1
|
Tian X, Wen Y, Zhang Z, Zhu J, Song X, Phan TT, Li J. Recent advances in smart hydrogels derived from polysaccharides and their applications for wound dressing and healing. Biomaterials 2025; 318:123134. [PMID: 39904188 DOI: 10.1016/j.biomaterials.2025.123134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/06/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
Owing to their inherent biocompatibility and biodegradability, hydrogels derived from polysaccharides have emerged as promising candidates for wound management. However, the complex nature of wound healing often requires the development of smart hydrogels---intelligent materials capable of responding dynamically to specific physical or chemical stimuli. Over the past decade, an increasing number of stimuli-responsive polysaccharide-based hydrogels have been developed to treat various types of wounds. While a range of hydrogel types and their versatile functions for wound management have been discussed in the literature, there is still a need for a review of the crosslinking strategies used to create smart hydrogels from polysaccharides. This review provides a comprehensive overview of how stimuli-responsive hydrogels can be designed and made using five key polysaccharides: chitosan, hyaluronic acid, alginate, dextran, and cellulose. Various methods, such as chemical crosslinking, dynamic crosslinking, and physical crosslinking, which are used to form networks within these hydrogels, ultimately determine their ability to respond to stimuli, have been explored. This article further looks at different polysaccharide-based hydrogel wound dressings that can respond to factors such as reactive oxygen species, temperature, pH, glucose, light, and ultrasound in the wound environment and discusses how these responses can enhance wound healing. Finally, this review provides insights into how stimuli-responsive polysaccharide-based hydrogels can be developed further as advanced wound dressings in the future.
Collapse
Affiliation(s)
- Xuehao Tian
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Yuting Wen
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China.
| | - Zhongxing Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Jingling Zhu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Xia Song
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore
| | - Toan Thang Phan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, 119228, Singapore; Cell Research Corporation Pte. Ltd., 048943, Singapore
| | - Jun Li
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 15 Kent Ridge Crescent, 119276, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China; National University of Singapore (Chongqing) Research Institute, Yubei, Chongqing, 401120, China; NUS Environmental Research Institute (NERI), National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
2
|
Tao M, Sun Z, Wang H, Meng N, Chen X, Mao J, Huang H, Huang Y, Liu J, Wang Z, Tan W, Chen Y, Zhou C, Yang Y. An NIR-responsive "4A hydrogel" encapsulating wormwood essential oil: through antibacterial, antioxidant, anti-inflammation, and angiogenic to promote diabetic wound healing. Mater Today Bio 2025; 32:101751. [PMID: 40275953 PMCID: PMC12018570 DOI: 10.1016/j.mtbio.2025.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 03/23/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
The incorporation of hydrogels with biocompatible functional components to develop wound dressings exhibiting potent antibacterial, antioxidant, anti-inflammatory, and angiogenic properties to promote diabetic wound healing is highly desirable yet continues to pose a significant challenge. In this study, wormwood essential oil (WEO) is successfully encapsulated within black phosphorus (BP) using a physical extrusion technique. Subsequently, this composite is encapsulated within biocompatible gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) hydrogels to create multifunctional hydrogel dressing (WEO@BP/GH). In comparison to traditional hydrogels, BP enhances the encapsulation stability of WEO and improves the microenvironmental regulation capabilities through NIR-triggered release of WEO. Systemic in vitro experiments demonstrate that synergistic interaction between the diverse bioactive components of WEO and photothermal effects of BP results in highly effective antibacterial activities against S. aureus and E. coli, antioxidant of scavenging ROS, anti-inflammation of downregulating M1/M2 macrophages ratio, and angiogenic properties. Moreover, the in vivo tests demonstrate that WEO@BP/GH hydrogel significantly enhances high-performance diabetic wound repair through the acceleration of hemostasis, promotion of collagen deposition, regulation of inflammatory responses, and facilitation of vascularization. The findings indicate that WEO@BP/GH hydrogel holds considerable promise as a candidate for microenvironment regulation and effective diabetic wound healing across various clinical applications.
Collapse
Affiliation(s)
- Mengjuan Tao
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China
- Department of Clinical Laboratory, Wuhan Center for Clinical Laboratory, Wuhan, Hubei, 430015, PR China
| | - Zhiwei Sun
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China
| | - Haiyan Wang
- Chinese Medical Association Wuhan Branch, Wuhan, Hubei, 430014, PR China
| | - Na Meng
- Department of Cardiology, Guiqian International General Hospital, Guiyang, Guizhou, 550018, PR China
| | - Xiangru Chen
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China
| | - Jianwei Mao
- Department of Hepatobiliary Surgery, Xiaogan Center Hospital, Xiaogan, Hubei, 430071, PR China
| | - Heyan Huang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China
| | - Yan Huang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China
| | - Jin Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei, 432000, PR China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Weiqiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun road, Hangzhou, 310016, PR China
| | - Yonggang Chen
- Department of Clinical Laboratory, Wuhan Center for Clinical Laboratory, Wuhan, Hubei, 430015, PR China
| | - Chuchao Zhou
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China
| | - Yanqing Yang
- Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China
| |
Collapse
|
3
|
Chen H, Zhou J, Cao H, Liang D, Chen L, Yang Y, Wang L, Xie J, Duan H, Fu Y. Thermo-responsive and phase-separated hydrogels for cardiac arrhythmia diagnosis with deep learning algorithms. Biosens Bioelectron 2025; 276:117262. [PMID: 39965416 DOI: 10.1016/j.bios.2025.117262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/20/2025]
Abstract
Adhesive epidermal hydrogel electrodes are essential for achieving robust signal transduction and cardiac arrhythmia diagnosis, but detachment of conventional adhesive dressings easily causes secondary damage to delicate wound tissues due to lack of programmable capability of changed adhesion. Herein, we developed hydrogel-based skin-interfacing electrodes capable of on-demand programmable adhesion and detachment to capture electrocardiogram signals for diagnosing cardiac arrhythmia. This was achieved by integrating dynamic multiscale contact and coordinated regulation through temperature-mediated switchable hydrogen bond interactions in phase-separated smart hydrogels. Through micro-scale regulation of adhesive molecules and meso-scale modulation of the modulus, the hydrogel electrodes can be rapidly transited between a slippery state (adhesion ∼1.3 N/m) and a sticky one (adhesion ∼110 N/m) during its peeling from skin. This achieves an 84.5-fold increase of on/off adhesive energy (or reducing the adhesion at the skin interface by 98%) at low temperatures compared to normal skin temperature. A real-time cloud platform was developed by integrating hydrogel electrodes, enabling remote electrocardiogram (ECG) monitoring. For clinical applications, such developed skin sensing platform effectively captured cardiac activities in patients with eight common arrhythmias, achieving by the recorded high-fidelity and analyzable electrical signals. With the assistance of deep learning algorithms, we demonstrated a wearable cardiac arrhythmia intelligent diagnosis system which enables real-time conversion of the collected ECG data into diagnostic evaluations with a recognition accuracy of 98.5%.
Collapse
Affiliation(s)
- Hui Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Jian Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
| | - Huan Cao
- Nursing Department, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
| | - Lei Chen
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Yuanfan Yang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Lu Wang
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Jianfei Xie
- Nursing Department, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
4
|
Zhang T, Meng Z, Yu H, Ding P, Kai T. An Intelligent and Conductive Hydrogel with Multiresponsive and ROS Scavenging Properties for Infection Prevention and Anti-Inflammatory Treatment Assisted by Electrical Stimulation for Diabetic Wound. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500696. [PMID: 40344517 DOI: 10.1002/advs.202500696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/11/2025] [Indexed: 05/11/2025]
Abstract
Diabetic wounds experience a hyperglycemic, hypoxic environment, combined with ongoing oxidative stress and inflammatory imbalances, significantly disrupts normal healing process. Advanced hydrogels have been considered one of the most exciting medical biomaterials for the potential in wounds healing. Herein, a novel conductive hydrogel (HEPP), designed to release nanozyme (PTPPG) in response to its microenvironment, was created to facilitate glucose (Glu) catabolism. Furthermore, the HEPP integrates photodynamic therapy (PDT), photothermal therapy (PTT), and self-cascading reactive oxygen species (ROS) to prevent bacterial infections while ensuring a continuous supply of oxygen (O2) to the wound. The HEPP not only adeptly controls high ROS levels, but also enhances the regulation of inflammation in the wound area via electrical stimulation (ES), thereby promoting healing that is supported by the immune response. Studies conducted in vitro, along with transcriptomic analyses, indicate that ES primarily mitigates inflammation by regulating Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). The effects of HEPP combined with ES are primarily connected to their impact on TNF signaling pathways. By reducing the formation of ROS and employing ES to effectively lessen inflammation, this approach offers an innovative method to manage complicated diabetic wounds, ulcers, and a range of inflammatory conditions linked to infections.
Collapse
Affiliation(s)
- Tao Zhang
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Zongwu Meng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Haoyu Yu
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| | - Tianhan Kai
- Xiangya School of Public Health, Central South University, Changsha, Hunan, 410013, China
- Furong Laboratory, Central South University, Changsha, Hunan, 410008, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, Hunan, 410078, China
| |
Collapse
|
5
|
Zhang W, Li Z, Zhang Q, Zheng S, Zhang Z, Chen S, Wang Z, Zhang D. Ionic conducting hydrogels as biomedical materials: classification, design strategies, and skin tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:939-962. [PMID: 39620352 DOI: 10.1080/09205063.2024.2434300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/19/2024] [Indexed: 05/03/2025]
Abstract
Ionically conductive hydrogels (ICHs) are considered promising flexible electronic devices and various wearable sensors due to the integration of the conductive performance and soft nature of human tissue-like materials with mechanical and sensory traits. Recently, substantial progress has been made in the research of ICHs, including high conductivity, solution processability, strong adhesion, high stretchability, high self-healing ability, and good biocompatibility. These advanced researches also promote their excellent application prospects in medical monitoring, sports health, smart wear, and other fields. This article reviewed ICHs' current classification and design strategies in biomedical applications and the structure-activity relationship of the interface between biological systems and electronics. Furthermore, the typical cases of frontiers of skin interface applications of ICHs were elaborated in transdermal drug delivery, wound healing, disease diagnosis and treatment, and human-computer interaction. This article aims to inspire related research on ionically conductive hydrogels in the biomedical field and promote the innovation and application of flexible wearable electronic device technology.
Collapse
Affiliation(s)
- Wanping Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zhe Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Qianjie Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Shilian Zheng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zijia Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Simin Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zixin Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| | - Dongmei Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
6
|
Vasanth A, Ashok A, Do TN, Phan HP. Advancements in flexible porous Nanoarchitectonic materials for biosensing applications. Adv Colloid Interface Sci 2025; 339:103439. [PMID: 39978155 DOI: 10.1016/j.cis.2025.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
The development of nanoporous materials has gained significant attention due to their unique structural properties and multimodalities, which are highly relevant for advanced sensing technologies. The capability to directly grow nanoporous materials on flexible substrates or indirectly integrate them into soft templates through mixing and dispersion opens exciting opportunities for a new class of flexible and stretchable electronics for personalized healthcare applications. This review paper provides a snapshot of recent advancements in flexible nanoporous materials and their applications, emphasizing biological and biomedical sensors. The review highlights the material of choice for flexible and stretchable substrates and effective approaches to synthesize and integrate nanoporous architectures onto soft polymers. Applications from wearable sweat sensors, mechanical sensors for electronic skins, implantable bioelectronics, and gas sensing are also presented. The paper concludes with current challenges and future perspectives within this highly active research paradigm.
