proximity to the nucleolus-associated domain. CRISPRdelight is a user-friendly and robust system for imaging and tracking genomic dynamics and regulation.
Collapse
Affiliation(s)
- Liang-Zhong Yang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Yi-Hui Min
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Xin Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bao-Qing Gao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Qi Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Youkui Huang
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Haifeng Wang
- School of Life Sciences, Center for Synthetic and Systems Biology, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhe J Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- New Cornerstone Science Laboratory, Shenzhen, China.
| |
Collapse
|
39
|
Zheng J, Zhu Y, Huang T, Gao W, He J, Huang Z. Inhibition mechanisms of CRISPR-Cas9 by AcrIIA25.1 and AcrIIA32. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1781-1791. [PMID: 38842649 DOI: 10.1007/s11427-024-2607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024]
Abstract
In the ongoing arms race between bacteria and bacteriophages, bacteriophages have evolved anti-CRISPR proteins to counteract bacterial CRISPR-Cas systems. Recently, AcrIIA25.1 and AcrIIA32 have been found to effectively inhibit the activity of SpyCas9 both in bacterial and human cells. However, their molecular mechanisms remain elusive. Here, we report the cryo-electron microscopy structures of ternary complexes formed by AcrIIA25.1 and AcrIIA32 bound to SpyCas9-sgRNA. Using structural analysis and biochemical experiments, we revealed that AcrIIA25.1 and AcrIIA32 recognize a novel, previously-unidentified anti-CRISPR binding site on SpyCas9. We found that both AcrIIA25.1 and AcrIIA32 directly interact with the WED domain, where they spatially obstruct conformational changes of the WED and PI domains, thereby inhibiting SpyCas9 from recognizing protospacer adjacent motif (PAM) and unwinding double-stranded DNA. In addition, they may inhibit nuclease activity by blocking the dynamic conformational changes of the SpyCas9 surveillance complex. In summary, our data elucidate the inhibition mechanisms of two new anti-CRISPR proteins, provide new strategies for the modulation of SpyCas9 activity, and expand our understanding of the diversity of anti-CRISPR protein inhibition mechanisms.
Collapse
Affiliation(s)
- Jianlin Zheng
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Yuwei Zhu
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Tengjin Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Wenbo Gao
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiale He
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China.
- Westlake Center for Genome Editing, Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, China.
| |
Collapse
|
40
|
Khan FA, Ali A, Wu D, Huang C, Zulfiqar H, Ali M, Ahmed B, Yousaf MR, Putri EM, Negara W, Imran M, Pandupuspitasari NS. Editing microbes to mitigate enteric methane emissions in livestock. World J Microbiol Biotechnol 2024; 40:300. [PMID: 39134917 DOI: 10.1007/s11274-024-04103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/05/2024] [Indexed: 10/17/2024]
Abstract
Livestock production significantly contributes to greenhouse gas (GHG) emissions particularly methane (CH4) emissions thereby influencing climate change. To address this issue further, it is crucial to establish strategies that simultaneously increase ruminant productivity while minimizing GHG emissions, particularly from cattle, sheep, and goats. Recent advancements have revealed the potential for modulating the rumen microbial ecosystem through genetic selection to reduce methane (CH4) production, and by microbial genome editing including CRISPR/Cas9, TALENs (Transcription Activator-Like Effector Nucleases), ZFNs (Zinc Finger Nucleases), RNA interference (RNAi), Pime editing, Base editing and double-stranded break-free (DSB-free). These technologies enable precise genetic modifications, offering opportunities to enhance traits that reduce environmental impact and optimize metabolic pathways. Additionally, various nutrition-related measures have shown promise in mitigating methane emissions to varying extents. This review aims to present a future-oriented viewpoint on reducing methane emissions from ruminants by leveraging CRISPR/Cas9 technology to engineer the microbial consortia within the rumen. The ultimate objective is to develop sustainable livestock production methods that effectively decrease methane emissions, while maintaining animal health and productivity.