Collapse
Affiliation(s)
- Arya Vasanth
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Aditya Ashok
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia; Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia; Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia; Tyree Foundation Institute of Health Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
7
|
Wu X, Ye Y, Sun M, Mei Y, Ji B, Wang M, Song E. Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics. CYBORG AND BIONIC SYSTEMS 2025; 6:0192. [PMID: 40302943 PMCID: PMC12038164 DOI: 10.34133/cbsystems.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 05/02/2025] Open
Abstract
Materials that establish functional, stable interfaces to targeted tissues for long-term monitoring/stimulation equipped with diagnostic/therapeutic capabilities represent breakthroughs in biomedical research and clinical medicine. A fundamental challenge is the mechanical and chemical mismatch between tissues and implants that ultimately results in device failure for corrosion by biofluids and associated foreign body response. Of particular interest is in the development of bioactive materials at the level of chemistry and mechanics for high-performance, minimally invasive function, simultaneously with tissue-like compliance and in vivo biocompatibility. This review summarizes the most recent progress for these purposes, with an emphasis on material properties such as foreign body response, on integration schemes with biological tissues, and on their use as bioelectronic platforms. The article begins with an overview of emerging classes of material platforms for bio-integration with proven utility in live animal models, as high performance and stable interfaces with different form factors. Subsequent sections review various classes of flexible, soft tissue-like materials, ranging from self-healing hydrogel/elastomer to bio-adhesive composites and to bioactive materials. Additional discussions highlight examples of active bioelectronic systems that support electrophysiological mapping, stimulation, and drug delivery as treatments of related diseases, at spatiotemporal resolutions that span from the cellular level to organ-scale dimension. Envisioned applications involve advanced implants for brain, cardiac, and other organ systems, with capabilities of bioactive materials that offer stability for human subjects and live animal models. Results will inspire continuing advancements in functions and benign interfaces to biological systems, thus yielding therapy and diagnostics for human healthcare.
Collapse
Affiliation(s)
- Xiaojun Wu
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
| | - Yuanming Ye
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mubai Sun
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yongfeng Mei
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bowen Ji
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ming Wang
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Frontier Institute of Chip and System,
Fudan University, Shanghai 200433, China
| | - Enming Song
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
| |
Collapse
|
8
|
Qiu X, Xiang F, Liu H, Zhan F, Liu X, Bu P, Zhou B, Duan Q, Ji M, Feng Q. Electrical hydrogel: electrophysiological-based strategy for wound healing. Biomater Sci 2025; 13:2274-2296. [PMID: 40131331 DOI: 10.1039/d4bm01734j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Wound healing remains a significant challenge in clinical practice, driving ongoing exploration of innovative therapeutic approaches. In recent years, electrophysiological-based wound healing strategies have gained considerable attention. Specifically, electrical hydrogels combine the synergistic effects of electrical stimulation and hydrogel properties, offering a range of functional benefits for wound healing, including antibacterial activity, real-time wound monitoring, controlled drug release, and electrical treatment. Despite significant progress made in electrical hydrogel research for wound healing, there is a lack of comprehensive, systematic reviews summarizing this field. In this review, we survey the latest advancements in electrical hydrogel technology. After analyzing the mechanisms of electrical stimulation in promoting wound healing, we establish a novel classification framework for electrical hydrogels based on their operational principles. The review further provides an in-depth evaluation of the therapeutic efficacy of these hydrogels in various types of wounds. Finally, we propose future directions and challenges for the development of electrical hydrogels for wound healing.
Collapse
Affiliation(s)
- Xingan Qiu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Feng Xiang
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Hong Liu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Xuezhe Liu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Pengzhen Bu
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Bikun Zhou
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Qiaojian Duan
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ming Ji
- Department of Orthopedics, Chongqing University Three Gorges Hospital, Chongqing 404010, China.
- School of Medicine, Chongqing University, Chongqing 404010, China
| | - Qian Feng
- Key laboratory of Biorheological Science and Technology, Ministry of Educations, Collage of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
9
|
Wu P, Jin L, Jiang W, Zhou Y, Lin L, Lin H, Chen H. Smart bandages for wound monitoring and treatment. Biosens Bioelectron 2025; 283:117522. [PMID: 40334449 DOI: 10.1016/j.bios.2025.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/18/2025] [Accepted: 04/27/2025] [Indexed: 05/09/2025]
Abstract
Wound management plays a crucial role in nursing care as it facilitates effective wound healing and prevents infections. To overcome limitations associated with traditional treatment methods, various smart bandages have been developed. The monitoring of wound parameters and the implementation of targeted treatments are crucial aspects of smart bandage development. Smart bandages, as cutting-edge flexible wearable medical devices, integrate various sensing technologies, providing new insights for dynamic monitoring and personalized treatment of chronic wounds. This paper systematically summarizes the applications and developments of smart bandages in monitoring wound environmental parameters, focusing on two major detection methods: colorimetric sensing and electrochemical sensing. Colorimetric sensors typically rely on color changes induced by physiological parameters, which can not only be identified by the naked eye but also combined with image recognition algorithms for physiological parameter detection. Electrochemical sensors, on the other hand, modify electrodes with specific enzymes and detect physiological parameters through the electrical signals generated by redox reactions. In addition to sensing, this paper further explores the integrated application of three smart therapeutic strategies in smart bandages, including promoting cell proliferation and angiogenesis through electrical stimulation, achieving controlled drug release via responsive materials, and utilizing photothermal materials for efficient antibacterial treatment of wounds. Finally, the paper delves into the challenges these bandages face in system integration and clinical translation, and discusses their potential in personalized wound care.
Collapse
Affiliation(s)
- Ping Wu
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Long Jin
- Department of Pathology, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Wanying Jiang
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Yingzhang Zhou
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Lisheng Lin
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China
| | - Hongxin Lin
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Hu Chen
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
10
|
Wang C, Fan K, Shirzaei Sani E, Lasalde-Ramírez JA, Heng W, Min J, Solomon SA, Wang M, Li J, Han H, Kim G, Shin S, Seder A, Shih CD, Armstrong DG, Gao W. A microfluidic wearable device for wound exudate management and analysis in human chronic wounds. Sci Transl Med 2025; 17:eadt0882. [PMID: 40267213 DOI: 10.1126/scitranslmed.adt0882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/04/2024] [Accepted: 04/03/2025] [Indexed: 04/25/2025]
Abstract
Chronic wounds are a major global health challenge associated with substantial economic burden and a negative impact on patient quality of life. Real-time analysis of biomarkers like reactive oxygen and nitrogen species could guide treatment, but existing systems lack the capacity required for continuous monitoring. Wound exudate is secreted slowly and has a complex composition, making efficient fluid collection and real-time analysis challenging. To address these issues, we introduce iCares, a wearable device for wound exudate management and continuous in situ analysis of wound biomarkers. iCares contains a flexible nanoengineered sensor array that measures reactive species such as NO, H2O2, and O2, along with pH and temperature, providing multiparameter data to inform wound status. The device features pump-free triad microfluidic modules with a superhydrophobic-superhydrophilic Janus membrane, bioinspired wedge channels, and three-dimensional graded micropillars for efficient unidirectional exudate collection, transport, and refreshing. The sensors demonstrated a consistent response and analyte selectivity in vitro and in wound exudate. iCares was designed for rapid scalable manufacturing through advanced printing and laser patterning. Wireless connectivity supported long-term continuous monitoring in wounds. The iCares system real-time monitoring was tested in a murine model of diabetic skin wound during infection and antimicrobial treatment. Clinical wound evaluation was conducted in 20 patients with chronic wounds and in two patients before and after surgery. A machine learning analysis of the multiplexed data successfully classified wounds and healing times, indicating that wound exudate analysis by iCares could offer insight into chronic wound status to aid in treatment decisions.
Collapse
Affiliation(s)
- Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kexin Fan
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ehsan Shirzaei Sani
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - José A Lasalde-Ramírez
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Samuel A Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Minqiang Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Gwangmook Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alex Seder
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chia-Ding Shih
- Southwestern Academic Limb Salvage Alliance (SALSA), Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Casa Colina Hospital and Centers for Healthcare, Pomona, CA 91767, USA
| | - David G Armstrong
- Southwestern Academic Limb Salvage Alliance (SALSA), Department of Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Wang F, Deng S, Song C, Fu X, Zhang N, Li Q, Li Y, Zhan J, Jiang Y, Liu M, Chen M, Hu Y, Huang KJ, Yang H, Chen Z, Cai R, Tan W. Pd@Au Nanoframe Hydrogels for Closed-Loop Wound Therapy. ACS NANO 2025; 19:15069-15080. [PMID: 40215083 DOI: 10.1021/acsnano.5c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
In this work, a multifunctional Pd@Au nanoframe hydrogel was designed to detect uric acid (UA) for in situ monitoring of wound infection and enhance wound healing by a chemo-photothermal strategy. In acidic conditions, the Pd@Au nanoframe hydrogels show high peroxidase-like activity by catalyzing H2O2 to produce reactive oxygen species (ROS) to damage RNAs of bacteria and enhance antibacterial activity. Under Near-infrared (NIR) laser irradiation, the Pd@Au nanoframe hydrogels exhibit photothermal conversion performance; i.e., the color of Pd@Au nanoframe hydrogel solution varies from deep blue (0 s, 25.4 °C) to red (300 s, 50.1 °C) in infrared thermography. After loading the antibacterial mupirocin (M), the as-obtained M Pd@Au nanoframe hydrogels show a maximum cumulative release rate exceeding 90% for mupirocin, as controlled by NIR laser irradiation. In antimicrobial experiments in vitro, M Pd@Au nanoframe hydrogels exhibit NIR laser-driven antibacterial ability; i.e., 98% Escherichia coli are effectively killed in 10 min. After coating rabbit wounds with a UA sensing patch of M Pd@Au nanoframe hydrogels, wound status can be monitored in real time by detecting UA concentration, leading to rapid wound healing in 4 days by a new synergistic effect of chemo-photothermal strategy. This approach successfully confirms a closed-loop strategy, i.e., real-time monitoring the status of a wound and efficiently perform chemo-photothermal wound therapy, for wound healing by combining functional hydrogels, NIR laser irradiation, and pharmaceutical antibacterials.
Collapse
Affiliation(s)
- Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Suping Deng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Changxiao Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaofei Fu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Ningbo Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qian Li
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Yujin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Jiajun Zhan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuting Jiang
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Man Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yueqiang Hu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Ke-Jing Huang
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Hangzhou Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Xu K, Ma Y, Ye T, Wang Y, Xie Y, Li C, Tay FR, Niu L, Li Z, Jiao K. The dual role of electrical stimulation in pain: from management to reconstruction. Sci Bull (Beijing) 2025; 70:1016-1021. [PMID: 39956669 DOI: 10.1016/j.scib.2025.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Affiliation(s)
- Kehui Xu
- Department of Stomatology, Tangdu Hospital; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an 710038, China; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuxuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Tao Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuzhu Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Chaohui Li
- Department of Clinical Medicine, Shanghai Smartee Denti-Technology Co., Ltd., Shanghai 201210, China
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lina Niu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China.
| | - Zhou Li
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100083, China; CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital; State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
13
|
Han C, Jin M, Dong F, Xu P, Jiang X, Cai ST, Jiang Y, Zhang Y, Fang Y, Niu S. Interpretable Machine Learning for Evaluating Nanogenerators' Structural Design. ACS NANO 2025; 19:14456-14466. [PMID: 40189909 DOI: 10.1021/acsnano.5c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The limited battery life in modern mobile, wearable, and implantable electronics critically constrains their operational longevity and continuous use. Consequently, as a self-powered technology, triboelectric nanogenerators (TENGs) have emerged as a promising solution to this. Traditional approaches for evaluating TENG structural design typically require manual, repetitive, time-consuming, and high-cost finite element modeling or experiments. To overcome this bottleneck, we developed a fully automated platform that leverages machine learning (ML) techniques. Our framework contains an artificial neuron network-based surrogate model that can provide accurate and reliable performance predictions for any structural parameters and a TreeSHAP interpretable ML model that can generate precise global and local insights for TENG structural parameters. Our platform shows broad adaptability to multiple TENG structures. In summary, our platform is an integrated platform that utilizes interpretable ML techniques to solve the complex multidimensional TENG structural evaluation problem, marking a significant advancement in TENG design and supporting sustainable energy solutions in mobile electronics.
Collapse
Affiliation(s)
- Chi Han
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Mingyu Jin
- Department of Computer Science, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Fuying Dong
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Pengchong Xu
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Xinnian Jiang
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Sheling T Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yongfeng Zhang
- Department of Computer Science, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yin Fang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
14
|
Luo R, Fan Y, Qi Y, Bai Y, Xiao M, Lv Y, Liang J, Tang M, Zhang J, Li Z, Luo D. Self-Manipulating Sodium Ion Gradient-Based Endogenic Electrical Stimulation Dressing for Wound Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419149. [PMID: 39951003 DOI: 10.1002/adma.202419149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Indexed: 04/03/2025]
Abstract
Endogenous electric field (EF) originating from differences in ionic gradients plays a decisive role in the wound healing process. Based on this understanding, a self-manipulating sodium ion gradient-based endogenic electrical stimulation dressing (smig-EESD) is developed to achieve passive, non-invasive, endogenic electrical stimulation of wounds, which avoids the side effects of electrode occupancy, electrochemical reactions, and thermal effects present in traditional exogenous electrical stimulation. smig-EESD reduced the potential at the center of the wound by specifically absorbing Na+ in the exudate, ultimately strengthening the wound endogenous EF. Importantly, smig-EESD converted the active transport dependent on Na+/K+-ATPase into passive diffusion by adsorbing extracellular matrix Na+, and the saved ATP consumption promoted tissue repair process. smig-EESD regulated innate and adaptive immune responses by upregulating the secretion of multiple cytokines, thereby suppressing injury-associated inflammatory responses and reducing scar formation. smig-EESD reveals an endogenic electrical stimulation strategy that is independent of electrodes and circuits, and provides new insights into the future development of electronic medicine.
Collapse
Affiliation(s)
- Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, School of Biomedical Engineering, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Fan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin Qi
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuan Bai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Meng Xiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujia Lv
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Jinrui Liang
- State Key Laboratory of Chemical Resource Engineering, Department of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingcheng Tang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, School of Biomedical Engineering, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Department of Plastic Surgery, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning, 530004, China
| | - Dan Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
15
|
Han F, Chen S, Wang F, Liu M, Li J, Liu H, Yang Y, Zhang H, Liu D, He R, Cao W, Qin X, Xu F. High-Conductivity, Self-Healing, and Adhesive Ionic Hydrogels for Health Monitoring and Human-Machine Interactions Under Extreme Cold Conditions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412726. [PMID: 39874215 PMCID: PMC12021042 DOI: 10.1002/advs.202412726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/16/2024] [Indexed: 01/30/2025]
Abstract
Ionic conductive hydrogels (ICHs) are emerging as key materials for advanced human-machine interactions and health monitoring systems due to their unique combination of flexibility, biocompatibility, and electrical conductivity. However, a major challenge remains in developing ICHs that simultaneously exhibit high ionic conductivity, self-healing, and strong adhesion, particularly under extreme low-temperature conditions. In this study, a novel ICH composed of sulfobetaine methacrylate, methacrylic acid, TEMPO-oxidized cellulose nanofibers, sodium alginate, and lithium chloride is presented. The hydrogel is designed with a hydrogen-bonded and chemically crosslinked network, achieving excellent conductivity (0.49 ± 0.05 S m-1), adhesion (36.73 ± 2.28 kPa), and self-healing capacity even at -80 °C. Furthermore, the ICHs maintain functionality for over 45 days, showcasing outstanding anti-freezing properties. This material demonstrates significant potential for non-invasive, continuous health monitoring, adhering conformally to the skin without signal crosstalk, and enabling real-time, high-fidelity signal transmission in human-machine interactions under cryogenic conditions. These ICHs offer transformative potential for the next generation of multimodal sensors, broadening application possibilities in harsh environments, including extreme weather and outer space.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Shumeng Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Fei Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Mei Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Jiahui Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Yanshen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Haoqing Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Dong Liu
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityNo. 28, Xianning West RoadXi'anShaanxi710049P. R. China
| | - Rongyan He
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
- Guangxi Key Laboratory of Special BiomedicineSchool of MedicineGuangxi UniversityNanning530004P. R. China
| | - Wentao Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Xiaochuan Qin
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC)Xi'an Jiaotong UniversityXi'an710049P. R. China
| |
Collapse
|
16
|
Li J, Chen M, Cheng S, Gao S, Zhai J, Yu D, Wang J, Zhang J, Cai K. Sensorable zwitterionic antibacterial hydrogel for wound electrostimulation therapy. Biomaterials 2025; 315:122958. [PMID: 39547138 DOI: 10.1016/j.biomaterials.2024.122958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Wound healing process has always been a focal point of concern, with a plethora of hydrogel dressings available; however, their therapeutic efficacy remains a hindrance to wound closure. This article reports on a dual-network conductive system, PEDOT:PSS-co-PSBMA/XLG (PPSX) hydrogel dressing, Constructed using poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT: PSS) in combination with zwitterionic N, N-dimethyl-N-(2-methacryloyloxyethyl)-N- (3-sulfopropyl) ammonium betaine (SBMA) and nanoclay-synthesized lithium magnesium silicate (XLG). The hydrogel powder produced from it can absorb interfacial water within 30 s via physical interactions to spontaneously form hydrogels of arbitrary shapes. With a conductivity of 1.8 s/m, it can be utilized for developing flexible sensing bioelectronic devices to monitor human activities (facial expressions, blinking, swallowing, speaking, joint movements), as well as constructing electrodes for monitoring muscle movements and motorial intensity. More importantly, PPSX hydrogel effectively inhibits bacterial growth and promotes cell proliferation, thus facilitating wound healing and presenting extensive application prospects in the medical field.
Collapse
Affiliation(s)
- Jinghua Li
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471000, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Wound Repair, The First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou, 570100, China; Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China.
| | - Meijun Chen
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Shaowen Cheng
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Wound Repair, The First Affiliated Hospital, College of Emergency and Trauma, Hainan Medical University, Haikou, 570100, China
| | - Shegan Gao
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Jingming Zhai
- The 1st Affiliated Hospital, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Dongmei Yu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Jianping Wang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China
| | - Jianbo Zhang
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
17
|
Chen K, Gurtner GC. Skin wound healing measured remotely through molecular flux. Nature 2025; 640:321-322. [PMID: 40205219 DOI: 10.1038/d41586-025-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
|
18
|
Zhao L, Lu Y, Lu X, Guo B, Chang Z, Ren Q, Li X, Wang B, Lv A, Wei J, Nie J, Lv Y, Rotenberg MY, Zhang Y, Ji D, Fang Y. Hierarchical Porous Aerogel-Hydrogel Interlocking Bioelectronic Interface for Arrhythmia Management. SMALL METHODS 2025:e2401844. [PMID: 40159855 DOI: 10.1002/smtd.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/20/2025] [Indexed: 04/02/2025]
Abstract
Carbon aerogels with exceptional electrical properties are considered promising materials for bioelectronics in signal detection and electrical stimulation. To address the mechanical incompatibilities of carbon aerogels with bio-interfaces, particularly for dynamic tissues and organs, the incorporation of hydrogels is an effective strategy. However, achieving excellent electrical performance in carbon aerogel-hydrogel hybrids remains a significant challenge. Two key factors contribute to this difficulty: 1) unrestricted hydrogel infiltration during preparation can lead to complete encapsulation of the conductive aerogel, and 2) the high swelling behavior of hydrogels can cause disconnection of the aerogel. Herein, a stretchable, highly conductive bioelectronic interface is achieved by forming an interlocking network between hierarchical porous carbon aerogel (PA) with polyvinyl alcohol (PVA) hydrogel. Partial exposure of the PA due to confined infiltration of PVA into the porous structure maintains the electrical performance, while the non-swellable PVA ensures mechanical stretchability and stability. The hybrid demonstrates excellent conductivity (370 S·m-1), high charge storage capacity (1.66 mC cm-2), remarkable stretchability (250%), and long-term stability over three months, enabling effective signal recording and electrical stimulation. For the first time, carbon aerogel-hydrogel hybrids enable cardiac pacing both ex vivo and in vivo in rat heart models. Compared to conventional platinum electrodes, the PA-PVA electrodes require lower pacing voltages, suggesting potential advantages in power efficiency and reduced tissue damage. The electrodes can be integrated with a wireless implantable device for in vivo synchronous electrocardiogram monitoring and cardiac pacing, underscoring their potential for arrhythmia management.