Collapse
Affiliation(s)
- Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Azhar Ali
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Hamza Zulfiqar
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Ali
- Institute of Animal and Diary sciences, Faculty of Animal Husbandry, Agriculture University, Faisalabad, Pakistan
| | - Bilal Ahmed
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Muhammad Rizwan Yousaf
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Universitas Diponegoro, Semarang, Indonesia
| | - Ezi Masdia Putri
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta, 10340, Indonesia
| | - Muhammad Imran
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
41
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
42
|
Zhang G, Song Z, Huang S, Wang Y, Sun J, Qiao L, Li G, Feng Y, Han W, Tang J, Chen Y, Huang X, Liu F, Wang X, Liu J. nCas9 Engineering for Improved Target Interaction Presents an Effective Strategy to Enhance Base Editing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405426. [PMID: 38881503 PMCID: PMC11336945 DOI: 10.1002/advs.202405426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Base editors (BEs) are a recent generation of genome editing tools that couple a cytidine or adenosine deaminase activity to a catalytically impaired Cas9 moiety (nCas9) to enable specific base conversions at the targeted genomic loci. Given their strong application potential, BEs are under active developments toward greater levels of efficiency and safety. Here, a previously overlooked nCas9-centric strategy is explored for enhancement of BE. Based on a cytosine BE (CBE), 20 point mutations associated with nCas9-target interaction are tested. Subsequently, from the initial positive X-to-arginine hits, combinatorial modifications are applied to establish further enhanced CBE variants (1.1-1.3). Parallel nCas9 modifications in other versions of CBEs including A3A-Y130F-BE4max, YEE-BE4max, CGBE, and split-AncBE4max, as well as in the context of two adenine BEs (ABE), likewise enhance their respective activities. The same strategy also substantially improves the efficiencies of high-fidelity nCas9/BEs. Further evidence confirms that the stabilization of nCas9-substrate interactions underlies the enhanced BE activities. In support of their translational potential, the engineered CBE and ABE variants respectively enable 82% and 25% higher rates of editing than the controls in primary human T-cells. This study thus demonstrates a highly adaptable strategy for enhancing BE, and for optimizing other forms of Cas9-derived tools.
Collapse
Affiliation(s)
| | - Ziguo Song
- International Joint Agriculture Research Center for Animal Bio‐BreedingMinistry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Yafeng Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjing210008China
| | - Jiayuan Sun
- International Joint Agriculture Research Center for Animal Bio‐BreedingMinistry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Lu Qiao
- Zhejiang LabHangzhouZhejiang311121China
| | - Guanglei Li
- Gene Editing CenterSchool of Life Science and TechnologyShanghaiTech University100 Haike Rd., Pudong New AreaShanghai201210China
| | | | - Wei Han
- Zhejiang LabHangzhouZhejiang311121China
| | - Jin Tang
- Zhejiang LabHangzhouZhejiang311121China
| | - Yulin Chen
- International Joint Agriculture Research Center for Animal Bio‐BreedingMinistry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | | | - Furui Liu
- Zhejiang LabHangzhouZhejiang311121China
| | - Xiaolong Wang
- International Joint Agriculture Research Center for Animal Bio‐BreedingMinistry of Agriculture and Rural Affairs/Key Laboratory of Animal Genetics Breeding and Reproduction of Shaanxi ProvinceCollege of Animal Science and TechnologyNorthwest A&F UniversityYanglingShaanxi712100China
| | - Jianghuai Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease StudyModel Animal Research Center at Medical School of Nanjing UniversityNanjing210061China
| |
Collapse
|
43
|
Soczek KM, Cofsky JC, Tuck OT, Shi H, Doudna JA. CRISPR-Cas12a bends DNA to destabilize base pairs during target interrogation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606079. [PMID: 39131396 PMCID: PMC11312533 DOI: 10.1101/2024.07.31.606079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
RNA-guided endonucleases are involved in processes ranging from adaptive immunity to site-specific transposition and have revolutionized genome editing. CRISPR-Cas9, -Cas12 and related proteins use guide RNAs to recognize ~20-nucleotide target sites within genomic DNA by mechanisms that are not yet fully understood. We used structural and biochemical methods to assess early steps in DNA recognition by Cas12a protein-guide RNA complexes. We show here that Cas12a initiates DNA target recognition by bending DNA to induce transient nucleotide flipping that exposes nucleobases for DNA-RNA hybridization. Cryo-EM structural analysis of a trapped Cas12a-RNA-DNA surveillance complex and fluorescence-based conformational probing show that Cas12a-induced DNA helix destabilization enables target discovery and engagement. This mechanism of initial DNA interrogation resembles that of CRISPR-Cas9 despite distinct evolutionary origins and different RNA-DNA hybridization directionality of these enzyme families. Our findings support a model in which RNA-mediated DNA engineering begins with local helix distortion by transient CRISPR-Cas protein binding.