Collapse
Affiliation(s)
- Lei Zhao
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuhan Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xinxin Lu
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bihan Guo
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Chang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Qinjuan Ren
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xiang Li
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Bingfang Wang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ailin Lv
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jianfang Nie
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yingying Lv
- Research Centre of Nanoscience and Nanotechnology, College of Science, Shanghai University, Shanghai, 200444, China
| | - Menahem Y Rotenberg
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Ya Zhang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Daizong Ji
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yin Fang
- Research Center for Translational Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, 200120, China
| |
Collapse
|
19
|
Yu SM, Granick S. Electric spiking activity in epithelial cells. Proc Natl Acad Sci U S A 2025; 122:e2427123122. [PMID: 40096608 PMCID: PMC11962502 DOI: 10.1073/pnas.2427123122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/09/2025] [Indexed: 03/19/2025] Open
Abstract
Epithelial cells (human keratinocyte cells and the canine MDCK cell line), traditionally viewed as electrically non-self-excitable and involved primarily in physiological functions such as barrier presentation, absorption, secretion, and protection, are shown here to exhibit traveling extracellular electric charge when they recover from spatially focused, laser-induced wounding of confluent monolayers cultured on a multielectrode array chip. Voltage spikes measured on these electrodes display depolarization, repolarization, and hyperpolarization phases with amplitudes similar to the action potentials of neurons but with the markedly slower duration of 1 to 2 s. Some propagate distances up to hundreds of μm from the wound with a mean speed of around 10 mm s-1. Generation and transmission of bioelectric signals are significantly influenced by the perturbation of mechanosensitive cationic ion channels. These direct measurements confirm bioelectric signaling that previous work has hypothesized to regulate epithelial cell development and may have relevance to the frequency parameter selection of bioelectric devices.
Collapse
Affiliation(s)
- Sun-Min Yu
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA01003
| | - Steve Granick
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA01003
| |
Collapse
|
20
|
Wang Y, Feng X, Chen X. Autonomous Bioelectronic Devices Based on Silk Fibroin. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500073. [PMID: 40123251 DOI: 10.1002/adma.202500073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Indexed: 03/25/2025]
Abstract
The development of autonomous bioelectronic devices capable of dynamically adapting to changing biological environments represents a significant advancement in healthcare and wearable technologies. Such systems draw inspiration from the precision, adaptability, and self-regulation of biological processes, requiring materials with intrinsic versatility and seamless bio-integration to ensure biocompatibility and functionality over time. Silk fibroin (SF) derived from Bombyx mori cocoons, has emerged as an ideal biomaterial with a unique combination of biocompatibility, mechanical flexibility, and tunable biodegradability. Adding autonomous features into SF, including self-healing, shape-morphing, and controllable degradation, enables dynamic interactions with living tissues while minimizing immune responses and mechanical mismatches. Additionally, structural tunability and environmental sustainability of SF further reinforce its potential as a platform for adaptive implants, epidermal electronics, and intelligent textiles. This review explores recent progress in understanding the structure-property relationships of SF, its modification strategies, and its great potential for integration into advanced autonomous bioelectronic systems while addressing challenges related to scalability, reproducibility, and multifunctionality. Future opportunities, such as AI-assisted material design, scalable fabrication techniques, and the incorporation of wireless and personalized technologies, are also discussed, positioning SF as a key material in bridging the gap between biological systems and artificial technologies.
Collapse
Affiliation(s)
- Yanling Wang
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xue Feng
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, 314000, China
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Plank-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
21
|
Xie X, Zhu C, Zhao J, Fan Y, Lei H, Fan D. Combined treatment strategy of hydrogel dressing and physiotherapy for rapid wound healing. Adv Colloid Interface Sci 2025; 341:103477. [PMID: 40139070 DOI: 10.1016/j.cis.2025.103477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Wound care for open wounds is essential for reducing pain, protecting open wounds, speeding up the healing process and avoiding scar formation. Among the various three-dimensional (3D) carrier biomaterials such as films, sponges, and hydrogels, hydrogels are chemically and physically most similar to the natural extracellular matrix (ECM). Meanwhile, hydrogels are also common 3D carriers that can be efficiently loaded with drugs or cells. In addition, it forms a protective barrier on the wound surface to prevent secondary external infections and has the effect of directing skin cell expansion, tissue infiltration, and wound closure. However, the role of functional drugs in wound healing also faces a number of issues such as resistance, dosage, activity, and stability; therefore, a richer array of therapies is needed for wound repair and other areas of development. Physiotherapy, also known as nonpharmacological therapy, is a commonly used clinical treatment. Recently, more and more physiotherapy have been used for wound repair due to their high efficiency and low irritation. In recent reports, many researchers have tended to use hydrogel dressings in combination with physiotherapy, and this combination therapy is beneficial because it can both protect the wound microenvironment and accelerates wound healing. Therefore, this paper reviews the combined use of hydrogel dressings and physiotherapy in wound healing. We present the characteristics of hydrogel and physiotherapy and focus on the progress and problems of these two combined therapies in recent years.
Collapse
Affiliation(s)
- Xiaofei Xie
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Jing Zhao
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Yanru Fan
- The College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Huan Lei
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710127, China.
| |
Collapse
|
22
|
Xue H, Jin J, Huang X, Tan Z, Zeng Y, Lu G, Hu X, Chen K, Su Y, Hu X, Peng X, Jiang L, Wu J. Wearable flexible ultrasound microneedle patch for cancer immunotherapy. Nat Commun 2025; 16:2650. [PMID: 40102412 PMCID: PMC11920228 DOI: 10.1038/s41467-025-58075-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
Clinical approaches for cancer therapy face several interrelated challenges involving inefficient drug delivery, potential adverse side effects, and inconvenience. Here, we present an integrated wearable flexible ultrasound microneedle patch (wf-UMP) that serves as a portable platform for convenient, efficient, and minimally invasive cancer therapy. The wf-UMP adopts an all-in-one bioelectronic concept, which integrates a stretchable lead-free ultrasound transducer array for acoustic emission, a bioadhesive hydrogel elastomer for robust adhesion and acoustic coupling, and a dissolvable microneedle patch loaded with biocompatible piezoelectric nanoparticles for painless drug delivery and reactive oxygen species generation. With soft mechanical properties and enhanced electromechanical performance, wf-UMP can be robustly worn on curved and dynamic tissue surfaces for easy and effective manipulation. In preclinical studies involving mice, wf-UMP demonstrated notable anticancer effects by inducing tumor cell apoptosis, amplifying oxidative stress, and modulating immune cell proliferation. Furthermore, the synergistic immunotherapy induced by wf-UMP and Anti-PD1 further improved anticancer immunity by activating immunogenic cell death and regulating macrophages polarization, inhibiting distant tumor growth and tumor recurrence.
Collapse
Affiliation(s)
- Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhi Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Xin Hu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keliang Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yonglin Su
- Department of Rehabilitation, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China.
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China.
- College of Physics, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
23
|
Ye Y, Niu X, Zheng K, Wan Z, Zhang W, Hua Q, Zhu J, Qiu Z, Wang S, Liu H, Renneckar S, Rojas O, Jiang F. Toughening hydrogels through a multiscale hydrogen bonding network enabled by saccharides for a bio-machine interface. MATERIALS HORIZONS 2025; 12:1878-1890. [PMID: 39668672 DOI: 10.1039/d4mh01645a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hydrogels have considerably emerged in a variety of fields, but their weak mechanical properties severely restrict the wide range of implementation. Herein, we propose a multiscale hydrogen bonding toughening strategy using saccharide-based materials to optimize the hydrogel network. The monosaccharide (glucose) at the molecular scale and polysaccharide (cellulose nanofibrils) at the nano/micro scale can effectively form hydrogen bonds across varied scales within the hydrogel network, leading to significantly enhanced mechanical properties. Besides, the toughened hydrogels present excellent environmental resilience and bad solvent resistance, allowing them to retain their performance in various severe environments. Notably, after being exchanged with a bad solvent such as ethanol, the alcogel exhibits strain-depended vivid interference color, allowing it to function as a mechano-optical sensor. Finally, this strategy has been shown to be adaptable across multiple material systems, and the resulting hydrogels have potential as a bioelectronic interface for long-term stable recording of physiological signals, highlighting the potential of sustainable biomaterials in designing high-quality hydrogels for advanced applications.
Collapse
Affiliation(s)
- Yuhang Ye
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Xun Niu
- Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kelvin Zheng
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Zhangmin Wan
- Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Wucheng Zhang
- Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08540, USA
| | - Qi Hua
- Advanced Renewable Materials Lab, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jiaying Zhu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Zhe Qiu
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Siheng Wang
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing, Jiang Su Province, 210042, China
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Chinese Academy of Forestry, Nanjing, Jiang Su Province, 210042, China
| | - Scott Renneckar
- Advanced Renewable Materials Lab, Faculty of Forestry, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Orlando Rojas
- Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Feng Jiang
- Sustainable Functional Biomaterials Lab, Department of Wood Science, University of British Columbia, 2900-2424 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
24
|
Liu Z, Gao L, Han S, Zhang Z, Jiang H, Liu R, Zhang Y, Xu H, Mei D, Tao K. Bioinspired Supramolecular Dressing of Adaptable Programmability and Multifunctionality for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13690-13701. [PMID: 39966183 DOI: 10.1021/acsami.4c22919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
As the largest organ in the human body, the skin plays a crucial role in protecting tissues from external threats. Damage in the skin can not only lead to bleeding and increase the risk of infection and inflammation but also result in tissue necrosis and scar formations. Therefore, wound dressings of high efficiency and intrinsic biocompatibility are essential for defending the wound sites and promoting healing. However, the state-of-the-art wound dressings have intrinsic shortcomings in curing, which would exudate due to limited water absorption capacity and the adhesion side effect, which may cause secondary damages. There remains a gap in the availability of wound dressings that simultaneously integrate antibacterial, self-healing, biodegradable, and temperature-sensitive properties. Herein, a bioinspired supramolecular hydrogel-based wound dressing composed of a KYD (KYDYKYDYKK) self-assembly peptide-agar double-network is developed with the assistance of 3D printing. The reversible self-assembling dynamics of the KYD along with the existence of lysine residues endow the double-networks with the ability of self-healing and antibacterial properties, while the introduction of agar allows the bioinspired system to be temperature sensitive. In addition, the grid size of the bioinspired dressing is light-stimulated and adaptable, allowing for real-time control of air permeability. Combined with intrinsic biodegradability, the multifunctional supramolecular wound dressing enables sustainable drug releases. Consequently, the programmability of strength, flexibility, and performances in this design ensures customizability in a variety of wound conditions of the bioinspired supramolecular wound dressing, thus showing promising potential in enhancing clinical wound management and improving patient lifecare.
Collapse
Affiliation(s)
- Zixuan Liu
- Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| | - Lujing Gao
- Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| | - Shuyi Han
- China Petroleum Engineering & Construction Corporation Southwest Company, Chengdu 610041, China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Haoye Jiang
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Advanced Equipment Manufacturing and Measurement Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| | - Ruiqi Liu
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Advanced Equipment Manufacturing and Measurement Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yu Zhang
- Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Advanced Equipment Manufacturing and Measurement Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Kai Tao
- Future Science Research Institute, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, Hangzhou 311200, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang Key Laboratory of Advanced Equipment Manufacturing and Measurement Technology, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
- Zhejiang-Ireland Joint Laboratory of Bio-Organic Dielectrics & Devices, Hangzhou 310058, China
| |
Collapse
|
25
|
Lao J, Jiao Y, Zhang Y, Xu H, Wang Y, Ma Y, Feng X, Yu J. Intrinsically Adhesive and Conductive Hydrogel Bridging the Bioelectronic-Tissue Interface for Biopotentials Recording. ACS NANO 2025; 19:7755-7766. [PMID: 39988891 DOI: 10.1021/acsnano.4c12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Achieving high-quality biopotential signal recordings requires soft and stable interfaces between soft tissues and bioelectronic devices. Traditional bioelectronics, typically rigid and dependent on medical tape or sutures, lead to mechanical mismatches and inflammatory responses. Existing conducting polymer-based bioelectronics offer tissue-like softness but lack intrinsic adhesion, limiting their effectiveness in creating stable, conductive interfaces. Here, we present an intrinsically adhesive and conductive hydrogel with a tissue-like modulus and strong adhesion to various substrates. Adhesive catechol groups are incorporated into the conductive poly(3,4-ethylenedioxythiophene) (PEDOT) hydrogel matrix, which reduces the PEDOT size and improves dispersity to form a percolating network with excellent electrical conductivity and strain insensitivity. This hydrogel effectively bridges the bioelectronics-tissue interface, ensuring pristine signal recordings with minimal interference from bodily movements. This capability is demonstrated through comprehensive in vivo experiments, including electromyography and electrocardiography recordings on both static and dynamic human skin and electrocorticography on moving rats. This hydrogel represents a significant advancement for bioelectronic interfaces, facilitating more accurate and less intrusive medical diagnostics.
Collapse
Affiliation(s)
- Jiazheng Lao
- Institute of Flexible Electronics Technology, Tsinghua University, Jiaxing, Zhejiang 314000, China
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Yang Jiao
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yingchao Zhang
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hanyan Xu
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Yutong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yinji Ma
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Jin T, Wang H, Ullah I, Xie W, Lin T, Tan Q, Pan X, Yuan Y. A Wireless Operated Flexible Bioelectronic Microneedle Patch for Actively Controlled Transdermal Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417136. [PMID: 39906918 DOI: 10.1002/adma.202417136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Precise control over drug release rates is critical for enhancing therapeutic efficacy, reducing side effects, and maintaining stable drug levels. While microneedles (MNs) offer a promising approach for transdermal drug delivery, conventional passive-response systems often lack adaptability across diverse drugs and disease models, limiting their versatility. Here, this work presents a flexible bioelectronic microneedle patch (FBMP) that integrates flexible electronics for actively controlled transdermal delivery. The FBMP incorporates a flexible printed circuit board (FPCB), a eutectic gallium-indium (EGaIn) heating film, and dual-layer microneedles with a polyvinyl alcohol (PVA) core and polycaprolactone (PCL) shell. This configuration allows real-time adjustment of the thermal response rate via smartphone-controlled Bluetooth, achieving rapid drug release within 2 min or sustained release over 10 h. In various animal models, the FBMP demonstrate versatility in delivering multiple drug types, optimizing efficacy, and minimizing side effects for both acute and chronic conditions. Overall, this work introduces a flexible, universal electronic microneedle platform with significant potential to advance precision and personalized medicine by enabling customizable, actively controlled drug release.
Collapse
Affiliation(s)
- Taosha Jin
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Haiyang Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Ihsan Ullah
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Wenjiao Xie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Taian Lin
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Qiaoling Tan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Xiaoyu Pan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
| | - Youyong Yuan
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
27
|
Xiao J, An X, Tang F, Dai X, Zhang S, Zhu X, Shen J, Yuan J, Gan D, Wang M. Photosynthesis-Inspired NIR-Triggered Fe₃O₄@MoS₂ Core-Shell Nanozyme for Promoting MRSA-Infected Diabetic Wound Healing. Adv Healthc Mater 2025; 14:e2404525. [PMID: 39831851 DOI: 10.1002/adhm.202404525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare Fe3O4@MoS2 core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections. The Fe3O4@MoS2 NPs continuously catalyze the production of reactive oxygen species (ROS) from hydrogen peroxide through photosynthesis-like reactions and convert light energy into heat with a photothermal efficiency of 30.30%. In addition, the photosynthetically generated ROS, combined with the iron-induced cell death mechanism of the Fe3O4@MoS2 NPs, confer them with exceptional and broad-spectrum antibacterial properties, achieving antimicrobial activities of up to 98.62% for Staphylococcus aureus, 99.22% for Escherichia coli, and 98.55% for methicillin-resistant Staphylococcus aureus. The composite exhibits good cell safety and hemocompatibility. Finally, a full-thickness diabetic wound model validates the significant pro-healing properties of Fe3O4@MoS2 in chronic diabetic wounds. Overall, the design of photosynthesis-inspired Fe3O4@MoS2 presents new perspectives for developing efficient photothermal nano-enzymatic compounds, offering a promising solution to the challenges of antimicrobial drug resistance and antibiotic misuse.
Collapse
Affiliation(s)
- Jiamu Xiao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuping An
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Fei Tang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xu Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Song Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaolong Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Qixia District, Nanjing, 210023, China
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Donglin Gan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Mingqian Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
28
|
Shin Y, Lee HS, Kim JU, An YH, Kim YS, Hwang NS, Kim DH. Functional-hydrogel-based electronic-skin patch for accelerated healing and monitoring of skin wounds. Biomaterials 2025; 314:122802. [PMID: 39255530 DOI: 10.1016/j.biomaterials.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Conductive hydrogels feature reasonable electrical performance as well as tissue-like mechanical softness, thus positioning them as promising material candidates for soft bio-integrated electronics. Despite recent advances in materials and their processing technologies, however, facile patterning and monolithic integration of functional hydrogels (e.g., conductive, low-impedance, adhesive, and insulative hydrogels) for all-hydrogel-based soft bioelectronics still poses significant challenges. Here, we report material design, fabrication, and integration strategies for an electronic-skin (e-skin) patch based on functional hydrogels. The e-skin patch was fabricated by using photolithography-compatible functional hydrogels, such as poly(2-hydroxyethyl acrylate) (PHEA) hydrogel (substrate), Ag flake hydrogel (interconnection; conductivity: ∼571.43 S/cm), poly(3,4-ethylenedioxythiophene:polystyrene) (PEDOT:PSS) hydrogel (working electrode; impedance: ∼69.84 Ω @ 1 Hz), polydopamine (PDA) hydrogel (tissue adhesive; shear strength: ∼725.1 kPa), and poly(vinyl alcohol) (PVA) hydrogel (encapsulation). The properties of these functional hydrogels closely resemble those of human tissues in terms of water content and Young's modulus, enabling stable tissue-device interfacing in dynamically changing physiological environments. We demonstrated the efficacy of the e-skin patch through its application to accelerated healing and monitoring of skin wounds in mouse models - efficient fibroblast migration, proliferation, and differentiation promoted by electric field (EF) stimulation and iontophoretic drug delivery, and monitoring of the accelerated healing process through impedance mapping. The all-hydrogel-based e-skin patch is expected to create new opportunities for various clinically-relevant tissue interfacing applications.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Su Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- BioMax/N-Bio Institute, Institute of Bio Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Sol Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea; BioMax/N-Bio Institute, Institute of Bio Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Linh VTN, Han S, Koh E, Kim S, Jung HS, Koo J. Advances in wearable electronics for monitoring human organs: Bridging external and internal health assessments. Biomaterials 2025; 314:122865. [PMID: 39357153 DOI: 10.1016/j.biomaterials.2024.122865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Devices used for diagnosing disease are often large, expensive, and require operation by trained professionals, which can result in delayed diagnosis and missed opportunities for timely treatment. However, wearable devices are being recognized as a new approach to overcoming these difficulties, as they are small, affordable, and easy to use. Recent advancements in wearable technology have made monitoring information possible from the surface of organs like the skin and eyes, enabling accurate diagnosis of the user's internal status. In this review, we categorize the body's organs into external (e.g., eyes, oral cavity, neck, and skin) and internal (e.g., heart, brain, lung, stomach, and bladder) organ systems and introduce recent developments in the materials and designs of wearable electronics, including electrochemical and electrophysiological sensors applied to each organ system. Further, we explore recent innovations in wearable electronics for monitoring of deep internal organs, such as the heart, brain, and nervous system, using ultrasound, electrical impedance tomography, and temporal interference stimulation. The review also addresses the current challenges in wearable technology and explores future directions to enhance the effectiveness and applicability of these devices in medical diagnostics. This paper establishes a framework for correlating the design and functionality of wearable electronics with the physiological characteristics and requirements of various organ systems.
Collapse
Affiliation(s)
- Vo Thi Nhat Linh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Seunghun Han
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Eunhye Koh
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Sumin Kim
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea
| | - Ho Sang Jung
- Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea; Advanced Materials Engineering, University of Science and Technology (UST), Daejeon, 34113, South Korea; School of Convergence Science and Technology, Medical Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| | - Jahyun Koo
- School of Biomedical Engineering, College of Health Science, Korea University, Seoul, 02841, South Korea; Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
30
|
Zheng H, Chen K, Dun Y, Xu Y, Zhou A, Ge H, Yang Y, Ning X. Harnessing Nature's ingenuity to engineer butterfly-wing-inspired photoactive nanofiber patches for advanced postoperative tumor treatment. Biomaterials 2025; 314:122808. [PMID: 39270626 DOI: 10.1016/j.biomaterials.2024.122808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Postoperative tumor treatment necessitates a delicate balance between eliminating residual tumor cells and promoting surgical wound healing. Addressing this challenge, we harness the innovation and elegance of nature's ingenuity to develop a butterfly-wing-inspired photoactive nanofiber patch (WingPatch), aimed at advancing postoperative care. WingPatch is fabricated using a sophisticated combination of electrostatic spinning and spraying techniques, incorporating black rice powder (BRP) and konjac glucomannan (KGM) into a corn-derived polylactic acid (PLA) nanofiber matrix. This fabrication process yields a paclitaxel-infused porous nanofiber architecture that mirrors the delicate patterns of butterfly wings. Meanwhile, all-natural composites have been selected for their strategic roles in postoperative recovery. BRP offers the dual benefits of photothermal therapy and antibacterial properties, while KGM enhances both antibacterial effectiveness and tissue regeneration. Responsive to near-infrared light, WingPatch ensures robust tissue adhesion and initiates combined photothermal and chemotherapeutic actions to effectively destroy residual tumor cells. Crucially, it simultaneously prevents infections and promotes wound healing throughout the treatment process. Its effectiveness has been confirmed by animal studies, and WingPatch significantly improves treatment outcomes in both breast and liver tumor models. Thus, WingPatch exemplifies our dedication to leveraging natural world's intricate patterns and inventiveness to propel postoperative care forward.
Collapse
Affiliation(s)
- Hao Zheng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yitong Dun
- International Department of Jinling High School Hexi Campus, Nanjing, 210019, China
| | - Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Haixiong Ge
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Youwen Yang
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang, 330013, China.