Collapse
Affiliation(s)
- Katarzyna M. Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Joshua C. Cofsky
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
| | - Owen T. Tuck
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley; Berkeley, CA, USA
| | - Honglue Shi
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
| | - Jennifer A. Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley; Berkeley, CA, USA
- Innovative Genomics Institute; University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley; Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley; Berkeley CA, USA
- Gladstone-UCSF Institute of Genomic Immunology; San Francisco, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory; Berkeley, CA, USA
| |
Collapse
|
44
|
Strohkendl I, Saha A, Moy C, Nguyen AH, Ahsan M, Russell R, Palermo G, Taylor DW. Cas12a domain flexibility guides R-loop formation and forces RuvC resetting. Mol Cell 2024; 84:2717-2731.e6. [PMID: 38955179 PMCID: PMC11283365 DOI: 10.1016/j.molcel.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/17/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024]
Abstract
The specific nature of CRISPR-Cas12a makes it a desirable RNA-guided endonuclease for biotechnology and therapeutic applications. To understand how R-loop formation within the compact Cas12a enables target recognition and nuclease activation, we used cryo-electron microscopy to capture wild-type Acidaminococcus sp. Cas12a R-loop intermediates and DNA delivery into the RuvC active site. Stages of Cas12a R-loop formation-starting from a 5-bp seed-are marked by distinct REC domain arrangements. Dramatic domain flexibility limits contacts until nearly complete R-loop formation, when the non-target strand is pulled across the RuvC nuclease and coordinated domain docking promotes efficient cleavage. Next, substantial domain movements enable target strand repositioning into the RuvC active site. Between cleavage events, the RuvC lid conformationally resets to occlude the active site, requiring re-activation. These snapshots build a structural model depicting Cas12a DNA targeting that rationalizes observed specificity and highlights mechanistic comparisons to other class 2 effectors.
Collapse
Affiliation(s)
- Isabel Strohkendl
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Aakash Saha
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Catherine Moy
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Alexander-Hoi Nguyen
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Mohd Ahsan
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Rick Russell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX 78712, USA
| | - Giulia Palermo
- Department of Bioengineering, University of California, Riverside, Riverside, CA 92521, USA; Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - David W Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA; Interdisciplinary Life Sciences Graduate Programs, University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX 78712, USA; LIVESTRONG Cancer Institute, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
45
|
Yan H, Tan X, Zou S, Sun Y, Ke A, Tang W. Assessing and engineering the IscB-ωRNA system for programmed genome editing. Nat Chem Biol 2024:10.1038/s41589-024-01669-3. [PMID: 38977787 DOI: 10.1038/s41589-024-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
Abstract
OMEGA RNA (ωRNA)-guided endonuclease IscB, the evolutionary ancestor of Cas9, is an attractive system for in vivo genome editing because of its compact size and mechanistic resemblance to Cas9. However, wild-type IscB-ωRNA systems show limited activity in human cells. Here we report enhanced OgeuIscB, which, with eight amino acid substitutions, displayed a fourfold increase in in vitro DNA-binding affinity and a 30.4-fold improvement in insertion-deletion (indel) formation efficiency in human cells. Paired with structure-guided ωRNA engineering, the enhanced OgeuIscB-ωRNA systems efficiently edited the human genome across 26 target sites, attaining up to 87.3% indel and 62.2% base-editing frequencies. Both wild-type and engineered OgeuIscB-ωRNA showed moderate fidelity in editing the human genome, with off-target profiles revealing key determinants of target selection including an NARR target-adjacent motif (TAM) and the TAM-proximal 14 nucleotides in the R-loop. Collectively, our engineered OgeuIscB-ωRNA systems are programmable, potent and sufficiently specific for human genome editing.