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
31
|
Wang H, Yang L, Yang Y. A review of sodium alginate-based hydrogels: Structure, mechanisms, applications, and perspectives. Int J Biol Macromol 2025; 292:139151. [PMID: 39725117 DOI: 10.1016/j.ijbiomac.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
With the global emphasis on green and sustainable development, sodium alginate-based hydrogels (SAHs), as a renewable and biocompatible environmental material, have garnered widespread attention for their research and application. This review summarizes the latest advancements in the study of SAHs, thoroughly discussing their structural characteristics, formation mechanisms, and current applications in various fields, as well as prospects for future development. Initially, the chemical structure of SA and the network structure of hydrogels are introduced, and the impact of factors such as molecular weight, crosslinking density, and environmental conditions on the hydrogel structure is explored. Subsequently, the formation mechanisms of SAHs, including physical and chemical crosslinking, are detailed. Furthermore, a systematic review of the applications of SAHs in tissue engineering, drug delivery, medical dressings, wastewater treatment, strain sensor, and food science is provided. Finally, future research directions for SAHs are outlined. This work not only offers researchers a comprehensive framework for the study of SAHs but also provides significant theoretical and experimental foundations for the development of new hydrogel materials.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| |
Collapse
|
32
|
Szunerits S, Boukherroub R, Kleber C, Knoll W, Yunda J, Rumipamba J, Torres G, Melinte S. Biosensors integrated within wearable devices for monitoring chronic wound status. APL Bioeng 2025; 9:010901. [PMID: 39926013 PMCID: PMC11803754 DOI: 10.1063/5.0220516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Slowly healing wounds significantly affect the life quality of patients in different ways, due to constant pain, unpleasant odor, reduced mobility up to social isolation, and personal frustration. While remote wound management has become more widely accepted since the COVID-19 pandemic, delayed treatment remains frequent and results in several wound healing related complications. As inappropriate management of notably diabetic foot ulcers is linked to a high risk of amputation, effective management of wounds in a patient-centered manner remains important to be implemented. The integration of diagnostic devices into wound bandages is under way, owing to advancements in materials science and nanofabrication strategies as well as innovation in communication technologies together with machine learning and data-driven assessment tools. Leveraging advanced analytical approaches around local pH, temperature, pressure, and wound biomarker sensing is expected to facilitate adequate wound treatment. The state-of-the-art of time-resolved monitoring of the wound status by quantifying key physiological parameters as well as wound biomarkers' concentration is presented herewith. A special focus will be given to smart bandages with on-demand delivery capabilities for improved wound management.
Collapse
Affiliation(s)
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520—IEMN, F-59000 Lille, France
| | - Christoph Kleber
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Wolfgang Knoll
- Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria
| | - Jhonny Yunda
- Université catholique de Louvain, ICTEAM, 1348 Louvain-la-Neuve, Belgium
| | - José Rumipamba
- Université catholique de Louvain, ICTEAM, 1348 Louvain-la-Neuve, Belgium
| | - Guido Torres
- Université catholique de Louvain, ICTEAM, 1348 Louvain-la-Neuve, Belgium
| | - Sorin Melinte
- Université catholique de Louvain, ICTEAM, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
33
|
Cho YE, Lee S, Ma SJ, Sun JY. Network design for soft materials: addressing elasticity and fracture resistance challenges. SOFT MATTER 2025; 21:1603-1623. [PMID: 39937243 DOI: 10.1039/d4sm01430h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Soft materials, such as elastomers and gels, feature crosslinked polymer chains that provide stretchable and elastic mechanical properties. These properties are derived from entropic elasticity, which limits energy dissipation and makes the material susceptible to fracture. To address this issue, network designs that dissipate energy through the plastic zone have been introduced to enhance toughness; however, this approach compromises elasticity, preventing the material from fully recovering its original shape after deformation. In this review, we describe the trade-off between fracture resistance and elasticity, exploring network designs that overcome this limitation to achieve both high toughness and low hysteresis. The development of soft materials that are both elastic and fracture-resistant holds significant promise for applications in stretchable electronics, soft robotics, and biomedical devices. By analyzing successful network designs, we identify strategies to further improve these materials and discuss potential enhancements based on existing limitations.
Collapse
Affiliation(s)
- Yong Eun Cho
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sihwan Lee
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Sang Jun Ma
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeong-Yun Sun
- Departmant of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
34
|
Cui S, Han D, Chen G, Liu S, Xu Y, Yu Y, Peng L. Toward Stretchable Flexible Integrated Sensor Systems. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11397-11414. [PMID: 39644227 DOI: 10.1021/acsami.4c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Skin-like flexible sensors hold great potential as the next generation of intelligent electronic devices owing to their broad applications in environmental monitoring, human-machine interfaces, the Internet of Things, and artificial intelligence. Flexible electronics inspired by human skin play a vital role in continuous and real-time health monitoring. This review summarizes recent progress in skin-mountable electronics developed by designing flexible electrodes and substrates into different structures, including serpentine, microcrack, wrinkle, and kirigami. Furthermore, this review briefly discusses advances in wearable integrated sensor systems that mimic the flexibility of human skin, as well as multisensing functions. In the future, innovations in stretchable integrated sensor systems will be crucial to develop next-generation intelligent skin-based sensors for practical applications such as medical diagnosis, treatment, and environment monitoring.
Collapse
Affiliation(s)
- Songya Cui
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Dongxue Han
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Guang Chen
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Shuting Liu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Yuhong Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yufeng Yu
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| | - Liang Peng
- School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China
| |
Collapse
|
35
|
Vo DK, Trinh KTL. Advances in Wearable Biosensors for Wound Healing and Infection Monitoring. BIOSENSORS 2025; 15:139. [PMID: 40136936 PMCID: PMC11940385 DOI: 10.3390/bios15030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/16/2025] [Accepted: 02/21/2025] [Indexed: 03/27/2025]
Abstract
Wound healing is a complicated biological process that is important for restoring tissue integrity and function after injury. Infection, usually due to bacterial colonization, significantly complicates this process by hindering the course of healing and enhancing the chances of systemic complications. Recent advances in wearable biosensors have transformed wound care by making real-time monitoring of biomarkers such as pH, temperature, moisture, and infection-related metabolites like trimethylamine and uric acid. This review focuses on recent advances in biosensor technologies designed for wound management. Novel sensor architectures, such as flexible and stretchable electronics, colorimetric patches, and electrochemical platforms, enable the non-invasive detection of changes associated with wounds with high specificity and sensitivity. These are increasingly combined with AI and analytics based on smartphones that can enable timely and personalized interventions. Examples are the PETAL patch sensor that applies multiple sensing mechanisms for wide-ranging views on wound status and closed-loop systems that connect biosensors to therapeutic devices to automate infection control. Additionally, self-powered biosensors that tap into body heat or energy from the biofluids themselves avoid any external batteries and are thus more effective in field use or with limited resources. Internet of Things connectivity allows further support for remote sharing and monitoring of data, thus supporting telemedicine applications. Although wearable biosensors have developed relatively rapidly and their prospects continue to expand, regular clinical application is stalled by significant challenges such as regulatory, cost, patient compliance, and technical problems related to sensor accuracy, biofouling, and power, among others, that need to be addressed by innovative solutions. The goal of this review is to synthesize current trends, challenges, and future directions in wound healing and infection monitoring, with emphasis on the potential for wearable biosensors to improve patient outcomes and reduce healthcare burdens. These innovations are leading the way toward next-generation wound care by bridging advanced materials science, biotechnology, and digital health.
Collapse
Affiliation(s)
- Dang-Khoa Vo
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
36
|
Yu M, Yang H, Ye H, Lin S, Lu Y, Deng H, Xu L, Guo Y, Ho JS, Ye TT. Smartphone administered pulsed radio frequency energy therapy for expedited cutaneous wound healing. NPJ Digit Med 2025; 8:103. [PMID: 39955463 PMCID: PMC11830092 DOI: 10.1038/s41746-025-01462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
Pulsed radio frequency energy (PRFE) therapy is a non-invasive, electromagnetic field-based treatment modality successfully used in clinical applications. However, conventional PRFE devices are often bulky, expensive, and require extended treatment durations, limiting patient adherence and efficacy. Here, we present a lightweight, cost-effective wearable PRFE system consisting of a flexible electronic bandage and a smartphone. The bandage, mainly composed of an NFC Frequency Doubler (NFD) and a Radiofrequency Energy Radiator (RER), is powered and administered by the smartphone to generate 27.12 MHz radio wave pulses, for simplified, smartphone-enabled PRFE therapy. Its ultra-flexible, battery-free design supports personalized wound care at a low-cost (
Collapse
Affiliation(s)
- Mengxia Yu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongjia Yang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Haoteng Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuhuang Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yujie Lu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haoqiang Deng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Lulu Xu
- The Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Yongxin Guo
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China.
| | - John S Ho
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
| | - Terry Tao Ye
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China.
- Institute of Nanoscience and Applications, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
37
|
Alberts A, Tudorache DI, Niculescu AG, Grumezescu AM. Advancements in Wound Dressing Materials: Highlighting Recent Progress in Hydrogels, Foams, and Antimicrobial Dressings. Gels 2025; 11:123. [PMID: 39996666 PMCID: PMC11854827 DOI: 10.3390/gels11020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Recent advancements in wound dressing materials have significantly improved acute and chronic wound management by addressing challenges such as infection control, moisture balance, and enhanced healing. Important progress has been made, especially with hydrogels, foams, and antimicrobial materials for creating optimized dressings. Hydrogels are known for maintaining optimal moisture levels, while foam dressings are excellent exudate absorbents. Meanwhile, antimicrobial dressing incorporates various antimicrobial agents to reduce infection risks. These dressing options reduce wound healing time while focusing on customized patient needs. Therefore, this review highlights the newest research materials and prototypes for wound healing applications, emphasizing their particular benefits and clinical importance. Innovations such as stimuli-responsive hydrogels and hybrid bioengineered composites are discussed in relation to their enhanced properties, including responsiveness to pH, temperature, glucose, or enzymes and drug delivery precision. Moreover, ongoing clinical trials have been included, demonstrating the potential of emerging solutions to be soon translated from the laboratory to clinical settings. By discussing interdisciplinary approaches that integrate advanced materials, nanotechnology, and biological insights, this work provides a contemporary framework for patient-centric, efficient wound care strategies.
Collapse
Affiliation(s)
- Adina Alberts
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Dana-Ionela Tudorache
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
| | - Adelina-Gabriela Niculescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-I.T.); (A.M.G.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
38
|
Yu B, Wang HQ, Ju L, Hou KX, Xiao ZD, Zhan JL, Zhang C, Chen H, Wang B, Liu ZG, Guan YS, Li CH, Cui TJ, Lu WB. A bio-inspired microwave wireless system for constituting passive and maintenance-free IoT networks. Natl Sci Rev 2025; 12:nwae435. [PMID: 39830403 PMCID: PMC11737395 DOI: 10.1093/nsr/nwae435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 01/22/2025] Open
Abstract
With the rapid expansion of wireless networks, the deployment and long-term maintenance of distributed microwave terminals have become increasingly challenging. To address these issues, we present a bio-inspired microwave system to constitute passive and maintenance-free wireless networks. Drawing inspiration from vertebrate skeletons and skins, we employ stimuli-responsive polymer with tunable stiffness to support and protect sensitive electromagnetic structures, and synthesize self-healable skin-like polymer for system encapsulation. Owing to the biomimetic strategy, our system combines outstanding flexibility, electromagnetic stability, structural robustness, and self-healable performance. On the other hand, to address power supply issues, our system modulates ambient electromagnetic waves to achieve long-range wireless communication, and the hybrid energy harvesting strategy allows the system to capture energy from ambient light and microwaves, thereby eliminating the need for batteries or power cables. Multidisciplinary innovation enables our system to be deployed almost anywhere and supports stable, battery-less, and maintenance-free wireless communication.