Collapse
Affiliation(s)
- Hao Yan
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Xiaoqing Tan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Siyuan Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Yihong Sun
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| | - Weixin Tang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Wang J, Wang K, Deng Z, Zhong Z, Sun G, Mei Q, Zhou F, Deng Z, Sun Y. Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces. Nat Commun 2024; 15:5687. [PMID: 38971862 PMCID: PMC11227558 DOI: 10.1038/s41467-024-49987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.
Collapse
Affiliation(s)
- Jian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhe Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhiyu Zhong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Mei
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
47
|
Wu X, Yang J, Zhang J, Song Y. Gene editing therapy for cardiovascular diseases. MedComm (Beijing) 2024; 5:e639. [PMID: 38974714 PMCID: PMC11224995 DOI: 10.1002/mco2.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The development of gene editing tools has been a significant area of research in the life sciences for nearly 30 years. These tools have been widely utilized in disease detection and mechanism research. In the new century, they have shown potential in addressing various scientific challenges and saving lives through gene editing therapies, particularly in combating cardiovascular disease (CVD). The rapid advancement of gene editing therapies has provided optimism for CVD patients. The progress of gene editing therapy for CVDs is a comprehensive reflection of the practical implementation of gene editing technology in both clinical and basic research settings, as well as the steady advancement of research and treatment of CVDs. This article provides an overview of the commonly utilized DNA-targeted gene editing tools developed thus far, with a specific focus on the application of these tools, particularly the clustered regularly interspaced short palindromic repeat/CRISPR-associated genes (Cas) (CRISPR/Cas) system, in CVD gene editing therapy. It also delves into the challenges and limitations of current gene editing therapies, while summarizing ongoing research and clinical trials related to CVD. The aim is to facilitate further exploration by relevant researchers by summarizing the successful applications of gene editing tools in the field of CVD.
Collapse
Affiliation(s)
- Xinyu Wu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jie Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Jiayao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| | - Yuning Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesKey Laboratory for Zoonosis Research of the Ministry of Educationand College of Veterinary MedicineJilin UniversityChangchunChina
| |
Collapse
|
48
|
Dey D, Chakravarti R, Bhattacharjee O, Majumder S, Chaudhuri D, Ahmed KT, Roy D, Bhattacharya B, Arya M, Gautam A, Singh R, Gupta R, Ravichandiran V, Chattopadhyay D, Ghosh A, Giri K, Roy S, Ghosh D. A mechanistic study on the tolerance of PAM distal end mismatch by SpCas9. J Biol Chem 2024; 300:107439. [PMID: 38838774 PMCID: PMC11267045 DOI: 10.1016/j.jbc.2024.107439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
The therapeutic application of CRISPR-Cas9 is limited due to its off-target activity. To have a better understanding of this off-target effect, we focused on its mismatch-prone PAM distal end. The off-target activity of SpCas9 depends directly on the nature of mismatches, which in turn results in deviation of the active site of SpCas9 due to structural instability in the RNA-DNA duplex strand. In order to test the hypothesis, we designed an array of mismatched target sites at the PAM distal end and performed in vitro and cell line-based experiments, which showed a strong correlation for Cas9 activity. We found that target sites having multiple mismatches in the 18th to 15th position upstream of the PAM showed no to little activity. For further mechanistic validation, Molecular Dynamics simulations were performed, which revealed that certain mismatches showed elevated root mean square deviation values that can be attributed to conformational instability within the RNA-DNA duplex. Therefore, for successful prediction of the off-target effect of SpCas9, along with complementation-derived energy, the RNA-DNA duplex stability should be taken into account.