Collapse
Affiliation(s)
- Buyun Yu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
| | - Hong-Qin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Lu Ju
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
| | - Ke-Xin Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Zhi-Da Xiao
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
| | - Jun-Lin Zhan
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
| | - Chao Zhang
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
| | - Hao Chen
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
| | - Binghao Wang
- School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhen-Guo Liu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
| | - Ying-Shi Guan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China
| | - Cheng-Hui Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Tie Jun Cui
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
| | - Wei-Bing Lu
- State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
- Center for Flexible RF Technology, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
| |
Collapse
|
39
|
Li Q, Wei C, Xu L, Zhang J, Li Y, Lu X, Xu R, Guo H, Cao P, Ouyang C, Xu J, Chen W, Wang Z, Wang L. A Smart Semi-Implantable Device Integrating Microchannel-Enhanced Sampling and Multiplex Biochemical Testing for Deep Wound Monitoring and Pathogen Identification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407868. [PMID: 39741227 PMCID: PMC11848630 DOI: 10.1002/advs.202407868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/19/2024] [Indexed: 01/02/2025]
Abstract
Monitoring deep wounds is challenging but necessary for high-quality medical treatment. Current methodologies for deep wound monitoring are typically limited to indirect clinical symptoms or costly non-real-time imaging diagnosis. Herein, a smart system is proposed that enables in situ monitoring of deep wounds' status through a semi-implantable device composed of 2 seamlessly connected functional components: 1) the well-designed, microchannel-structured sampling needles that efficiently and conveniently collect samples from deep wound anatomical locations, and 2) the multiplex biochemical testing compartment that facilitates the immediate and persistent detection of multiple biochemical indicators based on a color image processing software accessible to a conventional smartphone. With the 3 representative preclinical deep wound models, the study demonstrates the device's potential to monitor wound infection, inflammation, healing progress, and reduce inflammation when applied to deep skin injury, surgical implantation, and postoperative intestinal leakage. The device's capability to rapidly and accurately identify pathogenic bacteria is also demonstrated both in vitro and in vivo, potentially facilitating precise intervention in infected wounds. Coupled with the device's favorable biocompatibility and cost-effectiveness, this intelligent system emerges as a promising tool for safe and effective management of complicated deep wounds.
Collapse
Affiliation(s)
- Qilin Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chunyu Wei
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Luming Xu
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiao Zhang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuyu Li
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiaohuan Lu
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Rengui Xu
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Honglian Guo
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Peng Cao
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Chenke Ouyang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiarong Xu
- Department of PharmacologySchool of Basic MedicineState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesTongji‐Rongcheng Center for BiomedicineTongji Medical CollegeHuazhong University of Science and TechnologyHubei Key Laboratory for Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhan430030China
| | - Wei Chen
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of PharmacologySchool of Basic MedicineState Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious DiseasesTongji‐Rongcheng Center for BiomedicineTongji Medical CollegeHuazhong University of Science and TechnologyHubei Key Laboratory for Drug Target Research and Pharmacodynamic EvaluationHuazhong University of Science and TechnologyWuhan430030China
| | - Zheng Wang
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of Gastrointestinal SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lin Wang
- Department of Clinical LaboratoryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Regenerative Medicine and Multi‐disciplinary Translational ResearchHubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart EquipmentResearch Center for Tissue Engineering and Regenerative MedicineUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
40
|
Szunerits S, Chuang EY, Yang JC, Boukherroub R, Burnouf T. Platelet extracellular vesicles-loaded hydrogel bandages for personalized wound care. Trends Biotechnol 2025:S0167-7799(24)00393-7. [PMID: 39863439 DOI: 10.1016/j.tibtech.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025]
Abstract
Autologous or allogeneic platelet-derived extracellular vesicles (pEVs) show potential in enhancing tissue recovery and healing chronic wounds. pEVs promote neovascularization and cell migration while reducing inflammation, oxidative stress, and scarring. However, their efficacy in clinical settings is challenged by their susceptibility to washout by wound exudate. Hydrogel-based bandages are effective carriers that stabilize pEVs for optimal personalized wound care. These bandages can be tailored for easy removal to minimize damage to regenerated tissue and can incorporate antibacterial or moisture-retaining properties. Furthermore, the possibility of integrating sensors in the wound bed will enable a theragnostic approach to healing. This review explores advancements in pEV-loaded hydrogels and their potential for personalized clinical applications.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France; Laboratory for Life Sciences and Technology (LiST), Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems, Austria.
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan
| | - Jen-Chang Yang
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Shuang-Ho Campus, New Taipei City 235603, Taiwan; International PhD Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
41
|
Tang S, Feng K, Yang R, Cheng Y, Chen M, Zhang H, Shi N, Wei Z, Ren H, Ma Y. Multifunctional Adhesive Hydrogels: From Design to Biomedical Applications. Adv Healthc Mater 2025; 14:e2403734. [PMID: 39604246 DOI: 10.1002/adhm.202403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Adhesive hydrogels characterized by structural properties similar to the extracellular matrix, excellent biocompatibility, controlled degradation, and tunable mechanical properties have demonstrated significant potential in biomedical applications, including tissue engineering, biosensors, and drug delivery systems. These hydrogels exhibit remarkable adhesion to target substrates and can be rationally engineered to meet specific requirements. In recent decades, adhesive hydrogels have experienced significant advancements driven by the introduction of numerous multifunctional design strategies. This review initially summarizes the chemical bond-based design strategies for tissue adhesion, encompassing static covalent bonds, dynamic covalent bonds, and non-covalent interactions. Subsequently, the multiple functionalities imparted by these diverse design strategies, including highly stretchable and tough performances, responsiveness to microenvironments, anti-freezing/heating properties, conductivity, antibacterial activity, and hemostatic properties are discussed. In addition, recent advances in the biomedical applications of adhesive hydrogels, focusing on tissue repair, drug delivery, medical devices, and wearable sensors are reviewed. Finally, the current challenges are highlighted and future trends in this rapidly evolving field are discussed.
Collapse
Affiliation(s)
- Shaoxin Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Keru Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rui Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yang Cheng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Meiyue Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Nianyuan Shi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Key Laboratory of Magnetic Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Yufei Ma
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
42
|
Zhang F, Xu Y, Zhao G, Chen Z, Li C, Yan Z. Multifunctional Porous Soft Bioelectronics. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2025; 82:123-138. [PMID: 40212730 PMCID: PMC11981227 DOI: 10.1016/j.mattod.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
Soft bioelectronics, seamlessly interfacing with the human body to enable both recording and modulation of curvilinear biological tissues and organs, have significantly driven fields such as digital healthcare, human-machine interfaces, and robotics. Nonetheless, intractable challenges persist due to the onerous demand for imperceptible, burden-free, and user-centric comfortable bioelectronics. Porous soft bioelectronics is a new way to a library of imperceptible bioelectronic systems, that form natural interfaces with the human body. In this review, we provide an overview of the development and recent advances in multifunctional porous engineered soft bioelectronics, aiming to bridge the gap between living biotic and stiff abiotic systems. We first discuss strategies for fabricating porous, soft, and stretchable bioelectronic materials, emphasizing the concept of materials-level porous engineering for breathable and imperceptible bioelectronics. Next, we summarize wearable bioelectronics devices and multimodal systems with porous configurations designed for on-skin healthcare applications. Moving beneath the skin, we discuss implantable devices and systems enabled by porous bioelectronics with tissue-like compliance. Finally, existing challenges and translational gaps are also proposed to usher further research efforts towards realizing practical and clinical applications of porous bioelectronic systems; thus, revolutionizing conventional healthcare and medical practices and opening up unprecedented opportunities for long-term, imperceptible, non-invasive, and human-centric healthcare networks.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Yadong Xu
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
| | - Can Li
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Zheng Yan
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO, USA
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
- NextGen Precision Health, University of Missouri, Columbia, MO, USA
| |
Collapse
|
43
|
Ling W, Shang X, Liu J, Tang T. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring. Biosens Bioelectron 2025; 267:116852. [PMID: 39426278 DOI: 10.1016/j.bios.2024.116852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Continuous monitoring of sweat nutrients offers valuable insights into metabolic cycling and health levels. However, existing methods often lack adaptability and real-time capabilities. Here, we propose a skin-mountable flexible biosensor integrated with metal-organic framework (MOF)-derived composites for real-time monitoring of sweat ascorbic acid (AA) levels. The biosensor features a miniaturized, highly integrated system capable of an imperceptible, stretchable skin patch with dimensions of 16.9 × 9.9 × 0.1 mm3, ensuring conformal integration with curvilinear skin contours. The introduction of a copper-based MOF anchored with poly(3,4-ethylenedioxythiophene) (Cu-MOF/PEDOT) significantly enhances sensing performance toward AA, achieving a detection limit of 0.76 μM and a sensitivity of 725.7 μA/(mM·cm2). Moreover, a miniaturized flexible circuit enables wireless communication, resulting in a lightweight, wearable platform weighing only 1.3 g. Structural and electrochemical analyses confirm the favorable sensitivity, reversibility, and stability of the biosensor, while in-vivo validation in human subjects further reveals the capability to track sweat AA variations during nutrient intake and sustained exercise, showcasing its potential in metabolic cycle assessment and health management. The biosensor presents a promising avenue for scalable health monitoring using adaptable and user-friendly technologies.
Collapse
Affiliation(s)
- Wei Ling
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China; Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China.
| | - Xue Shang
- Research Center for Novel Computing Sensing and Intelligent Processing, Zhejiang Lab, Hangzhou, 311121, China
| | - Junchen Liu
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China
| | - Tao Tang
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, 311121, China.
| |
Collapse
|
44
|
Wang Y, Huang W, Li J, Liu S, Fu J, Wang L, Wang H, Li W, Xie L, Ling H, Huang W. Engineering Steep Subthreshold Swings in High-Performance Organic Field-Effect Transistor Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406522. [PMID: 39479740 DOI: 10.1002/smll.202406522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/18/2024] [Indexed: 01/11/2025]
Abstract
Organic field-effect transistor (OFET)-based sensors have gained considerable attention for information perception and processing in developing artificial intelligent systems owing to their amplification function and multiterminal regulation. Over the last few decades, extensive research has been conducted on developing OFETs with steep subthreshold swings (SS) to achieve high-performance sensing. In this review, based on an analysis of the critical factors that are unfavorable for a steep SS in OFETs, the corresponding representative strategies for achieving steep SS are summarized, and the advantages and limitations of these strategies are comprehensively discussed. Furthermore, a bridge between SS and OFET sensor performance is established. Subsequently, the applications of OFETs with steep SS in sensor systems, including pressure sensors, photosensors, biochemical sensors, and electrophysiological signal sensors. Lastly, the challenges faced in developing OFET sensors with steep SS are discussed. This study provides insights into the design and application of high-performance OFET sensor systems.