Collapse
Affiliation(s)
- Dhritiman Dey
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Rudra Chakravarti
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Oindrila Bhattacharjee
- Plant-Microbe Interaction Division, National Institute of Plant Genome Research, Delhi, India
| | | | | | - Kazi Tawsif Ahmed
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Dipanjan Roy
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Bireswar Bhattacharya
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mansi Arya
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Baden-Württemberg, Germany; International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Biology, Tübingen, Baden-Württemberg, Germany
| | - Rajveer Singh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Rahul Gupta
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | | | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute, Kolkata, West Bengal, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Syamal Roy
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India.
| |
Collapse
|
49
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
50
|
Acharya S, Ansari AH, Kumar Das P, Hirano S, Aich M, Rauthan R, Mahato S, Maddileti S, Sarkar S, Kumar M, Phutela R, Gulati S, Rahman A, Goel A, Afzal C, Paul D, Agrawal T, Pulimamidi VK, Jalali S, Nishimasu H, Mariappan I, Nureki O, Maiti S, Chakraborty D. PAM-flexible Engineered FnCas9 variants for robust and ultra-precise genome editing and diagnostics. Nat Commun 2024; 15:5471. [PMID: 38942756 PMCID: PMC11213958 DOI: 10.1038/s41467-024-49233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024] Open
Abstract
The clinical success of CRISPR therapies hinges on the safety and efficacy of Cas proteins. The Cas9 from Francisella novicida (FnCas9) is highly precise, with a negligible affinity for mismatched substrates, but its low cellular targeting efficiency limits therapeutic use. Here, we rationally engineer the protein to develop enhanced FnCas9 (enFnCas9) variants and broaden their accessibility across human genomic sites by ~3.5-fold. The enFnCas9 proteins with single mismatch specificity expanded the target range of FnCas9-based CRISPR diagnostics to detect the pathogenic DNA signatures. They outperform Streptococcus pyogenes Cas9 (SpCas9) and its engineered derivatives in on-target editing efficiency, knock-in rates, and off-target specificity. enFnCas9 can be combined with extended gRNAs for robust base editing at sites which are inaccessible to PAM-constrained canonical base editors. Finally, we demonstrate an RPE65 mutation correction in a Leber congenital amaurosis 2 (LCA2) patient-specific iPSC line using enFnCas9 adenine base editor, highlighting its therapeutic utility.
Collapse
Affiliation(s)
- Sundaram Acharya
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Asgar Hussain Ansari
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prosad Kumar Das
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Seiichi Hirano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Meghali Aich
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Riya Rauthan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sudipta Mahato
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Savitri Maddileti
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Sajal Sarkar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rhythm Phutela
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sneha Gulati
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Abdul Rahman
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Arushi Goel
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - C Afzal
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Deepanjan Paul
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
| | - Trupti Agrawal
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vinay Kumar Pulimamidi
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Subhadra Jalali
- Srimati Kannuri Santhamma Centre for vitreoretinal diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, Telangana, India
| | - Hiroshi Nishimasu
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
- Inamori Research Institute for Science, 620 Suiginya-cho, Shimogyo-ku, Kyoto, 600-8411, Japan
| | - Indumathi Mariappan
- Center for Ocular Regeneration, Prof. Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, LV Prasad Eye Institute, Hyderabad, 500034, Telangana, India
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Souvik Maiti
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debojyoti Chakraborty
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, New Delhi, 110025, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|