Collapse
Affiliation(s)
- Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wanxin Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Jiahao Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Shanshuo Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Jingwei Fu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Le Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Haotian Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wen Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| |
Collapse
|
45
|
Wang X, Cheng J, Wang H. Chronic wound management: a liquid diode-based smart bandage with ultrasensitive pH sensing ability. MICROSYSTEMS & NANOENGINEERING 2024; 10:193. [PMID: 39676100 DOI: 10.1038/s41378-024-00801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/12/2024] [Accepted: 08/24/2024] [Indexed: 12/17/2024]
Abstract
Chronic wounds, which require prolonged healing periods, pose significant impacts on individuals with diabetes, vascular diseases, and high blood pressure. Simultaneous drainage and monitoring of wound exudate are vital for advanced wound management. However, recently reported smart dressings either lack integration of wound cleaning and monitoring functions or fail to achieve dynamic in situ monitoring of wound status, which hinders their ability to meet the demands of wound care. In this study, a smart bandage is introduced, which integrates a biocompatible liquid diode membrane with an ultrasensitive 3D polyaniline mesh (M-PANI)-based pH biosensor. The smart bandage allows for unidirectional drainage of wound exudate while dynamically sensing the wound pH environment. Specifically, the proposed smart bandage effectively cleans excessive wound exudate while providing real-time information on the wound status during the drainage process. The M-PANI-based pH biosensor demonstrates a high sensitivity of 61.5 mV/pH and a wide pH detection range from 4.0 to 10.0, encompassing the pH range of normal and infected wounds. Moreover, the sensing module exhibits excellent stability after 48 hours of dynamic testing and 28 days of storage, with only a 4.8% decline in the detected signal, and high repeatability with a device-to-device relative standard deviation (RSD) of 3.1%. To evaluate the practicality of this smart bandage, simulated skin and rats have been employed, and the results indicate the immense potential of this smart bandage for clinical applications. In conclusion, the present smart bandage demonstrates considerable promise for wound exudate cleaning and monitoring in advanced wound care and offers a promising method for home-based wound management.
Collapse
Affiliation(s)
- Xueqi Wang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Cheng
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Han Wang
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
46
|
Deng K, Luo R, Chen Y, Liu X, Xi Y, Usman M, Jiang X, Li Z, Zhang J. Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409884. [PMID: 39680745 DOI: 10.1002/advs.202409884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Tissue repair and reconstruction are a clinical difficulty. Bioelectricity has been identified as a critical factor in supporting tissue and cell viability during the repair process, presenting substantial potential for clinical application. This review delves into various sources of electrical stimulation and identifies appropriate electrode materials for clinical use. It also highlights the biological mechanisms of electrical stimulation at both the subcellular and cellular levels, elucidating how these interactions facilitate the repair and regeneration processes across different organs. Moreover, specific electrode materials and stimulation sources are outlined, detailing their impact on cellular activity. The future development trends are projected from two perspectives: the optimization of equipment performance and the fulfillment of clinical demands, focusing on the feasibility, safety, and cost-effectiveness of technologies.
Collapse
Affiliation(s)
- Kexin Deng
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ruizeng Luo
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Chen
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiaoqiang Liu
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuanyin Xi
- A Breast Disease Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Muhammad Usman
- Department of Plastic Surgery and Burn, Central Hospital Affiliated with Chongqing University of Technology, Chongqing, 400054, P.R. China
| | - Xupin Jiang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhou Li
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaping Zhang
- Department of Plastic Surgery, State Key Laboratory of Trauma and Chemical Poisoning, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
47
|
Abstract
Soft materials are crucial for epidermal interfaces in biomedical devices due to their capability to conform to the body compared to rigid inorganic materials. Gels, liquids, and polymers have been extensively explored, but they lack sufficient electrical and thermal conductivity required for many application settings. Gallium-based alloys are molten metals at room temperature with exceptional electrical and thermal conductivity. These liquid metals and their composites can be directly applied onto the skin as interface materials. In this Spotlight on Applications, we focus on the rapidly evolving field of liquid metal-enabled epidermal interfaces featuring unique physical properties beyond traditional gels and polymers. We delve into the role of liquid metal in electrical and thermal biointerfaces in various epidermal applications. Current challenges and future directions in this active area are also discussed.
Collapse
Affiliation(s)
- Ting Fang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, Jiangsu, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, Jiangsu, China
| | - Yuping Sun
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, Jiangsu, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, Jiangsu, China
| | - Desheng Kong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing 210023, Jiangsu, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, Jiangsu, China
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
| |
Collapse
|
48
|
Yi Y, Dou H, Zhao J, Liu Z, Wu S, Chen Y, Xu L, Zhang C, Liu C, Niu S, Han Z, Ren L. Low Voltage-Enhanced Mechano-Bactericidal Biopatch. NANO LETTERS 2024; 24:15806-15816. [PMID: 39600064 DOI: 10.1021/acs.nanolett.4c04777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mechano-bactericidal strategies represent a safe and sustainable method for preventing microbial contamination in the postantibiotic era. However, their effectiveness against Gram-positive bacteria (≤55%) is still limited due to the thick peptidoglycan layer in their cell walls. Herein, an intelligent biomimetic nanopillared biopatch is developed. It is assisted by low-voltage (8 V) electrical stimulation from TENG and significantly enhances antibacterial efficacy (>99%) against three types of stubborn Gram-positive bacteria. These collaborative antibacterial behaviors are solely based on purely physical actions, thus avoiding the risk of triggering bacterial resistance. Moreover, the slight mechanical energy generated by human physiological activities is converted into a power source, exhibiting energy-efficient, eco-friendly, and sustainable features. The conductive hydrogel in the biopatch can also act as an intelligent temperature sensor, monitoring, and real-time assessment of wound conditions. This intelligent biopatch holds immense potential for efficient healing and safe management of both acute and chronic wound infections.
Collapse
Affiliation(s)
- Yaozhen Yi
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Haixu Dou
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jie Zhao
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Ziting Liu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shuilin Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuxiang Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, SAR, China
| | - Changchao Zhang
- Institute of Orthopaedic and Musculoskeletal Science Royal National Orthopaedic Hospital, University College London, Stanmore, HA74LP London, U.K
| | - Chaozong Liu
- Institute of Orthopaedic and Musculoskeletal Science Royal National Orthopaedic Hospital, University College London, Stanmore, HA74LP London, U.K
| | - Shichao Niu
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| | - Zhiwu Han
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Luquan Ren
- The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China
| |
Collapse
|
49
|
Chen W, Lin J, Ye Z, Wang X, Shen J, Wang B. Customized surface adhesive and wettability properties of conformal electronic devices. MATERIALS HORIZONS 2024; 11:6289-6325. [PMID: 39315507 DOI: 10.1039/d4mh00753k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformal and body-adaptive electronics have revolutionized the way we interact with technology, ushering in a new era of wearable devices that can seamlessly integrate with our daily lives. However, the inherent mismatch between artificially synthesized materials and biological tissues (caused by irregular skin fold, skin hair, sweat, and skin grease) needs to be addressed, which can be realized using body-adaptive electronics by rational design of their surface adhesive and wettability properties. Over the past few decades, various approaches have been developed to enhance the conformability and adaptability of bioelectronics by (i) increasing flexibility and reducing device thickness, (ii) improving the adhesion and wettability between bioelectronics and biological interfaces, and (iii) refining the integration process with biological systems. Successful development of a conformal and body-adaptive electronic device requires comprehensive consideration of all three aspects. This review starts with the design strategies of conformal electronics with different surface adhesive and wettability properties. A series of conformal and body-adaptive electronics used in the human body under both dry and wet conditions are systematically discussed. Finally, the current challenges and critical perspectives are summarized, focusing on promising directions such as telemedicine, mobile health, point-of-care diagnostics, and human-machine interface applications.
Collapse
Affiliation(s)
- Wenfu Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Junzhu Lin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Zhicheng Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| | - Xiangyu Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P. R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
| |
Collapse
|
50
|
Liu J, Li Z, Sun M, Zhou L, Wu X, Lu Y, Shao Y, Liu C, Huang N, Hu B, Wu Z, You C, Li L, Wang M, Tao L, Di Z, Sheng X, Mei Y, Song E. Flexible bioelectronic systems with large-scale temperature sensor arrays for monitoring and treatments of localized wound inflammation. Proc Natl Acad Sci U S A 2024; 121:e2412423121. [PMID: 39589888 PMCID: PMC11626133 DOI: 10.1073/pnas.2412423121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Continuous monitoring and closed-loop therapy of soft wound tissues is of particular interest in biomedical research and clinical practices. An important focus is on the development of implantable bioelectronics that can measure time-dependent temperature distribution related to localized inflammation over large areas of wound and offer in situ treatment. Existing approaches such as thermometers/thermocouples provide limited spatial resolution, inapplicable to a wearable/implantable format. Here, we report a conformal, scalable device package that integrates a flexible amorphous silicon-based temperature sensor array and drug-loaded hydrogel for the healing process. This system can enable the spatial temperature mapping at submillimeter resolution and high sensitivity of 0.1 °C, for dynamically localizing the inflammation regions associated with temperature change, automatically followed with heat-triggered drug delivery from hydrogel triggered by wearable infrared light-emitting-diodes. We establish the operational principles experimentally and computationally and evaluate system functionalities with a wide range of targets including live animal models and human subjects. As an example of medical utility, this system can yield closed-loop monitoring/treatments by tracking of temperature distribution over wound areas of live rats, in designs that can be integrated with automated wireless control. These findings create broad utilities of these platforms for clinical diagnosis and advanced therapy for wound healthcare.
Collapse
Affiliation(s)
- Junhan Liu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Zhongzheng Li
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Mubai Sun
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun130033, China
| | - Lianjie Zhou
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Xiaojun Wu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
| | - Yifei Lu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Yuting Shao
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai200065, China
| | - Chang Liu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Ningge Huang
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Bofan Hu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Zhongyuan Wu
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Chunyu You
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Lizhu Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu611731, China
| | - Ming Wang
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
| | - Ling Tao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai200030, China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing100084, China
- Institute for Precision Medicine, Center for Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing100084, China
| | - Yongfeng Mei
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| | - Enming Song
- Department of Materials Science and Institute of Optoelectronics, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai200438, China
- State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai200438, China
- International Institute for Intelligent Nanorobots and Nanosystems, Center for Neural Regulation and Brain-Computer Interface Research, Fudan University, Shanghai200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang322000, China
| |
Collapse
|